
d

ension-
orithm
s been

orithm.
ching al-
rection
for high
es. We
ing. We
hem in

r ex-
ion and
e ap-

ro).
Journal of Discrete Algorithms 2 (2004) 115–134

www.elsevier.com/locate/jda

Probabilistic proximity searching algorithms base
on compact partitions

Benjamin Bustosa,∗, Gonzalo Navarrob

a Department of Computer and Information Science, University of Konstanz, Universitaetstr. 10,
78457 Konstanz, Germany

b Center for Web Research, Department of Computer Science, University of Chile, Blanco Encalada 2120,
Santiago, Chile

Abstract

The main bottleneck of the research in metric space searching is the so-called curse of dim
ality, which makes the task of searching some metric spaces intrinsically difficult, whatever alg
is used. A recent trend to break this bottleneck resorts to probabilistic algorithms, where it ha
shown that one can find 99% of the relevant objects at a fraction of the cost of the exact alg
These algorithms are welcome in most applications because resorting to metric space sear
ready involves a fuzziness in the retrieval requirements. In this paper, we push further in this di
by developing probabilistic algorithms on data structures whose exact versions are the best
dimensions. As a result, we obtain probabilistic algorithms that are better than the previous on
give new insights on the problem and propose a novel view based on time-bounded search
also propose an experimental framework for probabilistic algorithms that permits comparing t
offline mode.
 2003 Elsevier B.V. All rights reserved.

Keywords: Metric spaces; Range queries; Probabilistic algorithms; Approximate algorithms; Similarity
searching

1. Introduction

The concept of proximity searching has applications in a vast number of fields, fo
ample: Multimedia databases, machine learning and classification, image quantizat
compression, text retrieval, computational biology, function prediction, etc. All thos

* Corresponding author.
E-mail addresses: bustos@informatik.uni-konstanz.de (B. Bustos), gnavarro@dcc.uchile.cl (G. Navar

1570-8667/$ – see front matter 2003 Elsevier B.V. All rights reserved.

doi:10.1016/S1570-8667(03)00067-4

http://www.elsevier.com/locate/jda

116 B. Bustos, G. Navarro / Journal of Discrete Algorithms 2 (2004) 115–134

plications have in common that the objects of the database form ametric space [8], that

e tu-

tabase

tabase.
e
putes

paper

ries
sed on
pre-

uery
ry ob-

f
gle in-
ffline

tion cost

comes
own
[8]
m of
lower
erfor-
ossible
togram,
, it is

jects of
other.

metric
es some
all of

rgely
r hand,
is, it is possible to define a positive real-valued functiond among the objects, calleddis-
tance or metric, that satisfies the properties ofstrict positiveness (d(x, y)= 0⇔ x = y),
symmetry (d(x, y) = d(y, x)), andtriangle inequality (d(x, z) � d(x, y)+ d(y, z)). For
example, avector space is a particular case of metric space, where the objects ar
ples of real numbers and the distance function belongs to theLs family, defined as
Ls((x1, . . . , xk), (y1, . . . , yk)) = (

∑
1�i�k |xi − yi |s)1/s . For example,L1 is called the

Manhattan distance, L2 is theEuclidean distance andL∞ =max1�i�k |xi − yi | is called
themaximum distance.

One of the typical queries that can be posed to retrieve similar objects from a da
is arange query, which retrieves all the objects within distancer to a query objectq . The
naive algorithm to answer range queries is to perform an exhaustive search on the da
This turns out to be too expensive for real-world applications, because the distancd is
considered expensive to compute (think, for example, of a biometric device that com
the distance between two fingerprints). In many practical applications,d is so costly that
the extra CPU time or even I/O time costs can be neglected. For this reason, in this
the complexity of the algorithms will be measured as thenumber of distance computations
performed to answer a query.

Proximity searching algorithms build anindex of the database and perform range que
using this index, avoiding the exhaustive search. Many of these algorithms are ba
dividing the space inpartitions or zones as compact as possible. Each zone stores a re
sentative point, called thecenter, and data that permit discarding the entire zone at q
time, without measuring the actual distance from the objects of the zone to the que
ject, hence saving distance computations. Other algorithms are based in the use opivots,
which are selected objects from the database that are used together with the trian
equality to filter out objects of the database at query time. Usually, the index is built o
and has a construction cost also measured in distance computations. The construc
is amortized over many queries, with the saved distance computations for these.

An inherent problem of proximity searching in metric spaces is that the search be
more difficult when the “intrinsic” dimension of the metric space increases, which is kn
as thecurse of dimensionality. The intrinsic dimension of a metric space is defined in
asµ2/2σ 2, whereµ andσ 2 are the mean and the variance of the distance histogra
the metric space. This is coherent with the usual vector space definition. Analytical
bounds and experiments [8] show that all proximity searching algorithms have their p
mance degraded as the dimension of the space grows. This problem is due to two p
reasons: High dimensional metric spaces have a very concentrated distance his
which gives less information for discarding objects at query time; on the other hand
necessary to use a larger search radius in order to retrieve a fixed fraction of the ob
the space, because in high dimensional spaces the objects are “far away” from each

Probabilistic algorithms are acceptable in most applications that need to search in
spaces, because in general modeling the problem as a metric space already involv
kind of relaxation. In most cases, finding some close objects is as good as finding
them. There exists a pivot-based probabilistic proximity searching algorithm which la
improves the search time at the cost of missing few relevant objects [7]. On the othe

B. Bustos, G. Navarro / Journal of Discrete Algorithms 2 (2004) 115–134 117

it is known that compact partitioning algorithms perform better than pivot-based algorithms

based
y. We
n prob-
ace to

prox-
ilistic
bilistic
ction 6
7 intro-

and

in

ies. Our
range

riginal
.
algo-

s ac-
llows:

t
on
t-

-

in high dimensional metric spaces [8] and they have lower memory requirements.
In this paper, we present several probabilistic algorithms for proximity searching

on compact partitions, which alleviate in some way the curse of the dimensionalit
also present experimental results that show that these algorithms perform better tha
abilistic algorithms based on pivots, and that the latter need much more memory sp
outperform the former when the dimension of the space is very high.

The paper is organized as follows: In Section 2, we survey the exact algorithms for
imity search in metric spaces. In Section 3, we give an overview of the actual probab
algorithms. Section 4 describes the data structures where we implement our proba
techniques. In Section 5, we describe the proposed probabilistic algorithms, and Se
presents the experimental results with synthetic and real-world data sets. Section
duces the model for comparing ranking criteria. Finally, in Section 8, we conclude
discuss possible extensions of this work.

2. Basic concepts

Let (X, d) be a metric space andU ⊆ X the set of objects or database, with|U| = n.
There are two typical proximity searching queries:

• Range query. A range query(q, r), q ∈ X, r ∈ R
+, reports all objects that are with

distancer to q , that is(q, r)= {u ∈U, d(u, q) � r}.
• k nearest neighbors query (k-NN). Reports thek objects fromU closer toq , that is,

returns the setC⊆U such that|C| = k and∀x ∈C, y ∈U−C, d(x, q)� d(y, q).

The volume defined by(q, r) is called thequery ball, and all the objects fromU inside
it are reported. Nearest neighbors queries can be implemented using range quer
definition of range query for metric spaces preserves the same spirit of the “geometric
query”, which is defined for vector spaces as a hypercube instead of a ball. The o
definition has no meaning on a metric space scenario due to the lack of coordinates

There exist two classes of techniques used to implement proximity searching
rithms: One based on pivots and one based on compact partitions.

2.1. Pivot-based algorithms

These algorithms select a number of “pivots”, and classify all the other object
cording to their distance to the pivots. The canonical pivot-based algorithm is as fo
Given a range query(q, r) and a set ofk pivots {p1, . . . , pk}, pi ∈ U, by the trian-
gle inequality it follows for anyx ∈ X that d(pi, x) � d(pi, q) + d(q, x), and also tha
d(pi, q) � d(pi, x) + d(x, q). From both inequalities, it follows that a lower bound
d(q, x) is d(q, x) � |d(pi, x)− d(pi, q)|. The objectsu ∈U of interest are those that sa
isfy d(q,u) � r, so one can exclude all the objects that satisfy|d(pi, u)− d(pi, q)|> r

for some pivotpi (exclusion condition), without actually evaluatingd(q,u). Defining the
metricD(x,y)=max1�i�k |d(x,pi)− d(y,pi)|, it follows that the pivot exclusion con

118 B. Bustos, G. Navarro / Journal of Discrete Algorithms 2 (2004) 115–134

dition can be expressed asD(q,u) > r. Note thatD is a lower bound of thed distance

ot.
ts
s are
a
e
st

l and

,
ts as

g the
ivots
od set”
e

s
it
m the

o more
ce:

ells,
other.
of their

t with

t

betweenq andu.
The index consists of thekn distancesd(u,pi) between every object and every piv

Therefore, at query time it is necessary to compute thek distances between the pivo
and the queryq in order to apply the exclusion condition. Those distance calculation
known as theinternal complexity of the algorithm, and this complexity is fixed if there is
fixed number of pivots. The list of objects{u1, . . . , um} ⊆U that cannot be excluded by th
exclusion condition, known as theobject candidate list, must be checked directly again
the query. Those distance calculationsd(ui, q) are known as theexternal complexity of
the algorithm. The total complexity of the search algorithm is the sum of the interna
external complexity,k +m. Since one increases and the other decreases withk, it follows
that there is an optimumk∗ that depends on the tolerance ranger of the query. In practice
k∗ is so large that one cannot store thek∗n distances, and the index uses as many pivo
space permits.

Examples of pivot-based algorithms [8] areBK-Tree, Fixed Queries Tree (FQT), Fixed-
Height FQT, Fixed Queries Array, Vantage Point Tree (VPT), Multi VPT, Excluded Middle
Vantage Point Forest, Approximating Eliminating Search Algorithm (AESA) and Linear
AESA. With a few exceptions, pivot-based algorithms select them at random amon
objects of the metric space. However, it is well known that the way in which the p
are selected can affect the performance of the algorithms. One can select a “go
of pivots maximizing the mean of the distribution ofD [5]. In our experiments, we us
random pivots as well as good pivots.

2.2. Algorithms based on compact partitions

These algorithms are based on dividing the space inpartitions or zones as compact a
possible. Each zone stores a representative point, called thecenter, and data that perm
discarding the entire zone at query time, without measuring the actual distance fro
objects of the zone to the query object. Each zone can be partitioned recursively int
zones, inducing asearch hierarchy. There are two general criteria for partitioning the spa
Voronoi partition andcovering radius.

2.2.1. Voronoi partition criterion
The Voronoi diagram of a collection of objects is a partition of the space into c

each of which consisting of the objects closer to one particular center than to any
A set ofm centers is selected and the rest of the objects are assigned to the zone
closest center. Given a range query(q, r), the distances betweenq and them centers are
computed. Letc be the closest center toq . Every zone of centerci �= c which satisfies
d(q, ci) > d(q, c)+ 2r can be discarded, because its Voronoi area cannot intersec
the query ball. Fig. 1 shows an example of the Voronoi partition criterion. Forq1 the zone
of c4 can be discarded, and forq2 only the zone ofc3 must be visited.

2.2.2. Covering radius criterion
The covering radiuscr(c) is the maximum distance between a centerc and an objec

that belongs to its zone. Given a range query(q, r), if d(q, ci)− r > cr(ci) then zonei

B. Bustos, G. Navarro / Journal of Discrete Algorithms 2 (2004) 115–134 119

query
e
lls.
noi
Fig. 1. Voronoi partition criterion.

Fig. 2. Covering radius criterion.

cannot intersect with the query ball and all its objects can be discarded. In Fig. 2, the
ball of q1 does not intersect with the zone of centerc, thus it can be discarded. For th
query balls ofq2 andq3, the zone cannot be discarded, because it intersects these ba

Generalized-Hyperplane Tree [20] is an example of an algorithm that uses the Voro
partition criterion. Examples of algorithms that use the covering radius criterion areBisec-
tor Trees (BST) [17], Monotonous BST [19], Voronoi Tree [13], M-Tree [11] andList of
Clusters [6]. There exist algorithms that use both criteria, for exampleSpatial Approxima-
tion Tree [18] andGeometric Near-neighbor Access Tree [4].

3. Probabilistic algorithms for proximity searching

All the algorithms seen in the previous section areexact algorithms, which retrieve
exactly the elements ofU that are within the query ball of(q, r). In this work, we are

120 B. Bustos, G. Navarro / Journal of Discrete Algorithms 2 (2004) 115–134

ct

lassi-
f them:
ompar-
etric),

d in
hows

ension
in the
ch
level of
ents, no
ents
w
d, while

[12].
ery
ability
equire-
d [12],
Fig. 3. How the probabilistic algorithm based on pivots works.

interested inprobabilistic algorithms, which relax the condition of delivering the exa
solution. As explained before, this is acceptable in most applications.

A survey on approximate similarity queries is presented in [10]. It proposes a c
fication schema for existing approaches, considering as relevant characteristics o
Type of data (metric or vector spaces), error metrics (changing space or reducing c
isons), quality guarantees (none, deterministic or probabilistic parametric/non-param
and user interaction (static or interactive).

A probabilistic algorithm based on “stretching” the triangle inequality is presente
[7]. The idea is general, but it is applied to pivot based algorithms. Their analysis s
that the net effect of the technique is to reduce the search radius by a factorβ , and that
reduction is larger when the search problem becomes harder, i.e., the intrinsic dim
of the space becomes high. Even with very little stretching, large improvements
search time are obtained with low error probability. The factorβ can be chosen at sear
time, so the index can be built beforehand and later one can choose the desired
accurateness and speed of the algorithm. As the factor is used only to discard elem
element closer toq thanr/β can be missed during the search. In practice, all the elem
that satisfy|d(pi, u)− d(pi, q)|> r/β for somepi are discarded. Fig. 3 illustrates ho
the idea operates. The exact algorithm guarantees that no relevant element is misse
the probabilistic one stretches both sides of the ring and can miss some elements.

A data structure calledM(U,Q) to answer nearest neighbor queries is proposed in
It requires a training data setQ of m objects, taken to be representative of typical qu
objects. This data structure may fail to return a correct answer, but the failure prob
can be made arbitrarily small at the cost of increasing the query time and space r
ments for the index. When the metric space obeys a certain sphere-packing boun
it is shown thatM(U,Q) answers range queries in O(K ln(n) log(Υ (U ∪Q))) time, with
failure probability O(log2(n)/K) and requires O(Kn log(Υ (U ∪Q))) space, whereK is
a parameter that allows one to control the failure probability andΥ (T) is the ratio of the
distance between the farthest and closest pair of points ofT .

B. Bustos, G. Navarro / Journal of Discrete Algorithms 2 (2004) 115–134 121

An approach to approximate nearest neighbor similarity search calledprobabilistic ap-

s
index,
iven a
f

canned
-

ce to
e

in
ntains

phere
e tree:
e. The
query

t to the
epend

ap-
iency:
tribu-
ental

iven the

ate

o
ned as

n ex-

e
al and

guide
xclud-
e
alyzed
proximately correct NN (PAC-NN) is presented in [9]. The algorithm retrieves an(1+ ε)

nearest neighbor with probability greater or equal than 1− δ, whereε andδ are parameter
that can be tuned at query time. The algorithm can be implemented in an arbitrary
and in [9] both sequential and index-based PAC-NN algorithms are described. G
query objectq , rqδ is defined as the maximum distance fromq so that the probability o
finding an object closer toq thanr

q
δ is lower or equal thanδ. An estimation ofrqδ can be

obtained from the distance distribution of the query points. Then, the database is s
until an objectu such thatd(q, o) � (1+ ε)r

q
δ is found, reportingu as the probably ap

proximately correct nearest neighbor ofq . On the other hand, an(1+ ε) approximation
is guaranteed by pruning from the search every element whose lower bound distanq
(proved by the index structure) exceedsr∗/(1+ ε), wherer∗ is the current distance to th
kth nearest neighbor.

An index structure calledP-Sphere tree for nearest neighbor queries is proposed
[14]. The tree has a two-level structure, a root level and a leaf level. The root co
a list of “sphere descriptions” and pointers to all leaf levels. Each leaf contains acenter
point and all data points that lie within the sphere described in the corresponding s
descriptor from the root level. Three parameters must be set before constructing th
The fanout of the root, the center points in the sphere descriptors, and the leaf siz
search algorithm consists in determining the leaf whose center point is closest to the
object, and then a linear scan is performed on that leaf, reporting the closest objec
query. Selecting the appropriate parameters at construction time [14], which also d
in the desired accuracy level, the index will yield a probably correct answer.

Approximatek-NN queries with the M-tree are presented in [23]. Three different
proximation techniques are proposed, which trade query precision for improved effic
Approximation through relative distance errors, approximation through distance dis
tions, and approximation through the slowdown of distance improvements. Experim
results suggest that the best method is the one based on distance distributions. G
distance distributionFq of a query objectq , the stopping criterionFq(d(q, o

k
A)) � ρ can

be defined, whereok
A is the kth approximated nearest neighbor ofq (as found by the

search algorithm) andρ is the fraction of best cases to which this current approxim
result belongs. This criterion is used to stop the search before the exactk-NN are found.
No search improvements are obtained whenρ � Fq(d(q, o

k
N)), whereok

N is the actual
kth nearest neighbor ofq . If the distributionFq is unknown, in [23] it is proposed t
use a “representative distance function”, e.g., the average distribution function defi
Favg(x)=E[Fo(x)].

Approximation algorithms for vector spaces are surveyed in depth in [10,21]. A
ample is [1], which proposes a general framework to search for an arbitrary regionQ in
(Rk,L2). The idea is to define areasQ− andQ+ such thatQ− ⊂ Q ⊂ Q+. Points in-
sideQ− are guaranteed to be reported and points outsideQ+ are guaranteed not to b
reported. In between, the algorithm can err. The maximum distance between the re
the bounding areas isε. The vector space is partitioned using trees, which are used to
the search by including or excluding whole areas. Every decision about including (e
ing) a whole area can be done usingQ+ (Q−) to increase the probability of pruning th
search in either way. Those areas that cannot be fully included or excluded are an

122 B. Bustos, G. Navarro / Journal of Discrete Algorithms 2 (2004) 115–134

in more detail by going down to the appropriate subtree. The complexity is shown to be

d

inside
o

is

rs” is
he idea
ta struc-
d, i.e.,
-

if the

h di-
bilistic

earch
is done
nes,

e
rms in-

act,
prob-
O(2k log(n)+ (3
√
k/ε)k) and a very close lower bound is proven for the problem.

In [2] is proposed a data structure calledBBD-tree for searching in a vector spaceRk

under any metricLs . This structure is inspired in thekd-tree and it can be used to fin
the “(1+ ε) nearest neighbor”, that is, to find an objectu∗ such that∀u ∈ U, d(u∗, q) �
(1+ ε)d(u, q). The essential idea of the algorithm is to locate the queryq in a cell (each
leaf in the tree is associated with a cell in the space decomposition). Every point
the cell is processed so as to obtain its nearest neighborp. The search stops when n
promising cells are found, i.e., when the radius of any ball centered atq and intersecting
a nonempty cell exceeds the radiusd(q,p)/(1+ ε). The search time for this algorithm
O(�1+ 6k/ε�k log(n)).

In [22], a proposal called “aggressive pruning” for “limited radius nearest neighbo
presented. This query seeks for nearest neighbors that are inside a given radius. T
can be seen as a particular case of [1], where the search area is a ball and the da
ture is akd-tree. Relevant elements may be lost but irrelevant ones cannot be reporte
Q+ =Q. The ballQ, of radiusr and centered atq = (q1, . . . , qk), is pruned by intersect
ing it with the area between hyperplanesqi − r + ε andqi + r − ε. The authors give a
probabilistic analysis assuming normally distributed distances, which almost holds
points are uniformly distributed in the space. The search time is O(nλ), whereλ decreases
as the permitted failure probabilityε increases.

4. The indexes we build on

Of all the exact algorithms presented in Section 2, two of the most efficient in hig
mensions are SAT and List of Clusters. We use these indexes to implement our proba
algorithms, so now we briefly explain how these algorithms work.

4.1. Spatial approximation tree

TheSAT [18] is based on approaching the query spatially rather than dividing the s
space, that is, start at some point in the space and get closer to the query, which
only via “neighbors”. The SAT uses both compact partition criteria for discarding zo
it needs O(n) space, reasonable construction time O(n log2(n)/ log(log(n))) and sublinear
search time O(n1−((1/ log(log(n)))) in high dimensional spaces.

Construction of SAT is as follows: An arbitrary objecta ∈U is chosen as the root nod
of the tree (note that since there exists only one object per node, we use both te
terchangeably in this section). Then, we select a suitable set of neighborsN(a), such that
∀u ∈ U, u ∈ N(a)⇔ ∀v ∈ N(a) − {u}, d(u, v) > d(u, a). Note thatN(a) is defined in
terms of itself in a non-trivial way, and that multiple solutions fit the definition. In f
finding the minimal set of neighbors seems to be a hard combinatorial optimization
lem [18]. A simple heuristic that works well in most cases considers the objects inU−{a}
in increasing order of their distance froma, and adds an objectx to N(a) if x is closer to
a than to any object already inN(a). Next, we put each node inU− N(a) into the bag

B. Bustos, G. Navarro / Journal of Discrete Algorithms 2 (2004) 115–134 123

of it closest object ofN(a). Also, for each subtreeu ∈N(a), we store its covering radius
g.

pened
st to

or,
l
he
a bit
m

f

d for
, by not

ver-
s

-

ce over
ius
many
when

s previ-

ctures

f
t has a
cr(u). The process is repeated recursively in each subtree using the objects of its ba
This construction process ensures that if we search an objectq ∈U by spatial approxi-

mation, we will find that object in the tree because we are repeating exactly what hap
during the construction process, i.e., we enter into the subtree of the neighbor closeq ,
until we reachq (in fact, in this case we are doing an exact search becauseq is present in
the tree). For general range queries(q, r), instead of simply going to the closest neighb
we first determine the closest neighborc of q among{a} ∪N(a). Then, we enter into al
neighborsb ∈ N(a) such thatd(q, b) � d(q, c)+ 2r. During the search process, all t
nodesx such thatd(q, x) � r are reported. The search algorithm can be improved
more: When we search for an objectq ∈ U (exact search), we follow a single path fro
the root toq . At any nodea′ in this path, we choose the closest toq among{a′} ∪N(a′).
Therefore, if the search is currently at tree nodea, we have thatq is closer toa than to any
ancestora′ of a and also any neighbor ofa′. Hence, if we callA(a) the set of ancestors o
a (includinga), we have that, at search time, we can avoid entering any objectx ∈ N(a)

such thatd(q, x) > 2r +min{d(q, c), c ∈ {a′} ∪ N(a′), a′ ∈ A(a)}. This condition is a
stricter version of the original Voronoi partition criterion. The covering radius store
all nodes during the construction process can be used to prune the search further
entering into subtrees such thatd(q, b)− r > cr(b).

4.2. List of Clusters

TheList of Clusters [6] is a list of “zones”. Each zone has a center and stores its co
ing radius. A centerc ∈U is chosen at random, as well as a radiusrp, whose value depend
on whether the number of objects per compact partition is fixed or not. Thecenter ball of
(c, rp) is defined as(c, rp) = {x ∈ X, d(c, x) � rp}. We then defineI = U ∩ (c, rp) as
the bucket of “internal” objects lying inside(c, rp), andE = U− I as the rest of the ob
jects (the “external” ones). The process is repeated recursively insideE. The construction
process returns a list of triples(ci, rpi, Ii) (center, radius, internal bucket).

This data structure is asymmetric, because the first center chosen has preferen
the next centers in case of overlapping balls. With respect to the value of the radrp

of each compact partition and the selection of the next center in the list, there exist
alternatives. In [6] it is shown experimentally that the best performance is achieved
the compact partition has a fixed number of objects, sorp becomes simplycr(c), and the
next center is selected as the object which maximizes the distance sum to the center
ously chosen. The brute force algorithm for constructing the list takes O(n2/m), wherem
is the size of the compact partition, but it can be improved using auxiliary data stru
to build the partitions. For high dimensional metric spaces, the optimalm is very low (we
usedm= 5 in our experiments).

Given a range query(q, r), d(q, c) is computed, reportingc if it is within the query ball.
Then, we search exhaustively insideI only if d(q, c)− cr(c) � r. E is processed only i
cr(c)− d(q, c) < r, because of the asymmetry of the data structure. The search cos
form close to O(nα) for some 0.5< α < 1.0 [6].

124 B. Bustos, G. Navarro / Journal of Discrete Algorithms 2 (2004) 115–134

5. Our approach

e for
index

ased
ace re-
n, it is
hope

abilistic

ng and

hatever
e or
in the

anized

query

ries. We
nd
r
trieved
ue
sed

fix in
. Using
e make
ilistic
search

ons are

rch
We focus on probabilistic algorithms for high dimensional metric spaces, wher
exact searching it is very difficult to avoid the exhaustive search regardless of the
and search algorithm used.

It is well known that compact partition algorithms perform better than pivot-b
algorithms in high dimensional metric spaces [8], and that the latter need more sp
quirements, i.e., many pivots, to reach the performance of the former. For this reaso
interesting to develop probabilistic algorithms based on compact partitions, with the
that these algorithms could have at least the same performance as pivot-based prob
algorithms but with less memory requirements.

We propose two probabilistic techniques, the first based on incremental searchi
the second based on ranking zones.

5.1. Probabilistic incremental search

This technique is an adaptation of theincremental nearest neighbor search algorithm
[16]. The incremental search traverses the search hierarchy defined by the index (w
it be) in a “best-first” manner. At any step of the algorithm, it visits the “element” (zon
object) with the smallest distance from the query object among all unvisited elements
search hierarchy. This can be done by maintaining a priority queue of elements org
by their maximum lower bound distance known to the query object at any time.

In [16] is proved that this search isrange-optimal, that is, it obtains thekth nearest
neighbor,ok, after visiting the same search hierarchy elements as would a range
with radiusd(q, ok) implemented with a top-down traversal of the search hierarchy.

The incremental nearest neighbor search can be adapted to answer range que
report all objectsu that satisfyd(q,u) � r, but we stop when an element with lower bou
l > r is taken out of the queue (global stopping criterion). It is not possible to find anothe
object within the query ball among the unexplored elements, because we have re
them ordered by their lower bounded distances toq . An equivalent method is to enque
elements only if they have a lower boundl � r, in which case the queue must be proces
until it gets empty.

The idea of the probabilistic technique based on the incremental search is to
advance the number of distance computations allowed to answer a range query
the adapted incremental search for range queries, if the search is pruned after w
the maximum number of distance computations allowed, then we obtain a probab
algorithm in the sense that some relevant objects can be missed. However, as the
is performed range-optimally, one can presume that the allotted distance computati
used in an efficient way.

Fig. 4 depicts the general form of the probabilistic incremental search.Index is the data
structure that indexesU, q is the query object,e is an element of the index anddLB(q, e)

is a lower bound of the real distance betweenq and all the elements rooted in the sea
hierarchy ofe, wheredLB(q, e)= d(q, e) if e is an object ofU, anddLB(q, e) � dLB(q, e

′)
if e′ is an ancestor ofe in the hierarchy. For example, in the List of Clusters, ife is a
child of a and belongs to the zone of centerc thendLB(q, e) = d(q, c)− cr(c); in SAT

B. Bustos, G. Navarro / Journal of Discrete Algorithms 2 (2004) 115–134 125

ProbabilisticIncrementalSearch(q, Index, quota)

d to
nts
at the
jects in
f
.

uery
ompu-
ralized
the
tic in-

es using
ve to

uery
mising
in List
1. e ← root of Index
2. counter ← 0 // Number of distances computed
3. Q ← {(e,0)} // Priority queue
4. while Q is not empty do
5. (e, dLB(q, e)) ← element in Q with lower dLB(q, e)

6. Q ← Q− {(e, dLB(q, e)}
7. if e is a zone then
8. for each child element e′ of e do
9. cost ← cost to compute dLB(q, e

′)
10. if counter+ cost � quota
11. Compute dLB(q, e

′)
12. if dLB(q, e

′) � r then
13. Q←Q∪ {(e′,max(dLB(q, e), dLB(q, e

′))}
14. counter← counter + cost
15. endif
16. enddo
17. endif
18. else report e // object within the query ball
19. enddo

Fig. 4. Probabilistic incremental search algorithm.

if e is a child of a then dLB(q, e) = max{d(q, e) − cr(e), (d(q, e) − min{d(q, c), c ∈
{a′} ∪N(a′), a′ ∈A(a)})/2}. The maximum number of distance computations allowe
perform the search is denoted byquota. Oncequota has been reached, no more eleme
are inserted in the queue. Note that the only stopping criterion of the algorithm is th
queue gets empty, even if the work quota has been reached, because for all the ob
the queue their distances toq are already known. Variablecost indicates the number o
distance computations needed to process a childe′ of an elemente in the search hierarchy
In SAT, the cost of processing all the children ofe is equal toN(e); in List of Clusters, this
cost is equal to the size of the compact partition,m.

5.2. Ranking of zones

The probabilistic incremental search aims at quickly finding objects within the q
ball, before the work quota gets exhausted. As the maximum number of distance c
tations is fixed, the total search time is also bounded. This technique can be gene
to what we callranking of zones, where the idea is to sort the zones in order to favor
most promising and then to traverse the list until we use up the quota. The probabilis
cremental search can be seen as a ranking method, where we first rank all the zon
dLB(q, e) and then work until we use up the quota. However, this ranking does not ha
be the best zone ranking criterion.

The sorting criterion must aim at quickly finding objects that are close to the q
object. As the space is partitioned into zones, we must sort these zones in a pro
search order using the information given by the index data structure. For example,

126 B. Bustos, G. Navarro / Journal of Discrete Algorithms 2 (2004) 115–134

of Clusters the only information we have is the distances fromq to each center (d(q, c))
ow
e

, that is,
lt to
ave the
zones
radii.

e

e

rst in
the
rch ra-

nt
of us-

duce

at
ntal

ant to

cribed
cause
s
a syn-

at is,
abstract
and the covering radius of each zone (cr(c)), which is precomputed, so we estimate h
promising a zone is using onlyd(q, c) andcr(c). One not only would like to search first th
zones closer to the query, but also to search first the zones that are more compact
the zones which have “higher object density”. In spite of the fact that it is very difficu
define the volume of a zone in a general metric space, we assume that if the zones h
same number of objects, as in the best implementation of List of Clusters, then the
with smaller covering radii have higher object density than those with larger covering

We have tested several zone ranking criteria, all in ascending order:

• d(q, c): The distance fromq to each zone center.
• cr(c): The covering radius of each zone,cr(c).
• d(q, c)+ cr(c): An upper bound of the distance fromq to the farthest object in th

zone of centerc.
• d(q, c)− cr(c): A lower bound of the distance fromq to the closest object in the zon

of centerc.
• β(d(q, c)− cr(c)): What we calldynamic beta.

The first two criteria are the simplest ones. The third criterion aims to search fi
those zones that are closer toq and also are compact. The fourth criterion is similar to
probabilistic incremental search. The last technique is equivalent to reducing the sea
dius by a factorβ as in [6], where 1/β ∈ [0..1]. If β is fixed, then this criterion is equivale
to d(q, c)− cr(c), because the ordering is the same in both cases. However, instead
ing a constant factorβ , we define adynamic factor of the formβ = 1/(1.0− cr(c)

mcr), where
mcr is the maximum size of the covering radius of all zones. This implies that we re
the search radii more in zones of larger covering radii. A special case is whencr(c′)=mcr
for a zonec′. In this case, we definedLB(q, e)=∞ for all objects in that zone. Note th
d(q, c) − cr(c) is the only criterion that can be used with the probabilistic increme
search, because with this criterion it is guaranteed thatdLB(q, e) � dLB(q, e

′) holds for any
e′ ancestor ofe.

Each ranking criterion implements a differentnode scheduling policy. It is not clear a
priori which of these schedules will have the best performance. Therefore, it is relev
experimentally test different schedules and to compare their effectiveness.

6. Performance of the new techniques

6.1. Experimental results

We use the SAT and List of Clusters to implement the probabilistic techniques des
in Section 5, but with SAT we only implement the probabilistic incremental search be
in this data structure every node is a center, so it takes O(n) time to compute the distance
between the query and every center. We have tested the probabilistic techniques on
thetic set of random points in ak-dimensional vector space treated as a metric space, th
we have not used the fact that the space has coordinates, but treated the points as

B. Bustos, G. Navarro / Journal of Discrete Algorithms 2 (2004) 115–134 127

us to
en-
ts use
es
e tech-

hm can

rep-
bjects
m the
iterion

ilistic
In this
o the
ly re-
d using
Mb)
8 Mb)

Mb).
o those

trieval
whole
rm is a
tween
Fig. 5. Probabilistic List of Clusters and SAT in a vector space of dimension 128.

objects in an unknown metric space. The advantage of this choice is that it allows
control the exact dimensionality we are working with, which is very difficult to do in g
eral metric spaces. The points are uniformly distributed in the unitary cube, our tes
theL2 (Euclidean) distance, the database size isn= 10,000 and we perform range queri
returning 0.10% of the total database size, taking an average from 1,000 queries. Th
niques were tested using a space of dimension 128, where no known exact algorit
avoid an exhaustive search to answer useful range queries.

Fig. 5 shows the results of the probabilistic List of Clusters and SAT. The curves
resent the fraction of the result actually retrieved (that is, the fraction of relevant o
retrieved) as a function of the number of distances computations allowed to perfor
search. The best technique, in this experiment, is the ranking zone method with cr
d(q, c)+ cr(c).

Fig. 6 shows a comparison of the probabilistic List of Clusters and the probab
pivot-based algorithm, implemented in its canonical form (see Sections 2.1 and 3).
experiment, the performance of the probabilistic List of Clusters is almost equal t
pivot-based algorithm with 256 pivots when more than 97% of the result is actual
trieved. The pivot-based techniques are slightly better when the pivots are selecte
the “good pivots” criterion [5]. However, the size of the List of Clusters index (0.12
is about 82 times less than the size of the pivot-based index with 256 pivots (9.7
and about 5 times less than the size of the pivot-based index with 16 pivots (0.62
Experiments with different search radii and database sizes obtained similar results t
presented here.

One of the most clear applications of metric space techniques to Information Re
is the task of finding documents relevant to a query (which can be a set of terms or a
document itself) [3]. Documents (and queries) are seen as vectors, where every te
coordinate whose value is the weight of the term in that document. The distance be

128 B. Bustos, G. Navarro / Journal of Discrete Algorithms 2 (2004) 115–134

t terms
relevant
which

is pur-
, which
orithms
ary to
nking
0 doc-
original
e per
is the

ethod
s can
versing
ss than
roach

or-
o the
Fig. 6. Comparison among probabilistic algorithms in a vector space of dimension 128.

two documents is the angle between their vectors, so documents sharing importan
are seen as more similar. Documents closer to a query are considered to be more
to the query. Hence the task is to find the elements of this metric space of documents
are closest to a given query.

Despite of this clear link, metric space techniques have seldom been used for th
pose. One reason is that the metric space of documents has a very high dimension
makes impractical any exact search approach. This is a case where probabilistic alg
would be of great value, since the definition of relevance is fuzzy and it is custom
permit approximations. Fig. 7 shows the result of an experiment testing the zone ra
criteria on a subset of the TREC-3 collection [15]. The database consisted on 24,96
uments, and we average over 1,000 query documents chosen at random from the
subset (m= 10 for the List of Clusters, retrieving on average 0.035% of the databas
query). The results show that, for this experiment, the best criteria for ranking zones
dynamic beta andd(q, c).

Fig. 8 shows a result comparing the pivot-based algorithm with the ranking zone m
using the dynamic beta criterion. The results show that our probabilistic algorithm
handle better this space, retrieving more than 99% of the relevant objects and tra
merely a 17% of the database, using much less memory, approximately 16 times le
the index with 64 pivots, hence becoming for the first time a feasible metric space app
to this long standing problem.

6.2. Ranking of zones versus ranking of objects

The sorting criteriond(q, c)− cr(c) can be modified to take advantage of the inf
mation provided by the List of Clusters data structure. If for each zone, in addition t
covering radius, we store the distances from its centerc to all the objectsui that belongs to
this zone, then we can obtain an improved lower bound of the distance fromq to ui , which

B. Bustos, G. Navarro / Journal of Discrete Algorithms 2 (2004) 115–134 129

ac-
e are

ique,
riterion
than

he bad
Fig. 7. Comparison among ranking criteria in a document database.

Fig. 8. Comparison among probabilistic algorithms in the document database.

is d(q, c)− d(c,ui). Therefore, a variant of the original criterion is to sort the objects
cording to the values given by the improved lower bound. Note that in this variant w
not ranking zones, but each object of the database.

However, in practice this variant results in no improvements over the original techn
but the opposite. The comparison between both techniques and the dynamic beta c
is shown in Fig. 9. The dynamic beta criterion has still a far superior performance
the other criteria. This is an unexpected result. We conjecture that the reason of t

130 B. Bustos, G. Navarro / Journal of Discrete Algorithms 2 (2004) 115–134

when

ndex.
-

is over
the
ethod

triev-
etween
ses the

pare
nt for

r-
were

ueries,
Fig. 9. Comparison between ranking of objects and ranking of zones.

performance of the ranking of objects is that we lose valuable clustering information
we rank each object separately.

Another possibility for ranking objects instead of zones is using a pivot-based i
The ranking in this case consists of sorting the objects by increasingD distance (see Sec
tion 2.1) to the query, and then search in that order, stopping when the work quota
or when the distanceD is greater thanr. Fig. 10 shows the results of an experiment in
document database, using different number of pivots. The results show that this m
is quite competitive, but it is outperformed by the dynamic beta criterion when re
ing more than 99% of the relevant documents. We also compared the difference b
random and good pivots index. The result shows that the use of good pivots increa
performance of this sorting criterion.

7. A model for comparing ranking criteria

Now we describe a model for ranking criteria comparison, which allows us to com
different ranking criteria in an offline mode, without having to repeat each experime
each different pair of parameters.

Let U be a database with|U| = n. For a given setQ of k queries, each query is pe
formed using some criterion without work limit. We save the order in which elements
retrieved and their distance to the query object. With this information, we generate acloud
of points which is represented in a graphdistance to the query as a function of the num-
ber of distances computations. TheX axis range is[0, n] and theY axis range isR+. If
objectu was retrieved after performingi distance computations, then the point(i, d(q,u))

is added to the cloud. This procedure is repeated for all objects retrieved in all the q
totalizingkn points. Fig. 11 shows an example of a cloud of points.

B. Bustos, G. Navarro / Journal of Discrete Algorithms 2 (2004) 115–134 131

query
wants
earch

,
ies are
arch
Fig. 10. Ranking of objects using a pivot-based index.

Fig. 11. Example of a cloud of points for a given criterion.

This cloud of points allows us to simulate any experiment on the preprocessed
set, varying the allowed amount of work or the search radius. For example, if one
to know how many relevant objects the algorithm would retrieve on average with a s
radiusr and a work quotat , then one just has to count the points(x, y) of the cloud which
satisfyx � t andy � r, and then divide this quantity by the total number of queriesk.
Let A(t, r) be the resulting value. Since that all distances between objects and quer
known, it is easy to know how many objects are within a query ball for a fixed se

132 B. Bustos, G. Navarro / Journal of Discrete Algorithms 2 (2004) 115–134

etrieved.

s

h
ain
tained
eries,
.
unts of
to

nearest
in met-
ed a
ormer
s that
algo-

pace to
ad of
ver the
Fig. 12. Fraction of the retrieved objects as a function of the traversed fraction of the database, 0.064% r

radius, which turns out to beA(∞, r). Then, the fractionf of retrieved relevant object
using a work quotat is f =A(t, r)/A(∞, r).

The procedure described can be repeated for differentr ′ and t ′ values. If the searc
radius is fixed and one computesf for different amounts of work quota, then we can obt
several points of the cost function for a specific criterion. Fig. 12 shows the results ob
with a traditional experiment, and Fig. 13 shows the results obtained with 100 qu
using the comparison model. There are just minor differences between both figures

The disadvantage of this comparison model is that it needs to save huge amo
information, because each query contributes with an amount of data proportional|U|.
This can be solved usings discrete values ford(q,u) and defining a matrix ofs×n storage
cells for the discrete values of(i, d(q,u)). With this approach, the space cost isst , but some
precision will be lost when computingA(t, r).

8. Conclusions

We have defined a general probabilistic technique based on the incremental
neighbor search, that allows us to perform time-bounded range search queries
ric spaces with a high probability of finding all the relevant objects. We also defin
probabilistic technique based on ranking zones, which is a generalization of the f
technique. Our experimental results show in both synthetic and real-world example
the best criteria for ranking zones perform better than the pivot-based probabilistic
rithm in high dimensional metric spaces, as the latter needs much more memory s
be competitive. Also, we studied variants of this technique which rank objects inste
zones, but our experimental results show that these variants make no improvement o
ranking of zones technique.

B. Bustos, G. Navarro / Journal of Discrete Algorithms 2 (2004) 115–134 133

in this
uce the
algo-

t allow
earch)
lization
ns in
sched-

regard
implify

anced
results
g alter-

ation
nking

res.

roject
e Mil-
econd
ersity
Fig. 13. Result using the comparison model, 0.064% retrieved.

According to the schema proposed in [10], the probabilistic techniques proposed
paper can be classified as methods that are applicable on metric spaces, that red
number of comparisons performed during the search (in fact, this value is fixed in the
rithms), that give no guarantee on the error introduced by the approximation, and tha
the user to interactively set the parameters (amount of work to perform during the s
to tune the quality of the answer set. Our techniques can be seen as a practical rea
of the theoretical framework introduced with the PAC approach [9]. Our contributio
this respect have been to empirically compare specific index structures and specific
ules, which was not done previously. Moreover, we have proposed a new way to
the problem, as a time-bounded computation, and have devised a technique to s
experimentation in this area.

Future work involves testing more zone ranking criteria and to use more adv
clustering techniques for testing our probabilistic search algorithms. Based on the
obtained with the document database, the ranking of zones seems to be a promisin
native as a ranking method for effective and efficient similarity searching for Inform
Retrieval applications. It would be interesting to compare the effectiveness of our ra
technique against the traditional approaches in terms of precision versus recall figu

Acknowledgements

This work was partially supported by the German Science Foundation (DFG), p
no. KE 740/6-1 of the strategic research initiative SPP 1041 (first author), and by th
lennium Nucleus Center for Web Research, Grant P01-029-F, Mideplan, Chile (s
author). The first author is on leave from the Department of Computer Science, Univ
of Chile.

134 B. Bustos, G. Navarro / Journal of Discrete Algorithms 2 (2004) 115–134

References

puta-

arest
(SO-

9.
tabases

paces,

: Proc.
pp. 75–

paces,

omput.

nsional
p. 244–

rtment

spaces,
435.
93.
5.
searches,
2000,

rence

R 4199,

Trans.

f
otes in

tt. 40

isual

CM-

(4)
[1] S. Arya, D. Mount, Approximate range searching, in: Proc. 11th Annual ACM Symposium on Com
tional Geometry, 1995, pp. 172–181.

[2] S. Arya, D. Mount, N. Netanyahu, R. Silverman, A. Wu, An optimal algorithm for approximate ne
neighbor searching in fixed dimension, in: Proc. 5th ACM-SIAM Symposium on Discrete Algorithms
DA’94), 1994, pp. 573–583.

[3] R. Baeza-Yates, B. Ribeiro-Neto, Modern Information Retrieval, Addison-Wesley, Reading, MA, 199
[4] S. Brin, Near neighbor search in large metric spaces, in: Proc. 21st Conference on Very Large Da

(VLDB’95), Morgan Kaufmann, 1995, pp. 574–584.
[5] B. Bustos, G. Navarro, E. Chávez, Pivot selection techniques for proximity searching in metric s

Pattern Recognition Letters 24 (14) (2003) 2357–2366.
[6] E. Chávez, G. Navarro, An effective clustering algorithm to index high dimensional metric spaces, in

7th Symposium on String Processing and Information Retrieval (SPIRE’00), IEEE CS Press, 2000,
86.

[7] E. Chávez, G. Navarro, Probabilistic proximity search: fighting the curse of dimensionality in metric s
Inform. Process. Lett. 85 (2003) 39–46.

[8] E. Chávez, G. Navarro, R. Baeza-Yates, J. Marroquín, Searching in metric spaces, ACM C
Surv. 33 (3) (2001) 273–321.

[9] P. Ciaccia, M. Patella, PAC nearest neighbor queries: approximate and controlled search in high-dime
and metric spaces, in: Proc. 16th International Conference on Data Engineering (ICDE’00), 2000, p
255.

[10] P. Ciaccia, M. Patella, Approximate similarity queries: a survey, Technical Report CSITE-08-01, Depa
of Electronics, Computer Science and Systems, University of Bologna, May 2001.

[11] P. Ciaccia, M. Patella, P. Zezula, M-tree: an efficient access method for similarity search in metric
in: Proc. 23rd Conference on Very Large Databases (VLDB’97), Morgan Kaufmann, 1997, pp. 426–

[12] K. Clarkson, Nearest neighbor queries in metric spaces, Discrete Comput. Geom. 22 (1) (1999) 63–
[13] F. Dehne, H. Noltemeier, Voronoi trees and clustering problems, Inform. Syst. 12 (2) (1987) 171–17
[14] J. Goldstein, R. Ramakrishnan, Contrast plots and P-sphere trees: space vs. time in nearest neighbor

in: Proc. 26th International Conference on Very Large Databases (VLDB’00), Morgan Kaufmann,
pp. 429–440.

[15] D. Harman, Overview of the third text REtrieval conference, in: Proc. Third Text REtrieval Confe
(TREC-3), 1995, pp. 1–19, NIST Special Publication 500-207.

[16] G. Hjaltason, H. Samet, Incremental similarity search in multimedia databases, Technical Report T
Department of Computer Science, University of Maryland, November 2000.

[17] I. Kalantari, G. McDonald, A data structure and an algorithm for the nearest point problem, IEEE
Software Engrg. 9 (5) (1983) 631–634.

[18] G. Navarro, Searching in metric spaces by spatial approximation, VLDB J. 11 (1) (2002) 28–46.
[19] H. Noltemeier, K. Verbarg, C. Zirkelbach, Monotonous Bisector∗ Trees—a tool for efficient partitioning o

complex schemes of geometric objects, in: Data Structures and Efficient Algorithms, in: Lecture N
Comput. Sci., vol. 594, Springer, Berlin, 1992, pp. 186–203.

[20] J. Uhlmann, Satisfying general proximity/similarity queries with metric trees, Inform. Process. Le
(1991) 175–179.

[21] D. White, R. Jain, Algorithms and strategies for similarity retrieval, Technical Report VCL-96-101, V
Computing Laboratory, University of California, La Jolla, California, July 1996.

[22] P. Yianilos, Locally lifting the curse of dimensionality for nearest neighbor search, in: Proc. 11th A
SIAM Symposium on Discrete Algorithms (SODA’00), 2000, pp. 361–370.

[23] P. Zezula, P. Savino, G. Amato, F. Rabitti, Approximate similarity retrieval with M-trees, VLDB J. 7
(1998) 275–293.

	Probabilistic proximity searching algorithms based on compact partitions
	Introduction
	Basic concepts
	Pivot-based algorithms
	Algorithms based on compact partitions
	Voronoi partition criterion
	Covering radius criterion

	Probabilistic algorithms for proximity searching
	The indexes we build on
	Spatial approximation tree
	List of Clusters

	Our approach
	Probabilistic incremental search
	Ranking of zones

	Performance of the new techniques
	Experimental results
	Ranking of zones versus ranking of objects

	A model for comparing ranking criteria
	Conclusions
	Acknowledgements
	References

