Available at

www.ElsevierComputerScience.com JOURNAL OF
POWERED BY SCIENCE @Dlnsc'ro DISCRETE
ALGORITHMS

ELSEVIER Journal of Discrete Algorithms 2 (2004) 115-134

www.elsevier.com/locate/jda

Probabilistic proximity searching algorithms based
on compact partitions

Benjamin Bustod*, Gonzalo Navarrd

@ Department of Computer and Information Science, University of Konstanz, Universitaetstr. 10,
78457 Konstanz, Germany
b Center for Web Research, Department of Computer Science, University of Chile, Blanco Encalada 2120,
Santiago, Chile

Abstract

The main bottleneck of the research in metric space searching is the so-called curse of dimension-
ality, which makes the task of searching some metric spaces intrinsically difficult, whatever algorithm
is used. A recent trend to break this bottleneck resorts to probabilistic algorithms, where it has been
shown that one can find 99% of the relevant objects at a fraction of the cost of the exact algorithm.
These algorithms are welcome in most applications because resorting to metric space searching al-
ready involves a fuzziness in the retrieval requirements. In this paper, we push further in this direction
by developing probabilistic algorithms on data structures whose exact versions are the best for high
dimensions. As a result, we obtain probabilistic algorithms that are better than the previous ones. We
give new insights on the problem and propose a novel view based on time-bounded searching. We
also propose an experimental framework for probabilistic algorithms that permits comparing them in
offline mode.

0 2003 Elsevier B.V. All rights reserved.

Keywords: Metric spaces; Range queries; Probabilistic algorithms; Approximate algorithms; Similarity
searching

1. Introduction

The concept of proximity searching has applications in a vast number of fields, for ex-
ample: Multimedia databases, machine learning and classification, image quantization and
compression, text retrieval, computational biology, function prediction, etc. All those ap-

* Corresponding author.
E-mail addresses: bustos@informatik.uni-konstanz.de (B. Bustos), gnavarro@dcc.uchile.cl (G. Navarro).

1570-8667/$ — see front mattét 2003 Elsevier B.V. All rights reserved.
doi:10.1016/S1570-8667(03)00067-4

http://www.elsevier.com/locate/jda

116 B. Bustos, G. Navarro / Journal of Discrete Algorithms 2 (2004) 115-134

plications have in common that the objects of the database fanetrac space [8], that

is, it is possible to define a positive real-valued functibamong the objects, calledis-
tance or metric, that satisfies the properties sifict positiveness (d(x, y) =0 x = y),
symmetry (d(x, y) =d(y, x)), andtriangle inequality (d(x,z) < d(x,y) + d(y, z)). For
example, avector space is a particular case of metric space, where the objects are tu-
ples of real numbers and the distance function belongs toLthéamily, defined as
Lo((x1. . X)), 01 0) = Qi 16 — yilHY*. For exampleL; is called the
Manhattan distance, L» is theEuclidean distance and Lo, = max<; <k |x; — yi| is called

the maximum distance.

One of the typical queries that can be posed to retrieve similar objects from a database
is arange query, which retrieves all the objects within distancéo a query object. The
naive algorithm to answer range queries is to perform an exhaustive search on the database.
This turns out to be too expensive for real-world applications, because the digtasice
considered expensive to compute (think, for example, of a biometric device that computes
the distance between two fingerprints). In many practical applicatibissso costly that
the extra CPU time or even I/O time costs can be neglected. For this reason, in this paper
the complexity of the algorithms will be measured asrthmber of distance computations
performed to answer a query.

Proximity searching algorithms build @amdex of the database and perform range queries
using this index, avoiding the exhaustive search. Many of these algorithms are based on
dividing the space ipartitions or zones as compact as possible. Each zone stores a repre-
sentative point, called theenter, and data that permit discarding the entire zone at query
time, without measuring the actual distance from the objects of the zone to the query ob-
ject, hence saving distance computations. Other algorithms are based in thepivespf
which are selected objects from the database that are used together with the triangle in-
equality to filter out objects of the database at query time. Usually, the index is built offline
and has a construction cost also measured in distance computations. The construction cost
is amortized over many queries, with the saved distance computations for these.

An inherent problem of proximity searching in metric spaces is that the search becomes
more difficult when the “intrinsic” dimension of the metric space increases, which is known
as thecurse of dimensionality. The intrinsic dimension of a metric space is defined in [8]
asu?/202, wherep ando? are the mean and the variance of the distance histogram of
the metric space. This is coherent with the usual vector space definition. Analytical lower
bounds and experiments [8] show that all proximity searching algorithms have their perfor-
mance degraded as the dimension of the space grows. This problem is due to two possible
reasons: High dimensional metric spaces have a very concentrated distance histogram,
which gives less information for discarding objects at query time; on the other hand, it is
necessary to use a larger search radius in order to retrieve a fixed fraction of the objects of
the space, because in high dimensional spaces the objects are “far away” from each other.

Probabilistic algorithms are acceptable in most applications that need to search in metric
spaces, because in general modeling the problem as a metric space already involves some
kind of relaxation. In most cases, finding some close objects is as good as finding all of
them. There exists a pivot-based probabilistic proximity searching algorithm which largely
improves the search time at the cost of missing few relevant objects [7]. On the other hand,

B. Bustos, G. Navarro / Journal of Discrete Algorithms 2 (2004) 115-134 117

itis known that compact partitioning algorithms perform better than pivot-based algorithms
in high dimensional metric spaces [8] and they have lower memory requirements.

In this paper, we present several probabilistic algorithms for proximity searching based
on compact partitions, which alleviate in some way the curse of the dimensionality. We
also present experimental results that show that these algorithms perform better than prob-
abilistic algorithms based on pivots, and that the latter need much more memory space to
outperform the former when the dimension of the space is very high.

The paper is organized as follows: In Section 2, we survey the exact algorithms for prox-
imity search in metric spaces. In Section 3, we give an overview of the actual probabilistic
algorithms. Section 4 describes the data structures where we implement our probabilistic
techniques. In Section 5, we describe the proposed probabilistic algorithms, and Section 6
presents the experimental results with synthetic and real-world data sets. Section 7 intro-
duces the model for comparing ranking criteria. Finally, in Section 8, we conclude and
discuss possible extensions of this work.

2. Basic concepts

Let (X, d) be a metric space arid C X the set of objects or database, wjth| = .
There are two typical proximity searching queries:

o Range query. A range queryq,), g € X, r € RT, reports all objects that are within
distancer to g, thatis(g,r) ={u €U, d(u, g) <r}.

e k nearest neighbors query (k-NN). Reports thé objects fromU closer tog, that is,
returns the sef C U suchthaiC|=k andvx e C,y e U—-C,d(x,q) <d(y,q).

The volume defined byg, r) is called thequery ball, and all the objects frofy inside
it are reported. Nearest neighbors queries can be implemented using range queries. Our
definition of range query for metric spaces preserves the same spirit of the “geometric range
query”, which is defined for vector spaces as a hypercube instead of a ball. The original
definition has no meaning on a metric space scenario due to the lack of coordinates.

There exist two classes of techniques used to implement proximity searching algo-
rithms: One based on pivots and one based on compact partitions.

2.1. Pivot-based algorithms

These algorithms select a number of “pivots”, and classify all the other objects ac-
cording to their distance to the pivots. The canonical pivot-based algorithm is as follows:
Given a range queryq,r) and a set ofk pivots {p1, ..., px}, pi € U, by the trian-
gle inequality it follows for anyx € X thatd(p;, x) < d(pi,q) + d(q, x), and also that
d(pi,q) < d(pi,x) + d(x,q). From both inequalities, it follows that a lower bound on
d(g,x)isd(q,x)>|d(pi,x) —d(pi,q)|.- The objects: € U of interest are those that sat-
isfy d(g,u) < r, so one can exclude all the objects that satjgfyp;, u) — d(p;i,q)| > r
for some pivotp; (exclusion condition), without actually evaluatidgg, «). Defining the
metric D(x, y) = maxigi<k ld(x, p;) —d(y, pi)l, it follows that the pivot exclusion con-

118 B. Bustos, G. Navarro / Journal of Discrete Algorithms 2 (2004) 115-134

dition can be expressed @Xq, u) > r. Note thatD is a lower bound of the distance
betweery andu.

The index consists of then distances!(u, p;) between every object and every pivot.
Therefore, at query time it is necessary to computektitistances between the pivots
and the query; in order to apply the exclusion condition. Those distance calculations are
known as thenternal complexity of the algorithm, and this complexity is fixed if there is a
fixed number of pivots. The list of objectss, ..., u,} € U that cannot be excluded by the
exclusion condition, known as thabject candidate list, must be checked directly against
the query. Those distance calculatiah@;, ¢) are known as thexternal complexity of
the algorithm. The total complexity of the search algorithm is the sum of the internal and
external complexityk + m. Since one increases and the other decreasesiitifollows
that there is an optimuiti* that depends on the tolerance rangs the query. In practice,

k* is so large that one cannot store #i@ distances, and the index uses as many pivots as
space permits.

Examples of pivot-based algorithms [8] 8K-Tree, Fixed Queries Tree (FQT), Fixed-
Height FQT, Fixed Queries Array, Vantage Point Tree (VPT), Multi VPT, Excluded Middle
Vantage Point Forest, Approximating Eliminating Search Algorithm (AESA) and Linear
AESA. With a few exceptions, pivot-based algorithms select them at random among the
objects of the metric space. However, it is well known that the way in which the pivots
are selected can affect the performance of the algorithms. One can select a “good set”
of pivots maximizing the mean of the distribution Of [5]. In our experiments, we use
random pivots as well as good pivots.

2.2. Algorithms based on compact partitions

These algorithms are based on dividing the spagmititions or zones as compact as
possible. Each zone stores a representative point, callecktiber, and data that permit
discarding the entire zone at query time, without measuring the actual distance from the
objects of the zone to the query object. Each zone can be partitioned recursively into more
zones, inducing search hierarchy. There are two general criteria for partitioning the space:
Voronoi partition andcovering radius.

2.2.1. Voronoi partition criterion

The Voronoi diagram of a collection of objects is a partition of the space into cells,
each of which consisting of the objects closer to one particular center than to any other.
A set of m centers is selected and the rest of the objects are assigned to the zone of their
closest center. Given a range quégyr), the distances betweenand them centers are
computed. Lett be the closest center tp. Every zone of center; # ¢ which satisfies
d(q,c;) > d(g,c)+ 2r can be discarded, because its Voronoi area cannot intersect with
the query ball. Fig. 1 shows an example of the Voronoi partition criteriongFtite zone
of ¢4 can be discarded, and fgg only the zone otz must be visited.

2.2.2. Covering radiuscriterion
The covering radiusr(c) is the maximum distance between a centand an object
that belongs to its zone. Given a range queryr), if d(g,c;) — r > cr(c;) then zong

B. Bustos, G. Navarro / Journal of Discrete Algorithms 2 (2004) 115-134 119

Fig. 1. Voronoi partition criterion.

Fig. 2. Covering radius criterion.

cannot intersect with the query ball and all its objects can be discarded. In Fig. 2, the query

ball of g1 does not intersect with the zone of centethus it can be discarded. For the

query balls ofy> andgs, the zone cannot be discarded, because it intersects these balls.
Generalized-Hyperplane Tree [20] is an example of an algorithm that uses the Voronoi

partition criterion. Examples of algorithms that use the covering radius criteridsi sae

tor Trees (BST) [17], Monotonous BST [19], Voronoi Tree [13], M-Tree [11] andList of

Clusters [6]. There exist algorithms that use both criteria, for exangpiatial Approxima-

tion Tree [18] andGeometric Near-neighbor Access Tree [4].

3. Probabilistic algorithmsfor proximity searching

All the algorithms seen in the previous section axact algorithms, which retrieve
exactly the elements dff that are within the query ball ofg,). In this work, we are

120 B. Bustos, G. Navarro / Journal of Discrete Algorithms 2 (2004) 115-134

Exact algorithm Probabilistic algorithm
7\ N\
SN 7N
\‘// N A \
dp.gHr. i dpay+r/p o |
. . \
’ \ P ’ \ S
o) N » O /X
Al SN /u Y
Q LTy Q e
P A1 p P voaoy
N s N ¢
N I~ -
N ; ' N ! h
\\ // Il \\ ” !
dip.g)—r >/ / d(p.)—1/B < s /
Y ; N /

Fig. 3. How the probabilistic algorithm based on pivots works.

interested inprobabilistic algorithms, which relax the condition of delivering the exact
solution. As explained before, this is acceptable in most applications.

A survey on approximate similarity queries is presented in [10]. It proposes a classi-
fication schema for existing approaches, considering as relevant characteristics of them:
Type of data (metric or vector spaces), error metrics (changing space or reducing compar-
isons), quality guarantees (none, deterministic or probabilistic parametric/non-parametric),
and user interaction (static or interactive).

A probabilistic algorithm based on “stretching” the triangle inequality is presented in
[7]. The idea is general, but it is applied to pivot based algorithms. Their analysis shows
that the net effect of the technique is to reduce the search radius by a factod that
reduction is larger when the search problem becomes harder, i.e., the intrinsic dimension
of the space becomes high. Even with very little stretching, large improvements in the
search time are obtained with low error probability. The fagtaan be chosen at search
time, so the index can be built beforehand and later one can choose the desired level of
accurateness and speed of the algorithm. As the factor is used only to discard elements, no
element closer tg thanr/B can be missed during the search. In practice, all the elements
that satisfy|d(p;, u) — d(p;,q)| > r/B for somep; are discarded. Fig. 3 illustrates how
the idea operates. The exact algorithm guarantees that no relevant element is missed, while
the probabilistic one stretches both sides of the ring and can miss some elements.

A data structure calle/ (U, Q) to answer nearest neighbor queries is proposed in [12].

It requires a training data s& of m objects, taken to be representative of typical query
objects. This data structure may fail to return a correct answer, but the failure probability
can be made arbitrarily small at the cost of increasing the query time and space require-
ments for the index. When the metric space obeys a certain sphere-packing bound [12],
it is shown thatM (U, Q) answers range queries in®In(n) log(Y (U U Q))) time, with

failure probability C(Iogz(n)/K) and requires K nlog(7 (U U Q))) space, wher& is

a parameter that allows one to control the failure probability &r@) is the ratio of the
distance between the farthest and closest pair of poirifs of

B. Bustos, G. Navarro / Journal of Discrete Algorithms 2 (2004) 115-134 121

An approach to approximate nearest neighbor similarity search qalthbebilistic ap-
proximately correct NN (PAC-NN) is presented in [9]. The algorithm retrieves(@nt ¢)
nearest neighbor with probability greater or equal thanslwheres ands are parameters
that can be tuned at query time. The algorithm can be implemented in an arbitrary index,
and in [9] both sequential and index-based PAC-NN algorithms are described. Given a
query objectg, r{ is defined as the maximum distance frgnso that the probability of
finding an object closer tg thanrg is lower or equal tha@d. An estimation ofrg can be
obtained from the distance distribution of the query points. Then, the database is scanned
until an objecty such thatd(q,0) < (1 + e)rg is found, reporting: as the probably ap-
proximately correct nearest neighborgfOn the other hand, afl + ¢) approximation
is guaranteed by pruning from the search every element whose lower bound distance to
(proved by the index structure) exceedg(1 + ¢), wherer* is the current distance to the
kth nearest neighbor.

An index structure calledP-Sphere tree for nearest neighbor queries is proposed in
[14]. The tree has a two-level structure, a root level and a leaf level. The root contains
a list of “sphere descriptions” and pointers to all leaf levels. Each leaf contaiaster
point and all data points that lie within the sphere described in the corresponding sphere
descriptor from the root level. Three parameters must be set before constructing the tree:
The fanout of the root, the center points in the sphere descriptors, and the leaf size. The
search algorithm consists in determining the leaf whose center point is closest to the query
object, and then a linear scan is performed on that leaf, reporting the closest object to the
guery. Selecting the appropriate parameters at construction time [14], which also depend
in the desired accuracy level, the index will yield a probably correct answer.

Approximatek-NN queries with the M-tree are presented in [23]. Three different ap-
proximation techniques are proposed, which trade query precision for improved efficiency:
Approximation through relative distance errors, approximation through distance distribu-
tions, and approximation through the slowdown of distance improvements. Experimental
results suggest that the best method is the one based on distance distributions. Given the
distance distributiorF, of a query objecy, the stopping criterior, (d(q, 0’2)) < pcan
be defined, where’j4 is the kth approximated nearest neighbor gf(as found by the
search algorithm) ang is the fraction of best cases to which this current approximate
result belongs. This criterion is used to stop the search before theiekiidtare found.

No search improvements are obtained whed F, (d(q,o’;\,)), Whereo’;\, is the actual

kth nearest neighbor of. If the distribution F, is unknown, in [23] it is proposed to

use a “representative distance function”, e.g., the average distribution function defined as
Favg(x) = E[F,(x)].

Approximation algorithms for vector spaces are surveyed in depth in [10,21]. An ex-
ample is [1], which proposes a general framework to search for an arbitrary région
(R¥, L,). The idea is to define areag~ and Q" such thatQ~ ¢ Q c Q™. Points in-
side 0~ are guaranteed to be reported and points outgitieare guaranteed not to be
reported. In between, the algorithm can err. The maximum distance between the real and
the bounding areas is The vector space is partitioned using trees, which are used to guide
the search by including or excluding whole areas. Every decision about including (exclud-
ing) a whole area can be done usi@g (Q™) to increase the probability of pruning the
search in either way. Those areas that cannot be fully included or excluded are analyzed

122 B. Bustos, G. Navarro / Journal of Discrete Algorithms 2 (2004) 115-134

in more detail by going down to the appropriate subtree. The complexity is shown to be
O(2%log(n) + (3Vk/¢)¥) and a very close lower bound is proven for the problem.

In [2] is proposed a data structure callBBD-tree for searching in a vector spad
under any metrid_;. This structure is inspired in thied-tree and it can be used to find
the “(1 + ¢) nearest neighbor”, that is, to find an obja¢tsuch thatvu € U, d(u*, q) <
(14 ¢)d(u, q). The essential idea of the algorithm is to locate the qyeirya cell (each
leaf in the tree is associated with a cell in the space decomposition). Every point inside
the cell is processed so as to obtain its nearest neighb@he search stops when no
promising cells are found, i.e., when the radius of any ball centergdaatl intersecting
a nonempty cell exceeds the radilig, p)/(1+ ¢). The search time for this algorithm is
O([1+ 6k/e1¥ log(n)).

In [22], a proposal called “aggressive pruning” for “limited radius nearest neighbors” is
presented. This query seeks for nearest neighbors that are inside a given radius. The idea
can be seen as a particular case of [1], where the search area is a ball and the data struc-
ture is akd-tree. Relevant elements may be lost but irrelevant ones cannot be reported, i.e.,
0% = Q. The ballQ, of radiusr and centered at = (¢1, ..., qx), is pruned by intersect-
ing it with the area between hyperplangs— r + ¢ andg; + r — . The authors give a
probabilistic analysis assuming normally distributed distances, which almost holds if the
points are uniformly distributed in the space. The search time&nd Qwherex decreases
as the permitted failure probabilityincreases.

4. Theindexeswe build on

Of all the exact algorithms presented in Section 2, two of the most efficient in high di-
mensions are SAT and List of Clusters. We use these indexes to implement our probabilistic
algorithms, so now we briefly explain how these algorithms work.

4.1. Spatial approximation tree

TheSAT [18] is based on approaching the query spatially rather than dividing the search
space, that is, start at some point in the space and get closer to the query, which is done
only via “neighbors”. The SAT uses both compact partition criteria for discarding zones,
it needs @n) space, reasonable construction timg: (Dgz(n)/ log(log(n))) and sublinear
search time @ 1~©/10gl0ogm))y in high dimensional spaces.

Construction of SAT is as follows: An arbitrary object U is chosen as the root node
of the tree (note that since there exists only one object per node, we use both terms in-
terchangeably in this section). Then, we select a suitable set of neighl@yssuch that
Yu e U,u € N(a) & Yv € N(a) — {u},d(u,v) > d(u,a). Note thatN (a) is defined in
terms of itself in a non-trivial way, and that multiple solutions fit the definition. In fact,
finding the minimal set of neighbors seems to be a hard combinatorial optimization prob-
lem [18]. A simple heuristic that works well in most cases considers the objetts-ifu}
in increasing order of their distance framand adds an objestto N(a) if x is closer to
a than to any object already iN(a). Next, we put each node il — N(a) into the bag

B. Bustos, G. Navarro / Journal of Discrete Algorithms 2 (2004) 115-134 123

of it closest object oV (a). Also, for each subtreg € N(a), we store its covering radius

cr(u). The process is repeated recursively in each subtree using the objects of its bag.
This construction process ensures that if we search an apjeéi by spatial approxi-

mation, we will find that object in the tree because we are repeating exactly what happened

during the construction process, i.e., we enter into the subtree of the neighbor clegest to

until we reachy (in fact, in this case we are doing an exact search becaispresent in

the tree). For general range querigsr), instead of simply going to the closest neighbor,

we first determine the closest neighkoof ¢ among{a} U N (a). Then, we enter into all

neighborsh € N(a) such thatd(q, b) < d(q, ¢) + 2r. During the search process, all the

nodesx such thatd(q, x) < r are reported. The search algorithm can be improved a bit

more: When we search for an objeckt U (exact search), we follow a single path from

the root tog. At any nodes’ in this path, we choose the closesit@mong{a’} U N (a’).

Therefore, if the search is currently at tree nadeve have thag is closer taz than to any

ancestor’ of a and also any neighbor af. Hence, if we callA (a) the set of ancestors of

a (includinga), we have that, at search time, we can avoid entering any abjea¥ (a)

such thatd(g, x) > 2r + min{d(qg, c), c € {a’} UN(a’), a’ € A(a)}. This condition is a

stricter version of the original Voronoi partition criterion. The covering radius stored for

all nodes during the construction process can be used to prune the search further, by not

entering into subtrees such th&y, b) — r > cr(b).

4.2. List of Clusters

ThelList of Clusters [6] is a list of “zones”. Each zone has a center and stores its cover-
ing radius. A center € U is chosen at random, as well as a radipswhose value depends
on whether the number of objects per compact partition is fixed or notcérter ball of
(c,rp) is defined agc, rp) = {x € X, d(c,x) < rp}. We then defind =UnN (¢, rp) as
the bucket of “internal” objects lying inside, rp), andE = U — I as the rest of the ob-
jects (the “external” ones). The process is repeated recursively iAsidiae construction
process returns a list of triple€s;, rp;, I;) (center, radius, internal bucket).

This data structure is asymmetric, because the first center chosen has preference over
the next centers in case of overlapping balls. With respect to the value of the radius
of each compact partition and the selection of the next center in the list, there exist many
alternatives. In [6] it is shown experimentally that the best performance is achieved when
the compact partition has a fixed number of objects;sbecomes simplyr(c), and the
next center is selected as the object which maximizes the distance sum to the centers previ-
ously chosen. The brute force algorithm for constructing the list take$/@:), wherem
is the size of the compact partition, but it can be improved using auxiliary data structures
to build the partitions. For high dimensional metric spaces, the optimialvery low (we
usedm =5 in our experiments).

Given arange querty, r), d(q, ¢) is computed, reportingif it is within the query ball.
Then, we search exhaustively insifl@nly if d(q, ¢) — cr(c) < r. E is processed only if
cr(c) —d(q,c) <r, because of the asymmetry of the data structure. The search cost has a
form close to @n®) for some 05 <« < 1.0 [6].

124 B. Bustos, G. Navarro / Journal of Discrete Algorithms 2 (2004) 115-134

5. Our approach

We focus on probabilistic algorithms for high dimensional metric spaces, where for
exact searching it is very difficult to avoid the exhaustive search regardless of the index
and search algorithm used.

It is well known that compact partition algorithms perform better than pivot-based
algorithms in high dimensional metric spaces [8], and that the latter need more space re-
guirements, i.e., many pivots, to reach the performance of the former. For this reason, it is
interesting to develop probabilistic algorithms based on compact partitions, with the hope
that these algorithms could have at least the same performance as pivot-based probabilistic
algorithms but with less memory requirements.

We propose two probabilistic techniques, the first based on incremental searching and
the second based on ranking zones.

5.1. Probabilistic incremental search

This technique is an adaptation of threremental nearest neighbor search algorithm
[16]. The incremental search traverses the search hierarchy defined by the index (whatever
it be) in a “best-first” manner. At any step of the algorithm, it visits the “element” (zone or
object) with the smallest distance from the query object among all unvisited elements in the
search hierarchy. This can be done by maintaining a priority queue of elements organized
by their maximum lower bound distance known to the query object at any time.

In [16] is proved that this search range-optimal, that is, it obtains th&th nearest
neighbor,o, after visiting the same search hierarchy elements as would a range query
with radiusd (g, ox) implemented with a top-down traversal of the search hierarchy.

The incremental nearest neighbor search can be adapted to answer range queries. We
report all objects that satisfyd (¢, u) < r, but we stop when an element with lower bound
[> r is taken out of the queuglpbal stopping criterion). It is not possible to find another
object within the query ball among the unexplored elements, because we have retrieved
them ordered by their lower bounded distanceg.tén equivalent method is to enqueue
elements only if they have a lower bouhd r, in which case the queue must be processed
until it gets empty.

The idea of the probabilistic technique based on the incremental search is to fix in
advance the number of distance computations allowed to answer a range query. Using
the adapted incremental search for range queries, if the search is pruned after we make
the maximum number of distance computations allowed, then we obtain a probabilistic
algorithm in the sense that some relevant objects can be missed. However, as the search
is performed range-optimally, one can presume that the allotted distance computations are
used in an efficient way.

Fig. 4 depicts the general form of the probabilistic incremental sebndbx is the data
structure that indexel, ¢ is the query objeck is an element of the index antig(q, ¢)
is a lower bound of the real distance betweeand all the elements rooted in the search
hierarchy ofe, whered| g(q, ¢) = d(q, e) if e is an object ofU, andd g(q,) > d.s(g, ¢’)
if ¢’ is an ancestor oé in the hierarchy. For example, in the List of Clusterse ifs a
child of a and belongs to the zone of centethend| g(g, ¢) = d(q, c) — cr(c); in SAT

B. Bustos, G. Navarro / Journal of Discrete Algorithms 2 (2004) 115-134 125

Probabi | i sticl ncrenental Search(g, Index, quota)

1. e <« root of Index

2. counter <« O // Nunber of distances conputed
3. Q0 <« {(e,00} I/ Priority queue

4. while Q is not enpty do

5. (e,diB(q,e)) < element in Q with |ower dig(q,e)
6. 0 <« Q—{(e.dB(q, 0}

7. if e is a zone then

8. for each child elenment ¢ of e do

9. cost <« cost to conpute dig(q,ée)

10. if counter + cost < quota

11. Conput e dig(g,e)

12. if dig(q,e’) <r then

13. Q < QU{(¢/, max(d B(q,), d B(q,€))}

14. counter < counter + cost

15. endif

16. enddo

17. endif

18. else report e // object within the query ball
19. enddo

Fig. 4. Probabilistic incremental search algorithm.

if e is a child ofa thend g(q, e) = maxXd(qg,e) — cr(e), (d(g,e) — min{d(q,c), c €
{a'}UN(d'),a’ € A(a)})/2}. The maximum number of distance computations allowed to
perform the search is denoted fyota. Oncequota has been reached, no more elements

are inserted in the queue. Note that the only stopping criterion of the algorithm is that the
gueue gets empty, even if the work quota has been reached, because for all the objects in
the queue their distances goare already known. Variableost indicates the number of
distance computations needed to process a ehidflan element in the search hierarchy.

In SAT, the cost of processing all the childrened equal toN (e); in List of Clusters, this

cost is equal to the size of the compact partitian,

5.2. Ranking of zones

The probabilistic incremental search aims at quickly finding objects within the query
ball, before the work quota gets exhausted. As the maximum number of distance compu-
tations is fixed, the total search time is also bounded. This technique can be generalized
to what we callranking of zones, where the idea is to sort the zones in order to favor the
most promising and then to traverse the list until we use up the quota. The probabilistic in-
cremental search can be seen as a ranking method, where we first rank all the zones using
dis(g, e) and then work until we use up the quota. However, this ranking does not have to
be the best zone ranking criterion.

The sorting criterion must aim at quickly finding objects that are close to the query
object. As the space is partitioned into zones, we must sort these zones in a promising
search order using the information given by the index data structure. For example, in List

126 B. Bustos, G. Navarro / Journal of Discrete Algorithms 2 (2004) 115-134

of Clusters the only information we have is the distances fgoto each centerd(q, ¢))
and the covering radius of each zome(¢)), which is precomputed, so we estimate how
promising a zone is using ondi(g, c) andcr (c). One not only would like to search first the
zones closer to the query, but also to search first the zones that are more compact, that is,
the zones which have “higher object density”. In spite of the fact that it is very difficult to
define the volume of a zone in a general metric space, we assume that if the zones have the
same number of objects, as in the best implementation of List of Clusters, then the zones
with smaller covering radii have higher object density than those with larger covering radii.
We have tested several zone ranking criteria, all in ascending order:

e d(g,c): The distance frong to each zone center.

e cr(c): The covering radius of each zoree(c).

e d(q,c)+ cr(c): An upper bound of the distance frognto the farthest object in the
zone of centee.

e d(q,c)—cr(c): Alower bound of the distance frogto the closest object in the zone
of centerc.

e B(d(gq,c)— cr(c)): What we calldynamic beta.

The first two criteria are the simplest ones. The third criterion aims to search first in
those zones that are closerg@nd also are compact. The fourth criterion is similar to the
probabilistic incremental search. The last technique is equivalent to reducing the search ra-
dius by a factop as in [6], where 18 € [0..1]. If B is fixed, then this criterion is equivalent
tod(q, c) —cr(c), because the ordering is the same in both cases. However, instead of us-
ing a constant factgs, we define alynamic factor of the formg =1/(1.0 — Crig)), where
mer is the maximum size of the covering radius of all zones. This implies that we reduce
the search radii more in zones of larger covering radii. A special case isevEn= mcr
for a zonec'. In this case, we defind g(g, ¢) = oo for all objects in that zone. Note that
d(q,c) — cr(c) is the only criterion that can be used with the probabilistic incremental
search, because with this criterion it is guaranteeddhsly, e) > d g(q, ¢’) holds for any
¢’ ancestor ot.

Each ranking criterion implements a differemide scheduling policy. It is not clear a
priori which of these schedules will have the best performance. Therefore, it is relevant to
experimentally test different schedules and to compare their effectiveness.

6. Performance of the new techniques
6.1. Experimental results

We use the SAT and List of Clusters to implement the probabilistic techniques described
in Section 5, but with SAT we only implement the probabilistic incremental search because
in this data structure every node is a center, so it tak@3 me to compute the distances
between the query and every center. We have tested the probabilistic techniques on a syn-
thetic set of random points inkadimensional vector space treated as a metric space, that is,
we have not used the fact that the space has coordinates, but treated the points as abstract

B. Bustos, G. Navarro / Journal of Discrete Algorithms 2 (2004) 115-134 127

10,000 objects, dimension 128, retrieving 0.10% of the database
1

T T

T T

T T T T
L. of C.: prob. incr. search —+—
L.of C.:d(q,c) ---x---
0.98 L.of C.:cr(c) ---%--- - 7 g
L. of C.: d(q,c)+cr(c) & . !
L. of C.: dynamic beta --m-- . > g
0.96 SAT: prob. incr. search ---0--- = ‘a A -

0.94 X i
092 - o 4
09 , . J
088 - Ve e |

5 7z B J
0.86 - A7 S -

Fraction of the result actually retrieved

0.84 ; b
s
B ¢ . A . . .

0.
5000 5500 6000 6500 7000 7500 8000 8500 9000 9500 10000
Distance computations

0.82 -

Fig. 5. Probabilistic List of Clusters and SAT in a vector space of dimension 128.

objects in an unknown metric space. The advantage of this choice is that it allows us to
control the exact dimensionality we are working with, which is very difficult to do in gen-
eral metric spaces. The points are uniformly distributed in the unitary cube, our tests use
the L, (Euclidean) distance, the database size-s10,000 and we perform range queries
returning 0.10% of the total database size, taking an average from 1,000 queries. The tech-
niques were tested using a space of dimension 128, where no known exact algorithm can
avoid an exhaustive search to answer useful range queries.

Fig. 5 shows the results of the probabilistic List of Clusters and SAT. The curves rep-
resent the fraction of the result actually retrieved (that is, the fraction of relevant objects
retrieved) as a function of the number of distances computations allowed to perform the
search. The best technique, in this experiment, is the ranking zone method with criterion
d(q,c)+cr(c).

Fig. 6 shows a comparison of the probabilistic List of Clusters and the probabilistic
pivot-based algorithm, implemented in its canonical form (see Sections 2.1 and 3). In this
experiment, the performance of the probabilistic List of Clusters is almost equal to the
pivot-based algorithm with 256 pivots when more than 97% of the result is actually re-
trieved. The pivot-based techniques are slightly better when the pivots are selected using
the “good pivots” criterion [5]. However, the size of the List of Clusters index (0.12 Mb)
is about 82 times less than the size of the pivot-based index with 256 pivots (9.78 Mb)
and about 5 times less than the size of the pivot-based index with 16 pivots (0.62 Mb).
Experiments with different search radii and database sizes obtained similar results to those
presented here.

One of the most clear applications of metric space techniques to Information Retrieval
is the task of finding documents relevant to a query (which can be a set of terms or a whole
document itself) [3]. Documents (and queries) are seen as vectors, where every term is a
coordinate whose value is the weight of the term in that document. The distance between

128 B. Bustos, G. Navarro / Journal of Discrete Algorithms 2 (2004) 115-134

10,000 objects, dimension 128, retrieving 0.10% of the database

T T
16 pivots, random —+—
256 pivots, random ---x---
0.98 16 pivots, good ---%--- e
256 pivots, good & ,E!"*
List of Clusters: d(q,c)+cr(c) --m- /
0.96 -

0.94
0.92 -
09 |

0.88 -

Fraction of the result actually retrieved

0.8 =
400! 5000 6000 7000 8000 9000 10000

Distance computations

Fig. 6. Comparison among probabilistic algorithms in a vector space of dimension 128.

two documents is the angle between their vectors, so documents sharing important terms
are seen as more similar. Documents closer to a query are considered to be more relevant
to the query. Hence the task is to find the elements of this metric space of documents which
are closest to a given query.

Despite of this clear link, metric space techniques have seldom been used for this pur-
pose. One reason is that the metric space of documents has a very high dimension, which
makes impractical any exact search approach. This is a case where probabilistic algorithms
would be of great value, since the definition of relevance is fuzzy and it is customary to
permit approximations. Fig. 7 shows the result of an experiment testing the zone ranking
criteria on a subset of the TREC-3 collection [15]. The database consisted on 24,960 doc-
uments, and we average over 1,000 query documents chosen at random from the original
subset f2 = 10 for the List of Clusters, retrieving on average 0.035% of the database per
query). The results show that, for this experiment, the best criteria for ranking zones is the
dynamic beta and(g, c).

Fig. 8 shows a result comparing the pivot-based algorithm with the ranking zone method
using the dynamic beta criterion. The results show that our probabilistic algorithms can
handle better this space, retrieving more than 99% of the relevant objects and traversing
merely a 17% of the database, using much less memory, approximately 16 times less than
the index with 64 pivots, hence becoming for the first time a feasible metric space approach
to this long standing problem.

6.2. Ranking of zones versus ranking of objects

The sorting criteriond(q, ¢) — cr(c) can be modified to take advantage of the infor-
mation provided by the List of Clusters data structure. If for each zone, in addition to the
covering radius, we store the distances from its canterall the objects; that belongs to
this zone, then we can obtain an improved lower bound of the distance;ftom;, which

B. Bustos, G. Navarro / Journal of Discrete Algorithms 2 (2004) 115-134 129

24,960 documents, retrieving 0.035% of the database

0.98 -
0.96
e
o
3
= 094 |
I
>
‘_5 0.92
o
©
3 09r .
? E
o ; X /
2 ossl . X .
5] e
S 086 X 4
o .
< ; /
s /
0.84 B ¥ J B
; I d(q,c) ——
/ cr(c) ---x---
0.82 - v d(q,0)+cr(c) ---*--
P B d(q,c)-cr(c) &
; / dynamic beta ---m-—
08 10 1 1 1
0 5000 10000 15000 20000 25000
Distance computations
Fig. 7. Comparison among ranking criteria in a document database.
24,960 documents, retrieving 0.035% of the database
1 T b - —e- @ 0-&- A0 NI IPOTEEE
g G000 00 o -0oe-o 't;—»*";&* i
: . ¥ Slay
%7 0 %X o
0.98 X on g
oo
A
o 096 | a .
g @
2
© 094 J
>
©
2
S 092 E
2
£ o9t 4
ol
£
)
c 088 b
S
g
L 086 | 16 pivots, random —+— |
64 pivots, random ---x---
128 pivots, random ---%---
16 pivots, good &
0.84 - 64 pivots, good --m--- 7|
i ; 128 pivots, good ---o---
nofr g dynamic beta ----e---
0.82 X 1 m i1 L I
0 5000 10000 15000 20000 25000

Distance computations

Fig. 8. Comparison among probabilistic algorithms in the document database.

isd(q,c) —d(c,u;). Therefore, a variant of the original criterion is to sort the objects ac-
cording to the values given by the improved lower bound. Note that in this variant we are
not ranking zones, but each object of the database.

However, in practice this variant results in no improvements over the original technique,
but the opposite. The comparison between both techniques and the dynamic beta criterion
is shown in Fig. 9. The dynamic beta criterion has still a far superior performance than
the other criteria. This is an unexpected result. We conjecture that the reason of the bad

130 B. Bustos, G. Navarro / Journal of Discrete Algorithms 2 (2004) 115-134

24,960 documents, retrieving 0.035% of the database

0.98 '
0.96
0.94
0.92
09
0.88

0.86

Fraction of the result actually retrieved

0.84

0% r original d(g,c)-cr(c) —+— -
variant d(qg,c)-d(c,u) ---x---

dyn?mic beta ---%---

0.8 : A L |
0 5000 10000 15000 20000 25000
Distance computations

Fig. 9. Comparison between ranking of objects and ranking of zones.

performance of the ranking of objects is that we lose valuable clustering information when
we rank each object separately.

Another possibility for ranking objects instead of zones is using a pivot-based index.
The ranking in this case consists of sorting the objects by incredsidigtance (see Sec-
tion 2.1) to the query, and then search in that order, stopping when the work quota is over
or when the distanc® is greater tham. Fig. 10 shows the results of an experiment in the
document database, using different number of pivots. The results show that this method
is quite competitive, but it is outperformed by the dynamic beta criterion when retriev-
ing more than 99% of the relevant documents. We also compared the difference between
random and good pivots index. The result shows that the use of good pivots increases the
performance of this sorting criterion.

7. A model for comparing ranking criteria

Now we describe a model for ranking criteria comparison, which allows us to compare
different ranking criteria in an offline mode, without having to repeat each experiment for
each different pair of parameters.

Let U be a database witfU| = n. For a given seQ of k queries, each query is per-
formed using some criterion without work limit. We save the order in which elements were
retrieved and their distance to the query object. With this information, we genesiaiada
of points which is represented in a graplstance to the query as a function of the num-
ber of distances computations. The X axis range i§0, n] and theY axis range iR™. If
objectu was retrieved after performingdistance computations, then the pdintd(q, u))
is added to the cloud. This procedure is repeated for all objects retrieved in all the queries,
totalizingkn points. Fig. 11 shows an example of a cloud of points.

o]

. Bustos, G. Navarro / Journal of Discrete Algorithms 2 (2004) 115-134 131

24,960 documents, retrieving 0.064% of the database

4
0.98
0.96
°
Q
>
£ 094r
®
>
= 0.92
£
©
©
= 09}
7]
o
£ os88r
k)
c
8 0.86 -
)
v : 16 pivots, random —+—
0.84 - H 64 pivots, random ---x--- -
: 128 pivots, random ---%:---
H 16 pivots, good &
0.82 - ; 64 pivots, good --m-- -
] 128 pivots, good ---o---
: dynamic beta ----e--
0.8 - 1 L 1 !

0 5000 10000 15000 20000 25000
Distance computations

Fig. 10. Ranking of objects using a pivot-based index.

d(g,w)

N .

work

Fig. 11. Example of a cloud of points for a given criterion.

This cloud of points allows us to simulate any experiment on the preprocessed query
set, varying the allowed amount of work or the search radius. For example, if one wants
to know how many relevant objects the algorithm would retrieve on average with a search
radiusr and a work quota, then one just has to count the points y) of the cloud which
satisfyx < ¢t andy < r, and then divide this quantity by the total number of quertes,

Let A(z, r) be the resulting value. Since that all distances between objects and queries are
known, it is easy to know how many objects are within a query ball for a fixed search

132

[os]

. Bustos, G. Navarro / Journal of Discrete Algorithms 2 (2004) 115-134

24,960 documents, retrieving 0.064% of the database

- h=Bcato) SRRERERRRR -
. E"B'E"EE,*****'**** x*x_x—x*
B BT e R KX xS
ke xR

09

X 4

Fraction of the result actually retrieved

d(q
d(q

,C)+Cr(C) ---*---
,c)-cr(c) 8-

dynlamic betaI -

0.3

I
04

0.5

0.6

07

0.8

09

1

Fraction of the database traversed

Fig. 12. Fraction of the retrieved objects as a function of the traversed fraction of the database, 0.064% retrieved.

radius, which turns out to ba (oo, r). Then, the fractionf of retrieved relevant objects
using a work quotais f = A(t,r)/A(co, r).

The procedure described can be repeated for differeand:’ values. If the search
radius is fixed and one computgdor different amounts of work quota, then we can obtain
several points of the cost function for a specific criterion. Fig. 12 shows the results obtained
with a traditional experiment, and Fig. 13 shows the results obtained with 100 queries,
using the comparison model. There are just minor differences between both figures.

The disadvantage of this comparison model is that it needs to save huge amounts of
information, because each query contributes with an amount of data proportigh&l to
This can be solved usingdiscrete values faf (g, u) and defining a matrix of x n storage
cells for the discrete values @f d(q, u)). With this approach, the space costisbut some
precision will be lost when computing(z,).

8. Conclusions

We have defined a general probabilistic technique based on the incremental nearest
neighbor search, that allows us to perform time-bounded range search queries in met-
ric spaces with a high probability of finding all the relevant objects. We also defined a
probabilistic technique based on ranking zones, which is a generalization of the former
technique. Our experimental results show in both synthetic and real-world examples that
the best criteria for ranking zones perform better than the pivot-based probabilistic algo-
rithm in high dimensional metric spaces, as the latter needs much more memory space to
be competitive. Also, we studied variants of this technique which rank objects instead of
zones, but our experimental results show that these variants make no improvement over the
ranking of zones technique.

B. Bustos, G. Navarro / Journal of Discrete Algorithms 2 (2004) 115-134 133

24,960 documents, retrieving 0.064% of the database

oo AEE 5 L 0 5 S S oial
poEeaaa8s D'i*****-x*** _x_x,x**
28 *A****x x_x-*'x
) KK XK 4
8 XX x)(_x—x‘x
*
= - X
x Xxx N
3 o
H x
2 x i
§ X
> /
3 X]
B X
© ;('
= / 1
¢ 7
Q /X
£ / 1
k3
c
8 4
©
o
w
d(q,c) —+—
cr(c) --x---
d(g,c)+cr(c) ---*---
d(qg,c)-cr(c) 8-
)) dynlamic beta —-m--
0.4 0.6 0.8 1

Fraction of the database traversed

Fig. 13. Result using the comparison model, 0.064% retrieved.

According to the schema proposed in [10], the probabilistic techniques proposed in this
paper can be classified as methods that are applicable on metric spaces, that reduce the
number of comparisons performed during the search (in fact, this value is fixed in the algo-
rithms), that give no guarantee on the error introduced by the approximation, and that allow
the user to interactively set the parameters (amount of work to perform during the search)
to tune the quality of the answer set. Our techniques can be seen as a practical realization
of the theoretical framework introduced with the PAC approach [9]. Our contributions in
this respect have been to empirically compare specific index structures and specific sched-
ules, which was not done previously. Moreover, we have proposed a new way to regard
the problem, as a time-bounded computation, and have devised a technique to simplify
experimentation in this area.

Future work involves testing more zone ranking criteria and to use more advanced
clustering techniques for testing our probabilistic search algorithms. Based on the results
obtained with the document database, the ranking of zones seems to be a promising alter-
native as a ranking method for effective and efficient similarity searching for Information
Retrieval applications. It would be interesting to compare the effectiveness of our ranking
technique against the traditional approaches in terms of precision versus recall figures.

Acknowledgements

This work was partially supported by the German Science Foundation (DFG), project
no. KE 740/6-1 of the strategic research initiative SPP 1041 (first author), and by the Mil-
lennium Nucleus Center for Web Research, Grant P01-029-F, Mideplan, Chile (second
author). The first author is on leave from the Department of Computer Science, University
of Chile.

134 B. Bustos, G. Navarro / Journal of Discrete Algorithms 2 (2004) 115-134

References

[1] S. Arya, D. Mount, Approximate range searching, in: Proc. 11th Annual ACM Symposium on Computa-
tional Geometry, 1995, pp. 172-181.

[2] S. Arya, D. Mount, N. Netanyahu, R. Silverman, A. Wu, An optimal algorithm for approximate nearest
neighbor searching in fixed dimension, in: Proc. 5th ACM-SIAM Symposium on Discrete Algorithms (SO-
DA94), 1994, pp. 573-583.

[3] R. Baeza-Yates, B. Ribeiro-Neto, Modern Information Retrieval, Addison-Wesley, Reading, MA, 1999.

[4] S. Brin, Near neighbor search in large metric spaces, in: Proc. 21st Conference on Very Large Databases
(VLDB'95), Morgan Kaufmann, 1995, pp. 574-584.

[5] B. Bustos, G. Navarro, E. Chavez, Pivot selection techniques for proximity searching in metric spaces,
Pattern Recognition Letters 24 (14) (2003) 2357—-2366.

[6] E. Chavez, G. Navarro, An effective clustering algorithm to index high dimensional metric spaces, in: Proc.
7th Symposium on String Processing and Information Retrieval (SPIRE’00), IEEE CS Press, 2000, pp. 75—
86.

[7] E. Chavez, G. Navarro, Probabilistic proximity search: fighting the curse of dimensionality in metric spaces,
Inform. Process. Lett. 85 (2003) 39—46.

[8] E. Chavez, G. Navarro, R. Baeza-Yates, J. Marroquin, Searching in metric spaces, ACM Comput.
Surv. 33 (3) (2001) 273-321.

[9] P. Ciaccia, M. Patella, PAC nearest neighbor queries: approximate and controlled search in high-dimensional
and metric spaces, in: Proc. 16th International Conference on Data Engineering (ICDE’00), 2000, pp. 244—
255.

[10] P. Ciaccia, M. Patella, Approximate similarity queries: a survey, Technical Report CSITE-08-01, Department
of Electronics, Computer Science and Systems, University of Bologna, May 2001.

[11] P. Ciaccia, M. Patella, P. Zezula, M-tree: an efficient access method for similarity search in metric spaces,
in: Proc. 23rd Conference on Very Large Databases (VLDB’97), Morgan Kaufmann, 1997, pp. 426-435.

[12] K. Clarkson, Nearest neighbor queries in metric spaces, Discrete Comput. Geom. 22 (1) (1999) 63-93.

[13] F. Dehne, H. Noltemeier, Voronoi trees and clustering problems, Inform. Syst. 12 (2) (1987) 171-175.

[14] J. Goldstein, R. Ramakrishnan, Contrast plots and P-sphere trees: space vs. time in nearest neighbor searches,
in: Proc. 26th International Conference on Very Large Databases (VLDB’00), Morgan Kaufmann, 2000,
pp. 429-440.

[15] D. Harman, Overview of the third text REtrieval conference, in: Proc. Third Text REtrieval Conference
(TREC-3), 1995, pp. 1-19, NIST Special Publication 500-207.

[16] G. Hjaltason, H. Samet, Incremental similarity search in multimedia databases, Technical Report TR 4199,
Department of Computer Science, University of Maryland, November 2000.

[17] 1. Kalantari, G. McDonald, A data structure and an algorithm for the nearest point problem, IEEE Trans.
Software Engrg. 9 (5) (1983) 631-634.

[18] G. Navarro, Searching in metric spaces by spatial approximation, VLDB J. 11 (1) (2002) 28—46.

[19] H. Noltemeier, K. Verbarg, C. Zirkelbach, Monotonous Bisetforees—a tool for efficient partitioning of
complex schemes of geometric objects, in: Data Structures and Efficient Algorithms, in: Lecture Notes in
Comput. Sci., vol. 594, Springer, Berlin, 1992, pp. 186—-203.

[20] J. Uhlmann, Satisfying general proximity/similarity queries with metric trees, Inform. Process. Lett. 40
(1991) 175-179.

[21] D. White, R. Jain, Algorithms and strategies for similarity retrieval, Technical Report VCL-96-101, Visual
Computing Laboratory, University of California, La Jolla, California, July 1996.

[22] P. Yianilos, Locally lifting the curse of dimensionality for nearest neighbor search, in: Proc. 11th ACM-
SIAM Symposium on Discrete Algorithms (SODA00), 2000, pp. 361-370.

[23] P. Zezula, P. Savino, G. Amato, F. Rabitti, Approximate similarity retrieval with M-trees, VLDB J. 7 (4)
(1998) 275-293.

	Probabilistic proximity searching algorithms based on compact partitions
	Introduction
	Basic concepts
	Pivot-based algorithms
	Algorithms based on compact partitions
	Voronoi partition criterion
	Covering radius criterion

	Probabilistic algorithms for proximity searching
	The indexes we build on
	Spatial approximation tree
	List of Clusters

	Our approach
	Probabilistic incremental search
	Ranking of zones

	Performance of the new techniques
	Experimental results
	Ranking of zones versus ranking of objects

	A model for comparing ranking criteria
	Conclusions
	Acknowledgements
	References

