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Abstract. In exploratory data analysis, important analysis tasks in-
clude the assessment of similarity of data points, labeling of outliers,
identifying and relating groups in data, and more generally, the detec-
tion of patterns. Specifically, for large data sets, such tasks may be ef-
fectively addressed by glyph-based visualizations. Appropriately defined
glyph designs and layouts may represent collections of data to address
these aforementioned tasks. Important problems in glyph visualization
include the design of compact glyph representations, and a similarity-
or structure-preserving 2D layout. Projection-based techniques are com-
monly used to generate layouts, but often suffer from over-plotting in 2D
display space, which may hinder comparing and relating tasks.

Inspired by contour and venation shapes of natural leafs, and their ag-
gregation by stems, we introduce a novel glyph design for visualizing
multi-dimensional data. Motivated by the human ability to visually dis-
criminate natural shapes like trees in a forest, single flowers in a flower-
bed, or leaves at shrubs, we design a flexible leaf-shaped data glyph,
where data controls main leaf properties including leaf morphology, leaf
venation, and leaf boundary shape. Our basic leaf glyph can map to more
than a dozen of numeric and categorical variables. We also define custom
visual aggregation schemes to scale the glyph for large numbers of data
records, including prototype-based, set-based, and hierarchic aggrega-
tion. We show by example that our design is effectively interpretable
to solve multivariate data analysis tasks, and provides effective data
mapping. The design provides an aesthetically pleasing appearance, and
lends itself easily to storytelling in environmental data analysis problems,
among others. The glyph and its aggregation schemes are proposed as a
scalable multivariate data visualization design, with applications in data
visualization for mass media and data journalism, among others.

Keywords: Glyph visualization and layout, nature-inspired visualiza-
tion, leaf shape, multi-dimensional data analysis, data aggregation.

1 Introduction

Glyph-based data visualization has a long tradition in Information Visualization
research and application. The basic idea in glyph visualization is to map data
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properties to visual properties of some appropriately designed visual structure.
By the interplay of the different visual properties, each glyph then represents a
data record. Many data records can be compared by appropriately laid out glyph
displays. Glyph visualization, like other areas in Information Visualization, can
be considered both a science and an art. Specifically, the design of glyphs may
be inspired intuitively by common, well-known shapes or icons. For example,
Chernoff faces were inspired by face properties, and sticky figures by abstraction
of human body shapes.

A subset of the designs studied in Information Visualization to date has
been inspired by nature. For example, tree structures have inspired hierarchical
node-link diagrams. As another example, the notion of information landscapes or
terrains is also borrowed from nature. There is reason to believe that the human
visual sense, due to long evolutionary processes, is highly trained in recognizing,
distinguishing and comparing natural forms. These visual recognition processes
typically work well even in low illumination conditions, or in presence of partial
occlusion of natural objects. By background knowledge and experience, humans
are able to efficiently recognize natural shapes, also often in cases where only
parts of the shape or their boundary are visible.

Based on this motivation, we investigate the design space for leaf shapes as
natural metaphors for data glyphs. From observing leaves in nature, it is clear
that there is a large variability in the different types and forms of leaves that
exist. Overall leaf shape, shape boundary, and shape interior all comprise several
visual parameters that can in principle, be used to map data to generate glyphs.
To the best of our knowledge, this is the first work to systematically study the
design space of leaf-based glyph visualization, and identify an encompassing set
of leaf variables to map data to. In conjunction with appropriate glyph layouts
(based e.g., on projection), and visual aggregation techniques, effective and in-
tuitive data displays can be realized. Our rationale for using leaf-based data
visualization is two-fold. First, the design space is large, giving ample opportu-
nities for the visualization expert to map data variables to visual variables. As
will be discussed, our variable space amounts to more than 20 different visual
variables that can be controlled. While we have not formally evaluated the ef-
fectiveness of these variables or their combinations, we presume this is a large
design space from which appropriate effective selections can be found. Second,
we propose that nature-inspired designs, by their potential aesthetic appearances
and familiarity, can be suited to spark interest in visual data analysis for wider
audiences, e.g., for use in mass media. Also, it resonates well with visualization
of environmental data, as has been previously demonstrated, e.g., by a respective
infographic used by OECD (see Section 2.2).

The remainder of this paper is structured as follows. In Section 2, we dis-
cuss glyph-based and nature-inspired data visualization approaches. Section 3
defines the design space for leaf glyphs, based on identification of main visual leaf
properties which are candidates for data mapping. Then, in Section 4, we define
several visual aggregation schemes to scale 2D glyph layouts for large numbers of
data points. Section 5 then applies our design to several data sets. By exemplary
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data analysis cases, we demonstrate the principal applicability of our approach.
Finally, Section 6 summarizes our work and outlines future research in the area.

2 Related Work

Our work extends the design space of two existing branches of research by in-
troducing a compact data representation making use of environmental cues.
The related work is, therefore, split into two parts. The first part covers the
area of space efficient visualization techniques, namely, data glyphs. The sec-
ond part addresses research using environmental cues to convey data. We do
not address research in the area of computer graphics, since this work mainly
focuses on photo-realistic representation of the environment. We refer the inter-
ested reader to a summary work about this topic by Deussen and Lintermann
[Deussen and Lintermann, 2005].

2.1 Glyphs

In the literature, there exists a large variety of glyph designs. Elaborate sum-
maries can be found in [Borgo et al., 2012] [Ward, 2008]. To come up with a
comprehensive categorization we make use of Ward’s classification of data glyphs
[Ward, 2008]. In his research he distinguishes between three different ways a data
point can be mapped to a glyph representation.

First, many-to-one mapping: All data dimensions and their respective value
are mapped to a common visual variable. Therefore, these designs can be system-
atically created by choosing the most effective visual variable for a certain task.
Additional guidance is given by Cleveland et al. with a ranking of visual vari-
ables [Cleveland and McGill, 1984]. Well-known examples making use of a posi-
tion/length encoding are star glyphs [Siegel et al., 1972], whisker and fan plots
[Pickett and Grinstein, 1988][Ware, 2012], or profile glyphs [Du Toit et al., 1986].
The designs just differ in their layout of the dimensions (i.e., circular or linear)
and some minor variations like the presence or absence of a surrounding con-
tour line. Other glyph designs make use of color encodings to represent the
data value. Clock glyphs [Kintzel et al., 2011] map the dimensions in a radial
fashion, whereas pixel-based glyph designs [Levkowitz and Herman, 1992] lay-
out the dimensions linearly. Of course, color cannot convey the data as ac-
curate as a position/length encoding [Fuchs et al., 2013], however, for certain
tasks like spotting outliers the color encoding is a reasonable choice. There is
even a design mapping the data values to the angle of its rays. Sticky figures
[Pickett and Grinstein, 1988] use the visual variable orientation, which is not
so accurate in communicating exact data values. However, when used as an
overview visualization the designs convey individual shapes, which are perceived
as a whole nicely approximating the underlying data point.
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Second, one-to-one mapping: Each dimension is mapped to a different vi-
sual variable. Probably, the most well-known representations here are Chernoff
faces [Chernoff, 1973]. The single data values are mapped to face characteris-
tics, like the size of the nose or the angle of the eyebrows. Other more exotic
designs are bugs [Chuah and Eick, 1998] (changing the shape, length or color of
wings, tails and spikes), or hedgehogs [Klassen and Harrington, 1991] (manipu-
lating the spikes by changing the orientation, thickness and taper). The major
drawback of these kinds of glyph representations is that they are often sensi-
tive to the order by which the data dimensions are mapped to visual variables.
Variation of the order could significantly change the final glyph representation
and its visual perception by users. Additionally, measuring differences between
single dimension values within a data point is typically a difficult task, as the
analyst has to compare different kinds of visual variables with each other (e.g.,
compare length with saturation or angle, etc.)

Third, one-to-many mapping: The dimensions are represented by two or
more visual variables. This redundant mapping can be useful to strengthen the
perception of individual dimensions. For example, in star or profile glyphs the
dimensions can be additionally encoded by coloring the single data rays. Clock
glyphs can make use of an additional length encoding for the single colored slices
to encode the underlying data values more accurately.

Metaphoric glyph designs: Another category of glyph representations are
metaphors for communicating domain specific data. A well-known example are
Chernoff faces [Chernoff, 1973], which were already introduced in the one-to-
one mapping category. In two quantitative experiments conducted by Jacob and
Flury et al. these faces were compared against other visual representations like
polygons or simple digits. In both evaluations data from human beings like an-
thropometric variables [Flury and Riedwyl, 1981] or medical patient information
[Jacob, 1978] had to be encoded. The results indicate that metaphors outperform
the more abstract designs. In addition, also other metaphoric glyph designs like
clock glyphs [Fuchs et al., 2013] or car glyphs [Surtola, 2005] have been subject
to quantitative experiments yielding similar results.

As can be seen from these experiments metaphoric designs seem to be supe-
rior for specific domains compared to more abstract representations. This insight
is an interesting starting point to think about designs for visualizing environ-
mental data.

2.2 Environmental Cues

Visualizations making use of environmental cues need not necessarily be glyph
representations. Stefaner uses an abstract tree layout to show the editing his-
tory of Wikipedia entries represented as single branches [Stefaner, 2014a]. The
branches grow to the right whenever people decided to delete an article or to the
left in the other case. The resulting tree nicely summarizes 100 articles with the
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longest discussion whether to keep them or not. Another tree-based approach in
combination with leaves visualizes poems in a more artistic way [Müller, 2014].
The branches of the tree are invisible just dealing as an anchor point to arrange
the glyphs. Each word in the poem is represented with a leaf glyph and attached
along the tree structure. The work is not eligible of representing the text data
accurately but tries to illustrate a creative unique picture or fingerprint of the
underlying poem.

A more data-driven glyph design is the botanical tree [Kleiberg et al., 2001],
which again uses a 3D tree layout to represent hierarchical information. The
single nodes are represented as fruits. The authors argue that people can more
easily identify single nodes in this visualization compared to a more abstract
representation because they are used to detect fruits or leaves on shrubs or
trees. A 2D visualization using a botanical tree metaphor are so-called Contact-
Trees [Sallaberry et al., 2012] which show relationships in data, e.g., contacts
between persons. The branches consist of single lines representing an attribute
in the data, e.g., a longer line refers to an older tie between people. Finally,
fruits or leaves are added to the tree according to some data property, e.g., the
kind of relation between people (friends, co-workers etc.). However, the fruits
and leaves are highly abstract representations (mainly colored dots) and their
shape does not change according to some data characteristics. The OECD’s Bet-
ter Life Index visualization [Stefaner, 2014b], on the other hand, systematically
changes the appearance of the single flower glyphs used to represent data. Ste-
faner uses such environmental cues to visualize multi-dimensional data about
country characteristics. Each country is represented by one flower. The petals
encode the different economic branches with varying sizes and lengths for the
corresponding values. The flowers are arranged according to their weighted rank
across all dimensions. People can change the layout by changing the weights of
the dimensions or simply focusing on just one dimension.

We contribute to this body of existing work with the definition of a highly
detailed leaf glyph, which closely follows the main morphological and functional
variations among leaves. It is able to effectively map data variables. We also
provide a custom aggregation scheme to scale leaf layouts for large number of
records.

3 Environmental Glyph

According to Biological literature, leaves may be categorized by their function
or usage in the environment [Beck, 2010]. For our purposes, we divide leaves ac-
cording to their shape (or morphology). The overall appearance of a leaf consists
of the combination of (1) the overall shape type, (2) the boundary details, and
(3) the leaf venation. We consider these three aspects as the main dimensions
for controlling the leaf glyph by mapping data. As a result we come up with a
design space structured along the overall leaf shape, which we discuss next.
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3.1 Leaf Shape Design Space

Following Palmer who pointed out: “Shape allows a perceiver to predict more
facts about an object than any other property” [Palmer, 1999], this visual vari-
able should be used for the most important data dimension. In the environment,
there exists a nearly endless amount of different leaf shapes since each leaf is
unique. However, it is possible to distinguish leaves according to their overall
shape [Deussen and Lintermann, 2005]. A first categorization can be done be-
tween conifer and deciduous leaves.

Conifer leaves can be found for example at fir or pine trees and have a thin
long needle-like shape. Therefore, they do not offer much space for a venation
pattern, which we want to use later for mapping additional attributes (e.g.,
Acicular leaves). Since the differences in shape are quite small for the different
kinds of this group and the provided area is limited due to the distorted aspect
ratio, we do not consider them in our design space.

Deciduous leaves cover a large group of different shapes and can again be
further divided into four sub-categories [Deussen and Lintermann, 2005].

Pinnate and palmate compound leaves are shapes, which consist of several
smaller leaflets attached to a shared branch (e.g., Alternate, or Odd and Even
Pinnate leaves etc.). In order to avoid any misinterpretation between single
leaflets at a branch and individual leaves, we discard this group from our final
design space. However, these kinds of leaves seem an appropriate representation
to visually summarize multiple data points where one leaflet corresponds to a
single leaf.

Lance-like leaves have a parallel venation and are thin and long, similar to
conifer leaves. Therefore, it is difficult to distinguish different kinds of these
leaves since the differences in the overall shape are limited. Like the conifer
leaves, we do not keep them in our design space because of the limited area to
map a venation pattern, and because of possible confusion of different lance-like
shapes.

Leaves with net veins or reticulate venation patterns encompass the largest
group of deciduous leaves with a big diversity in shape. We restrict ourselves
to the most common leaf shapes for this category to avoid misinterpretation of
intermediate structures, which could not clearly be distinguished. Additionally,
we focus on leaves with a big surface to show venation patterns and small stems
to save space. Leaves similar to Flabellate, Unifoliate, etc. will, therefore, not be
considered.

The most important requirement for shapes in visualizations is that they
should be easily distinguishable. Therefore, our final design space covers elliptic
(e.g., Ovate, Obtuse, Obcurdate etc.), circular (e.g., Orbicular), triangular (e.g.,
Deltoid), arrow-like (e.g., Hastate, Spear-shaped etc.), heart-like (e.g., Cordate,
Deltoid etc.), two variations of tear-drop like (e.g., Acuminate, Cuneate etc.),
wave-like (e.g., Pinnatisect), and star-like (e.g., Palmate, Pedate, etc.) shapes.
Figure 1 illustrates the nine different leaf shape categories covered by our design
space. In Section 5 we will introduce a heuristic to map data points to leaf shapes,
based on the idea of representing outlying points by the more jagged leaf shapes;
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conversely, non-outlying points will be represented by the more regular or smooth
leaf shapes.

Ovate&Orbicular& Deltoid& Cordate& Acuminate& Cuneate& Pedate&Pinna5sect& Hastate&

Fig. 1. Leaf shapes: Selected from our overall design space, these are the shapes used
in our final glyph design. From left to right: Wave-like, circular, triangular, heart-like,
arrow-like, tear drop up, tear drop down, elliptic, and star-like shapes.

We take these categories as a starting point and further extend them by map-
ping additional attribute dimensions to the width and the height of the glyph,
scaling the overall shape. Therefore, similar shapes according to a certain data
characteristic can look different because of the varying aspect ratio. However, the
individual shape categories can still be distinguished (Figure 2). Because of this
decision, we will deviate from the precise environmental reference, where leaves
typically show a homogeneous aspect ratio. However, we thereby are able to en-
code additional data dimensions. Note that we do not want to represent leaves
as accurate as possible (or even photo realistic), but use their expressiveness to
visualize data.

No#distor)on# Width#distorted# Height#distorted#

Fig. 2. Leaf scaling: The Lobate leaf shape is scaled using either the width (middle),
or the height (right) of the glyph. Even after scaling, the glyph can still be recognized
as a wave-like leaf, although the precise environmental reference to the Lobate leaf is
reduced.

3.2 Leaf Boundary Design Space

Basically, the boundary (or margin) of a leaf can be described as either serrated
or unserrated. Unserrated boundaries have a smooth contour adapting to the
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overall leaf shape. Serrated boundaries are toothed with slight variations de-
pending on the size of teeth, their arrangement along the boundary, and their
frequency. Of course, there are more detailed differences and variations in na-
ture. However, especially in overview visualizations (the major domain of data
glyphs), distinguishing between small variations of the contour line of a leaf
shape is nearly impossible. We therefore focus on just the two main bound-
ary categories of teethed or smooth (serrated or unserrated). For mapping data
values to the leaf boundary, we distinguish between a smooth and a toothed
contour line and vary the width, height, and frequency of the teeth according to
the underlying data value (Figure 3).
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Fig. 3. Leaf boundary: Modifying the boundary in our design is realized by changing
the frequency, the height, or the width of the boundary serration (teeths). Combinations
of these three variables are possible and increase the expressiveness of the glyph. The
figure illustrates all possible combinations for low, middle, and high data values for an
elliptically shaped leaf glyph.

3.3 Leaf Venation Design Space

We also control the leaf venation pattern as to map additional data variables to
the glyph. Several main leaf venation patterns exist, which differ in their overall
structure within the leaf. A rough distinction can be made between single, not
intersecting (e.g., Parallel), paired (e.g., Pinnate), or net-like (e.g., Reticulate)
veins. The venation is perceived as an additional texture for the glyph and further
increases the glyph expressiveness. Since it is hard to find a natural order within
this texture, we propose to use the venation type for visualizing qualitative (or
categorical) data, similar than the overal leaf shapes discussed in Section 3.1.
Within a given venation type, we may also encode numeric data. This works as
follows. Generally, the leaf is split in the middle by a main vein, with small veins



Leaf Glyphs: Story Telling and Data Analysis 9

growing from there in a given direction (angle). For mapping numerical data, we
may either control this angle of the veins branching out from the main vein. An
alternative is to control the number of veins shown on the surface Figure 4. As
a result, we come up with a venation texture able of encoding categorical and
numerical data.
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Fig. 4. Leaf venation: The texture for the venation system can either be created by
mapping data values to the angle or frequency of the veins separately, or by combining
the two. The figure illustrates all possible combinations for low, middle, and high data
values for a wave-like leaf shape.

3.4 Summary

Besides modifying the leaf shape given by morphology, boundary and venation,
further dimensions can be assigned to the color hue or saturation of the glyph.
Of course, the designer has to pay attention to the contrast between the venation
texture and the background color. Additionally, orientation of the glyph in the
display can be used to encode further numeric information. We draw a short
stem to each leaf shape, showing its orientation. Finally, it is also possible to
modify the stem’s width or height as well.
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This represents a comprehensive design space for mapping data to leaf glyphs,
controlled by 12 categorical and 14 numeric parameters, summing up to 26 vari-
ables altogether (see Table 1 for an overview of all variables.) We propose this
design space as a toolbox from which the designer may select visual variables
as appropriate. The number of 26 parameters is considered more a theoretical
upper limit of data variables that we can show. We expect not all visual param-
eters in this design space to be of the same expressiveness; but some variables
may be more effective than others, and may not all be orthogonal to each other.
Careful choice should be done in selected and prioritizing the variables. An op-
tion is of course always, to redundantly code data variables to different glyph
variables, to emphasize perception of important data variables. In Section 5, we
will illustrate by practical examples, how glyph variables can be combined to
form data displays.

Leaf Design Numeric Variables Categorical Variables

Shape 2 (x/y scale) 9 (selected morphologies)
Boundary 3 (frequency, width, height of teeth) –
Venation 2 (number, angle of child veins) 3 (parallel, paired, net)
Other 7 (hue, saturation, orientation, x/y posi-

tion, stem width/height)
–

Sum 14 12
Table 1. Summary of the parameters of our glyph design. It comprises 14 numeric and
12 categorical variables, which form the theoretic upper limit for the expressiveness of
our glyph. Note that in practice, these variables are expected to not all be orthogonal,
and comprise different perceptional performance, depending also on the data.

4 Leaf Glyph Aggregation

When visualizing large data sets, leaf glyphs, like many other glyphs, are prone
to overlap in the display, reducing the effectiveness of perceiving data from in-
dividual glyphs. Generally, an increasing amount of multivariate points in a
visualization produces significant clutter resulting in perceptional problems –
the user is not able to distinguish between data points properly anymore. This
is mainly due to our design intention to use larger shapes for adding e. g., ve-
nation patterns. Next, we discuss three different aggregation techniques, to help
cope with large numbers of data points in our glyph display: Alpha Compositing,
Prototype Generation, and Abstraction.

First, we apply transparency in Figure 5 to provide a visually pleasing rep-
resentation that also reveals differences between data points. In some cases, the
application of transparency is not enough. For example, if multiple data points
share the same position, the opacity might sum up until no difference is perceiv-
able. Therefore, we propose two different aggregation techniques that build on
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top of transparency and the application of a grid-based aggregation. Specifically,
we place a user-defined grid on top of the visualization. All data points sharing
the same cell are aggregated (see Figure 6).

These effects can at the same time be perceived in nature: leaves can overlap
or coincide with others. We adapt the proposed aggregation techniques and
extend them in order to find a representative aggregate glyph which summarizes
multiple leaf glyphs.

In Figure 5 and Figure 6 we point out the application of the aggregation
techniques – Alpha Compositing, Prototype Generation, and Abstraction – with
respect to nature. We next explain them in terms of their counterpart in nature,
and apply them to our visualization of leaf glyphs.

4.1 Alpha Compositing

Alpha	
  Composi,ng	
  Leaf	
  Glyph	
  

Fig. 5. Aggregation by Alpha Compositing. When multiple leaves overlap or
coincide, we are not able to distinguish properly between their shapes and related
characteristics. To overcome this issue, we propose to apply alpha compositing. It
reveals details by applying transparency to the leaves.

We use Alpha Compositing [Porter and Duff, 1984] to reveal details on over-
lapping glyphs by applying transparency. This technique describes the process
of combining multiple, separately rendered images in order to provide a trans-
parent appearance. The result of the application of transparency to the glyphs
is shown in Figure 5.

As mentioned in Section 3, different leaf shapes and characteristics need to
be taken into account. In nature, leaves own the characteristic that even when
multiple leaves overlap, we perceive differences due to their diverse shape and
color. To support this, we apply transparency to the leaves. Figure 5 presents
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the first results. The application of transparency works well, in our experience,
for a limited amount of leaf glyphs. When too many leaves overlap, perceptional
problems can arise: Since the transparency also aggregates, from a certain extent
on, the glyphs can become occluded and not be distinguishable anymore. For
this reason, we propose two additional aggregation techniques we observed in
nature: Prototype Generation and Abstraction.

4.2 Prototype Generation

Grid-­‐based	
  Aggrega-on	
  

Prototype:	
  Median	
   Prototype:	
  Bouquet	
  

Abstrac-on	
  

Fig. 6. Grid-based aggregation. We apply a grid to the visualization and calculate
the center point of each leaf glyph, and aggregate all glyphs whose center points coincide
within the same cell. Two different aggregations can be used: Prototype Generation and
Abstraction. The first determines a representative glyph for the corresponding cell in
the form of a median glyph or a bouquet glyph. The second creates (similar to what
we observe in nature), a branch with multiple leaves based on the attributes of the
considered leaves.
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As mentioned above, transparency may not be enough when aggregating mul-
tiple glyphs. Therefore, we propose to additionally generate a prototype glyph
that aggregates the characteristics of all considered glyphs. We apply a grid and
aggregate all leaves the calculated center point of which fall into the same grid
cell; the cell dimensions are user defined. The glyph representing each cell can
be given either by 1) a single glyph, determined by statistical aggregates of the
member element dimensions, e.g., the mean or median values, or 2) a visual
aggregate combining small multiples of the member elements, by a connecting
structure (so-called bouquet glyph, inspired by combinations of different flower
types). Figure 6 shows the result of both techniques, visualization of the median
as well as the visualization in form of a bouquet. For both techniques, the trans-
parency is preserved to be able to distinguish between different attribute values
that determine the shape of a leaf glyph.

Our first proposed prototype is the representation of the median. We there-
fore create a new leaf glyph that has a simple appearance by means of its shape.
We use the median venation, margin, and shape in order to describe a set of
leaves that coincide in one cell.

Similar to a bouquet, we derive our second proposed prototype by combining
and aligning all contained leaf glyphs. First, all leaf glyphs sharing the same
shape are stacked using transparency as described in Section 4.1. Second, stacked
leaf glyphs are aligned in a radial manner according to their shape. This means,
while in the first step glyphs are stacked according to their shape, in the second
step they are radially moved and aligned according to the shape classes as pointed
out in Section 3. As a result, we get a representation similar to a bouquet.

4.3 Abstraction by Visual Aggregation

Based on the grid aggregation, we need to address issues that emerge when too
many glyphs fall into one cell. Prototype generation may fail, if too many glyphs
along too many different shapes are aggregated, and the visualized prototype
may then suffer from clutter. Therefore, we propose abstraction by visual ag-
gregation. We describe the new visual representation for an aggregated set of
glyphs. Similar to growth characteristics of leaves we observe in nature, this ag-
gregation technique represents an aggregated set of leaf glyphs as a new branch
with multiple leaves on it. All leaf glyphs are aligned side-by-side along a branch
according to Figure 6.

4.4 Hierarchical Aggregation

The previously introduced aggregation techniques are not only suitable to vi-
sualize dense areas in 2D projections. Another design alternative is to use hier-
archical arrangements, which can convey aggregate information and therefore,
help with scalability. The relevant concept is that of a dendrogram (see Figure
7). Each parent node in a dendrogram may be represented by an aggregate pro-
totype showing properties of the represented data partitions. Basic hierarchical
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visualizations can, therefore, be enriched with additional information like the
composition of data points for individual clusters.

1	
  

b	
  

a	
  

2	
  

3	
  

Fig. 7. Enhanced dendrogram: A selection of data points from the iris dataset have
been hierarchically clustered and their structure represented in a radial dendrogram.
Leaf glyphs are used to visualize the groups and individual data points along the
hierarchy. As can be seen, the visual structure of the leaf glyph is getting more and
more precise when approaching the leaf nodes illustrating the homogeneity of the lower
levels in the dendrogram.

In Figure 7 we clustered the Iris dataset from the UCI Machine learning
repository and represented the hierarchical structure in a radial dendrogram.
The class attribute is used to assign different leaf shapes to the data. Other visual
features like color, venation, and margin represent different attribute dimensions
of the dataset. In each level, the nodes have been replaced with aggregated leaf
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glyphs using alpha composition together with a position bundling. The leaf glyph
positioned in the middle of the visualization (#1 ) aggregates the dimension
values of all nodes in the diagram. It, therefore, contains many different sub-
clusters as can be seen in Figure 7. When traversing the single branches to the
lower levels (from inside out) the prototype representations of lower aggregate
levels are getting more homogeneous. For example, after the first hierarchical
split two main clusters are separated (a and b). The node labeled with b shows
only green ovate leaves thus representing a homogeneous group of data points.
The other aggregated prototype labeled with a seems to be more heterogeneous
showing two different kinds of leaf shapes (hastate leaves and maple leaves).
However, after descending to the next hierarchy level these two sub-clusters are
separated. The inner node labeled with #2 represents only maple leaves, whereas
the other node labeled with #3 contains hastate leaves. By traversing along the
different branches the inner node is getting more and more homogeneous (e.g.,
similar colored leaves). Step by step different sub-clusters are divided till the
lowest level of the hierarchy is reached.

5 Story Telling and Data Analysis

We defined an encompassing scheme to generate leaf glyph-based data visu-
alizations for large data sets. We implemented the above described designs in
an interactive system. We here exemplify results we obtained for analyzing the
forest fire data set, showcasing the applicability of our approach. Note that a for-
mal comparison against alternative glyph designs and user testing remain future
work.

To facilitate memorizing the visual mappings we explain our design choices
step by step (see Figure 9 - 12). Such a story telling approach guides the audience
through a use case scenario, which analyzes complex data structures combin-
ing multi-dimensional characteristics with time-series data. Whenever possible
metaphoric features are used to represent data dimensions. As studies suggest
such an approach will help to better understand the underlying data.

Forest fire: The forest fire data set is available in the UCI machine learning
repository [Cortez and Morais, 2007]. It contains data about burned areas of
forests in Portugal on a daily basis for one year.

Additionally, weather information is included, e.g., temperature, humidity,
rain and wind conditions at respective points in time. This data set does not
contain any categorical data which could be directly mapped to the leaf shape.
Therefore, we initially clustered the data points with the DBSCAN algorithm
[Han et al., 2011] and assign local or global outliers to different glyph shapes
(Figure 8). Our idea is to map outliers to the more jagged leaf shapes, while non-
outlier points get mapped to more regular or smooth shapes, thereby providing
a first visual assessment of the degree of outlyingness for the data. Our analysis
task is to find similarities between burned areas to be able to predict fires due
to certain weather conditions.
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Fig. 8. Shape categories: Based on the results of the clustering we assign different
leaf shape templates according to the data characteristics.
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Fig. 9. Scatterplot layout: Leaf glyphs are positioned in a scatterplot according to
their temperature and humidity. Since no aggregation technique is applied on the data
a lot of overplotting occurs.

First, we wanted to get an idea about the data distribution. We used one
data glyph for each data point and positioned the leaf glyphs in a common
scatterplot layout. The x-axis is reflecting the temperature and the y-axis the
humidity. By intention, we swapped the y-axis showing low data values at the top
and high data values at the bottom. This reflects our background knowledge that
possible indicators for forest fires are a high temperature and a low humidity.
Potentially vulnerable areas are, therefore, positioned at the top right corner of
the scatterplot. Figure 9 allows a first view of the data. There seems to be a
positive correlation between temperature and humidity. However, because of the
high number of data points, substantial information is lost due to overplotting.
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As a next step, we applied transparency to the data points and also use color
to show temporal information and orientation to encode the wind speed. The
alpha composition technique helps to detect some more leaf shapes, however,
especially in the dense area on the diagonal still a lot of overplotting exists. For
the color encoding, we decided to use a metaphoric approach to help understand
the encoding without a color legend. We try to associate the seasons (i.e., winter,
spring, summer, autumn) with the leaves. During winter and autumn, the leaves
in nature have a brownish or reddish color, whereas the color hue changes during
spring and summer getting more green. Therefore, we colored our leaf glyphs
accordingly. As can be seen in Figure 10 the data points are divided into 2
main clusters. Brown and red leaf glyphs are located above the diagonal and
the more greener leaves are positioned on the diagonal. It seems as if humidity
and temperature are both lower during autumn and winter times compared to
spring or summer.
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Fig. 10. Alpha Composition: Transparency is used to better perceive the data in
cluttered areas. Since too many data points are located in the dense regions this ag-
gregation technique does not provide the best view on the data.

Another metaphoric approach was used to represent the magnitude of wind.
The orientation of the leaf glyphs is changing according to the wind speed.
Data points with low speed are oriented to the left. With an increasing wind
speed the angle changes pointing right. The idea was to simulate a blast blowing
from left to right catching all leaves and changing their direction accordingly.
However, no additional visual pattern can be perceived. The leaf glyphs are
pointing in various directions showing no correlation between wind magnitude
and temperature, humidity, or time.
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To find similarities between burned forest areas, we map the size of the
burned regions to the size of the glyphs. While this encoding is not strictly
a metaphoric representation, it does help to associate the information with the
respective visual dimension. When inspecting Figure 11, it appears all leaf glyphs
are reduced in size, and differences according to size cannot be perceived. This is
surprising, since we would expect the size of burned forest areas to be different.
One possible explanation is that some data points with different size are located
in the cluttered area on the diagonal.
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Fig. 11. Forest fire data set: We applied alpha compositing as an aggregation tech-
nique to get a first overview of the data set. We used the following mapping to represent
the multi-dimensional data: Shape =̂ local/global outlier, x-position =̂ temperature,
and y-position =̂ humidity, color hue/saturation =̂ time (i.e., month), size =̂ area of
burned forests, orientation =̂ magnitude of wind.

To get a different perspective on the data, and to further reduce overplot-
ting, we switch to an alternative aggregation technique to better understand the
highly cluttered area (Figure 12). Due to the design of the bouquet prototype
generation, the visual attribute of orientation is lost, and therefore, we cannot
map the wind magnitude to this variable anymore. In the highly cluttered area
in the middle of the plot, several different maple leaf shapes become apparent.
These refer to outliers detected by our previous clustering algorithm. However,
more interesting are the two big maple leaf shapes located at the top right cor-
ner. They represent huge areas of burned forests during the summer time with
high temperature and low humidity. When switching to Figure 11, and keeping
in mind the concrete location of these data points, we can further extract the
wind magnitude, which seems to be medium. With this understanding of the
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data, it is plausible why the burned forest areas are large. High temperature,
medium winds, and low humidity all support the spread of forest fires. However,
since there are more smaller data points with similar data characteristics, these
features are not necessarily an indication for large forest fires. Perhaps other
factors, e.g., the area or the coverage of fire stations, which are not covered in
the data visualization discussed, may constitute additional factors.
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Fig. 12. Forest fire data set: We applied a prototype aggregation technique to reveal
insights to the highly cluttered areas in the plot. Interesting to note are the relatively
big outlier leaf shapes, which were not visible beforehand.

Of course, these findings would need to be substantiated by additional data
considerations. Further information, e.g., the amount of firemen fighting the
fire, the exact kind and amount of trees, or the time until the fire was recognized
are important side factors not covered within the used data. However, with our
new glyph approach, we were able to easily identify timely patterns, outliers, and
similar behavior of data points. Other glyph designs (i.e., star glyphs etc.) might
also be suitable to represent the data, however, our leaf glyph technique helps to
easily associate the appearance of the data point with its attribute dimensions.

6 Conclusion and Future Work

We introduced Leaf Glyph, a novel glyph design inspired by an environmental
metaphor. Due to its natural and familiar appearance, we expect users are likely
to be able to discriminate data by its visual properties. The glyph is based on
a naturally prominent shape, which should connect well to human perception,
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supposedly also under conditions of partial overlap. We systematically struc-
tured the leaf glyph design space. Specifically, we mapped data to the main
properties of the leaf glyph: Leaf morphology, leaf venation, and leaf boundary.
Furthermore, we defined visual aggregations including set-oriented and hierar-
chical aggregation, to scale the glyph display for large numbers of data records,
based on inspirations from nature. Finally, we exemplified the applicability and
effectiveness of our approach in a multivariate data analysis task, showing its
strengths in illustrative storytelling using a consistent metaphor.

This work is a first step in studying the effectiveness of nature-oriented data
visualization. While we believe leaf glyphs can form intuitive and effective data
glyphs, more thorough evaluation is needed. Specifically, we want to compare
the leaf glyph against alternative glyphs from the literature, such as Chernoff
faces, and pixel-oriented glyphs. This should also include user-studying of effec-
tiveness and efficiency of the technique. We also believe our approach is aesthet-
ically pleasing and may spark interest by a wider audience, for use, e.g., in mass
media communication. The leaf glyph by design may fit well e.g., to visualiza-
tion of environment survey data. Also, this should be evaluated by qualitative
consideration.

As a next step, we will combine our multi-dimensional leaf glyph represen-
tation with related botanical tree metaphors to extend the design space with a
hierarchical layout. A natural combination would be to pair it with the botanical
tree layouts proposed in [Kleiberg et al., 2001]. We assume the combination of
the two will support people with no computer science background more easily
in understanding complex data structures due to the environmental reference.
We further want to test this in a controlled environment against more abstract
hierarchical representations such as TreeMaps.
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