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Enhancements for Visualizing Temporal and Geospatial Datasets

Abstract

In this thesis, we will discuss enhancements for the analysis and visualization of temporal
and geospatial data. Techniques for both research domains have a long history and wide ap-
plicability, but at the same time suffer from basic issues as overplotting or hidden patterns. In
combination, space and time are even more challenging with respect to the Visual Analytics
design however enable new perspectives. The main idea of all enhancements presented in this
thesis is focusing on interesting aspects of the data and visually conveying concepts by abstrac-
tion. The importance is in our case defined by subject matter experts and consequently our
methods are parametrized in a way allowing user influence. In detail, we will improve analysis,
prediction, and visualization techniques for time series by mechanisms enhancing the visual
saliency of important points in time. Additionally, our goal is to implement inspectablemodels
and explain why our system believes something being important for the analyst. As a second
step, we investigate how to enhance geospatial visualizations avoiding and reducing overplot-
ting issues. Overplotting often occurs in geospatial visualizations because of unequal density
distributions. We discuss techniques to reduce overplotting in point-based visualizations and
present simplifyingmethods for line-based representations, as in general removing all overplot-
ting lines is not possible. Combinations of both geospatial and temporal data are analyzed in the
domain of recorded soccer data. We enhance the way domain experts analyze soccer matches
and present methods enabling the expert to focus only on the interesting parts of a match by
appropriate Visual Analytics techniques.
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Enhancements for Visualizing Temporal and Geospatial Datasets

Zusammenfassung

IndieserArbeitwerdenVerbesserungen fürdieAnalyseundVisualisierung zeitlicherund räum-
licher Daten vorgestellt. Techniken aus beiden Forschungsbereichen besitzen nicht nur eine
lange Entwicklungsgeschichte und ein breites Anwendungssprektum, sondern auch grundle-
gende Problemewie dieÜberdeckung vonDatenpunkten oder nicht sichtbare aber gleichzeitig
relevante Datenverteilungen. Die Kombination von Raum und Zeit in Form der Bewegungs-
analyse ist besonders herausfordernd, aber bietet gleichzeitig auch neue Perspektiven. Der abs-
trakte, gemeinsame Nenner der in dieser Arbeit vorgestellten Verbesserungen ist die Fokus-
sierung auf interessante Datenaspekte und die visuelle Abstraktion von den ursprünglichen
Daten. Das Interessantheitsmaß wird in unserem Fall von Domänenexperten definiert. Folg-
lich sind die vorgestellten Verfahren parametrisiert und durch den Analysten beeinflussbar. Im
Einzelnen werden für Zeitreihen sowohl Analyse-, Vorhersage- als auch Visualisierungsmetho-
den verbessert, indem wichtige Zeitpunkte berechnet und visuell hervorgehoben werden. Zu-
sätzlich zielen unsere vorgestellten Verfahren darauf ab, vomAnalysten nachvollziehbar zu sein
und zu erklären, warum unser System eine Situation für interessant hält. Als nächstes untersu-
chen wir, wie im Bereich der Visualisierung räumlicher Daten Überdeckungsprobleme gelöst
werden können.Überdeckungen treten häufig in räumlichenVisualisierungen aufgrund unglei-
cher Dichteverteilungen auf. Wir behandeln in dieser Arbeit sowohl punkt- als auch linienba-
sierte Visualisierungen räumlicher Daten, wobei die Überdeckung von Linien im Allgemeinen
nicht vollständig gelöst werden kann. Kombinationen von räumlichen und zeitlichen Daten
werden im Bereich aufgezeichneter Fußballspiele analysiert. Es werden Verbesserungen vorge-
stellt, welche die Arbeit eines Fußballanalysten erleichtern und es ihm ermöglichen, sich nur
auf relevante Aspekte des Fußballspiels zu konzentrieren.
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If you do not knowhow to ask the right question, you discover
nothing.

William Edwards Deming

1
Introduction

Askingtherightquestion is challenging or even impossiblewithout prior knowledge. The
essential question is how to acquire prior knowledge in order to ask the right questions? When
we start analyzing data we have no prior knowledge nor hypotheses, we usually start with a
method called “Explorative Analytics” investigating the data space. We develop rudimentary
visualizations and run first statistical and correlation analyses. In an iterative process, we will
derive new hypotheses and refine our visualization and analysis techniques. The focus of this
process is to enable the analyst asking the right questions.

Explorative Analytics is technically sound and works in practice, nevertheless there are chal-
lenges to tackle. Often, first visualization approaches are not perfectly suited to the data types
and distributions. As a result, the available screen space is not optimally used and important
patterns may be hidden. Implementing visual analysis techniques being robust to unknown
data distributions and supporting analysts in gathering first hypothesis and findings is crucial.
Filtering, selecting, and visually highlighting manually selected or semi-automatically derived
interesting patterns should be enabled as well. In this thesis, we will discuss Visual Analytics

1



CHAPTER 1. INTRODUCTION

techniques for movement data enhancing the visibility of patterns and dealing with overplot-
ting. Movement can be seen as a combination of two orthogonal dimensions: time and space.
Both domains taken alone are already research-wise challenging andmany techniques were de-
veloped dealing with only one of the two dimensions. We focused in our research on temporal
and geospatial data sets and furthermore on their combination in the form of movement data.

1.1 Motivation

The temporal dimension and our perception of time is very fascinating. From our human per-
spective, time is partitioned into past (our knowledge and experiences), present (our current
mood, situation, and sensory input), and future (our plans and next steps). Compared to the
infinite amount of past and future, the present we are experiencing and living in is an infinitely
small amount of time. Everything we realize and process in our neurons is actually a snapshot
of the past. This directly influences how we can cope and interact with temporal data visual-
izations. Seeing temporal correlations in still data visualizations is not preattentively possible.
In animations, for us it is only naturally to see for example correlated movement behavior. But
animations do not help humans when remembering single scenes is of importance. Still images
(photographies) and animations (videos) have their right to exist as both can convey differ-
ent kinds of information. Bridging the gap between images and animation is important but
unfortunately not trivial at all. Techniques for still images like Small Multiples and Brushing
& Linking were developed to connect both worlds to some extent. From the animation side,
helping the analyst to guide his attention to important time points and not watching the whole
time frameover andover again canbe achievedby semanticallymeaningful keyframe extraction
or adaption of the animation speed. The ultimate goal of temporal visualizations is to explain
time-dependent behavior and correlations, to support the analyst understanding the current sit-
uation, and to enable the analyst in drawing conclusions and actions for future planning. Our
research goal is to enable the analyst in assessing the important situationswith techniques going
further than pure playback techniques by semantically meaningful highlighting. An awareness
for such important situations in the past will support the domain expert in defining his next
actions.

In the geospatial domain, the very first comprehensive lesson to be learned is that “spatial
is special”. The long history of visual representations for geospatial data already gives some
hints why spatial data are special. Prehistoric signs for maps can be found in cave paintings

2



1.1. MOTIVATION

and rock carvings depicting significant landscape features as rivers or hills. As there are many
artifacts that may show a map-like representation it is not completely clear, when the first map
was painted. However, there are two prehistoric maps dating from 25,000 BC (Pavlov map)
and 11,000 BC (Mezherich map) being not very geometrically accurate. The first maps rather
revealed concepts of how the world was seen and experienced. Usually, historic maps were
restricted to the local neighborhood and drawn from a very egocentric perspective. One of
the first maps depicting topology on a global scale is the World Map of Babylon (600 BC)
representing the Earth by two concentric circles with Babylon being in the center. Increasing
trading and the foundation of trading centers increased the need for accurate, geometry-based
maps. Cartography and exploration of unknown regions had a high priority during the Euro-
pean Renaissance and research expeditions were quite common and built the basis of ourmaps
today. Obviously, the empty spots on maps have been filled today and Google Earth for ex-
ample stores 70.5 Terabytes of topological data and aerial images. Today, we are used to the
ubiquitously available bird’s eye view of the world. In computer science, we can easily employ
a two-dimensional representation of geospatial data as reading maps is a skill we learn during
childhood. The science of designing, drawing, and beautifying maps is quite advanced, as it is
impossible to imagine our everyday lives without maps. When visualizing geospatial data sets
and mapping the visual variables to the data space, we will often have to use the variable posi-
tion to encode the geospatial location. This often limits our design space and using position for
geospatial coordinates will often result in overplotting because of dense regions. Our research
aim is to convey information of complex and dense spatial data with large amounts of overplot-
ting to the analyst. We inverse the historic evolution ofmaps and present not the original spatial
data but rather conceptualized spatial patterns.

Movement analysis combines both domains the geospatial and the temporal domain. A very
famous example for the visual depiction of movement and temporal developments is the map
of Napoleon’s Russian campaign of 1812 painted by Charles Minard in 1869. This map is an ex-
traordinary case, where spatial and temporal data are conveyed comprehensibly in one single
visualization. However, the visualized geospatial pattern is a back-and-forthmovement parallel
to the x-axis simplifying the visual design. Dealingwith arbitrarymovement data typically com-
bines not only the geospatial and the temporal domain but also the challenges of both domains.
For instance, overplotting resulting from the geospatial domain will propagate to systems deal-
ing with movement data. Furthermore, watching animations of all recorded movements is not
efficient for analysis purposes. The challenge in movement data lies in the design of an analysis

3



CHAPTER 1. INTRODUCTION

system supporting effective and efficient analyses, visualizations, and interactions. However,
we can to some extent apply techniques developed for the single domains and connect them
in an semantically meaningful way. We tackle the research questions which techniques to com-
binemeaningfully in thedomainofmovement analysis for soccer games enabling subjectmatter
experts in revealing interesting patterns and findings.

Wewill focus in this thesis onenhancements for visualizations enabling the analyst infinding,
understanding, and interpreting patterns. Our goal is to reduce the effort for detecting patterns
by increasing the visual salience of interesting situations and by reducing artifacts in existing
visualization and analysis techniques.

1.2 Thesis Structure

The content of this thesis can be seen two-fold: there are sections introducing and describ-
ing novel techniques and there are sections combining existing and in this thesis proposed
techniques in application-driven Visual Analytics systems. More in detail, we will discuss in
Chapter 2 enhancements for visualizations in the temporal domain. We start with general vi-
sual boosting techniques, discuss a user-controlled peak-preserving prediction method, and
combine those approaches in a Visual Analytics system for investigating power consumption
data. In Chapter 3, we will present enhancements for geospatial visualizations. We will discuss
an overplotting-free visualization of point data and furthermore simplification and abstraction
techniques for lines. The subsequent Chapter 4 deals with Visual Analytics for soccer data and
combines temporal and geospatial aspects and techniques. Lastly, we will conclude this thesis
and give an outlook to future work in Chapter 5.

1.3 Contributions

The contributions presented in this thesis are mostly enhancing existing visualization tech-
niques and showing their applicability to real-world application scenarios. The enhancements
discussed here were usually researched with a specific application need in mind resulting from
contacts to subject matter experts. The following list gives for each section an overview of the
contributions claimed by this thesis:

• Section 2.1: Description and comparison of state-of-the-art boosting techniques to in-
crease the visual salience of data items
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• Section 2.2: Research and evaluation of an peak-preserving, interactive prediction tech-
nique

• Section 2.3: Automatic detection of anomalies and presentation of a visual analysis sys-
tem for hierarchical power consumption time series

• Section 3.1: Discussion of an overplotting-free, enhanced scatter plot based on local cor-
relation patterns

• Section3.2: Proposing simplifications andenhancements for geospatial data represented
as linear segments

• Chapter 4: Discussion of methods suitable for soccer analysis enhancing understanding
and visual salience of interesting aspects of a match

1.4 Citation rules

Most techniques described in this thesis are already published in a conference or journal. In
order to avoid any suspicion about plagiarism and self-plagiarism, I try to be as transparent as
possible concerning the origin of sections. This resulting thesis is a trade-off between a nicely
readable thesis (rewriting of all my peer-reviewed articles) and a thesis following the strictest
citation rules (quoting all sections being related to a publication). I decided to focus on the
content, contributions, and the reader, as I believe these tobemost important. For transparency
reasons, I will state at the beginning of each section fromwhich publication the content is taken
from. In this thesis, I follow the subsequent citation rules:

• For each cited own publication, I list the contributions of all authors in a footnote.

• I differentiate between three different kinds of integrating already published works into
this thesis:

– Quotedparagraphs arenotwrittenbymyself andcontain contributionsof co-authors.

– Sections “taken from”my publications are copied and differ only in slight wording
changes. These sections containmy own contributions and I did all writingmyself
or rephrased the sections during the paper writing process.
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– Sections “based on” a publication are mostly rephrased and the content has been
modified. These sections contain my own contributions, but had to be changed to
fit nicely into this thesis.
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The distinction between the past, present, and future is only
a stubbornly persistent illusion.

Albert Einstein
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The temporal dimension is probably the most influencing dimension to our lives. But time
is very special with its own characteristics, when compared to the three spatial dimensions we
are surrounded with. We cannot influence the current time point we are experiencing and are
not able to jump back-and-forth in time. The only possibilities we have are to experience the
present or to wait until the future happens. Beside this unidirectional property, time is a hi-
erarchical dimension. The temporal dimension can be for instance partitioned into spans of
seconds,minutes, hours, days, weeks,months, quarters, years, decades, and centuries. Thehier-
archical nature allows analysts to perform nearly arbitrary temporal aggregations. It is possible
for instance to compare the sales development of different quarters or predict the hourly power
consumption of a city. Often when dealing with temporal data, we make use of the temporal
hierarchy. Space-efficient pixel-based visualization techniques, for example Recursive Patterns
[KAK95], employ hierarchical layout-nesting for temporal data.

Humans try to learn from past and historic events and experiences. Important events were
passed on and conserved in drawn or written form since dawn of mankind. Nowadays, time-
dependent variables are typically measured and stored by computers. In science, the analysis
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of time-dependent data plays a very important role. Consequently, a whole research field in
the area of analyzing and visualizing temporal data has been established over the last decades.
An overview to state-of-the-art visualization and analysis techniques for time series data can
be found in the book “Visualization of Time-Oriented Data” by Aigner et al. [AMST11]. The
most common analysis tasks for temporal data are listed and described subsequently.

Explorative Analysis

When analyzing previously unknown data without any knowledge about trends or patterns,
analyses are typicallymore of explorative nature. Pure information visualization techniques are
a good startingpoint enabling analyseswithoutprior knowledge. Statisticsmayhelp togetmore
hints to data distribution and patterns. Exploration phases are strongly related to hypotheses
generation and quick hypothesis validation or falsification.

Similarity Queries

As soonas the analyst identifieda certain temporal pattern, hemaybe interested in re-occurrences
of this specific pattern. An analysis framework should query the time series for the desired pat-
tern and show all time frames with similar temporal behavior. The similarity measure can be
freely chosen and depends on the application needs. Another variant of similarity queries are
correlation queries. Correlation queries are usually applied to a set of time series. The analyst
selects both a time frame and a time series and the systemwill return all other time series being
highly correlated to the selected temporal behavior.

Classification

In case of the classification task, the prerequisite is an annotated training data set. Inmost times,
human analysts will annotate a data sample and provide the enriched set to the classification
algorithm. The classifier will assign class labels to the unlabeled input times series based on the
training set. Classifications can be performed on time series as a whole and furthermore within
time series. Whenever applying data mining algorithms within one time series, partitioning
the time series in proper time windows is crucial. Note that similarity queries can be seen as
a special case of the classification tasks with only two classes, e.g., similar and dissimilar to the
query pattern, and only one training data sample.
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Clustering

Clustering is useful to determine all sets of similar behaving time series. An example for such a
set couldbeworkinghoursdependent time series or constant time series. Clustering algorithms
are highly influenced by the similaritymeasure, which can be exchanged easily. As choosing the
proper distance function depends on the application scenario, the cluster quality will vary with
different distance functions. If clustering is not used between different time series but applied
to a single time series, the system will look for often occurring patterns within the time series.
The basic assumption is that there exists a certain amount of repetitive patterns. The clustering
techniquewill identify themand return all occurrences. These repeatingpatterns are sometimes
also called events or motifs.

Regression

Pure statistical approaches as regression are beneficial when the statisticalmodel describing the
time series is known. Consequently, regressions are often applied after explorative analyses val-
idating human hypotheses about the data distribution. The parameters of the model are fitted
to the actual time series minimizing the residuals. Regression is often used in time series anal-
ysis in combination with prediction, where prediction models are fitted as good as possible to
the observed time series.

Prediction

Prediction is very related to regression, as the first step is to fit the parameters of a prediction
model to the recorded time series. There are basically two kinds of time series, namely periodic
and non-periodic time series, influencing set of applicable prediction models. After adjusting
the parameters, the model is used to predict the next values of the time series. Based on the
residuals during the model fitting process varies the accuracy and uncertainty of the predic-
tion. Overall the statement holds true that the less expectable the time series behaves, the less
accurate the prediction will be.

Anomaly Detection

The last technique in this enumeration needs some knowledge and understanding of the time
series and furthermore regression and prediction analyses. Visualizing the detected anomalies
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will guide the analyst to important time points with unusual data values. The residuals of a re-
gression can be a hint to anomalies, though they are highly dependent on how well the model
describes the time series. Prediction methods can be used for anomaly detection when com-
puting the difference between actual and predicted values.

We will investigate in the following sections several analysis and visualization tasks in the
domain of time series. We will mostly focus on explorative analysis, prediction, and anomaly
detection. However, we will also apply the other techniques for further analysis steps. Visual
boosting of data items in pixel displays is discussed in the first section. The proposed boosting
techniques are of special interest when emphasizing data points in the visualization. In Section
2.2, wewill present a peak-preserving prediction techniquewith interaction capabilities to steer
the prediction process. The third section will combine boosting methods with the prediction
technique introduced previously in order to support anomaly-driven Visual Analytics of time
series.

2.1 Visual Boosting

This section is based on the following publication¹:

Visual Boosting in Pixel-based Visualizations

D. Oelke, H. Janetzko, S. Simon, K. Neuhaus, D. A. Keim.

Computer Graphics Forum, Vol. 30, Iss. 3, pp. 871–880, 2011. [OJS+11]

2.1.1 Preface

Time series are a very prominent example for long data sets, resulting in the need of dense
display visualizations. Pixel visualizations have been developed to support the visualization

¹DanielaOelkehad the idea topublish apaper about available boosting techniques andprovide a guidewhen
to use which technique. Svenja Simon suggested the distinction between image-driven and data-driven boost-
ing for the comparison of boosting techniques. Daniela Oelke focused on the text application scenario, Svenja
Simon described a biological usage scenario, and I discussed a geospatial use case. We all together collected the
list of possible boosting techniques and discussed in which usage context they work best. Klaus Neuhaus and
Daniel Keim helped with fruitful discussions and advices.
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of many data points on one single display [Kei00, KAK95, KSS07, LGP+07]. Pixel visualiza-
tions are not only capable of displaying time series, but have been applied in many other do-
mains, like document analysis [KO07], geography [PSKN06], or network and sensor analysis
[RG10, FN05]. We define pixel visualizations as techniques using small, colored display areas
to represent data values. In our context, these areas are allowed to be larger than only one pixel.
Typically, pixel visualizations use position and coloring as their main visual variables. Depend-
ing on the size of the pixels other visual variables, such as texture or orientation of the texture
may be applicable as well.

As pixel-based visualizations represent large amount of data, human analysts might be over-
whelmed by the amount of data shown. Guiding the analyst to potentially interesting pixels
can be essential for an effective data analysis. In this section, we will discuss several techniques
guiding the attention of the analyst to regions of interest. We call this process boosting the vi-
sual salience of data points. Basically, we differentiate two kinds of boosting approaches. The
first one, called image-driven boosting, describes cases where information already available in the
visualization should be more visually emphasized. An example would be to enhance the visi-
bility of peak values by highlighting them. The second boosting technique, called data-driven
boosting, adds additional meta information to the visualization which was not included before.
One example for this type of boosting would be highlighting all pixels fulfilling a query.

We will first describe several existing boosting techniques and include a small example fig-
ure. Afterwards, we will discuss for each technique the effectiveness and applicability. The
overall result of the discussion is materialized in an overview table. We will apply boosting in
Section 2.3 in order to show the anomalies in a time series. As the anomaly score is added to
the raw time series visualization, we will perform a data-driven boosting enhancing the visual
salience of unusual measurements.

2.1.2 Boosting Techniques

Increasing the visual saliency of data items is very strongly related to the human perception. As
perception studies showed [War08], it is in general most beneficial to use another visual chan-
nel (e.g., color, shape, motion) for boosting than for encoding data items. At the same time, the
human perception imposes several restrictions on boosting data items. Contrast effects result-
ing fromglyphs for instancemay influence the perceived color. Furthermore, different boosting
techniques should not be applied simultaneously when boosting different data aspects. How-
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ever, different techniques may be applied when boosting the same data aspect increasing the
visual salience.

The boosting techniques introduced and described here are mainly based on the work of
Ware [War08]. Ware describes boosting techniques with focus on visual variables resulting in
our comparison of boosting techniques with focus on pixel visualizations. Some techniques
mentioned below, such as hatching and distortion, require the pixels to exceed a certain size to
be effective.

Boosting with Halos

The visibility of pixels can be enhanced by increasing their size. If we do not want to change the
layout of the pixels when increasing some pixels, we will have to overplot neighboring pixels.
Ware [War08] describes this approach as adding a surrounding color. The distinction of data
itemand surroundingHalo is supportedbyusing translucent colors. Transparency comes along
with the problemofmixed colors in areaswith overlappingHalos. There are different variants of
Halos, being explained in Figure 2.1.1. Please note that Halos are always drawn in background
and will never overdraw any data pixels.

(a) Raw pixel visualization (b) Translucent Halos (c) Opaque Halos

Figure 2.1.1: Halos may be drawn semi-transparent or opaque. In both cases, the paint-
ing order is influencing the result. Reprinted from [OJS+11], © 2011 The Eurographics
Association and Blackwell Publishing Ltd.

Boosting with Colors

There are two possibilities to use coloring for boosting. We can either improve the visibility of
single, important data items or make the global trend more salient.

In the first case, we will apply contrast colors in order to highlight interesting data items.
One possibility is depicted in Figure 2.1.2 where red color highlights pixels for a grayish col-
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ormap. Additionally, the color wheel can be used in order to determine suitable contrast colors
for instance supported by AdobeKuler [ADO15] or Color SchemeDesigner [Sta15]. The per-
ceptual distance between pixel color and chosen contrast color can be calculated in the CIE
color space [CIE78]. Depending on the homogeneity of the pixel visualization the contrast
has to be lower or for heterogeneous visualizations larger. Using a gray scale colormap allows
for instance applying coloring for highlights.

Figure 2.1.2: Using color contrast to visually boost data points.

The second possibility to boost by color is to visually represent the global trend, as shown
in Figure 2.1.3. This works especially well for sparse data sets where not all pixels have been
occupied displaying data points. These empty pixels can be colored less saturated according to
the global trend, such as the average or median. Data pixels with a similar color to the trend
coloring will consequently become less visible. Coloring not used pixels should therefore only
be used representing an already visible trend.

Figure 2.1.3: Background coloring represents the global trend (average value).

Boosting with Distortion

Distortions of the screen space can be used to enhance the visibility of important data pixels
and reduce the visibility of uninteresting ones. Applying distortions affect the visual variables
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size and position and is only possible if the data points cover a large enough display area. In-
creasing and decreasing the size of pixels will guide the analyst’s attention to interesting areas.
Furthermore, distortions increase the scalability as not important areas are decreased offering
free space for more data items. A schematic example for distortion can be seen in Figure 2.1.4.

Figure 2.1.4: Distortion of single data points according to their value.

When pixels are layouted in a regular grid, distorting the visualization row- or column-based
is easily achievable. For instance, we can count for a column (or row) the number of important
pixels and determine the importance of the respective column (or row). Distorting columns is
applicable for examplewhen the columnsdenote points in time and the rows represent different
measurements. In Figure 2.1.5, we distort columns according to the average data value (higher
values result in wider columns).

Figure 2.1.5: Distortion of columns according to the aggregated importance.

As soon as the context of pixel is important (e.g., geospatial applications) another kind of
distortion should be applied. In this case, the local neighborhood of the boosted pixel should
be increased as well, resulting in decreased overplotting in boosted regions. We created in Fig-
ure 2.1.6 an example distortion applying the fisheye distortion technique [KR96].
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Figure 2.1.6: Using non-linear distortion to emphasize important pixels.

Boosting with Hatching

The visual variables texture and orientation or, more specifically in our case, hatching can only
be applied if the area of pixels is large enough. Different orientations of the hatching lines can
support the pre-attentive grouping of semantically related data points. In our example Fig-
ure 2.1.7, we use the four main directions (horizontal, vertical, and both diagonals). The dif-
ference between the horizontal and vertical lines seems to be higher than the distance between
the two diagonals. This may result from the reading direction which we are adapted to. Apply-
ing hatching would allow us to additionally encode a numerical value by the hatching density.
Though, it is not reasonable when hatching very small display areas to additionally vary the
amount of hatching.

Figure 2.1.7: Different hatching orientations can group related pixels.

Boosting with Shapes or Glyphs

Boosting points of interest on amapwith glyphs is one of themost commonways. For instance,
showing criminal incidents or ending and beginning of a route are typically marked by flags.
Humans are able to easily spot such highlights, though glyphs have a major problem. Glyphs
need a larger space than the original data points resulting in overplotting. Using different shapes
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representingpixelswill also change the area covered resulting in contrast effects andmaybe even
different colors perceived. Usingdifferent shapes require thedata points to exceed a certain size.
In Figure 2.1.8, we apply both glyphs and different shapes for boosting.

Figure 2.1.8: Adding glyphs to the visualizations allows boosting pixels. Different kind of
pixel representations can be also used to emphasize certain data points.

Boosting with Blurring

Kosara et al. [KMH+02] describe in their user study, how blurring can be used to guide the
user’s attention to important areas. Blurring of not important data points will let the user focus
on the unblurred areas. Kosara et al. show in their study that humans detect unblurred items in
a blurred context preattentively. Figure 2.1.9 shows one example, blurring unimportant pixels
and boosting important ones.

Figure 2.1.9: Unblurred pixels are preattentively in the focus.

2.1.3 Comparison of Boosting Techniques

Depending on the application scenario all the boosting techniques described above are more
or less effective. We will present in this section an overview comparison of the approximate ef-
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Figure 2.1.10: Comparison of the different boosting techniques with respect to data density
and amount of boosted pixels. We furthermore investigated the effectiveness in boosting,
the amount of changes to the layout, and the resolution dependency. A + symbol repre-
sents scenarios in which the respective technique is performing well and a ◦ shows medium
performance. All combinations of techniques and scenarios marked by - should be avoided.
Reprinted from [OJS+11], © 2011 The Eurographics Association and Blackwell Publishing
Ltd.

fectiveness. We will consider data density, as the density will affect the amount of empty space
in the pixel visualization. Furthermore, we take the two types of boosting into account, namely
data-driven and image-driven boosting, being presented in Section 2.1.1. Lastly, we also con-
sider the possibility to boost the overall trend by the proposed techniques. We assess for each
technique the effectiveness in boosting together with the resulting layout effects and the resolu-
tion dependency of the respective technique. Instead of conducting a large user study assessing
all techniques, we involved perception theories from literature. The result of our comparison
can be found in Figure 2.1.10. We see the table as a systematical collection of different boosting
techniques and as first step for an exhaustive user study.

In Figure 2.1.10, we differentiate between shapes and glyphs as in our case glyphs exceed
the pixel area, whereas shape boosting will only use the pixel’s area. Glyphs will be influenced
stronger by the data density compared to shapes.

Though animation has a very high effectiveness in terms increasing visual saliency, it may
distract anddisturb analysts if toomanydatapixels areflashing. Furthermore, animation cannot
be applied for staticmedia. Animation consequentlymust be appliedwith special care. Another
important point is that the color perceptionwill be influenced as the background of the flashing
pixels will be periodically visible.

In the next paragraphs, we will discuss and reason some results depicted in Figure 2.1.10.
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Data density

We distinguish between sparse and dense data sets because some boosting techniques require
empty space around the data pixels to be successfully applied. Halos, background coloring, and
glyphs are the techniques suffering most from dense data sets. These techniques need some
space of surrounding pixels and may partly occlude the underlying pixels. We did not distin-
guish between dense and sparse data in the case of boosting trends, because boosting coherent
pixels is by definition not dealing with sparse data.

Image- vs. data-driven boosting

Image-driven boosting will highlight and emphasize information in a visualization that is al-
ready visible. Boosting by adapting the colormapwill thereforework for image-driven boosting
but not for data-driven boosting. If we change the colormap in the case of data-driven boosting,
the original visualization will be changed too much to derive the originally encoded informa-
tion.

Thedifferencebetween image- anddata-drivenboosting in the caseof boostingby shapeshas
another background. Using shapes with a smaller size than the original data pixel will influence
the color perception. For the image-driven boosting, this is not as bad as all data pixels with
the same color are changed simultaneously. However, data-driven boosting will affect arbitrary
colors independent of the original color value.

Boosting single pixels vs. passages

Boosting passages will negatively affect techniques needing sparse areas around the boosted
pixels, as Halos, glyphs, or background coloring. Although, other boosting techniques might
be positively influenced boosting a passage of pixels. Spotting a coherent set of hatched pixels is
easier than spotting one single hatched pixel. The same is true for distortion being better visible
when a set of pixels is distorted. Glyphs are a special case, as they have to be designed carefully
to support boosting of passages.

Boosting trends

Compared to the number of boosting techniques for boosting single pixels or passages there
exists only one method for effectively boosting trends. Using background coloring or Halos
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boosting the average color can be applied only for sparse data sets. In the case of dense data
sets, only some here described techniques can be recommended.

2.1.4 Conclusion

We presented an overview to possible boosting techniques in pixel visualizations and discussed
their applicability. The perceptional issues in boosting were discussed and related to the pro-
posed methods. We described three different foci of boosting, in specific, image-driven, data-
driven and trend boosting . Depending on what to boost the recommended set of boosting
techniques varies. We present the estimated effectiveness for each technique under several con-
ditions in a comparison table.

The work on boosting techniques described in this section were the basis for our work de-
scribed in Section 2.3 dealing with anomaly-aware visual analysis of power consumption data.
In this work, we visually emphasize all data points being visualized in a pixel visualization with
unusual values by applying boosting techniques.
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2.2 Peak-Preserving Prediction

This section is based on the following publication²:

A Visual Analytics Approach for Peak-Preserving
Prediction of Large Seasonal Time Series

M. C. Hao, H. Janetzko, S. Mittelstädt, W. Hill, U. Dayal, D. A. Keim, M. Marwah, and R. K. Sharma.

Computer Graphics Forum, Vol. 30, Iss. 3, pp. 691–700, 2011. [HJM+11]

2.2.1 Preface

Deriving information by analyzing the past and extrapolating this knowledge into the future is
one important aspect of time series analysis. More specifically, detecting patterns and trends
based on historical data and inferring the future is challenging as the only thing certain about
the future is uncertainty. Training prediction models is more or less improving the educated
guesses about the expected future. Though, predicting unexpected or previously not modeled
patterns is impossible.

Prediction methods are already applied in numerous applications, e.g., weather forecasts,
warehouse logistics, or power consumption. In the area of data center administration, for exam-
ple, it is crucial to predict the power and resource consumption in order to budget the resources
without exceeding capacities.

There are several state-of-the-art prediction methods with its own characteristics and appli-
cations. Statistical methods like ARIMA andHoltWinters [Cha03] or G-TSFE [CSC+05] are
model-based. The second group of predictionmethods is smoothing, trend, or similarity-based
[BAP+05]. Depending on the applied method different patterns can be modeled. In the case
of Holt Winters seasonality can be modeled while ARIMA is used for non-seasonal data. The
selection of prediction methods highly depends on the application area and furthermore the
data analyst’s skills driving the prediction are needed.

²In this work, Walter Hill proposed to use the Douglas-Peucker simplification for smoothing. I had the
idea to use the recursion level of the smoothing algorithm as a weight for the prediction. Sebastian Mittelstädt
implemented the new smoothing and prediction into an earlier prototype implemented by myself developed
for applying Holt-Winters. Multi-Scaling and Brushing & Linking were also implemented by me. Ming Hao,
Umeshwar Dayal, Daniel Keim, Manish Marwah, and Ratnesh Sharma helped with fruitful discussions and
advices.
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The work described in this section is extending our ideas presented in an IEEE VAST09
poster paper [HJS+09]. Wepropose anovel analysis andpredictionmethodespecially focusing
on peaks of the historical input data. We apply our prediction technique in the application do-
main of data centers, where peaks in resource consumptionmay be critical, and finally evaluate
the quality of our predictions.

Our contributions

Wedeveloped peak-preserving smoothing combinedwith peak-preserving prediction allowing
the prediction of seasonal data. Our visual interface allows the user to interactively control
the process and integrate his expert knowledge. Together with visual feedback of prediction
accuracy and certainty bands the user gets immediate feedback and can adjust the prediction to
his needs. Peak-preserving smoothing techniques allow removing noise while retaining peaks.
Last but not least, the data analyst canweight the influence of peaks versus the influence of time
(e.g., recent data have higher influence to the prediction then older data points).

Wediscuss the relatedwork inSection2.2.2, followedbyadescriptionofour approach inSec-
tion 2.2.3. Section 2.2.4 introduces the peak-preserving smoothing and prediction methods in
detail. Thenext Section 2.2.5 puts our approach in the context ofVisual Analytics anddescribes
the possibilities provided by our visual interface. In Section 2.2.6, we apply the presentedmeth-
ods to real-world datasets and evaluate afterwards our prediction results in Section 2.2.7. Lastly,
we discuss advantages and disadvantages as part of the conclusions in Section 2.2.8.

2.2.2 Related Work

Predicting time series is a very relevant and actively researched areawithmanydevelopedmeth-
ods. We differentiate these methods into two categories, namely pure prediction algorithms
and methods combined with visualizations, and describe them below in more detail.

Prediction Algorithms

We mentioned above already two very prominent prediction methods, namely ARIMA and
Holt Winters. ARIMA (Auto Regressive Integrated Moving Average) models linear stochas-
tic processes by two terms, the regression and the moving average. Therefore, ARIMA per se
can not model periodic or seasonal patterns. An extension to ARIMA was developed by Sadek
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[SKC03] which captures both the short- and long-range features by predicting values at differ-
ent time scales. Furthermore, the extended ARIMA reduces the computational complexity by
a simplified prediction scheme. This extension is especially adapted for self-similar time series.

Seasonal or anyperiodic time seriesdata are supportedbyHolt [Hol04] andWinters [Win60].
The prediction is performed by exponential smoothing and therefore capable of modeling sea-
sonality. An extension of the Holt Winters technique was proposed by Taylor in [Tay07]. The
aim of this work was to predict supermarket sales on a daily basis by applying exponentially
weighted quantile regression. Taylor furthermore integrated the cumulative distribution func-
tion resulting in improved prediction results. We applied Holt Winters as one state-of-the-art
prediction techniques and compared our prediction results in Section 2.2.7.

Prediction visualization techniques

Visualizing and inspecting the prediction results is the obvious next step after predicting val-
ues. In the application domain of predicting the runtime behavior of multi-threaded programs
Broberg [BLG99] applied Kalman Filters [Kal60]. The results of this prediction process were
visualized by line charts. Multiple visualization techniques were applied by Ichikawa [ITFY02]
in order to represent stock price predictions. Ichikawa used line charts and color-encoded time
series visualizing several time series simultaneously. Statistical analysis tools like SAS integrate
prediction methods as well. The SAS Forecasting System [SAS13] even supports automatic
model fitting. Croker [Cro07] showed how to visually present the different confidence bands
in a line chart representation using SAS. We extended these ideas and enabled the analyst to
assess the prediction quality by using the old data points as an evaluation criteria as described
in Section 2.2.5.

2.2.3 Our approach

Comparing the different existing techniques leads to the conclusion that they are sound and
advanced methods but lacking one important property. For our use case it is crucial to detect
and integrate peaks in the time series. These peaks might represent exceeding of the provided
power or, even more dangerous, exceeding of cooling capabilities. Applying prediction tech-
niques performing regression will smooth away the peaks. Furthermore, the distance in time
has to be regarded as well. The more recent measurements should have a higher impact to the
prediction as the older ones.
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Nevertheless, there are usage scenarios where peak-preservation is not necessary or benefi-
cial at all. In sales applications or signal processing peaks are not important or even considered
as noise. In these cases smoothing techniques reducing noise and peaks are applied during the
prediction process.

We propose a peak-preserving prediction method including a temporal weighting of values
by giving recent measurements more importance than old measurements. In order to remove
noise without any smoothing of peaks, we integrate a peak-preserving smoothing algorithm
as well. The analyst can influence the prediction process by a weighting slider controlling the
peak-preservation versus time distance.

The schematic process of our visual peak-preserving prediction is depicted in (Figure 2.2.1).
We propose an iterative two-step approach with user control possible in every stage.

1

Peak-Preserving Smoothing

Determine peakiness of 
every measurement

Smooth all values below 
given peakiness threshold

2

Predi�ion according to 
weighting slider

Brushing & 
Linking

Peak-Preserving Predi�ion

Visual 
Accuracy 
Indicator

Figure 2.2.1: Visual Peak-Preserving Prediction Process.

1. Applying user-controlled peak-preserving smoothing in order to preprocess the time se-
ries removing noise. All values that are not sufficiently extreme, e.g., local minimal or
maximal, are smoothed.

2. Compute the peak-preserving prediction using the user-provided weighting scheme be-
tween peak-consideration and time distance. The analyst can freely choose any weight
depending on the application. The system provides two visual accuracy and certainty
indicators helping the analyst judging the prediction quality. For deeper insights, we
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provide Brushing & Linking helping the user in understanding how the prediction was
computed.

2.2.4 Peak-Preserving Smoothing and Prediction

The following paragraphs describe our techniques in more detail. We will introduce the peak-
preserving smoothing and the peak-preserving prediction technique. Both approaches are au-
tomated techniques with parameters being controllable by the analyst.

Peak-preserving smoothing

When we started our experiments with power consumption and workload in data centers, we
noticed that existing prediction methods did not lead to results being good enough. The first
reasonwe foundwas that the raw input data is typically very noisy badly influencing the predic-
tion results. Applying smoothingmethods reduces this effect but at the same timemay remove
potentially valuable information. Furthermore, smoothing should not affect the overall shape,
local extremes, and global trends of the time series.

The first results of our experiments are published in a VAST poster 2009 [HJS+09]. We use
weighted moving averages for smoothing by applying a Gaussian distribution. Afterwards, we
apply time distance based weights for predicting future values. The problem hereby is that the
Gaussian smoothing is basically a low-pass filter removing peaks, as they are they have high
values in the frequency domain. Following this approach we loose the peaks being important
for our usage scenario.

Improving our approachwe decided that during the smoothing processwe have to somehow
conserve peaks, while still removing noise. We consequently adapt the well-known Douglas-
Peucker line simplification algorithm [DP73] for our purpose. Douglas-Peucker reduces a line
or graph to its most important data points. We exemplify the application of Douglas-Peucker
to a time series in Figure 2.2.2. Compared to the original algorithm of 1973, we simplify and
speed up the computation by exploiting the fact that time series are simple graphs. We there-
fore compute distances along the vertical axis and do not use the orthogonal distance measure
proposed byDouglas-Peucker. The final results are in the case of time series the same but com-
puted significantly faster.

The first step of the Douglas-Peucker algorithm (Figure 2.2.2 a) is to compute the blue line
connecting the first and the very last data point. The data point with the highest distance to the

25



CHAPTER 2. ENHANCING VISUALIZATIONS FOR TEMPORALDATA

blue connecting line is determined. The detected point has to be outside the threshold band
surrounding the connecting line in order to be considered as a peak point. In the next step, the
algorithm partitions the time series into two parts, with both containing the last found peak
point as first or last measurement respectively. Recursively, the Douglas-Peucker algorithm
looks for peak point in the subdivisions (Figures 2.2.2 b and 2.2.2 c). The recursion terminates
when the algorithmfinds nomore peaks (Figures 2.2.2 c and 2.2.2 d). As a last step, all detected
peak points are sequentially connected. The result is shown in Figure 2.2.2 e.

The threshold settings have a high impact on the quality of the simplification results. Unfor-
tunately, the threshold is application dependent and cannot be fixed in advance. We therefore
support the analyst picking a good threshold value by immediate visual feedback. The user
can set the threshold, which influences basically the amount of simplification, via the peak-
preserving smoothing slider.

In Figure 2.2.3, we compare the original input data (a) with the effects of applying moving
average smoothing and peak-preserving smoothing. Both smoothing techniques remove noise
very well, but the highlighted peak is missing in the case of the moving average smoothing (b).
The peak-preservation (c) influences positively the prediction results and still removes noise.

Peak-preserving prediction

Developing the peak-preserving prediction technique, we had two main purposes in mind our
prediction should be capable of:

• Predict the global trend and show possible future developments.
• Focus the prediction on peak points reaching critical numerical values.

When predicting time series data it is important to take more than only peaks into account,
because peaks do not reflect the development over time. We therefore integrate also the tempo-
ral history of measurements, e.g., how recently certain measurements were observed. It is not
very likely that very old data points influence current ones, assuming no knowledge about ex-
ternal influences. Including peaks into the prediction and simultaneously taking the temporal
dimension into account can be contradictory. It is possible that peaks occurred in the very past
and still have to be regarded during prediction. We let the analyst decide how to weight these
different prediction foci by an interactive weighting slider. Depending on the slider position
either the time-distance or the peak-preservation is weighted higher.
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Figure 2.2.2: Schematic explanation of Douglas-Peucker algorithm.
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b) Using moving weighted average � peak points are lost in prediction

c) Using peak preserving smoothing � peak is preserved and noise removed

a) Original data

Figure 2.2.3: Comparison of Peak-Preserving Smoothing to Weighted Moving Average
Smoothing.
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Algorithm 2.2.1: Time series prediction based on daily patterns implementing peak-
preservation and development of the time series over time.
Input : double[ ] pastValues ; // observed time series of the past
Date[ ] datesOfPastValues ; // dates corresponding to time series
double[ ] importancePeakWeights ; // peakiness for each value
Output: double[ ] predictedValues ; // prediction for one day
// create temporary storage:
double predictedValues[ ] = new double[60 * 24];
int counterForEachMinuteOfTheDay[ ] = new int[60 * 24];
// prediction:
double c = calculateConstant(numberOfDays);
for i← 0 to pastValues.length - 1 do

Date d = dateOfPastValues[i];
int minuteOfTheDay = d.getHours() * 60 + d.getMinutes();
counterForEachMinuteOfTheDay[minuteOfTheDay]++;
/* Add the current value multiplied with a computed weight

to the right slot, as we are calculating a weighted
average */

predictedValues[minuteOfTheDay] += pastValues[minuteOfTheDay] *
combinedWeights(counterForEachMinuteOfTheDay[minuteOfTheDay] * c,
importancePeakWeights[i], userSetValue);

end
return predictedValues;

Our prediction algorithm is shown in Algorithm 2.2.1. The basic idea of the peak-preserving
prediction is thepredictedvalues areweighted averagesof thehistorical sums. Giving recent val-
ues and/or peaks higher weights is the crucial point for a meaningful prediction. The depicted
algorithm is tailored for detecting daily patterns, though it is possible to adapt the algorithm
for other periodicities. Different periodicities will be reflected by computing the aggregation
slots accordingly. We used for our application a daily grouping because themeasured values are
mostly influenced by daily patterns. Theprediction of the time point 0:00, for example, consists
of a weighted average of all measurements made on each day at 0:00. To all of these values, we
assign weights according to their recentness and peakiness and finally aggregate them.

In detail, we initialize first some temporary arrays for storing intermediate results and com-
pute a constant c, which is described in detail below. The next step is to iterate over all historic
values and compute the minute of the day of each measurement. The historic values are added
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to their corresponding slot of the temporary storage multiplied by a specific weight explained
below. On an very abstract level, the prediction for one minute of the day can be described as
follows, whereM corresponds to all measurements of the given time interval:

pred(minOfDay) =
∑
m∈M

weightForMeasurement · valueOfMeasurement (2.1)

As mentioned before, we have to take the development over time into account and should
reflect this by a higher influence of more recent values. We achieve this by computing weights
linearly decreasing over time, with an additional assertion: the sum of all weights should be
equal to one as these weights are used for an average. The weights prediction one time interval
should look like 1 · c, 2 · c, 3 · c, . . .with c being constant, normalizing the weights of the result.
The equations below are used to calculate the weights fulfilling our requirements, with n being
the number of weights needed:

n∑
i=1

i · c = c ·
n∑
i=1

i = c · n · (n+ 1)
2

= 1 (2.2)

⇒ c =
2

n · (n+ 1)
(2.3)

In order to retain and predict peaks, we compute weights reflecting the peakiness. We use
a side outcome of the smoothing algorithm described above determining the peakiness. The
peak-preserving Douglas-Peucker smoothing algorithm recursively subdivides the data space.
We use the recursion depth of a data point used for splitting in order to approximately deter-
mine the peakiness. We use the inverted and normalized recursion levels as weights for our
prediction.

We allow the analyst to balance the prediction between time and peak preservation. The
two weights computed above are balanced by a weighted average controlled by the user. The
method combinedWeights used in algorithm 2.2.1 calculates a weighted average of two values
with a parameter userSetValue (abbreviated to α):

combinedWeights(v1, v2, α) = v1 · α + v2 · (1− α) (2.4)
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2.2.5 Visual Analytics Prediction Interface

Our implemented visual interface presenting and controlling the prediction is depicted in Fig-
ure 2.2.5. We integrated several interaction techniques and visualizations in order to foster the
prediction process. The following describes the applied techniques in more detail.

Figure 2.2.4: Screen dump of the prediction interface with observed and predicted values for
the power consumption of a server infrastructure. The differences of predicted and real values
are shown by the visual color accuracy indicator. The certainty band depicts the certainty
of the prediction. Reprinted from [HJM+11], © 2011 The Eurographics Association and
Blackwell Publishing Ltd.

Accuracy color indicators

Assessing the prediction results it is important to judge the prediction based on the available
data. We implemented the visual accuracy color indicator shown in Figure 2.2.4 (2). This visu-
alization represents the prediction accuracy of the predictor for the historic values. The differ-
ences between actual and predicted values are normalized using the standard deviation. Fully
saturated colors indicate larger differences and light colors indicate smaller differences. Thehue
indicates whether the algorithm predicted too high (blue) or too low (red) values compared to
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the actual ones. Figure 2.2.4 (2) depicts the visual accuracy indicator showing at first under
predictions (red) and then over predictions (blue).

Multi-Scaling

In order to investigate the predicted data more thoroughly, we integrated multi-scaling of past
and predicted data. The user can interactively split the space between historic and predicted
values as shown inFigure2.2.4 (3). Assigning thepredicteddatamore screen space interactively
analysts can adjust the visualization to their needs. Multi-scaling is often used by users as the
predicted time frame (one day)might be significantly shorter than the history time frame (e.g.,
one month).

Certainty Band and Significant Data Points

The predicted values come along with uncertainty based on the historic data. The more regu-
lar the historic data are, the more certain we are about the predicted values. We visualize the
prediction uncertainty by a certainty band as shown in Figure 2.2.4 (4). The band shows the
range in which the values can be expected. A narrow band represents points in time where the
prediction algorithm is quite certain. We use the standard deviation of the past data to calculate
the confidence bands enclosing the predicted values.

We applied shading to the certainty band indicating the significance of the associated data
points. High peaks in the past will result in darker areas boosting the visual salience of these
important points in time. Lighter areas represent stable or gradually changing curveswith peaks
being unlikely. Using color saturation guides the user’s awareness to the interesting time points
with peaks.

Brushing & Linking between Past and Future

Compared to pure model-based prediction techniques, our prediction method is not a black
box and the prediction can be visually explained to the user. In order to understand and reason
the predicted values, we highlight for a selected predicted value all corresponding past values
by Brushing & Linking shown in Figure 2.2.5. At first, the user selects a predicted value for
further investigation. The selected value will be highlighted by an unfilled rectangle and all
corresponding values in the past will bemarked by a filled rectangle. Thefilling color represents
the respective influence of the time point to the prediction, with dark colors being values with
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high influence. It is also possible to select a historic value and investigate the corresponding
prediction. Consequently, the analyst is able to investigate the prediction of each point in time
and to actually see, why a certain prediction has been made.

Figure 2.2.5: Brushing & Linking of predicted data to the corresponding historic time
slots. Different shades of gray indicate the degree of influence to the prediction (dark:
high influence; light: low influence). Reprinted from [HJM+11], © 2011 The Eurographics
Association and Blackwell Publishing Ltd.

Past Data Scrolling

Time series data for our application domain is typically too large to entirely fit on one screen
when visualized by line charts. We integrated a scrolling mechanism dealing with the limited
space available showing only a reasonable part of the whole time series. We show only a certain
number of days as shown in Figure 2.2.4 (5). The analyst can control the number of days visible
and scroll through the historic data.

2.2.6 Applications

We apply our peak-preserving prediction technique to two data center usage datasets. We will
first investigate the daily power consumption patterns resulting from servers and chillers. Sec-
ondly, we will examine the usage of servers and predict the application load. These two exam-
ples are inherently application scenarios with daily usage patterns being reflected in the imple-
mentation described above.
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Power Consumption in Data Centers

Data center administrators are interested in the next day’s resource consumption based on the
previous usage data [PMSR09, SSB+08]. We apply our peak-preserving technique and predict
the consumption pattern of the next day. We investigate the time series of a large data center
with 2000 racks covering 6,500 squaremetersmonitored in themonths July toDecember 2008.

The power consumption of data centers is periodical with peaks during working hours as
shown in Figure 2.2.4. We focused on a shift in the consumption patterns in the historic data.
Thepower consumptiondropped significantly fromFriday, September5th, toSaturday, Septem-
ber 6th and increases slowly afterwards. The power consumption is still lower on Monday,
September 8th, compared to the end of the previous week. Our prediction results reflect this
drop, as the visual accuracy indicator shows over predictions for the latter three days, though
getting more accurate over time (lighter colors). Regarding the predicted day, the prediction
seems to be reasonable based on the historic data. Using the prediction and configuring lowuti-
lizedchillers accordingly administrators are able to save a reasonable amountof energy [PMSR09,
BPS06].

Server Utilization

The amount of servers dedicated to different applications (e.g., databases, ERP, or backups) has
tomatch the respective utilization. Too few serverswill result in long response times or evende-
nials of service. Though, assigning toomany servers to an applicationwill boost both the energy
and hardware costs unnecessarily. The basic power consumption of an idle server is significant
– approximately half of themaximal power usage. Consequently, a server is utilizing power best
when it is under full load and idle servers should be turned off. Administrators should analyze
the server utilization patterns and relocate and consolidate applications of almost idling servers.

In Figure 2.2.6, we investigate the SAP application resource consumption of three days and
predict the usage for the following day. The overall trend of the resource consumption is in-
creasing, which is also reflected by the visual accuracy indicator. The narrow certainty band
of the prediction together with the relatively low consumption from 22 pm to 5 am indicates
that less computing power is needed during this time. Obviously, there are every morning at 6
am some reports generated and in the evening data integration and backup tasks (circle 2) are
performed. As these tasks and corresponding peaks are reflected in the prediction, the admin-
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Figure 2.2.6: Peak-preserving prediction of the usage patterns of SAP servers. There are
three high peaks and a medium basic load during working hours visible. Reprinted from
[HJM+11], © 2011 The Eurographics Association and Blackwell Publishing Ltd.

istrator can reassign servers based on the expected work load.

2.2.7 Evaluation

The design goal of the proposed algorithm was to develop a comprehensible, peak-preserving
prediction incorporating developments over time. Using weighted averages, we achieved a
transparent and peak-preserving prediction. Though, the prediction quality has to be assessed
and evaluated. Wewill first highlight the peak-preservation by comparing our prediction results
to the state-of-the-art Holt Winters technique. The second part of our evaluation will focus on
the numerical accuracy of the predicted values.

Comparison to Holt Winters

We compare our average-based prediction technique to Holt Winters being a widely used pre-
diction technique for seasonal data. In order to show the peak-preservation by our technique,
we set our prediction algorithm to focus only on peaks and disregard time. In Figure 2.2.7, we
contrast the existing prediction method Holt Winters with our proposed approach. Our tech-

35



CHAPTER 2. ENHANCING VISUALIZATIONS FOR TEMPORALDATA

nique performs better in terms of peak preservation as highlighted by red rectangles. Sudden
changes from low to high energy consumption occur typically when administrators re-balance
the load of cooling units. These sudden changes in power consumptions have to be considered
when scheduling other power demanding tasks.

a) Holt Winters prediction

b) Peak-Preserving prediction

Figure 2.2.7: Comparison of Holt Winters technique (a) with our peak-preserving predic-
tion (b). The peaks highlighted in red are better maintained by our prediction technique.
Reprinted from [HJM+11], © 2011 The Eurographics Association and Blackwell Publishing
Ltd.

Accuracy evaluation

Weassess the accuracyof our prediction techniquebasedon the server utilization fromOctober
6th to 26th (see more description in Section 2.2.6). As it is very unlikely to perfectly predict
a numerical value with some decimal places, we decided to assess how often the real value is
inside our predicted certainty band. Our evaluation computed a daily accuracy in the range of
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70% to 80% with an average accuracy of 75%. In Figure 2.2.8, we predicted two different days
and computed the respective accuracy. The left figure shows the predicted values forThursday,
October 14th, with an accuracy of approximately 76%. The right figure depicts Friday, October
22nd, with a prediction accuracy of 74%. Inspecting the figures visually, it becomes obvious
that the prediction method does not predict high-frequency changes of values as we applied
smoothing beforehand. There is a natural trade-off between smoothing for prediction purposes
and the accuracy assessment: the more smoothing is applied, the less possible it is to predict
high frequencies which is automatically decreasing the accuracy.

a) ursday 10/14

b) Friday 10/15

Noon

Noon

Peak

Peak

Figure 2.2.8: Visual prediction accuracy comparison between actual and predicted data
(blue: predicted values / red: actual values) for two different days. Reprinted from
[HJM+11], © 2011 The Eurographics Association and Blackwell Publishing Ltd.
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2.2.8 Conclusion

In this section, wedescribed aVisual Analytics approach predicting time series data. Thedesign
goal of our prediction technique was to preserve peaks and periodic patterns. We decided to
use weighted averages for a transparent and comprehensible prediction. The analyst is able to
adapt the influence of peaks and historic developments of measurements tailoring the predic-
tion to his needs. Interactions and visual feedbacks allow steering the prediction process and
the estimated quality of the prediction is presented to the analyst as well. We successfully de-
ployed and evaluated our technique in data centers and IT-services centers. The accuracy of the
prediction is sufficient and reflects typical usage peaks.

Further work has to be done in order to include external event influences, such as excep-
tions, holidays, and weather conditions. The prediction algorithm should include conditional
computations triggered by specific events or external situations. Furthermore, it would be ben-
eficial if the periodicity of the input data is automatically derived and reflected in the prediction
algorithm.

2.3 Anomaly-Driven Visual Analytics of Time Series Data

This section is taken with slight modifications from the following publication³:

Anomaly Detection for Visual Analytics of
Power Consumption Data

H. Janetzko, F. Stoffel, S. Mittelstädt, and D. A. Keim.

Computer & Graphics, Elsevier, 38(0):27-37, 2014. [JSMK14]

2.3.1 Preface

Commercial buildings consume a significant amount of electricity. According to the Energy
Information Administration’s 2010 statistics [Uni10], the United States alone consumed an es-

³In this work, Florian Stoffel implemented line charts, a flexible way to compute the numerical values
for Treemap nodes, and integrated anomaly visualization methods. Sebastian Mittelstädt implemented Spi-
ral Graphs and developed the color boosting technique. I did all the research and implementation work not
mentioned above, basically implementing the prototype, computing anomaly scores, and included blurring for
anomalies. All sections that were not written by myself are quoted.
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timated 1.3 trillion kW. It is about 37% of the total electricity generated. How power is used
in a commercial building has a large effect on energy efficiency strategies. The most important
energy usage is lighting. Then heating and cooling are next in importance [US 08]. Current ap-
proaches for reducing the power consumption for example integrate motion detection sensors
for each lamp switching them on and off.

There is a growing interest in understanding how energy is spent in the commercial build-
ings. Furthermore, building administrators want to know how to reduce the failure rate and
detect anomalies. In addition, they want to know how to visualize large volumes of energy con-
sumption data collected by power meters (sensors) in a building to find patterns, trends, and
anomalies. In the end, our goal is to find how to automatically discover the anomaly, like un-
usual power consumption measurements highly differing from old observed patterns, and to
reduce the energy cost of a building. For this task, anomalies are of special interest, because
they can be caused either by faulty equipment or potentially misconfigured devices consuming
significantly more or less energy than required for proper operation.

Time series Anomaly
detection

Pixel-based time series &
anomaly visualization

Figure 2.3.1: The input set of hierarchical time series is processed by anomaly detection
methods. The resulting anomaly values are visualized together with the time series values
by pixel-based techniques. The visualization combines the raw time series with boosting
techniques like highlighting and blurring for the anomaly scores. Reprinted from [JSMK14],
© 2014 Elsevier Ltd.

In this work, we present an analytical and visual approach to support the building admin-
istrators in detecting anomalies and examining energy consumption data as shown in Figure
2.3.1. Our input data consists of a tree of time series reflecting the hierarchical nature of the
power meters, e.g., one meter for the whole building and one for each power outlet. In the an-
alytical part, we perform an automatic anomaly detection based on a time-dependent energy
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consumption model. We have explored two different anomaly discovery methods. In the be-
ginning, we use clustering-based anomaly detection. Then, we estimate the error rate using the
peak-preserving prediction-technique described in the previous section. Both methods have
their benefits and drawbacks and are complementing each other.

The last step in our pipeline is the visualization being capable of effectively displaying large
amounts of data and, at the same time, allowing quick recognition of anomalous regions in the
data. We integrated the three most common time series visualization techniques (line charts,
spiral visualizations, and Recursive Patterns) presented in Aigner et al.’s book about time series
[AMST11]. Besides giving an appropriate overview of the data, the visualization is also able to
support the administrator in a more detailed examination of the data, for example areas with
unusual power consumptions by interaction facilities. In addition, the visualization is capable
of showing the hierarchical nature of the data set. This is necessary, because commonly the
energy consumption of different floors or buildings is independently monitored resulting in an
inherent hierarchy in the recorded data.

Our methods rely purely on the recorded power consumption data, which we did not clean
in any way as the data was in very good shape. There are many external influences to the power
consumption, like the environmental conditions or the number of people working in an of-
fice building. The large number and high complexity of external factors prohibit the fully auto-
matic diagnosis of anomalies. Hence, a human subjectmatter expert is needed to validate found
anomalies and investigate the interesting ones. Even though it is possible to think of extensions
for an automatic analysis of anomalies like incorporating external factors as weather data and
holidays.

It is important to note that our methods are applicable not only to power consumption time
series data sets, although they have been developed with a particular application in mind. This
is caused by the general nature of time series data and the generality of both, the analytical and
the visual methods presented in this paper. The most application-dependent part of this work
is the anomaly detection being designed for daily patterns.

2.3.2 Related Work

Reading energy consumption statistics shows that commercial buildings have a high energy us-
age, which motivates many research projects developed to improve power efficiency. Within
the context of our work twomain categories can be distinguished: analysis of power consump-
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tion data (detecting whether the energy consumption performs normally or abnormally over
different locations and time) and visual analysis (visualizing similarities and anomalies with
appropriate interaction techniques).

Analysis of Power Consumption Data

Applying data mining techniques for power consumption data is a known approach for iden-
tifying abnormal usage behavior. Agarwal et al. [AWG09] examined 6 months of data from
the UCSD campus, including aggregate power consumption of four buildings. Agarwal et al.
focus more on the setup of power meters and provide only simple visualization methods like
line charts. Catterson et al. [CMM10] used an approach to monitor old power transformers.
Their goal is to proactively search for abnormal behavior that may indicate the transformer is
about to fail. Similarly, McArthur et al. [MBMM05] searched for anomalies to detect prob-
lems with power generation equipment. Jakkula and Cook [JC10] compared several outlier
detection methods to find which is better at identifying abnormal power consumption. Seem
[See07] used outlier detection to determine if the energy consumption for a day is significantly
different from previous days’ energy consumption. This is a known approach for identifying
abnormal system behavior.

The work conducted at Lawrence Berkeley National Laboratory [MPKP11] focuses on de-
mand response. Mathieu et al. used a time-of-week and piecewise-linear modeling approach
to analyze commercial and industrial electric load data. To our knowledge, the unsupervised
anomaly detection algorithms fromprediction and clusteringdescribed in this paper differ from
the Mathieu et al. method in two aspects: finer granularity and weighted by time distance (re-
cent data weights more than old data).

The reviewof several predictionmethods for powerdata performedbyZhao et al. in [ZM12]
investigates the effectivity and efficiency. Neural networks and Support Vector Machines were
performing better than statistical approaches. We though decided to use the prediction tech-
nique developed in [HJM+11] as peak-preservation is one of the main strengths of this tech-
nique.

Visual Analysis

Visualization of building energy consumption has not yet been a major focus of research thus
far. Most of the energy consumption visualizations have been time series line charts, scatter
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plots, andmaps [IBM13, UCE07, GPGP09]. Recently, Many Eyes [IBM13] allows analysts to
choose a visualization type for analyzing public building electricity consumption. The Google
PowerMeter [Goo13] recently provides a free energymonitoring tool for people to view home
energy usage.

In addition to these existing tools, improving visualization techniques for time series data is
ongoing research work. In SAVE [SLH+11], Shi et al. presented a sensor anomaly visualiza-
tion engine that guides the user to diagnose sensor network failures and faults using multiple
coordinated views. In this paper, wemapmultiple sensors’ time series in a single view to enable
users to visually analyze energy usage and identify anomalies. Lin et al. describe in [LKL+04]
a visual interface querying and data mining large time series. The focus of Lin’s work is the
interactive mining of realtime time series to support analysts. In SAGA Dashboard [BRR11],
Buevich et al. provided a visual interface for interaction with the sensor network. They require
the user to use a device that tracks and visualizes home energy usages. We extend the home
energy consumption visual analysis to large commercial buildings with dozens of sensors. We
therefore restricted ourself to space-efficient visualizations like pixel-based Recursive Patterns.
Furthermore, no pre-defined devices and sensor types in our methods are required. Another
related work being capable of visualizing hierarchical time series data are the TimeEdgeTrees
introduced by Burch and Weiskopf in [BW11]. The technique shows the time series as one-
dimensional, color-coded timelines instead of drawing the graph edges. The hierarchy is pre-
served better by this approach while the space-efficiency is worse compared to the pixel-based
approaches we use. We chose the pixel-based techniques as periodic patterns are easier per-
ceivable. Additional discussions on related work concerning anomalies detection and boosting
methods can be found in sections 2.3.3 and 2.3.4.

Our contribution

To leverage the prior work and to support analysts in understanding power consumption data,
we combine automated anomaly detection algorithms with interactive time series visualiza-
tions. The resulting anomaly score is used to highlight unusual power usages in the time series
visualizations. Our contributions in the visual analysis process of power consumption data are:

1. In the anomaly detection process, we

• detect power consumption anomalies based on either a clustering-based approach
or a time-weighted prediction.
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• compare the prediction-based method with a similarity based anomaly computa-
tion.

2. In the time series and anomaly visualization process, we:

• map the hierarchical time series onto a Treemap and embed in each Treemap cell
the corresponding meter’s time series visualization.

• provide different time series visualization techniques dependent on the analysis
purpose.

• visualize the anomaly score by visual boostingof the raw time series representation.

Furthermore, we provide an advanced visual interface enabling the user to visually analyze
the power usage. Histograms for viewing the frequency and power usages of important me-
ters; visual queries for analyzing correlation and similarity; and various options on visualization
types, Treemap layout, colormappings, and anomaly score computations enable the analysts to
tailor the visualization to their needs.

2.3.3 Anomalies Detection

Detecting and exploring of anomalies in time series is a very important aspect, especially when
dealing with power consumption data of physical infrastructure. Saving cost and energy are
the main motivations for observing and analyzing consumption data. But when dealing with
infrastructure that may be even system-critical, the number of failures must be reduced to an
absolute minimum. Early signs of failure should be visible in abnormal power usage patterns.
In ourmain usage scenario abnormal behavior is defined as a difference from the expected daily
pattern. Both methods described below assume a daily power usage pattern which, of course,
can be different for each day of the week. Both techniques are not limited to daily patterns, but
can be easily adapted to the periodicity of the underlying data set. The first described method
is based on a weighted prediction, where recent measurements have a higher impact than older
measurements. The latter approach is transforming the observed daily pattern in the frequency
domain and looking for dissimilarity in a transformed space.

Prediction-based Anomaly Detection

The basis for prediction is an observed pattern and the assumption that it is reoccurring (with
slight modifications) in the future. If this assumption does not hold true, the predicted values
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may be far off the measured values. Considering this fact the other way round, observed values
far distant from the expected ones tell us the model used does not explain the observed values.
There might be two reasons, the first one is that the model quality is not good enough and the
secondone is that the values are really differing from the expected and explainable behavior. We
assume our data follows a regular underlying pattern and therefore also assume that the model
describes the usual behavior well. Detecting anomalies using prediction follows this idea and
is related to the statistical measure of residuals.

The predictionmethod used is crucial for the reliability and expressiveness of the computed
anomaly scores. As already stated above we assumed daily patterns and included developments
over time into the prediction process. We decided to use a prediction method developed and
introduced in the previous Section 2.2. Basically, this method predicts a value for each minute
of the day by taking all previous measurement at the same time of the day. As an example,
assume we predict the value for a Tuesday at 11:05 am. We would now average all previous
observed values of a Tuesday at 11:05 am. Taking just an average would have the disadvantage
of neglecting recent developments in the time series. We therefore used a weighted averaging
scheme with higher factors for recent values and linearly decreasing influence weights for older
values. This prediction method works very well for weekly patterns and will neglect holidays
or other external events. The prediction model will adjust to seasonal changes, but alternating
behaviors cannot be modeled by this approach. Furthermore, power usage patterns randomly
distributed over a day will negatively influence the prediction quality.

After predicting for each point in a time series the expected values based on all values oc-
curring before this point in the time series, we can compute the difference between predicted
and observed values. The difference is an indicator for the abnormality of the point in a time
series but needs for higher expressiveness some kind of normalization. From the choice and
the design of the prediction method we are assuming a model which may not being applicable
to all observed time series. We counterbalance for this fact by calculating the average fitting
of our model. More in detail, we compute the average deviation from the predicted values for
the whole time series. If a whole time series is highly unpredictable, the differences between
predicted and actual values are less meaningful compared to a case when a time series follows
perfect daily patterns with small deviations. The computation of the anomaly score is summa-
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rized by Equation 2.5.

anomaly[time] =
|predVal[time]− obsVal[time]|

avgt∈Time (|predVal[t]− obsVal[t]|)
(2.5)

Thevariable time is the point in a time series forwhich the anomaly score is calculated. At this
position the difference between the predicted and observed value is computed and afterwards
normalized by the average deviation from the model.

Clustering-based Anomaly Detection

The second approach for detecting anomalies in time series data is similarity-based. We assume
often-observed patterns to be the usual behavior and rarely occurring patterns to be abnormal.
Following this idea, we first have to define and compute the similarity of patterns in order to
detect whether a pattern occurs more than once. The approach described in this section is pro-
posed and presented by Bellala et al. in [BMA+11, BMA+12]. The time series is first parti-
tioned into days and afterwards transformed by a Fourier transformation into the frequency
domain. Each day of the time series is resulting in a k-dimensional vector in the frequency do-
mainwith k being a parameter of the transformation process. Thenext step described byBellala
et al. is a dimension reduction bymulti-dimensional scaling into a two-dimensional space. The
density distribution in the reduced MDS space is now interpreted as an anomaly score. Points
(time series of a single day) being in a high-density area with many (similar) neighbors are as-
sumed to reflect the usual behavior. Outliers in the 2D space can be seen as days with unusual
values and are assigned a high anomaly score. This technique only takes the frequency domain
into account and does not integrate external effects like weather data or week of the day.

Comparison of Anomaly Detection Methods

We previously described two methods for computing and detecting anomalies and both come
with their advantages and drawbacks. Comparing bothmethods themost obvious difference is
the resolution of the anomaly score. Theprediction-basedmethod computes for each point in a
time series one anomaly score, whereas the clustering-basedmethod returns only one anomaly
value per day. It is of course possible to extend Bellala’s technique to cope with hours or even
minutes of a day, but noise might influence the clustering approach. This behavior is inherited
from the computation of the anomaly scores. The clustering-based technique uses daily time
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series and uses them as one data item in the clustering process. An anomaly value is assigned
to each data item based on the density distribution. Therefore, there is no possibility to assign
different anomaly scores to temporal sub-units of a day (i.e., minutes, hours).
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Figure 2.3.2: Comparison of the resulting anomaly scores based on the proposed methods.
The third Monday shows an unusual behavior being reflected in the anomaly scores. Reprinted
from [JSMK14], © 2014 Elsevier Ltd.

The second essential difference can be seen in the complexity of themethods. Transforming
the dataset in the frequency domain and applyingMDS results in a data space with axes hard to
interpret. But the frequency domain is typically less prone to noise and induces some robust-
ness to the observed time series. Though the transformeddata space is complex, there exists the
possibility to extract models of typical behavior by computing cluster representatives. Further-
more, the clustering approach allows supporting several typical ’behaviors’ of a time series. Just
assume a time series alternating between a day-work and a night-work pattern. The clustering
approach will assign both low anomaly scores as both patterns are observed often, whereas the
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prediction-based method will assign each day a very high anomaly score as averages are com-
puted.

In Figure 2.3.2, we present a visual comparison between both anomaly computation meth-
ods. The first column shows a visualization of the observed values for four consecutive Mon-
days. The exceptional behavior of the third Monday is obvious. This anomaly is reflected in
all computed anomaly scores, while the higher temporal resolution for the prediction-based
method is visible. Altogether, the clustering-based approach is good for cases when time se-
ries switches between different typical behaviors and the prediction-based approach is good
for cases when the behavior slightly changes over time following a (seasonal) trend.

2.3.4 Anomalies Visualization

The anomaly scores computed in the previous section are used to highlight important time in-
tervals of the input time series. The visualization for the time series is influencing the design
possibilities depending on the visual variable encoding the numerical values. We implemented
for comparison three well known, state-of-the-art methods to visualize time series data: Re-
cursive Patterns [KAK95, LAB+09], Spirals [WAM01], and the traditional line chart. These
techniques are configured to visualize only one time series.

We will discuss the different design alternatives and motivate our design decisions in the
following sections. We focus hereby on the possibilities to encode the time series and the
anomaly values simultaneously. We describe all state-of-the-art techniques visualizing time se-
ries, namely Recursive Patterns, spiral visualizations, and line charts.

Recursive Pattern

The Recursive Pattern is a pixel technique using coloring to visually encode numerical values
using a parameterized space-filling layout. Recursive Patterns are capable of displaying large
amounts of time series data in a space-efficient way. By setting proper parameters the resulting
display can be calendar-like pixel visualizations. The layout for one day is shown in Figure 2.3.2
and the values of the series are clearly recognizable and furthermore patterns or exceptions are
easy to identify.

We integrated borders into the Recursive Pattern layout improving the readability. We ex-
tended the recursive algorithm presented by Keim et al. in [KAK95] and added the possi-
bility to specify borders in the same manner as the widths and heights values. The borders in
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x- and y-dimension will be defined in two arrays called xBorders and yBorders. The Function
drawRecursivePattern is depicted on the next page and shows the corresponding pseudo
code. The presented function is an extension of the recursive algorithm proposed in [KAK95].
We added all lines of codemarkedwith • and changed linesmarkedwith ••. In our application,
the borders allow us to build a calendar-like layout.

Function drawRecursivePattern(x, y, level)
if level == -1 then

SetPixel(x, y, color);
else

next_x =
∏level−1

i+0 widths[i];
next_y =

∏level−1
i+0 heights[i];

• next_border_x = 0;
• for i = 0; i< level; i++ do
• next_border_x = next_border_x * widths[i] + (widths[i] - 1) * xBorders[i];

• next_border_y = 0;
• for i = 0; i< level; i++ do
• next_border_y = next_border_y * heights[i] + (heights[i] - 1) * yBorders[i];

for h = 1; h<= heights[level]; h++ do
if level == -1 then // odd row
for int w = 1; w<= widths[level]; w++ do
// recursive call of the algorithm
drawRecursivePattern(x, y, level - 1);

•• x += next_x + next_border_x + xBorders[level];

else // even row
for int w = 1; w<= widths[level]; w++ do

•• x -= next_x + next_border_x + xBorders[level];
// recursive call of the algorithm
drawRecursivePattern(x, y, level - 1);

•• y += next_y + next_border_y + yBorders[level];

In order to incorporate the anomaly score in theRecursivePatterns, wepresent a color boost-
ing technique that highlights data points bymanipulating the intensity of color values according
to the anomaly score. The boosting techniques applied are a subset of the techniques presented
by Oelke et al. in [OJS+11] and discussed in the previous Section 2.1. Out of the presented
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techniques, we used only color highlighting as the visualization will not be overcrowded with
visual cues. Color boosting techniques bias the visual impression, which might lead to misin-
terpretations of the visualization. To keep these artifacts at aminimum, we created a perceptual
uniform colormap that only varies over hues without variation in intensity. Since the change in
intensity does only minimally shift the hue, the original color tone can be reconstructed men-
tally.

“It is known that RGB and HSV are not perceptually uniform and that linear in-
terpolationswithin thesemodels do not produce color scaleswith equal ormono-
tonically changing lightness [Kei00]. CIE LUV and CIE LAB have already been
proven useful in former Visual Analytics research [Hea96, WK12]. By varying
over the color opponents (a and b) but maintaining the same lightness value L, a
perceptually uniform colormap can be created in the CIE LAB color space. How-
ever, interpolations in CIE LAB can lead to undefined RGB signals and thus, this
color space cannot be used in the final application. Therefore, we use the HSI
color space [KK95] for intensitymanipulation. This color space is an extension to
the HSV color space that allows monotonic changes in lightness.

Two proposed color encodings for the anomaly values can be seen in Figure 2.3.3.
The first row depicts the original time series without any anomaly scores. We use
different intensity levels to encode the anomaly scores and highlight important
areas. The effect of the intensity boosting can be seen in the second row of Figure
2.3.3. For further visual boostingwe combinedblurring and intensity highlighting
shown in the last row of Figure 2.3.3.” [JSMK14]

We added another highlighting technique, in order to direct the analyst to the anomalous
regions of the time series. This highlighting imitates the human perception regarding a focus
and the context area, where usually the focus area is sharp and the context area is blurry. We
used a similar approach to Kosara et al. and Giusti et al. in [KMH01, GTC+11]. Since the
anomaly score is available for every element of the visualization, we are capable to determine
the important areas of the time series analytically corresponding to the focus area of the analyst.
The implementation adapts locally the blurring according to the anomaly value of each element
in the Recursive Pattern. Low anomaly values are more blurry than areas with a high anomaly
score. This adaptiveblurring techniqueutilizes thehumandepth intuitionguiding the analyst to
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the interesting areas first in a pre-attentive way, depicted in the bottom row of Figure 2.3.3. The
blurring will affect the visibility of pixel borders, and it influences the comparability between
highlighted and non-highlighted areas. We though believe that the pre-attentive focusing on
anomalies helps the analyst in assessing interesting points in time at a glance.

Figure 2.3.3: Different methods to display the anomaly value. Top row: the time series
values without anomaly values. Second row: the intensity of the color is adapted to the
anomaly value. Third row: color intensity representing the anomaly score combined with
adaptive Gaussian blurring. Reprinted from [JSMK14], © 2014 Elsevier Ltd.

Spiral Visualization

The spiral visualization is a technique to display recurring time series data with a fixed period-
icity. Our implementation is based on an Archimedean spiral, where the radius grows propor-
tionally to the spiral angle, which leads to a uniform expansion of the spiral over time. In our
implementation, each round of the spiral is used to display one day of data. The proportional
growth of radius and spiral angle, combined with the absence of any border between each cir-
cle makes it possible to build a space-efficient visualization. Comparing the value of the same
time span on different days is possible, because these values are on a straight line going from
the center of the spiral to the outermost part of the spiral. Each polygon along this line displays
the same time span of different days.

To show the anomaly score of each of the displayed time spans, we apply the same color
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manipulations as described for the Recursive Pattern above. The right spiral in Figure 2.3.4
shows the described color saturation and brightness adjustment to highlight the anomalous
values of the time series. By comparing the left with the right spiral the highlight of the outer
ring of the right spiral is clearly visible. There is a time range with unusual numerical values
beginning after one fourthof theday and lasting for onequarter of a day. Besides that, some little
colorful spots are visible in the right visualization, which were not that visible whenmodifying
only brightness or saturation.

Figure 2.3.4: Spiral visualization of time series. The left spiral shows the actual time
series data, the right spiral shows the time series data with brightness and saturation value
adapted to the anomaly score of the corresponding polygon. Reprinted from [JSMK14],
© 2014 Elsevier Ltd.

Line chart

The most common visualization of time series data is undoubtedly the line chart. The main
difference to the Recursive Pattern or spiral-based visualization can be found in the encoding
of the actual time series value. In the latter two, the series value is shown by colored polygons,
which have a spatial extent. In contrast, encoding the value in a line chart is done by the position
on the y-axis. The brightness and saturation-based techniques adding the anomaly value into
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the visualization makes no sense in such a positional encoding, having only a very small area
available for the coloring. Coloring segments of the line and applying the same techniques to
enrich the linewith anomaly score information as before is not helpful as line segments are very
hard to see. To use coloring a larger line strokewould be necessary, whichwould introduce high
amount of over-plotting and visual clutter. It may be fine for one single line chart displayed on a
large screen, but as soon several line charts are displayed the technique does not work anymore.

In order to show the anomaly value simultaneously with the time series values, we used the
empty space in the background of the line chart as shown in Figure 2.3.5. For each data point,
we plot a red stripe in the background. The anomaly value ismapped to the opacity of the stripe
in a way, that for the lowest anomaly value it is completely transparent and therefore not visible.
In contrast, the highest anomaly score causes the stripe to have the highest opacity resulting in
a clearly visible, red stripe.

To reduce the visual clutter introduced by coloring the background, we also support a min-
imized view. In this view, the anomaly stripes are only plotted above and below the line chart,
whichkeeps the visualizationdistraction-free, but still shows the anomaly values. A comparison
of both anomaly visualization techniques for line charts can be seen in Figure 2.3.6.

Treemap Integration

We integrated all visualizations in a Treemap display [JS91, Shn92, SKM06, HDKS05] (see
Figures 2.3.5 and 2.3.7). The hierarchical nature of our time series dataset is consequently re-
flected in the visualization. Treemaps are showing the leaves of each selected branch and the
nesting depth by borders. The selection of visualized nodes can be achieved twofold, either
by interactive roll-up or drill-down operations in the Treemap visualization or by an additional
vertical tree representation. Our design choice using Treemaps, though they visualize only the
leaves of each branch, was implied by the application needs. The analysts are mainly interested
in finding the root-causes of anomalies first and later on in analyzing the impacts by traversing
the hierarchy to the root node. Further details concerning the used time series can be seen in
the application section 2.3.5.

Each cell of the Treemap contains the visualizations of the time series building one branch
of the hierarchy. The border of each of the cells is furthermore drawn in white to allow a clear
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Figure 2.3.5: The line chart visualization in a Treemap with a horizontal strip layout using
an aggregated anomaly score to determine the cell size. The anomaly scores are represented
by reddish stripes in the background. Reprinted from [JSMK14], © 2014 Elsevier Ltd.

distinction in terms of the hierarchy. The caption of each Treemap cell is used to display the
numerical value used for layout and the cell label.

The numerical value is used by the layout manager to compute the final Treemap layout and
directly influences the size of a single Treemap cell. The computation of the numerical values is
critical for the expressiveness of the visualization since the size of a cell has a large influence on
the perception. The size of a Treemap cell can be computed by different measures. Given the
interest of an analyst to quickly recognize unusual or highly anomalous time series, theTreemap
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Figure 2.3.6: Comparison of the anomaly visualization technique for line charts. On the
left, the whole background is used to show the anomaly scores, whereas on the right, only a
small stripe on the top and bottom of the chart background is used to display the anomaly
score, which reduces the clutter from the background coloring. Reprinted from [JSMK14],
© 2014 Elsevier Ltd.

layout can be adjusted to support these tasks by computing the layout score in different ways.
For example, the analyst can choose between the statistical variance, sum, or the arithmetic
mean of the anomaly score. To incorporate the level of the anomaly, there is also the possibil-
ity to compute the layout based on the product of the anomaly score and the time series value.
In addition to anomaly score-based layouts, the sum and the statistical variance of the time se-
ries values can be used to compute the layout. Having these choices, the visualization can be
adapted to the priorities of the analyst independently of the visualization technique. We also
added the possibility to assign the same importance value to each node resulting in a regular
layout enabling easy comparisons. Beside the general layout the actual width and height (the
aspect ratio) of a single cell is an important factor when using different time series visualization
techniques. For that reason, we implemented different layout algorithms for the previously de-
scribed visualization methods.

A Recursive Pattern has a rectangular shape and we consequently apply a squarified layout
[BHvW00] to the Treemap. This layout algorithm results in a square-like cell, which obviously
leads to an efficient space usage of the overall display. In addition, we framed the Treemap cells
to improve the overall structure perception of the Treemap and the hierarchical representation.

The circular shape of the spiral graphs combined with the squarified Treemap layout leads
to the best readability and space efficiency. We hereby maximize the size of visualization and
at the same time use as much space of the Treemap cell as possible. Creating the layout for
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Figure 2.3.7: Treemap visualization of 19 time series, each time series has four weeks of
data. Interesting spots or patterns in the data are highlighted and can be therefore easily
detected. Reprinted from [JSMK14], © 2014 Elsevier Ltd.

Treemaps containing line charts comes with a fundamental difference to the Recursive Pattern
and the spirals: thewidth of a line chart ismuch larger than its height as our observed time span
is quite long. Consequently, this leads to the conclusion that a squarified layout is not the best
choice. Instead, we implemented a so called strip layout [BE95], which ensures that the line
charts get more space on the horizontal axis than on the vertical (see Figure 2.3.5). Otherwise,
the line charts would be very hard to interpret and this would be an unfair comparison to the
pixel-based techniques. Note that the size of eachTreemap cell still reflects the numerical value
used for layout.

Comparison of Anomaly Visualizations

We have presented three different state-of-the-art visualization approaches for time series and
visual extensions to show time series and anomaly score simultaneously. All techniques have
their own advantages and disadvantages. The Recursive Patterns presented first have the abil-

55



CHAPTER 2. ENHANCING VISUALIZATIONS FOR TEMPORALDATA

ity to visualize large amounts of data in a very compact and space efficient way. Regardless
of the shown time range, lasting from weeks and months to years, the Recursive Patterns are
always capable of showing the data readably revealing patterns. The visualization is designed
such that the value representation by color enables the analyst to easily spot interesting areas
or regular patterns, nearly independent of the actual size of the visualization. In Figure 2.3.7,
patterns and outstanding time spans are visible, even in the compact Treemap representation
of 19 different time series. Having spotted regular patterns Recursive Patterns enable also the
cross-comparison in different time series, since the relative position of one point in time is well-
aligned. Using Recursive Pattern in Treemap is more difficult to compare the same hour of a
day, for example, as the position of the same hour varies through the visualization.

Comparing the same hour is an advantage of the spiral visualization as the periodicity was
set to daily patterns. The angular encoding of the time of a day enables these comparisons as
a straight line from the spiral center to the outer spiral connects these data values. With such
visualizations, it is easy to explore the value of the time series over time. In addition, compar-
ing time ranges and/or spot longer lasting trends is a simple task, since the analyst has only to
follow the continuous spiral over time. This is an advantage compared to the non-continuous
time display of the Recursive Patterns, where layout breaks are needed, as with any space-filling
curve. Line charts are great for detailed visual explorations of continuous data for single time
series. For the usage scenario of anomaly visualization, there exist only a few application possi-
bilities, since condensed visualizations are needed as limited screen space is an issue. The low
space efficiency of line charts leads to our proposed solution to re-use the empty space in the
background to visually encode the anomaly value. We avoid the arising visual clutter by apply-
ing the stripe based anomaly visualization, which keeps the anomaly information but reduces
the colored area distracting the analyst.

2.3.5 Applications

Our prototype integrating all the presented analytic and visual techniques focuses especially on
the detection of anomalies and their temporal occurrence. With this task in mind, two general
use cases can be identified. First, general browsing and exploration of the data is important to
get an overall impression of the power usage. All different visualization techniques presented
above can be chosen to gain from their individual strengths. The second task is the examination
of a specific issue, like unusually high or low power consumption. Our system can provide the
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analytical and visual insights necessary to find the source of the unusual energy consumption.
All visualizations are integrated in the same analytical framework, but use different methods of
displaying the power consumption and the anomaly values.

Figure 2.3.8: Screenshot of our prototype showing the hierarchical and temporal selection
capabilities together with the visualization panel. Reprinted from [JSMK14], © 2014 Elsevier
Ltd.

Analytical Framework

Our prototype consists of three parts reflecting the different dimensions in the data set as de-
picted in Figure 2.3.8. The left panel allows the navigation through the hierarchy of the sensor
graph by selecting the nodes being visualized. In the center, the visualization panel combines
a Treemap visualization together with a colormap legend. The panel at the bottom of the win-
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dow allows navigating in time and selecting the time range being visualized. We additionally
augmented the timeline by visualizing the total amount of power usage over time.

Beside animation, we furthermore implemented interaction techniques like dragging the se-
lected time range (blue rectangle in the timeline visualization) left and right causing immediate
updates to the visualization. The visualization offers three interaction possibilities. The first in-
teraction is a tooltip allowing inspecting the underlying data values invoked bymouse hovering.
We directly support drill-down and roll-up operations in the Treemap visualization, allowing
the analyst to keep his focus on the visualization during traversing the sensor graph. Lastly, the
analyst is able to select a region in the visualization and query the system for similar time series
sharing the selected behavior by means of distance or correlation calculations. Switching the
visualization technique, colormap, value normalization, anomaly calculation, or theweights for
the Treemap layout is possible by choosing the respective option.

Figure 2.3.9: Overview of the power consumption data from 28 sensors during 48 weeks.
Despite the huge amount of data, patterns are still clearly visible. On the right, the same
dataset is presented, but with adaptive blurring highlighting unusual power consumptions.
Reprinted from [JSMK14], © 2014 Elsevier Ltd.

2.3.6 Visual Inspection of Anomalies

In this use case, the building administrator gets the information, that in February 2012 the over-
all power consumption and energy costs of a building was higher than expected. The investi-
gation starts by getting an overview and some contextual information about the general energy
consumption of the building. Undoubtedly, the most suitable visualization for this task is the
Recursive Pattern Visualization, which can be seen in Figure 2.3.9. The blurring approach at
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the right side highlights the anomalies further compared to the left figure, where we visualized
anomalies only by color intensity. The resulting visualization points directly to one time series,
which can be seen in Figure 2.3.10 on the right. Both, the left and the right visualization show
the power consumption data beginning on 6 February 2012. Each of the bigger rectangles con-
tains the data from one day, starting with Monday on the left. In total, there are four weeks of
data visible, starting on 6th February and ending on 4th of March.

Figure 2.3.10: Power consumption measured by sensor AE3 from 6th February to 4th of
March 2012. On the left, only the power consumption is visualized. On the right, the
intensity is additionally reflecting the anomaly score. Due to the high intensity, an area in
the fifth column of the third row stands out. Reprinted from [JSMK14], © 2014 Elsevier
Ltd.

In the visualization, there are some single, outstanding spots. Those look relatively random
and last only one pixel representing a time span of five minutes. Although the color is quite
intense and reddish, they are far too few and do not last long enough to have a large influence
on the overall power consumption. Besides these spots, an area in the fifth column of the third
row stands out. The intensity seems to increase from pixel to pixel over a long time. Having
in mind, that one small black-framed rectangle of the Recursive Pattern stands for one hour,
the anomaly score seems to increase over ten hours, until suddenly the anomaly score drops
again. Due to the long duration of the anomaly and the intense red color, the actual energy
consumption in this time frame is very high. This makes this anomaly a candidate for the cause
of the higher energy costs in February.

The building administrator found an anomaly in the given time frame with the Recursive
Pattern visualization. To identify potentially correlated time series, our prototype implements
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a top-n time series similarity search. The query can be triggered by clicking on a part of the
visualization and selecting the query area with the mouse. Afterwards, the desired similarity
measure can be selected. The system supports the standard Euclidean distance and positive,
negative, and unsigned Pearson Correlation for different analysis tasks. In this case, selecting
the positive Pearson Correlation or the Euclidean Distance is appropriate. The result of the
query can be seen in Figure 2.3.11.

Figure 2.3.11: The time series query result window. On the top left, the query time series
is displayed, on the right the top-n query results are shown. The query range is highlighted.
Reprinted from [JSMK14], © 2014 Elsevier Ltd.

The query results show three very similar series: AE4, AE5, and AE6. All three sensors are
part of the same subtree of the sensor hierarchy. This means they are located in the same build-
ing as sensorAE3,which logged the time series identifiedas anomalousby theRecursivePattern
visualization before. With this additional knowledge, the building administrator can conclude
that the anomaly affected not only one, but at least four parts of the building, where the sensors
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have been installed.

Thequality of the conclusionsdrawn fromthe visualizations andanalyticalmethodsdepends
heavily on the sensor deployment. If each of the sensorsmonitors a singlemachine or office, the
building administrator has a concrete subject of further examination. When they are deployed
in a more general way, for example per building floor or even per building, the shown analysis
allows narrowing down the investigation of power consumption to the affected units.

2.3.7 Evaluation

We showed the applicability of our proposed technique in the previous application section, but
it is very important that real expert users rate our approach effective and helpful. We therefore
presented our approach to the target user group in a big company. We had contact to two ana-
lysts and interviewed them first about their state-of-the-art technology. The company develops
sensor networksmeasuring the power consumption for large buildings and is experiencedwith
power management. The current state-of-the-art technology they are using is a visualization
based on line charts. They are able to select arbitrary time frames and inspect the temporal
power distribution. Further analysis steps are yet impossible to perform. In later meetings we
explained our approach to the experts and afterwards let them interact with our system and in-
vestigate the time series data. We asked them to describe their typical way of analyzing data
and furthermore to comment on our proposed technique by thinking aloud using our proto-
type. We got very valuable and interesting feedback from the experts regarding the benefits and
room for improvement.

First of all, they validated the temporal patterns shown in the pixel-oriented visualization
techniqueswith their knowledgeof typical power consumptionpatterns. Their proof-of-concept
was that the daily periodic patterns were visible at a glance, at the same time reflecting their
expectations for the time series. After they found the patterns like low power consumption
at nighttime and weekends they started to look for anomalies using our visual boosting tech-
niques. At first, obvious patterns like holidays or the Christmas vacation have been found.
Afterwards, less obvious patterns have been investigated. During their analysis, we asked the
experts to comment on our techniques and give feedback related to visualization and analysis
methods.

The first point they commented on was the helpfulness of the overview visualization in the
form of the Recursive Patterns. Compared to line chart based visualizations they are very fa-
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miliar with, the calendar-like representation of the power consumptionwas highly appreciated.
Furthermore, the possibility to interactively change the visualization type helped them a lot to
get familiar with the pixel-oriented techniques. The coloring of pixels was intuitive to them and
they could interpret the visualization easily.

Froman analysis point of view, a very interesting pointwas their comment onour prediction-
based anomaly computation. They agreedwith our definition of anomaly: ”The anomalous day
is likely to deviate from the daily pattern in someway.“ As shown above, our anomalymethod is
very fine grained, but to the experts a single time spot with a high anomaly score is not impor-
tant. Theyweremore interested in longer periods of unusual behavior, starting at approximately
one hour duration. On the other hand the related anomaly computationmethod based on days
was too coarse-grained for them for this kind of analyses. An aggregation of the anomaly values
might help to let the analyst focus on the severe anomalies. The visualization of the anomaly
scores together with the time series was mentioned very positive, especially with respect to
the Recursive Pattern. The overview calendar-like visualization with intensity highlighting and
adaptive blurring let them focus on the interesting spots. They had the impression that their
attention was guided to the anomalies, while the unimportant, common daily patterns were
pushed in the background. As soon as they found some unexpected anomalies they applied
further analysis techniques.

The experts very much appreciated the possibility to select a region in the time series and
query for other similar time series. When they selected a leaf in the hierarchy of time series they
would look for the impacts of the anomaly on theparent nodes. Theotherway around, querying
for anomalies on higher levels would show the root-causes for the unusual power consumption.

A possibility for improvement mentioned by them is the integration of external events into
the application. Sometimes managers know in advance of extraordinary events that will cause
unusual power consumptions. It should be possible to include this informationwhenever avail-
able and to reflect the additional events in the visualization. Overall they found the integration
of different time series visualization techniques combinedwith an anomaly representation very
helpful and wanted to integrate our techniques in their management tools.

2.3.8 Conclusion

Analyzing and interpreting unusual patterns in time series data is a very important task. In this
paper, we applied novel analysis and proven visualization techniques to a system, which sup-
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ports analysts finding those patterns visually. We supported the analysis process by computing
anomaly scores of the given time series data with an anomaly detection algorithm which pro-
duces very fine grained results. This also allows the creation of detailed visualizations resulting
in a fine grained pixel-based date representation. Furthermore, the algorithm is very efficient
in terms of required computing power, because it does not require expensive transformations
nor does it rely on elaborated analyses of the time series data.

Having the anomaly scores, different visualizations can be used to get deep insight into the
time series and the anomaly scores, depending on the task to fulfill. Recursive Patterns create
overviews of large time spans and large amounts of data. Spiral views provide the possibility to
quickly detect and analyze periodic patterns. If a more common visualization was wanted, the
classical line charts would be also available for further investigations of the data set.

The double encoding of time series values and anomaly scores is solved in different ways.
The novel adaptive blurring, which generates a focus and a context area by blurring the visual-
ization according to the anomaly scores, guides the analyst directly to interesting spots of the
visualization. Thismakes the technique aparticular advantage inoverviewvisualizations, where
irrelevant areas of the time series are losing their level of detail by a strong blur, whereas interest-
ing, high anomalous areas are clearly visible and attract the focus of the human eye. To support
the display ofmultiple visualizations, thewell-knownTreemap approach is extended by layouts
based on space efficiency and specific visual properties of the visualization.

Theuse caseof power consumptiondata shows the applicability of themethods shown in this
paper. The general nature of the analysis and visualization methods makes it possible to apply
these techniques to time series not only from the application domain of power consumption
data. In the future, we want to integrate external knowledge like known events influencing the
time series likeweather information. Itwouldbe also interesting to automatically determine the
visualizationmethod, colormap, andpossible enhancements like the adaptive blurringbasedon
the displayed data.
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Listen within yourself and look into the infinitude of Space
andTime. There can be heard the songs of theConstellations,
the voices of the Numbers, and the harmonies of the Spheres.

Hermes Trismegistos
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Geospatial data are a very rich and valuable source for research questions. Geospatial
research questions are often very application-driven, with subject matter experts either having
hypotheses of the hidden movement patterns or being just overwhelmed by the amount and
resolution of data collected. Besides application needs, geospatial data are challenging from a
visualization and Visual Analytics perspective. Advances in technology allow capturing more
andmoremovement data in higher temporal and spatial resolution. We nowadays need to sup-
port the analysts during their explorative analysis during several steps:

Hypotheses building

Without any prior knowledge of the collected geospatial data, it is often impossible to define
hypotheses to investigate. Geospatial visual analysismethods shouldhelp in the very first explo-
rative investigation steps. FollowingShneiderman’s visual information seekingmantra [Shn96],
giving first an insightful overview to the user is crucial for a successful analysis process. The
challenge is to deal with a possibly infinite amount of input data and a very limited visualization
space. Problems as visual clutter and overplotting occur easily and often simplemappings from
data to screen space are not sufficient. We propose in this section visual methods for point- and
line-based representations actively reducing overplotting issues by replacement, aggregation,
and abstraction.

Explaining observed geospatial patterns

Often geospatial patterns occur and although we may be able to identify and visualize them,
we are not per se able to explain them. Visual support and guidance to explaining features and
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variables are needed, in order to support the analyst generating insights. We usually derive at-
tributes and additional context data and visually present them to the user. TheVisual Analytics
methods employed should take existing domain knowledge into account to ensure an effective
analysis process. Our techniques described in this work cover both the presentation of addi-
tional, external information as land-use categories and integrating the analyst’s domain knowl-
edge during the analysis process.

Exploring and analyzing reoccurring patterns

Once interesting movement behaviors are identified, analysts may want to look for similar pat-
terns. A good visual analysis systems should be able to compare this set of situations with au-
tomatically deriving and presenting similarities and differences. Automatically detecting why a
certain situation is interesting to the analyst and finding based on this information similar situ-
ations is quite challenging. Usually, relevance feedback, as introduced for example by Rocchio
in [Roc71], will be employed to improve the results. Giving some kind of formal or informal
description to the system, why a situation is important is crucial for good results. Basically, this
feedback loop is a step to transfer domain knowledge from the subject matter expert to the Vi-
sual Analytics system. We will especially focus on the detection of certain kind of situations
and the integration of user feedback in the next chapter dealing with soccer data.

We will discuss in this chapter techniques dealing with the two most important types of
geospatial data related to movement. Movement can be either seen as a sequence of discrete
sampling points or as a sequence of linear segments approximating the original movement.
Point-based representation are usually applied when the overall density distribution is of in-
terest or when analysts are investigating additional measurements (e.g., weather information
or health parameters) recorded synchronously with the geospatial tracking. Line-based visual
representations are applied when the sequence of locations, at which the moving object was
tracked, are of interest. Usually, line-based visualizations help to identify the direction ofmove-
ment (for example, by tapered line segments) and similar movement behavior within groups of
movers. As lines need more screen pixels than points, they are visually more salient and can
potentially encode additional information (e.g., speed by the length of segments in the case
of regular sampling). At the same time, lines introduce more overplotting and reducing the
amount of overplotting is more challenging for lines than for points.
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Consequently, we will discuss in this chapter methods enhancing the visualization of point-
based and line-based geospatial data. We see scatter plots as a very related technique visual-
izing geospatial point-based data. With scatter plots being widely used, we decided to show
general applicability of our approach and use geospatial data sets only as one of many possible
application scenarios. Nevertheless, the techniques described in the next section with focus on
general scatter plots are easily transferable to the geospatial domains and point-based visualiza-
tions. The line simplification algorithms described in this section are not tailored to a specific
application domain, although the use cases are often in the area of animal movement. Animal
movement has the advantage of lacking any privacy issues and is complex enough to provoke
research.

3.1 Enhanced Scatter Plots for Point-based Visualizations

The following section is based on the following publication¹:

Enhancing Scatter Plots Using Ellipsoid Pixel
Placement and Shading

H. Janetzko, M. C. Hao, S. Mittelstädt, U. Dayal, D. A. Keim.

Proceedings of the 46th Annual Hawaii International Conference on System Sciences, pp. 1522–1531, 2013.

[JHM+13]

3.1.1 Preface

Exploring two-dimensional relationships and correlations is the key feature of scatter plots.
Scatter plots are therefore often used because of their wide applicability and intuitiveness. Un-
fortunately, one severe drawback exists impairing the effectiveness of scatter plots: overplotting
will occur in dense data regions resulting in a significant number of points not shown to the
user. Two reasons exists, why overplotting occurs. Either the data points share the very same
coordinates or the screen resolution is not sufficient to place the points on distinct pixel coordi-
nates. Without overplotting, we can even colorize the points in a scatter plot to visualize a third

¹The idea of using ellipses for pixel placement and applying lighting was developed by myself. Sebastian
Mittelstädt implemented the techniques into an existing prototype previously developed by myself. Ming Hao,
Umeshwar Dayal, and Daniel Keim helped with fruitful discussions and advices.
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Figure 3.1.1: In this figure, we compare four different scatter plots for US Census data. Fig-
ure (a) depicts a traditional scatter plot with a high overplotting degree in densely populated
areas. The other three figures show results of (b) circular pixel placement, (c) ellipsoid pixel
placement without shading, and (d) ellipsoid pixel placement with shading. Note, that there
are no overplotting points in figures (b), (c), and (d). (x-axis: Longitude, y-axis: Latitude,
color: Median household income) Reprinted from [JHM+13], © 2013 IEEE.

dimension.

We exemplify the drawback of scatter plots in Figure 3.1.1 (a). The traditional scatter plot
should display 333,488 data points, but due to overplotting the scatter plot is only able to visu-
alize less than ten thousand data points. In a previous work, we described Generalized Scatter
Plots [KHD+09] and proposed user-controllable solutions to reduce the amount of overplot-
ting. Figure 3.1.1 (b) shows the result of circular pixel placement being a technique described
in [KHD+09]. We will explain this approach inmore details in later paragraphs of this section.
We enhanced the circular pixel placement by applying ellipsoid pixel placement reflecting local
correlation patterns depicted in Figure 3.1.1 (c). In order to visually separate nearby ellipses,
we applied lighting to the scatter plot resulting in Figure 3.1.1 (d).

We present in the following sections a novel approach to enhance scatter plots in two ways.
We apply a ellipsoid pixel placement removing overplotting in the scatter plot and simultane-
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ously expressing local correlation patters. Furthermore, we added illumination to the visual-
ization in order to enable a better separation of nearby density clusters. Additionally, lighting
enable the analyst to determine the original position of a relocated data point. We will first
discuss existing approaches in Section 3.1.2 followed by a short introduction to the previous
Generalized Scatter Plots technique, in Section 3.1.3. We present our novel techniques in Sec-
tion 3.1.4 anddiscuss possible lighting options in Section 3.1.5. Our new techniques are applied
in three different application scenarios showing the wide applicability.

3.1.2 Related Work

Overplotting in scatter plots is not a new challenge and there were many techniques developed
solving overplotting issues. The first set of techniques computes and visualizes the data den-
sity. Cleveland presented in 1984 for example a glyph-based representation depicting the data
density called sunflowers [CM84]. Glyphs may introduce other visual artifacts, such as over-
plotting of glyphs or binning artifacts. Semi-transparency of data points is used to convey a
notion of density and is described in [WWR+06]. In most cases using transparency will help
analysts to investigate the density distribution. A severe drawback of transparency is the lim-
ited readability of resulting density visualizations. Transparency is not correlating linearly to
the number of points painted at one single position. Setting the transparency value to the best
one is very challenging anddepends highly on the data set and the task. Other density visualiza-
tions as heatmaps or density contour maps are often better to depict the density distribution.
Such density visualizations display aggregated information, but not the raw point data as tra-
ditional scatter plots. A mixture of density visualizations and scatter plots are HexBin scatter
plots [CLNL87, Hex15]. Hexbin scatter plots partition the data into hexagonal bins and count
the number of data points per bin. The density counts can be visualized for instance by differ-
ent brightness levels, as done in the statistical toolkit R. Later techniques proposed by Bowman
and Azzalini [BA04, BA03] built smooth contour scatter plots showing overlaps with different
shades. Continuous scatter plots invented by Bachthaler and Weiskopf [BW08] derive from
the discrete input data a continuous model. Continuous scatter plots do not suffer from over-
plotting points as they are aggregatedwhen building themodel, but the analyst loses the notion
of how many data points lead to a local pattern. Anti-aliasing and a greyscale representation is
used by the Information Mural in order to cope with overplotting. Jerding and Stasko [JS98]
focused in the Information Mural especially on cases where the number of data points exceeds
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the number of available pixels. Mayorga and Gleicher discuss in [MG13] a technique combin-
ing density aggregation with point-based representations in scatter plots. The authors apply
perception-based color blending for density surfaces and sampling for visualizing a subset of
the original data points.

The second set of techniques distorts and transforms the display space in order to reduce
overplotting. Interacting with small screens suffers from the very same overplotting issues as
scatterplots. Büringet al. [BGR06]proposed two interaction techniques: a geometric-semantic
zoom supporting transitions between overview and detail and in order to contextualize the cur-
rent viewport the authors proposed a fisheye distortion. Other distortion techniques such as
cartograms [KNPS02] or HistoScale [KPS+03] can be applied as well. We developed previ-
ously a technique calledGeneralized Scatter Plots [KHD+09] allowing analysts to interactively
control the amount of distortion and pixel placement. We will describe this approach in more
detail in Section 3.1.3. Another technique actively reducing the amount of overplotting was
introduced by Trutschl et al. [TGC03]. The authors present a SOM-based approach replacing
overplotting data points according to the points’ similarity. A very simple, row- or column-
based pixel placement algorithm is presented by Aris et al. in [AS07]. This approach will intro-
duce visual artifacts resulting from the row- or column-based replacement of data points.

In this paper, we are adapting the pixel placement to local trends in the data set. We high-
light therefore two example approaches dealing with detecting and visualizing local trends in
scatter plots. In order to visualize trends in multi-dimensional data Robertson et al. [RFF+08]
propose to use animation and Small Multiples. Visualizing local correlation patterns by a flow-
based visual representation is presented by Yu-Hsuan Chan et al. in [CCM10]. The authors
visualize both the direction and the strength of the local correlation.

InFigure 3.1.2, we compare six different approaches being related toour proposed technique.
We use a data set resulting from a telephone conference system, with a total of 37,787 records.
We relate the length of the calls (x-axis) to the charge of the respective call (y-axis). As depicted
in Figure 3.1.2 a), the traditional scatter plot suffers from overplotting, but still reveals some
linear relations between length and charge of a phone call. According to the data distribution,
we also applied logarithmic scaling to both axes simultaneously resulting in Figure 3.1.2 b).
We applied a density-equalizing distortion to the data set in Figure 3.1.2 c) enlarging the space
for dense areas and shrinking the display space for sparse areas. The very same distortion is
applied to all subsequent visualizations, for a fair comparison, because our new technique is
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Figure 3.1.2: Six different existing techniques visualizing the same telephone conference
data set. The amount of distortion of figures c) to f) is the same as in the application
Section 3.1.6. (x-axis: duration of call, y-axis: charge for call) Reprinted from [JHM+13],
© 2013 IEEE.

applied to the equally distorted data set in Figure 3.1.9. Density visualizing methods such as
HexBin scatter plots, Figure 3.1.2 d), or kernel density estimations [BA04, BA03], shown in
Figure 3.1.2 e), do not suffer from overplotting as they do not display the original data points.
We performed a five-percent sampling in Figure 3.1.2 f). Sampling will reduce the amount of
overplotting, but low-density patterns might disappear.

Applying lighting tovisualizations is notnewandhasbeenalreadyproposed in variousworks.
Cushion Treemaps [VWVdW99] for example apply lighting to each treemap cell adding visual
clues to distinguish neighboring cells. Lighting has been also applied to aggregated trajectories
by Willems et al. [WVDWVW09b]. This method uses bump mapping related techniques in
the same way as we do. Our approach can be seen very related to a three-dimensional repre-
sentation of a kernel-density estimation [Par62]. The main difference between kernel-density
estimation and our approach is that we do not aggregate the data at all. The result of our tech-
nique is a two-dimensional pixel-based visualization, with every data point represented by one
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pixel. Consequently, we can encode a third variable by color and interact with each single data
item.

3.1.3 Generalized Scatter Plots

We introduced in somepreviousworkGeneralized Scatter Plots [KHD+09] enabling the analyst
to interactively control the amountof distortion andpixel placement applied. Anexample result
is depicted in Figure 3.1.1 (b). As the ellipsoid pixel placement and lighting techniques build
upon our previous work, we will briefly introduce the Generalized Scatter Plots in this section.

The basic assumption of this technique is that a fully distorted viewwithout any overplotting
may not be the best possible view to the data set according to some optimality criteria. We
introduced two criteria, namely the displacement error (points should not be moved too far
from their origin) and the overplotting error (nopoints should overplot each other). Obviously
both criteria are not possible to satisfy simultaneously. We consequently describe techniques
being user controllable allowing arbitrary stages of distortion and pixel placement. The range
covered starts from traditional scatter plots to fully distorted and pixel placed visualizations
without any overplotting but with circular visual artifacts.

Technique

We employ two techniques to reduce the amount of overplotting in scatter plots. The first tech-
niquewe implemented is a density equalizing distortion enlarging dense areas and shrinking ar-
eas with low density. Consequently, the distortion will already reduce the amount of overplot-
ting. In detail, we bin the data space independently in both dimensions and count the number
of points per bin. As shown in Figure 3.1.3, the relative density of each bin is used to determine
the corresponding bin size in image space.

w =61 w =22 w =43 12
2

12
6
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4

Figure 3.1.3: Example of a one-dimensional density equalizing distortion based on relative
density. Reprinted from [JHM+13], © 2013 IEEE.
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Figure 3.1.4: The new position for an overplotting data point is determined in a circular
fashion. The nearest empty pixel is chosen from the green candidate set. Reprinted from
[JHM+13], © 2013 IEEE.

Additional to the density equalizing distortion, we introduced a circular pixel placement al-
gorithm relocation all overplotting data points to a nearby empty pixel position. In Figure 3.1.4,
we show an example relocating step of our algorithm. Our algorithm uses a sorted input lists
of all data points, with the points usually being sorted by the third dimension – the dimension
being represented by color. We iterate over the sorted lists of points and for each data point
we check whether the original screen position is empty. If the pixel position is empty, we will
place the data point at this location. In the other case, we will relocate the data point to next
free position. In order to find the next free position, we compute a circular area around the
original location (green area in Figure 3.1.4). Out of this candidate set of possible positions,
we chose the nearest empty pixel. Following this iterative algorithm, we can assure that there
are no overplotting data points, if the number of pixel exceeds the number of data points. More
details of the pixel placement algorithm with respect to the parametrization allowing interme-
diate states between data-induced overplotting and no overplotting can be found in the original
paper [JHM+13].
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Merits and Limits

Without overplotting in scatter plots, we are not only able to show all data points but we can
apply coloring to the data points expressing a third dimension. Furthermore, we assessed the
quality of the resulting visualization and could show that a combination of pixel placement and
a semi-distorted view is the best with respect to overplotting and displacement error.

However, Generalized Scatter Plots do not take the local distribution of data points into ac-
count and always introduce visual artifacts by the circular pixel placement. The very salient
circles in the resulting visualizations are for instance visible in Figure 3.1.1 (b). Scatter plots are
employed to investigate the relationship of two variables. It is consequently not very beneficial
to visualize the data in a way that local patterns of zero correlation are induced.

Another drawback of the method is that the original location of data points is lost, as points
aremoved to the nearest empty position. This is especially bad in cases, when there are to circles
visually intersecting, as it can be seen in Figure 3.1.4. In the intersection area, it is not obvious
to which origin a data point belongs to.

3.1.4 Enhancing Generalized Scatter Plots

AsGeneralized Scatter Plots have some limits, we first improved the pixel placement algorithm
and developed a new ellipsoid pixel placement. The local correlations will be reflected by the
rotation and the width-to-height ratio of the ellipses. Consequently, the pixel placement result
will retain local data distribution patterns. We will describe the approach in more detail in the
next section.

We furthermore propose a solution to visualize the original positionof a relocateddata point.
We followed the idea of Bump Mapping [Bli78] and introduced an artificial 2.5D impression
to a two-dimensional surface. The lighted surface will give visual clues to the analyst at which
original location a point was before the pixel placement. This approach will be presented in
detail after the description of the ellipsoid pixel placement.

Ellipsoid Pixel Placement

As already mentioned above, scatter plots are employed to reveal global and local trends and
correlations. Applying circular pixel placement will hide local patterns decreasing the effec-
tiveness of scatter plots. Exchanging the circular pixel placement by an ellipsoid replacement
allows us to visualize local correlations. We can show both the strength and the direction of the
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correlation by rotating the ellipse and adjusting the aspect ratio according to the correlation
strength.

We have to define locality before we can compute local correlations. We therefore partition
the input data set into disjoint groups and compute for each group the linear correlation. The
proper partitioning is crucial, because the local correlation may vary in the data set. A simplis-
tic, straightforwardmethod is a partitioning by a regular grid. But depending on howmany grid
cells are chosen the results may look very different. Consequently, regular grid could result in
new visual artifacts not being data supported. As we wanted to reflect the arbitrary data distri-
bution, we decided to employ a partitioning clustering technique and compute the correlation
per cluster. We use OPTICS [ABKS99] in our prototype, in order to partition the data set. As
OPTICS just orders the points without already assigning cluster IDs, we support the analysis
by visualizing the reachability and core distances. The analyst can interactively set the epsilon
threshold and gets immediate feedback of the resulting clustering.

After we partitioned the data set according to the data distribution, our next steps involves
the computation of a correlation measure. We calculate both, the correlation strength and the
correlation direction, by applying Principal Component Analysis (PCA) to each cluster. The
input for the PCA is a 2 × 2 covariance matrix. The PCA will return in our case the two most
dominant correlation directions in terms of two eigenvectors and the correlation strengths in
terms of eigenvalues.

Themost dominant correlation direction is depicted in our example in Figure 3.1.5 (b). The
first half axis of the ellipse is parallel to the most prominent correlation direction, as shown in
Figure 3.1.5 (c). The ratio of the two eigenvalues corresponds to the strength of the correlation.
We adjust consequently the ratio of width and height of the ellipse according to the ratio of the
two eigenvalues. In order to avoid very narrow ellipses in perfectly correlated cases, we restrict
ourself to a minimal ratio of 1:4.

As soon as we have determined the proper shape and rotation of the ellipse based on the
local correlation, we are able to compute the pixels of the ellipse accordingly. We apply an ap-
proach based on Bresenham midpoint algorithm for ellipses [Ake84] and rotate the resulting
pixel positions according to the desired rotation. These pixel positions are then used to replace
an overplotting data item.

We show the overall pixel placement on an abstract level in Algorithm 3.1.1. The conditions
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Figure 3.1.5: Starting from a set of points, we perform partitioning clustering to separate
the data set (a). We compute for each cluster the most prominent correlation direction
(b) and use the correlation direction and strength to determine a corresponding ellipsoid
pixel placement result (c). Lastly, we apply shading according to an illumination model (d).
Reprinted from [JHM+13], © 2013 IEEE.

marked by • do not only allow to remove overplotting at all, but do also allow for intermediate
stages between overplotting and no overplotting. The line marked by •• covers the call of the
ellipsoid Bresenham algorithm and some counter variables. With each call of this line for one
specific location the algorithm must ensure that a new pixel position will be returned. Con-
sequently, the width and length of the ellipse will be increased gradually as soon as all border
pixels of a ellipse have been returned. From a technical perspective, we store for each pixel
position the last returned pixel together with the parameters of the last used ellipse.
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Algorithm 3.1.1: Abstract pixel placement algorithm
Input: Ordered list of all data items
foreachDataItem cur in allDataItems do

• if cur can be placed at original position then
assign original position to cur

else
repeat

•• get next ellipsoid pixel position for original location of cur
• if ellipsoid pixel position can be used for cur then

assign ellipsoid pixel position to cur

until new position for cur found

Combining Shading and Pixel Placement

As pixel placement techniques replace data points to some nearby locations, the origin of a data
itemmaybe obscured. Especially, when the origin is ambiguous, for example in the intersection
areaofFigure3.1.4, it is impossible to infer theoriginal coordinatedof adatapoint. We therefore
visually enhance the result of our pixel placement algorithm by applying a technique based on
Bump Mapping as depicted in Figure 3.1.5 (d).

The basic idea is that all points originating from the same location belong to a small hill. This
hill can be used to defer normal vectors used for illumination purposes. We show our approach
schematically in Figure 3.1.6. The shading allows both, the visual separation of nearby ellipses
and localizing the origin of a data point. Thenormal vectors are the input illuminating the scene
by Phong shading [Pho75]. We compute the amount of light being reflected by the data point
according to light direction and normal vector and blend this with the point’s color. Lighting
might decrease the effectiveness of coloring the data points. We consequently enable the user
to control the strength of the illumination to focus on the third dimension’s value or to focus on
the origins of the data points.

The computation of the normal vectors is closely related to the result of the prior pixel place-
ment. The distance of the point’s final location to its origin is weighted by the half-axis if the
corresponding ellipse. The higher the distance is the more parallel to the xy-plane the normal
vectors become. The normal vectors and their correspondence to their relative location can be
seen in Figure 3.1.6.
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Figure 3.1.6: The ellipses resulting from our pixel placement approach are seen as hills. Nor-
mal vectors are computed correspondingly (right). Reprinted from [JHM+13], © 2013 IEEE.

Applying illumination to scatter plots allows us to adjust lighting to the analyst’s needs. We
can influence both the number of light sources and the respective light direction. In our pro-
totype, we propose three different settings reflecting the most important scenarios and addi-
tionally implemented manual control over the lighting conditions. The different settings can
be inspected in Figure 3.1.7. In most application scenarios, lighting orthogonal to the main
correlation vector is sufficiently expressive. Nevertheless, the user can choose the best suiting
lighting condition.

3.1.5 Discussion

We developed the ellipsoid pixel placement technique to enhance the visual salience of correla-
tion patterns. We compare in Figure 3.1.7 our new approach to circular pixel placement being
a representative for methods not taking data-inherent patterns into account. The data set vi-
sualized is artificially generated and contains several clusters with random position, size, and
correlation. The circular pixel placement, Figure 3.1.7 a), is performing worse with respect to
correlation visibility compared to the ellipsoid pixel placement shown in Figure 3.1.7 b).

Besides enhancing the pixel placement algorithm, applying shading to a scatter plot abstracts
further from the original view. But applying lighting comes with the advantage that we can
differentiate nearby clusters better. While we lose some information about the values encoded
by color, we are able to hint to the original position of a data point. We visually compared the
most promising lightingoptions anddiscuss thembelow. InFigure 3.1.7 c), we appliedone light
source for each cluster parallel to the main correlation. Each cluster is illuminated orthogonal
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Figure 3.1.7: Visual comparison of possible illumination variants. All figures visualize
the same, artificially created data set without overplotting. Reprinted from [JHM+13],
© 2013 IEEE.

to the main correlation in Figure 3.1.7 e). Our last shown option is one global light source
orthogonal to the main correlation of the whole data set, in Figure 3.1.7 f).

When we started developing our technique, we expected that option c) would result in the
best visualizations, since it emphasizes the direction of the local correlation. However, in our
informal evaluation options e) and f) performed significantly better. The visibility of the dif-
ferent local correlations depends on the respective applications but seems to be best in e) and
f). We added for completeness the results of the circular pixel placement in Figure 3.1.7 a) and
the correspondent illuminated result d).

Consequently, we illuminate the scene by default per-cluster and orthogonal to the correla-
tion, while enabling the analyst to adjust the lighting to his needs. Furthermore, the strength
of the lightning can be controlled or even switched off. We designed our colormap in such way
that it is hue and not intensity based. Because of the illumination process, intensity based col-
ormaps could result in data points being identically colored though different in the encoded
third dimension’s value.
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3.1.6 Applications

We applied our ellipsoid pixel placement algorithm combined with the shading technique to
several real-world data sets. We will first introduce a financial scenario followed by a telephone
service usage analysis. Lastly, we discuss a geospatial use case and investigate the visualization
results of a census of the United States of America.

Financial Analysis

Investors and financial analysts are interested in developments of funds and the best time for
their purchases and sales. Based on historic data, investors try to find the best fundsminimizing
their risks andmaximizing their profit. Risky funds are typically determined by a high standard
variation in the respective price time series. We applied our techniques to a data set of approxi-
mately 130,000 American funds collected over 15 years with focus on a performance-risk anal-
ysis. The performance of each fund is computed on a yearly basis resulting in 14 one-year inter-
vals. The data set contains therefore for each of the 130,000 funds 14 data points representing
the performance for one year. In Figure 3.1.8, we visualize the impact of the risk (x-axis) on the
performance (y-axis). The color of each data point represents the respective one-year interval
applying a rainbow colormap. We chose a rainbow colormap supporting our lighting technique
and enabling the analyst to distinguish between different intervals in an ordinal way.

We compare in Figure 3.1.8 circular pixel placement (a) and ellipsoid pixel placement (b)
both with illumination applied. In both figures, in the middle of the data set is a sparse area
visible. As known from financial research and also visible in our visualization, increasing risks
have either strong positive or negative impact on the performance of financial funds. Exploring
the data set further, we highlighted four high-density clusters in Figure 3.1.8 (b). A very promi-
nent cluster is C1 described by high risks and very lowperformance. ClusterC1 corresponds to
the “Dotcom” crisis in 2000 and the global financial crisis in 2007 to 2009 and shows a strong
negative correlation of risk and performance. Cluster C4 shows quite the opposite behavior:
directly after the global financial crisis in 2009, the funds recovered in 2010 quickly. The other
funds of 2010 are contained in cluster C2, showing low risks and medium performance. The
years 2005 to 2007 are shown in cluster C3. These years were succeeding the “Dotcom” crisis
from which the market slowly recovered.
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Figure 3.1.8: Risk-performance analysis of 130.000 American financial funds from 1995 to
2010. The risk of each fund is represented by the x-axis and the respective performance is
shown on the y-axis. The color encodes the time of a one-year investment period, for example,
red represents purchases in beginning of 2010 and sales at the end of 2010. Reprinted from
[JHM+13], © 2013 IEEE.

Telephone Service Usage Analysis

We investigate in this application a telephone service usage data set with 37,787 record entries.
The set was collected by IT service managers and is analyzed with respect to correlations and
usage patterns. We analyze the charge for a call (x-axis), the duration of a call (y-axis), and the
respectivenumberof telephoneconferenceparticipants (color) inFigure3.1.9. For comparison
reasons, we applied the same amount of distortion as in Figure 3.1.2.

In both pixel placements variants, the overall call distribution can be seen. Nevertheless, the
circular pixel placement in Figure 3.1.9 (a) visualizes less local patterns in dense areas compared
to the ellipsoid pixel placement (b). The ellipsoid pixel placement is able to partition the large
set of data points into two different phone rates representing national and international calls.
Furthermore, our illumination allows to see the origin of a data point and to visually assign data
points to a phone rate.

The interaction on a data point level is enabled by our pixel placement allowing us to inspect
meta-data, for example provider or timestamps. Based on our analysis, we could derive the
following insights:
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Figure 3.1.9: Visual analysis of a telephone conference usage data set consisting of 37,787
records. We applied in both visualizations the same amount of distortion, but compared
the previous pixel placement algorithm with our novel techniques described above. The
new ellipsoid pixel placement is able to split the high-density patterns in the lower left,
while they are merged in the circular pixel placement algorithm. Reprinted from [JHM+13],
© 2013 IEEE.

1. There is a variety in charges resulting fromdifferent providers and the locality of the con-
ference call. The national calls represented by the left curve are the most expensive calls
per minute and occur quite often. Surprisingly, the international calls are less expen-
sive than the national ones. The slope of the national calls decreases with increasing call
length seemingly resulting from a quantity discount.

2. The date points of the lower right patterns represent the international calls. The are two
green linear patterns visible resulting from twodifferent serviceproviders, namelyAT&T
and Sprint.

3. Comparing the national and international calls, there seems to be amore clear rate struc-
ture for international calls. The distribution of national calls varies stronger and results
from external influence factors, as for instance time of the day.

4. Our novel ellipsoid pixel placement enhances the visual salience of local patterns and the
illumination separatesnearbyhigh-densitypoint clusters. AlthoughbothFigures 3.1.9 (a)
and (b) result from the same amount of distortion, the merged clusters of (a) are better
separated in (b).
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U.S. Census Data Analysis

We round up our presentation of application scenarios with a geospatial data set. We analyze
census data of the United States shown in Figure 3.1.1. The census data set contains 333.488
entries andwas collected in 1999. We visualize themediumhousehold incomewith 500 house-
holds being aggregated to one single data point. In our visualizations, the x-axis and y-axis rep-
resent longitude and latitude and coloring encodes the medium household income. To ensure
the compatibility with our illumination technique, we again use a hue-based colormap. The
traditional scatter plot depicted in Figure 3.1.1 (a) suffers from the unequal population den-
sity distribution. The empty area in the Midwest cannot be used for visualization purposes,
whereas the coastal areas have high degree of overplotting. We removed all overplotting by the
circular pixel placement in Figure 3.1.1 (b) and by ellipsoid pixel placement in (c). We applied
additional illumination to the results of our ellipsoid pixel placement in Figure 3.1.1 (d). Com-
paring the different visualizations, it is obvious that the traditional scatter plot shows very few
data points. Both pixel placement algorithms enable analysts to see the whole data set. The
circular pixel placement introduces visual artifacts in terms of circular shapes and hides local
patterns. The ellipsoid pixel placement represents local patterns better and shows for instance
the coastal line. Applying shading enhances the visualization even more and helps to separate
nearby population centers.

3.1.7 Conclusion

We presented in this section two enhancements for scatter plots enabling a overplotting-free vi-
sual representation. By analyzing local correlations in the data set and using this information to
adjust the pixel placement process, we are able to enhance the visual salience of local patterns.
Furthermore, we added illumination to the pixel placement result in order to better separate
visuallymerged clusters. We support different lighting approaches based on the respective ana-
lyst’s needs. Our techniques have been applied to three different application domains showing
the wide applicability of our approach. We plan as one of our next steps to further improve the
pixel placement and adjust the used shapes to the local point distribution.
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3.2 ReducingOverplotting for Line-Based Visualizations

This section is based on and partly cites the two following publications. The first publication,
SimpliFly, proposes and discusses several methods to simplify and enhance trajectories². The
second publication complements the simplificationmethods of our SimpliFly paper by cluster-
ing dense movement patterns and deriving a graph-based visualization³.

SimpliFly: A Methodology for Simplification and
Thematic Enhancement of Trajectories

K. Vrotsou, H. Janetzko, C. Navarra, G. Fuchs, D. Spretke, F. Mansmann, N. Andrienko, and G.Andrienko.

IEEE Transactions on Visualization and Computer Graphics, 2015. [VJN+15]

Visual Abstraction of Complex Motion Patterns

H. Janetzko, D. Jäckle, O. Deussen, and D. A. Keim.

SPIE 2014 Conference on Visualization and Data Analysis, 2014. [JJDK14]

3.2.1 Preface

With the ongoing development and advances in technology, today we are able to track more
movement data than ever. GPS receivers and other environmental sensors are shrinking in both
size and weight every year and simultaneously get better in precision and battery life. Today,
researchers are enabled to track smaller animals, such as crabs or hummingbirds, not possible
previously. The trajectories recorded by such devices consist of a timestamp, a geospatial po-
sition, and optionally additional meta-information either environmental (e.g., precipitation or

²In this work, Katerina Vrotsou and Carlo Navarra invented and implemented the property-based simplifi-
cation and enhancement. Katerina Vroutsou integrated my density-based simplification approach into a huger
picture andwas themain author of the publication. David Spretke implemented theDouglas-Peucker algorithm
and the geospatial framework, in which I could integrate my density-based simplification technique. Georg
Fuchs, Florian Mansmann, Natalia Andrienko, and Gennady Andrienko revised and co-authored the publica-
tion.

³The graph-based visualization and the temporal partitioning was implemented by Dominik Jäckle. I had
the idea to perform clustering and use the resulting clusters in a graph-based visualization. The clustering and
the heatmap representation of a cluster was implemented by myself. Daniel Keim and Oliver Deussen helped
with fruitful discussions and advices
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wind direction), medical (e.g., heart rate or body temperature), or movement related (e.g., pos-
ture or acceleration forces).

Consequently, the amount of data being recorded grows quickly in terms of temporal and
spatial resolution and in terms of the number of moving objects being tracked. Furthermore,
new additional dimensions as described above aremeasured and can reveal important insights.
Unfortunately, there are severe challenges in analyzing and visualizing movement data due to
the large amount of data with high resolution covering long periods of time. The three crucial
points that have to be dealt with for an effective and successful analysis are:

• Tiny patterns orminor variations are hard to observe because of perceptional limitations.

• The cognitive load of the analyst should not exceed his capabilities – keeping track of all
data is impossible and focusing on important patterns is crucial.

• Rendering performance issues should not detain the analyst from an interactive Visual
Analytics process.

Although the recorded movement data is sampled and could be seen as point-based data,
we usually interpret such data as trajectories and interconnect the measurements with lines.
Such line-based representations of movement suffer even more from overplotting than point-
based visual representations. When we investigate real-world movement of animals, we can
observe different kinds of movements. There are territorial animals such as wolves or lions.
Territorial animals stay in their territory and visit other places only in exceptional cases. In the
opposite, migrating animals have areas where they stay for foraging or breeding but also cover
long distance travels. Analyzing movement on very different scales is quite challenging and
visualizing such data without distortion retaining both local details and the global context is
difficult.

Movement data is not only challenging because of the large amount of data available but also
because of the dynamic nature of movement patterns. Even the most regular movement pat-
terns vary over time influenced by external factors as for instance weather or traffic jams. We
exemplify a temporal shift of movement patterns with the help of a real-world data set in Fig-
ure 3.2.1. We enhance the visibility of the temporal movement shift by visualizing the density
distribution (b) instead of visualizing the raw movement data (a). Low density areas are en-
coded by green, whereas medium and high densities are represented by yellow and red colors.
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(a) complete trajectory (b) density visualization

(d) first third (e) second third (f) last third

Figure 3.2.1: Movement data of a lion over a period of two years. We partitioned the data
set into three thirds visualized in Figures (c) to (e) showing a temporal shift. The temporal
shift is not seen in the complete trajectory depicted in (a) and (b). Low density areas are
encoded by green, medium density by yellow, and high density by red colors. Reprinted from
[JJDK14], © 2014 SPIE.

The temporal movement shift is very salient, as we partition the recorded trajectory into three
parts. The first third shown in (c) shows some kind of circular movement pattern in the north-
ern region. The north-south transition pattern becomes obvious in the last third depicted in
(e).

We propose in this section two techniques dealing with overplotting and reducing the num-
ber of details presented to the analyst. First, we introduce a novel line simplification algorithm
being efficiently adjustable to the current zoom level. We compare our line simplification ap-
proach to two related techniques and discuss the merits and drawbacks. The second technique
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described in this section consists of a temporal and geospatial abstraction, in order to visualize
movement patterns in a visually less overwhelming way. We combine the abstracted graph-
based visualization with land-use information incorporating some context information to fur-
ther support the analyst.

This section is based on two complementing approaches and is structured as follows. We
will first discuss methods simplifying movement data represented by linear segments. Instead
of applying pure geometric-based simplification approaches, we derive descriptive features of
the input and use this information to adapt the simplification to the data set. Later on, we will
use thedensity of filteredmovement records to showmovementpatterns fromanabstract node-
link-diagram view. All the techniques presented here will be applied to real-world data sets and
the results will be discussed.

3.2.2 Related Work

Movement data has been in research focus for a long time and many analysis and visualization
techniques have been proposed. Summaries of previous works in the geospatial domain can
be found for example in [AAB+13a, GP08, GS05]. The goal for movement data is usually
to enable analysts detecting and understanding movement patterns. As stated above, visual-
izing large and dense data sets is challenging and often standard techniques are not feasible at
all. Sampling is a statistical approach often applied to reduce the number of data points while
preserving statistical features of the data. In our example, presented in Figure 3.2.1, sampling
would not be sufficient as the density is by far too high and overplotting issues too severe. We
will present in the following section three differentmethodological approaches dealingwith the
analysis and visualization ofmovement data. At first, wewill introduce simplification-based ap-
proaches followed by aggregation-based methods. We will furthermore discuss segmentation-
based techniques partitioning the trajectories into meaningful units.

Simplification-based Approaches

Line reduction and simplification is one possibility to enhance the readability of geospatial
movement visualizations. Several approaches in the domain of geometric line simplification
have been proposed [DP73, VW93, LIS12], with the Douglas-Peucker algorithm being one of
the most prominent ones. The recursive Douglas-Peucker algorithm determines successively
significant points of the line and removes all other points. Smoothing techniques with focus
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on maps are proposed by Burghardt et al. in [Bur05]. Smoothing is applied in order to reduce
the visual clutter of angular lines (e.g., for railroads or buildings), sinuous lines (e.g., for rivers
or coastal lines), and contour lines (e.g., isolines in maps). Curve simplification with focus on
decreasing the runtime complexity is described by Agarwal et al. in [AHPMW05]. Besides
to computational geometry techniques simplifying lines, there exists a number of techniques
reducing the temporal resolution of a trajectory. Laube and Purves discuss in [LP10] the influ-
ence of different temporal sampling on derived attributes as speed or sinuosity. The technical
aspects of random sampling are discussed and described by Ellis and Dix in [ED02].

The simplification methods described above are only applicable to a certain extent to move-
ment and trajectory data. For example, coastal or contour lines do not contain self-crossings
and consequently have less overplotting issues than geospatial movement. The most promi-
nent simplification technique is probably the Douglas-Peucker algorithm and we chose it as
the representative for simplification-based approaches despite its limits. Besides other draw-
backs [VW90], the simplification result of Douglas-Peucker is highly sensitive to outliers. We
propose in this section two additional simplification methods enhancing the pure geometrical
simplification approaches. Theproposed simplificationmethods takedata features into account
and are either density-based or property-based.

Segmentation of Trajectories

Partitioning complex movement data into coherent parts enhances the readability and under-
standability. Determining coherent segments allows visualizing trajectories in a more expres-
sive way. Segmentation of trajectories into episodes is an ongoing research topic. Movement
episodes are defined as parts of a trajectory having relatively coherent properties (e.g., speed,
heading or sinuosity) and being cut by sudden changes in these properties [DM03]. Usually,
a new episode ranges from one cut to the next cut position and consequently all movement
points belong exactly to one episode. A number of spatio-temporal cut criteria are discussed by
Buchin et al. [BDvKS10]. Concerning performance, a variety of methods implementing cut
criteria have been proposed [AVH+06, GGM10, HBK+07, PPK+11]. We use a slightly modi-
fied approach for segmentation as we are interested in regions where the movement of animals
fulfills specific properties that label them as sleeping places or foraging areas.

The results of the segmentation process can be used for further analysis and visual presen-
tation. Similar episodes of moving objects are detected and grouped by Laube et al. [LIW05].
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The authors look for specific motion patterns of several moving objects. Motion modes are
automatically classified by Dodge et al. [DWF09] by performing an analysis of motion charac-
teristics within trajectory episodes.

The episodes of a trajectory can be clustered in order to reveal further movement patters
characterized by similarity in multiple attributes. Lee et al. [LHW07] describe in their work
a framework based on partition-and-group clustering. They enable analysts to detect common
sub-trajectories in multiple trajectories. Applying incremental clustering to detect common
sub-trajectories is discussed andproposedbyLi et al. in [LLLH10]. Lee et al. [LHL08] present
classification techniques in order to classifymovement according to properties with the help of
generating a hierarchy of discriminative features.

The presented methods segment trajectories into coherent episodes with respect to given
properties. Our approach is inspired by these techniques as we also partition trajectories ac-
cording to user-chosen data properties anddifferentiate between interesting andnot interesting
movement episodes. Our clustering differs from these methods in that it is applied to arbitrary
attributes chosen according to the analysis goals and is used for supporting visual exploration
of movement patterns. In addition to the presented techniques, we use data statistics, namely
density information, and integrate this information into the segmentation process.

Visual Data Representation and Exploration

Visualizinggeospatial data canbenaturally achievedbyusingmap-based representations. Move-
ment can be represented on both static and animatedmaps as discussed by Vasiliev in [Vas97].
Visualizing the temporal dimension simultaneously with the movement patterns is possible
with a technique called space-time cube [Kra03, Kwa00]. Space-time cubes use a third visu-
alization dimension to encode the temporal information of two-dimensional movement data.
Multiple trajectories of aircrafts are visualized by Hurter et al. [HTC09] in a way allowing iter-
ative queries by animated transitions between different projections of the data.

Aggregation-basedmethods avoidover-plottingat all and furthermore allowalso a large amount
of complex trajectories. There are several techniques applying aggregation to movement data.
Density visualizationsusing surfaces representoftenvisited regionsbyheatmaps [DM03,FH00,
Mou05, WVDWVW09a, SWvdWvW11, SWvdW+11]. Similar movements are grouped to-
gether in Flow Maps by partitioning the spatio-temporal space and visualize movements as a
directed graph [Guo09, PXY+05, Tob87, BBBL11]. Spatially ordered treemaps introduced by
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Wood et al. [WD08] can be used to display trajectories by aggregation. Methods for spatio-
temporal aggregation are proposed by Andrienkos [AA08], an overview of existing approaches
can be found in the framework by Andrienko et al. [AA10]. Another very related applica-
tion area is the visual analysis of eye tracking data. Andrienko et al. [AABW12] and Li et al.
[LÇK10] present different approaches based on clustering and the space-time cube. More re-
lated to the area of animal movement data also using aggregation-based techniques is the work
of Grundy et al. [GJL+09].

In many application domains text data arises and such textual information needs to be dis-
played. Word Clouds [VWF09] are a prominent way to visualize the importance of textual
fragments made popular by wordle.net. Word clouds have been applied in very related ap-
proaches. Nguyen et al. [NS10] display textual data on top of maps in a Word Cloud fashion.
Important terms are displayed in larger font size than less important ones. The tags do not have
their very own geospatial location but share the same location. It is therefore not possible to
assign each tag their desired position. In [KKEE11], Kim et al. use Word Clouds to enhance
node-link diagrams by visualizing Word Clouds instead or on top of nodes and edges. This ap-
proach is very related to our work besides the node-link diagrams have no spatial reference but
result fromdocument analyses. Anotherwork usingWordClouds for analyzing land-use data is
presented by Ferreira et al. in [FLF+11]. WordClouds are here used as smart lenses displaying
the land-use categories covered by the smart lens.

Visual data representation is essential for our methods presented in this section. In compar-
ison to the techniques discussed above, we use density information of movement data for our
simplification and visualizationmethods. We do not take three-dimensional visualization tech-
niques as space-time cubes into account as overplotting is too severe for large movement data.
Aggregation-basedmethods have to be tailored to the analyst’s needs with focus on the respec-
tive task. In this section, we combine the partitioning of trajectories with density visualizations
and furthermore provide a flow-based graph with further context information all based on the
density distribution of the analyzed movement data.

3.2.3 Density-Based Line Simplification

The purpose of density-based simplification is to remove details from trajectory portions that
exceed screen resolution and/or perceptual limits: dense clusters of data points can, in prin-
ciple, be replaced by a single cluster representative. This kind of simplification is, hence, an
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inherently viewpoint-dependent operation based on screen resolution and the current zoom
level (in 2D) or virtual camera position (in 3D). Smooth interaction with the representation
requires its application at interactive frame rates. The naïve approach of density-based cluster-
ingdirectly in screen space is thushardly feasible as it implies re-calculating clusters for all visible
trajectories based on changed node densities for every update of the viewpoint. We therefore
propose amore efficient technique using real world/object coordinate-based densities allowing
interactive simplification even of large trajectories.

The key idea here is to capture the relative densities of trajectory points in object space only
once in a clustering preprocessing step. As the viewpoint changes these cluster results are trans-
formed into screen space to obtain absolute (pixel-based) densities, which is computationally
far less demanding and can be achieved in linear time. Figure 3.2.2 shows a schematic overview
of this approach. Its individual steps are detailed in the following subsections.

Figure 3.2.2: Schematic depiction of the density-based simplification approach. The input
trajectory points are ordered into a core-reachability distance plot using OPTICS (A). From
this plot a cluster partition is extracted depending on current on-screen size (B). Finally
the clustered data points are processed sequentially to generate a simplified trajectory from
cluster representatives (C). Reprinted from [VJN+15], © 2015 IEEE.
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Clustering in data space

Theprimary notion of density-based clustering is that of so-called core objects that have at least
MinPoints neighboring points within amaximumneighborhood distance threshold ε according
to a defined distance metric. Points that are in the neighborhood of at least one core point are
called density-reachable. Core points and density-reachable points constitute dense regions or
clusters, whereas other points are considerednoise not belonging to any cluster. BothMinPoints
and ε are user-selected input parameters to the clustering process [HK06].

OPTICS [ABKS99] is an extension to this general density-based approach applying a spe-
cific sorting method to the input points prior to clustering. Beginning with an arbitrary core
point, it first builds a core-reachability distance plot for a given value ofMinPoints and a maxi-
mum distance value, dmax. From this plot cluster partitions of the point set can be extracted for
different neighborhood distance thresholds, ε ≤ dmax.

We apply OPTICS, as a one-time preprocessing step, to generate a core-reachability dis-
tance plot for a trajectory’s data points (Figure 3.2.2A). The plot is built for a neighborhood
sizeMinPoints= 2. This allows extraction of clusters of only two trajectory points as the small-
est possible simplification step. dmax is chosen as the length of the trajectory’s bounding box
diagonal. Density clustering the set of trajectory data points with this neighborhood distance
threshold guarantees that for any point all other points are within its neighborhood and thus,
all belong to a single cluster. Therefore, the highest degree of simplification reached by our
density-based line simplification approach is to collapse the entire trajectory into a single point.

Clustering result transformation

To arrive at an actual, screen resolution-dependent clustering of a trajectory’s data points, the
core-reachability distance plot of that trajectory is evaluated for a specific distance value, ε, ac-
cording to theOPTICS algorithm [ABKS99]. This allows selection of an overall simplification
level for the trajectory: higher values of ε result in larger and fewer clusters being extracted from
the plot (and thus, amore simplified trajectory representation), whereas smaller values of ε gen-
erate smaller andmore clusters retaining more of the original trajectory’s details. Note that the
evaluation of the core-reachability distance plot has linear complexity with respect to the num-
ber of trajectory points, making simplification level selection possible at interactive rates even
for large trajectories.

In our approach, ε is determined for the current display size of the trajectory based on the
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width in pixels of the primitive used to represent trajectory segments (e.g., simple lines or tri-
angles, cf. top-left Figure 3.2.2). For this, an inverse projection of the pixel diagonal length at
the current zoom level into data coordinate space is performed. For 2D maps ε is determined
by finding the geographic distance covered by the diagonal of a pixel in the map representation
multiplied by the primitive width in pixels, thus yielding ε as the primitives’ width in data co-
ordinate space. This results in segments of the simplified trajectory that are at least as long as
they are wide in screen space. Shorter segments would only add variations in the trajectory’s
path which are hard or even impossible to perceive, since the corresponding bends between
segments would be masked by the resulting overplotting.

Simplification

The final step is to derive a simplified trajectory representation from the view- and resolution-
dependentdatapoint clusters by replacing each cluster by its representativepoint, thus reducing
the number of trajectory line segments (Figure 3.2.2C). In our approach, we use the arithmetic
mean point of a cluster.

Algorithm 3.2.1: Building representative points from a clustered trajectory
Data: List of geographic data points of one trajectory (ordered by time) associated with

a cluster ID (noise has a negative cluster ID)
Result: Simplified trajectory following a semantic zoom approach

Trajectory result = new Trajectory( );
int lastClusterID = -1;
DataPoint curRepPoint = new DataPoint( );
foreachDataPoint p in listOfClusteredObjects do

if lastClusterID< 0 then
result.insertPoint( p );

else if lastClusterID == p.getClusterID( ) then
curRepPoint.addPoint( p );

else
result.insertPoint( curRepPoint );
curRepPoint = new DataPoint( );
curRepPoint.addPoint( p );

lastClusterID = p.getClusterID( );

return result;
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However, a trajectory is a temporally ordered sequence of points, whereas data points are
clustered only with respect to their spatial positions. This creates the risk of the temporal aspect
being lost as points from temporally disjoint trajectory segments may be assigned to the same
cluster (cf. clusterC1 in the lower-right of Figure 3.2.2). In order to avoid losing the temporality
of the trajectories, we address this risk explicitly by sequentially processing the trajectory data
points from beginning to end, as depicted in Algorithm 3.2.1. Consecutive points assigned the
same cluster ID are aggregated to obtain their mean representative, and as the next ID in se-
quence is encountered, the current simplified trajectory segment is finalized. Thus, if a cluster
ID is re-encountered later in a trajectory the corresponding points from the cluster are associ-
ated with a different segment. Figure 3.2.2C shows an example for this: points from cluster C1

are aggregated into two distinct vertices for the simplified trajectory.
Also note that singleton data points, or ’noise’ in the selected cluster partition, are never

merged with any other trajectory points, because they are sufficiently far from any other lo-
cation at the current simplification level. On the one hand, there is no need in merging since
these points do not contribute to clutter and overplotting; on the other hand, these point may
convey important trajectory shape and object location information that should be preserved.

(a) 614 segments (b) 322 segments (c) 9 segments

Figure 3.2.3: Paragliding in Lake Chelan. A glider’s trajectory simplified using density-based
simplification at various levels of detail resulting in: (a) 614, (b) 322, and (c) 9 segments.
Reprinted from [VJN+15], © 2015 IEEE.

We show in Figure 3.2.3 the simplification results of our technique introduced above applied
to a paragliding trajectory. Depending on the screen resolution different aggregation levels are
chosen. Starting from Figure 3.2.3 (a), with decreasing resolution our simplification algorithm
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would aggregatemore andmore ending at the result shown in (c). Theglobalmovement pattern
is visible in all of the three different simplification settings and even representing the trajectory
by nine segments seem to be sufficient for a coarse but expressive shape.

Comparison and Discussion

Wewill compare our simplification technique introduced abovewith twoother techniques suit-
able for line simplification. We chose the prominent Douglas-Peucker algorithm as one state-
of-the-art simplification algorithm to compare our technique with. The second technique dis-
cussed here represents another approach for line simplification applying property-based clus-
tering. In the property-based approach, all data points are clustered according to the similarity
of trajectory properties, like sinuosity, speed, or additional meta-data as temperature, and not
with regard to geospatial density. Consequently, data points having exceptional property val-
ues will be shown to the user while others with frequent values may be replaced by a cluster
representative according to the current zoom level. The efficient zoom level dependent simpli-
fication is achieved by hierarchical clustering and a quality-aware aggregation level selection.
The aggregation level is chosen by analyzing the variance in the properties used for clustering.

In Figure 3.2.4, we compare the three different simplification algorithms. They all preserve
different aspects of the underlying movement patterns exemplified by a Galapagos albatross
flight data set.

Geometry-based simplificationalgorithms suchasDouglas-Peuckeruseonly topological and
structural properties of movement and do not take further attributes into account. Geometry-
based techniques are typically applied for simple lines in maps and are not perfect for more
complex lines as trajectories for example [VW90]. In our example in Figure 3.2.4 (a), we ap-
plied Douglas-Peucker as a representative for geometry-based line simplification algorithms.
Douglas-Peucker achieves only very limited simplification and focuses mostly on long straight
movement parts. In particular, small movements in dense regions are not simplified at all and
self-intersections and overplotting are severe problems. Since dense regions are quite common
in trajectory data, we need techniques dealing with them properly.

We applied our density-based simplification method to the very same albatross data set in
Figure 3.2.4 (b). Density-based methods will simplify dense regions according to resolution
and zoom level. By simplifying dense regions, these techniques will focus on where a moving
object hasbeenandavoid visually cluttereddense regions. Consequently, screen andperceptual
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(a) Geometry-Based Simplification (b) Density-Based Simplification

(c) Property-Based Simplification

Figure 3.2.4: Galapagos albatross trajectory simplified by three simplification approaches
and represented using tapered segments [HvW09]. (a) Geometry-Based Simplification (us-
ing the Douglas-Peucker algorithm) achieves a good overall fit to the original trajectory.
(b) Density-Based Simplification precisely models the long migration segments and simpli-
fies dense regions so that the path of the albatross can be nicely followed after entering
the marked dense region on the right. (c) Property-Based Simplification merges segments
having similar attribute properties (e.g., heading and sinuosity) and preserves segments with
attribute changes. Reprinted from [VJN+15], © 2015 IEEE.
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limitations in terms of how much information is distinguishable are taken into account and
overplotting will be reduced.

The property-based simplification reveals how a moving object behaves with respect to po-
tentially both geospatial topology and properties depending on the analysts choice. In Fig-
ure 3.2.4 (c), the albatross data set is simplified by the property-based simplification. The ap-
proach reduces the cognitive load by showing only important changes of properties. Perceptual
limitations are tackledbut not completely solvedby aggregating segmentswithminor variations
in the selected properties. Screen and resolution limitations are per se not covered but the ap-
proach could to some extent be enhanced with respect to these limitations.

Comparing Figures 3.2.4 (a) and (b) in detail, we can spot two major differences resulting
from the different underlying approaches. The first difference is related to straight movement
patterns consisting of several segments being simplified to one single line by the property-based
simplification (c). Theproperty-based simplification, however, does not take heading and sinu-
osity into account and straightmovement patternswill be only simplified if the resolution is not
high enough. The secondmore severe difference corresponds to simplification of line segments
in dense regions being highlighted by circles in Figure 3.2.4. The density-based simplification
method (b) is the only technique focusing on the density distribution and especially tries to
reduce overplotting in dense regions. Consequently, the overall movement in the encircled
regions is better visible in the density-based simplification.

Although it seems that the density-based simplification outperforms the property-based ap-
proach, both techniques have their merits depending on the analysis tasks. We want to em-
phasize and illustrate the merits of the property-based simplification in another comparison.
In Figure 3.2.5, we investigate the simplification of a 3D flight trajectory. The density-base ap-
proach replaces spatially closepoints by a representative point, whereas theproperty-based sim-
plificationmethod simplifies only trajectory segments if their properties are quite diverse. This
behavior can be seen in Figure 3.2.5 highlighted in yellow. The left highlight shows an example
where a single segment of the property-based simplified red trajectory corresponds to several
of the density-based simplification. The right highlight gives an example for a single segment
of the density-based simplified blue trajectory corresponding to several of the property-based
simplification. These differences are also highlighted in Figure 3.2.4.

Both techniques have their merits and drawbacks and the decision which to apply is highly
analysis task dependent. With both techniques being designed in a way to support the respec-
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Figure 3.2.5: Results of the density-based (blue) and the property-based (red) simplifica-
tion methods applied to the same trajectory and displayed in the same image using tapered
segments. Differences between the methods are highlighted in yellow. Left: a single property-
based simplified trajectory segment of constant descend corresponds to many density-based
simplified segments of slightly varying course. Right: a single blue density-based simpli-
fied segment corresponds to many property-based simplified segments of an upwards spiral.
Reprinted from [VJN+15], © 2015 IEEE.

tive analysis task by parametrization, the analyst is able to tailor the simplification to his needs.
Nevertheless, the simplification process is always a trade off between the number of data points
shown and the accuracy of the simplified trajectory. Although we lose movement details, we
preserve the temporal aspect of the movement patterns as the representative segment covers
the very same time span as the cluster of points being represented. The simplification will only
change the temporal sampling rate of the underlying movement pattern.

3.2.4 Semantic Trajectory Abstraction

Wedescribe in this section an approach for trajectory abstractionwith focus onboth the tempo-
ral andgeospatial aspects ofmovement. Asmotivatedbyour example inFigure 3.2.1movement
patterns may vary over time. Consequently, we first aim to detect movement patterns and af-
terwards show their development over time. In detail, we automatically detect dense regions
and use them for visual abstraction of complex motion patterns. We partition the trajectory
into regions with high density and transitions between them. Additionally we analyze and de-
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tect temporal shifts in movement patterns and use them for what we call temporal abstraction.
We furthermore analyze the underlying land-use distribution and display the land-use by word
clouds.

In this section, we will first introduce our approach for the visual abstraction with focus on
the geospatial dimension. The temporal dimension is tackled in the second part of this chapter
and deals with the automatic detection of coherent time windows.

Geospatial Abstraction

The basic idea of our technique is to visually abstract the trajectory when certain properties are
fulfilled (e.g., low speed or bad weather conditions) and to show only simplified transitions.
More specifically, we reduce the amount of over-plotting by a process of filtering, clustering,
and finally visual abstraction. The overall abstraction process is depicted in the schematic Fig-
ure 3.2.6. In the filtering step (I), the analyst can at first interactively select points of the trajec-
tory with specific attribute properties. We therefore provide filter functionality for attributes
like speed, heading, or duration and also for additional attributes like weather information as
precipitation.

noise

I II IVIII

cluster 2

cluster 1

Filtering Clustering Combination

noise

Figure 3.2.6: Process pipeline of the visual abstraction beginning with the raw data in (I)
applying filtering (II), clustering (III), and finally combining and visualizing the results in
(IV). Only the green points fulfill the user selected filter criteria. Reprinted from [JJDK14],
© 2014 SPIE.

The user interface for filtering is capable of a concatenation of several filters tailored to the
analyst’s needs. For a more effective filtering we support the analyst by providing a histogram
of the attribute’s value distribution. All data points passing the filters, shown in Figure 3.2.6 (II)
are then clustered byDBSCAN [EKSX96], a density based clustering technique, providing the
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result in Figure 3.2.6 (III).Theuser can control the clustering granularity as he can influence the
epsilon andMinPointsparameter interactively. For each clusterwe then compute the convex hull
and use it as a visual abstraction for this part of the trajectory. In addition to drawing the convex
hull polygon, we fill each convex hull with the density distribution visualized by a heatmap.
The colormap depicted in Figure 3.2.1 encoding the density distribution goes from green (low
density) over yellow (mid density) to red (high density).

(a) original trajectory (b) geospatial abstraction

Figure 3.2.7: Our geospatial abstraction method is applied to an albatross trajectory de-
picted on the left hand side. The final result of the proposed method is shown on the right
side. We used for filtering a low speed in order to find resting and foraging places. Reprinted
from [JJDK14], © 2014 SPIE.

The last step is to visualize the trajectory on a geographic map, while using the previously
computed convex hulls and using simplified trajectories in between. For simplification pur-
poses we use only one intermediate point between the clusters. Simplifying the transition tra-
jectories can be performed by applying the Douglas-Peucker simplification for example. We
iterate over all points of the trajectory and look only for points being the transition from one
convex hull to another. Note that we also handle cases where these two convex hulls are identi-
cal and still show the transition. These transitions are then visualized in a simplified version to
only give a rough overview of the transition course, depicted in Figure 3.2.6 (IV). A final result
of the transformation process can be seen in Figure 3.2.7, where we applied our method to a
trajectory of an albatross.

We do also provide another visual representation of the processed trajectory. Basically, the

101



CHAPTER 3. ENHANCING VISUALIZATIONS FOR GEOSPATIAL DATA

convex hulls and the transitions in between can be seen as a graph network. We therefore im-
plemented a graph visualization of the trajectory with the convex hulls being the nodes and the
transitions being the directed edges. Thegraph layout is implemented in away that it reflects the
geographic relations while providing a very high-level and abstract overview of the data. The
graph-based and the map-based representation can be shown side by side supporting Brush-
ing and Linking. The interaction between both techniques gives the analyst an overview graph,
showing the major moving patterns, and enables further detailed analyses in the map-based vi-
sualization.

Temporal Abstraction

The result of the geospatial abstraction described in the previous section is used as an input to
our temporal abstraction algorithm. We visualize the identified convex hulls and transitions as a
graph network. The graph network is an abstract representation of the processed trajectory, but
does per se not include additional information compared to the map visualization. Therefore,
we add supplemental information to the graph network to enable further analysis steps. Each
identified cluster as well as all transitions between these clusters contain several points hold-
ing spatio-temporal information. We are using both, the time and the spatial location of these
points, in order to enhance the visual representation for deeper understandingof themovement
data.

noise

I II III

Transformation Segmentation

Figure 3.2.8: Exemplified abstraction of the map visualization (I) into a graph network
(III). All clusters are represented as nodes and transitions as directed edges. The position
of the nodes of the graph (II) corresponds to the relative geospatial positions of the clusters
preserving a visual alignment of map and graph. The resulting graph is partitioned into several
graphs in (III), each representing a certain timespan and a certain number of transitions.
Reprinted from [JJDK14], © 2014 SPIE.
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Figure 3.2.8 gives an overview of the overall transformation process. At first, we need tomap
thepositionof a cluster, visualizedby the convexhull, to thenodeposition in the graphnetwork.
We want to keep the displays as similar as possible and retain the relative positioning as best as
possible. The convex hull consists of multiple points and we therefore calculate the centroid of
the convex hull defining the position of the node. This step visually aligns the representation
on the map with the abstract representation as graph. Once the position has been calculated,
several attributes can be used to affect the node size: The amount of points enclosed by the
convex hull can give a global overview in which cluster most of the time was spent. But the
size can also be determined by mapping the size of the enclosed area to the node size. Another
possibility is tomap the time span a cluster was visited to the node size. The application of these
different parameter mappings depends on the analysis.

The transition fromone cluster to another is visualized by a directed edge. In order to reduce
visual clutter, multiple transitions between the same two clusters are aggregated and handled
as one. If a moving object, for example, often leaves the convex hull and returns immediately,
we represent this as one single reflexive directed edge. Here also the possibility is given to use
different attributes to affect the stroke width. The user has two possibilities: Either using the
amount of intermediate points or the amount of transition revisits.

Crucial for the temporal abstraction is handling the temporal dimension in ameaningful and
expressive way. Our goal is to retrieve further information like motion patterns and therefore
a segmentation of the motions according to different criteria is needed. One possibility is, to
divide the motion data into several equal-time intervals and to visualize the visited nodes and
edges. In this case, at least two severe problems occur: First, selecting a fixed time spanmay lead
to patterns not being visible as theymight cross the border between the time spans. Second, by
drawing the affected nodes and edges only the context of the motion pattern is missing. It may
be impossible to put the affected nodes and edges into context with respect to the entire graph
network. The fewer nodes a motion pattern covers and the bigger the entire graph is, it is more
and more difficult to visually map the nodes. Hence, we propose our technique combining the
overview and detail methodology [PCS95] with a semi-automatic algorithm for defining the
time intervals dynamically. Furthermore, we integrate the Small Multiples technique [Tuf90]
to visualize all time intervals side-by-side. Small Multiples are the combination of several snap-
shots of the same visualization in a dashboard-like representation; in our case, every snapshot
represents a different time window. Furthermore, we enable the analyst to influence the time
segmentation process according to his needs.
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As stated above, the geospatial context of the motion pattern may not be retrievable when
visualized alone. As a context visualization we draw the entire, fully connected graph, but gray
out all nodes and edges not being contained in the calculated time span. In addition, the very
first node of the trajectory is drawn green and the very last node is shown in red.

As alreadymentioned, the time intervals are calculated automatically and do not cover equal
long time spans. Algorithm 3.2.2 shows the computation process in more detail. We try to
avoid to partition the graph at points in time where the motion pattern would be interrupted,
for example in the middle of an intermediate edge between two clusters, we propose the usage
of a threshold. This threshold decides after how many hops the motion will be interrupted to
create a new Small Multiple or rather to end the time interval and to start a new one. The user
can change the threshold interactively and directly influence the partitioning process. Figure
3.2.8 (III) shows the result for the threshold zero. Every transition from one cluster to another
is visualized in a separate Small Multiple.

Algorithm 3.2.2:Determining the Small Multiples inclusive the covered time span
multiples←− ∅
multiple←− createMultiple()
hops←− 0
for iTraj ∈ intermediateTrajectories do

if iTraj.fromCluster equals iTraj.toCluster then
multiple.addIntermediateTraj(iTraj)

else
if hops < threshold then

multiple.addIntermediateTraj(iTraj)
hops←− hops+ 1

else
multiples←− multiples ∪ {multiple}
multiple←− createMultiple()
multiple.addIntermediateTraj(iTraj)
hops←− 1

end
end

end
if multiple is not empty then

multiples←− multiples ∪ {multiple}
end
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The segmented graph, resulting from the user defined threshold, covers a certain time span.
We determine the exact time span using the temporal information of the aggregated trajectory
points. Weconsequently calculate the temporal distancebetween thefirst point leaving a cluster
and the last point before entering the last cluster of the segmented graph (see Figure 3.2.9). The
computed time span specifies the covered travel distance. A time bar at the top of each Small
Multiple visualizes the covered time span. The orange bar specifies the covered time span in
relation to the full span (dark gray). The transition between one Small Multiple to another
results in a small gap between the covered time spans. This gap represents the time a mover
remains in a cluster before it starts a new journey.

Figure 3.2.9: This figure shows the determination of the time span. The time span starts
when leaving cluster 1 and ends when entering cluster 3. Notice, that the points contained by
the clusters 1 and 3 do not contribute to the identified time span. Reprinted from [JJDK14],
© 2014 SPIE.

Analysis and Visualization of Land-Use

The temporal abstraction shows per se only spatial and topological relations and omits some
spatial context information being available in maps. From our discussions with subject matter
experts we noticed that some additional context information in the temporal abstraction view
would be beneficial. Consequently, we integrated land-use information into our prototype. For
each cluster, we determine the most prominent land-use categories and their frequencies. This
information is used to create aWordCloud like visualization on top of the temporal abstraction
view. We will describe further details about the land-use integration in the next paragraphs.

As input for our land-use determinationwe used theGLOBCOVERdata set provided by the
European Space Agency. The GLOBCOVER data set differentiates between 22 different land-
use categories with a spatial resolution of 300× 300 square meters. For each of the clusters, we
determine the land-use categories for all the points belonging to the current cluster and store
this information. Lastly, we compute the relative frequencies of land-use categories for each
cluster.
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The distribution of land-use categories is used to draw a word cloud of the most prominent
categories. We implemented the Word Cloud algorithm described in [VWF09] following an
Archimedes spiral in order to detect the next free position. Basically, we compute for each clus-
ter a Word Cloud separately and add them to the temporal abstraction view. We assign the
cluster’s position to the corresponding Word Cloud. Furthermore, we use a global list of al-
ready occupied positions to avoid overplotting of land-use labels of different clusters. For better
legibility of the combination of temporal abstraction and land-use Word Clouds, we color the
outline of the black labels by white coloring and set the transparency of the Word Cloud layer
to fifty percent.

3.2.5 Application

For all techniques it is challenging to be applicable for a wide variety of different motion pat-
terns. There are on the one hand very condensed, territorial trajectories and on the other hand
large-scale movements with highly varying velocities. We will show that our methods are ap-
plicable to every type of movement data. We will apply our techniques to different kinds of
animal movement with varying density and velocity properties. More in detail, we will show
and analyze movement data of albatrosses and lions with our methods. An albatross travels
over long distances between regions with slow movement, whereas lions stays at a certain re-
gion andmoves inside his territory. In both applications, the amount of points enclosed by the
convex hulls is mapped to the corresponding nodes and the amount of intermediate points is
mapped to the stroke width. The land-use categories are not varying at all for the first two ap-
plication examples. The albatrosses have basically only measurements on water areas and the
lions are tracked in savanna areas. We will lastly investigate the migration movements of white
storks tracked on their journey from Germany to Southern Africa. The land-use categories dif-
fer strongly along their movement trajectory.

Motion analysis of albatrosses

The movement data of albatrosses is characterized by varying distances, densities, and veloci-
ties. To apply our proposedmethods, we analyze an albatross whosemovement is between the
Galapagos islands and the coast of Ecuador. The motion data of the albatross consists of 1113
points. The covered time span lasts from May 31st, 2008 until August 9th, 2008. First of all, we
apply a filter of the speed determining the computed clusters. Filtering the low speed reflects
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resting and foraging places. Second, we adjust the parameters for the density based clustering
algorithm (DBSCAN).We choose a high amount ofminimumpoints and a lowdistance rate to
determine the clusters. For the graph segmentation we apply a threshold of seven transitions.
Figure 3.2.10 shows the resulting graphs.

Figure 3.2.10: This figure shows the (a) geospatial as well as the (b) temporal abstraction
of the movement data of an albatross. The (b) temporal abstraction shows two Small
Multiples with the threshold of seven transitions in order to segment the graph in the biggest
cluster (the Galapagos islands) and to unfold patterns. The orange, red framed time bar
on top of each Small Multiple visualizes the covered time span. Reprinted from [JJDK14],
© 2014 SPIE.

The threshold of seven transitions has been chosen in order to separate the Small Multiples
at the biggest cluster node. By applying the temporal abstraction, two abnormalities are made
visible. The first one is the stopover, represented by the cluster for the Galapagos islands. The
chosen segmentation for that cluster unfolds a wide time gap between the two SmallMultiples.
This time gap is revealed by the time bar. The time bar for the Small Multiple on the left hand
side visualizes the time span for the transition from the starting cluster to the cluster represent-
ing the Galapagos islands, which is also the largest (Figure 3.2.10 (b), the orange, red framed
time span on the left). The time bar for the Small Multiple on the right hand side visualizes the
time span from the largest cluster to the cluster where the movement ends (Figure 3.2.10 (b),
the orange, red framed time span on the right). By comparing both time spans with each other,
there is a wide span missing in between. This gap represents the time spent by the albatross
on the Galapagos islands. From this inspection we can suspect the Galapagos islands to be his
roost.

Anotherobservation is related to themovement along theEcuadorian coast. Themotionpat-
terns and clusters show, that the albatross remains in the bay areas and furthermore all clusters
representing the bay areas all have reflexive transitions indicating the circling of the albatross.
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For these areas it is likely that the albatross was hunting, indicated by the time spent and the cir-
cling behavior. After consulting ornithologists, they approved, that the biggest visible cluster
– which represents the Galapagos islands – is the bird’s roost and the remaining clusters along
the Ecuadorian coast represent the bird’s hunting grounds.

Motion analysis of lions

Compared to albatrosses, lions usually do not cover wide distances. Hence, the motion data
is very dense being challenging for visual analyses. In this section we will compare the motion
data of two different lions, living in the savanna. For the first one, Figure 3.2.11 shows (b) the
geospatial as well as (c) the temporal abstraction of (a) the raw motion data. The motion data
consists of 396 points and the covered time span lasts from April 28th, 2002 until September
13th, 2002.

We choose to filter the speed, so that only the motion with a low speed is being considered.
Furthermore, to adapt the number of Small Multiples to the movement we choose a threshold
of three transitions. Figure 3.2.11 (b) shows the geospatial abstraction and thus a very dense
and large cluster. Via this visualizationwe can seewhere the lion probably remainedmost of the
time, but we cannot clearly identify the movements in between the clusters; (c) gives us that
information and also reveals a moving behavior of the lion: The purple highlighted node in (c)
is drawn black in every Small Multiple. This means, the lion always returns to this place after
visiting at most two other places (indicated by the threshold of three transitions). Moreover,
the graph shows a second node with the same size of the purple marked node, which means,
that in that area the lion did spend the same amount of time, indicated by the amount of spatial
points included in that cluster. In the geospatial abstraction the corresponding cluster has not
the same size, but contains a very dense movement.

Figure 3.2.12 shows the second lion and the correspondingmovement analysis. Thismotion
data covers the time span from April 28th, 2002 to July 21st, 2007. Furthermore, it contains
1465 recorded points and is very dense (see Figure 3.2.12 (a)). Therefore, we filter for a very
high speed rate to refine the motion data in order to identify hunting scenarios and then apply
the geospatial abstraction (b) . This visualization contains several small-sized clusters being
barely visible due to the very small clusters. To visualize them in a more suitable way, we apply
(c) the temporal abstraction with a threshold of two transitions.
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a b

c

Figure 3.2.11: This figure shows the (a) raw movement data, (b) the geospatial, and (c)
the temporal abstraction of a lion living in the savanna. Figure (c) reveals the pattern that
the lion has one favorite spot. Reprinted from [JJDK14], © 2014 SPIE.
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a

b

c

Figure 3.2.12: This figure shows the (a) raw movement data, (b) the geospatial, and (c)
the temporal abstraction of the second lion living in the savanna as well. Figure (c) shows
the abstraction of the hunting grounds. Reprinted from [JJDK14], © 2014 SPIE.

110



3.2. REDUCINGOVERPLOTTING FOR LINE-BASED VISUALIZATIONS

The resulting Small Multiples make these clusters visible to the user. As this motion data
has been filtered for movements with a high speed rate, the clusters do stick out, because they
highlight a high speed in a dense area. High speed of lions is typically related to hunting and
the Small Multiples reflect the temporal sequence of hunting grounds.

Motion analysis of white storks

In this section, we investigate the migration pattern of a white stork. The data was collected
between August 1998 and May 1999 and contains 887 points. White storks migrate every fall
from Europe (in our case Germany) to Southern Africa and spend the winter there. In spring,
white storks will travel all the way back to spend the summer in Europe. Consequently, the
land-use categories will vary along the trajectory path.

For our studies, we were interested in the stop-over areas, where the storks rest and forage
regaining their power. Wefiltered for data pointswith very slow speed andperformed the above
described clustering. The resulting stop-over areas can be seen in Figure 3.2.13. We partitioned
the overall movement pattern into two sections, basically the way forth and back. Furthermore,
we added themost prominent land-use categories as a semi-transparent layer on top of the tem-
poral abstraction visualization.

Obviously, the storks travels through very sparse vegetation areas, being visible on the tra-
ditional map in Northern Africa. Nevertheless, all the stop-over points share the same kind of
land-use categories, namely croplands, forests, and bare areas. According to ornithologists this
is reasonable as the animals need a certain kind of environment to rest and forage. Our visu-
alization of land-use categories added more context to the stop-over areas, which allows the
analyst to get more insights to the bird’s movements. It is important that these stop-over areas
are protected in order to ensure storks being able to rest.

3.2.6 Expert feedback

Though, we showed the applicability of our proposed technique in the previous application sec-
tion, it is very important that real users rate our approach effective and helpful. We therefore
conducted an expert studywith twobiologists, both highly experienced in the domain ofmove-
ment and trajectory analysis. They usually perform their data analyses in command-processing
analysis environments, like the statistical toolkit R. Interactive parameter setting and immedi-
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Figure 3.2.13: The analysis results for a white stork is depicted in this figure. (a) shows
the original trajectory, while (b) presents the geospatial, and (c) the temporal abstraction of
the white stork’s movement. We added the contextual land-use information to the temporal
abstraction in (c).
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ate visual feedback of our system was therefore highly appreciated. We got very valuable feed-
back resulting in aspects for future work (see next section) and the following discussions of the
merits and limitations of our technique. We first explained our approach to the biologists and
afterwards let them interact with our system and look at the different results for the applications
described above. Weasked themtodescribe their typicalwayof analyzingdata and furthermore
to comment on our proposed technique.

The first feedback we received was related to the two ways of visualizing the same data in a
mapand in a graph. Thebiologists stated theywouldfirst lookon themap for interesting clusters
based on the surrounding geographic topology and afterwards investigate the corresponding
node in the graph-based representation. Theywerequite interested in theprevious visitednode,
which was easier to find in the abstract graph than in the map. Furthermore, the directly next
visited cluster is also important to them as they want to understand the context of the observed
cluster. The identical spatial layout of the graph corresponding to the topology of the map was
considered very helpful. The biologists were quite enthusiastic about the fact that they do not
have to deal with the high degree of over-plotting anymore. They usually visually inspect only
small parts of trajectories due to high degrees of over-plotting or apply aggregation techniques
and visualize kernel-density estimations.

Another very interesting result of the feedback session was the usage scenario the biologists
described. As described above, our expert users had a high background in statistical analy-
sis, which is quite common for biologists. They typically import their trajectories into R and
perform analysis tasks like statistics or data mining. What they are really lacking is an interac-
tive system enabling them to investigate the parameter space of the applied algorithms. As we
showed them our system and let them interactively change the clustering parameters, the biol-
ogists were discussing the different clustering results intensively. One outcome was that they
would like to have the resulting clusters and polygons in order to import it to R and perform
further statistical analysis. Additionally, they would like to have the possibility to annotate the
resulting clusters in order to materialize their findings and again export these annotations.

One more serious point arising along our study several times was the importance of the
proper filter settings. Only if the analyst knows what he is looking for and is capable of specify-
ing the properties accordingly the analysis processwill result in semanticallymeaningful results.
Without any knowledge of the mover’s foraging behavior, for example, it will be very difficult
to detect these motion patterns. One biologist discussed the difference betweenmigration and
foraging patterns for sea birds concerning speed and variation of headings. For migration pat-

113



CHAPTER 3. ENHANCING VISUALIZATIONS FOR GEOSPATIAL DATA

terns theheading stays typically the samewhile travelingquite fast. In the caseof foraging, speed
is typically lower and variation inmotion headings is higher compared tomigration settings. In
our case, it holds true that the experts know what they are looking for and are able to specify
filter parameters accordingly. But there might be cases where this is not possible, e.g., looking
for unknown behavior patterns like displaying of very rare and shy birds.

What the experts liked from a biologist’s point of view is the combination of the home-range
philosophy with occurrences of behavioral patterns. The home-range is defined in biology as
the region, where the animal spends fifty percents of its time. In our case the home-range can
be seen defined by density, because our trajectories are equally sampled. The reason why the
biologists liked the combinationof both approaches canbe seen in oneof the higher goals of the
biologists. By understanding the resource requirements for distinct motion patterns they can
save areas with corresponding resources as nature protection areas and consequently stop the
extinction of endangered species. Combining the notion of density with motion patterns has
the advantage that areas where the animal showed a specific behavior only once are considered
as outliers and not shown in the abstract visualizations. The data basis for further investigations
of interesting behaviors is therefore stronger and more convincing when arguing for natural
reserves.

3.2.7 Discussion

The land-use categories were one feature the biologists requestedwhen discussing our first pro-
totype with them. We added the land-use categories to the temporal abstraction view and can
therefore support the biologists combining the graph view with the spatial context. We iden-
tified an important point during integrating land-use data. Depending on the season, the envi-
ronmental changes are not reflected by the static land-use categories. Consequently, visualizing
only land-use is too little to describe the environmental conditions an animal experiences. Es-
pecially, extreme landscapes as deserts for example are very dry regions throughout the year,
although short rain periods provide large amounts of water in short time. Dynamical data sets
reflecting seasonal changes might help to explain observed movement patterns.

Ourpresentedprocesspipeline involves, first, a user-drivenfilter step, second, adensitybased
clustering, and third, the combination and visualization of the results. We use the result of the
geospatial abstraction as input to our second, temporal abstraction step. The identified convex
hulls are being visualized as a graph network with active node being highlighted for each time
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interval. Since each cluster contains both, spatial and temporal information, we use them to
enhance the visual representation. A technique called Small Multiples is used to visualize the
automatic temporal segmentation of the graph. The analyst can influence the segmentation
process and adapt the result to his needs.

However, the analysis and visualization are highly dependent on the right parameter settings.
First, the filtering step has influence to the semantics of the found clusters as only points fulfill-
ing the filtering criteria are considered for clustering. Choosing the proper clustering parame-
ters, e.g.,MinPoints and epsilon, is highly application dependent and is not trivial. Furthermore,
the analyst has to partition the whole time span into meaningful units by setting a threshold.
This threshold depends on all the previous steps and not intuitive to control. Only by inspect-
ing the visual results, the analyst can judgewhether the parameters were setmeaningfully. Con-
sequently, a Visual Analytics expert is needed to assist the subject matter expert in his analysis.

3.2.8 Conclusion

We presented in this section two line simplification techniques tailored to geospatial move-
ment data. In the first part, we described and compared pure line simplification methods with
focus on expressiveness and effectiveness. Zoom level dependent simplification allows adopt-
ing the line granularity to the respective spatial resolution. We designed our algorithm in a way
enabling interactive response to zoom level changes with linear runtime. Depending on the
applied similarity measure during clustering the focus of the simplification will change. If only
spatial distances are used, the simplification will only focus on density. If similarity measures
for meta-attributes (e.g., sinuosity or speed) are applied, segments with same behavior will be
grouped together and simplified by a straight line. The second part of this section described an
approach to analyze often visited places with a certain property and the corresponding visiting
sequences. The analyst can choose which property describes an interesting place by filtering
and control clustering and partitioning the trajectory interactively. With all the proposed sim-
plification and abstraction methods, we were able to derive some insights of the investigated
animal movement data sets.

The techniques proposed in this section were quite general with respect to the application
scenarios. We covered both long-distance and short-distance movements as well as territorial
movement behavior. These techniques do not require the movement to fulfill certain criteria
and are applicable to a wide set of movement patterns. Our approaches are quite general and
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use only movement attributes as position or derived attributes. Consequently, our methods do
not include domain knowledge and are less effective than highly tailored methods. In the next
chapter, we will restrict the investigated movement data to soccer matches. As the application
domain is restricted, we can tailor our methods and propose line simplification methods using
domain knowledge and allow deeper insights.
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I am seeking for the bridge which leans from the visible to the
invisible through reality.

Max Beckmann

4
Application to

MovementData of SoccerMatches

Contents
4.1 Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

4.2.1 Visual Analysis of Sport Data in Research Interest . . . . . 123

4.2.2 Movement and Constellation-based Analysis . . . . . . . 124

4.2.3 Analysis Based on Temporal and Statistical Aspects . . . . 124

4.2.4 Summary and Positioning of our Work . . . . . . . . . . 125

4.3 Single Player Analysis . . . . . . . . . . . . . . . . . . . . . . . . 126

4.4 Multi Player Analysis . . . . . . . . . . . . . . . . . . . . . . . . 130

117



CHAPTER 4. APPLICATION TOMOVEMENTDATAOF SOCCERMATCHES

4.4.1 Player Comparison . . . . . . . . . . . . . . . . . . . . . 131

4.4.2 Constellations and Formations . . . . . . . . . . . . . . 133

4.5 Event-Based Analysis . . . . . . . . . . . . . . . . . . . . . . . . 134

4.5.1 Interactive Feature Analysis . . . . . . . . . . . . . . . . 134

4.5.2 Similar Phase Analysis . . . . . . . . . . . . . . . . . . . 135

4.6 System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

4.6.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . 137

4.6.2 Visualization Components . . . . . . . . . . . . . . . . . 137

4.6.3 Visualizations . . . . . . . . . . . . . . . . . . . . . . . 138

4.6.4 Similar Phase Analysis Facilities . . . . . . . . . . . . . . 138

4.6.5 Interaction and Animation . . . . . . . . . . . . . . . . . 141

4.7 Use Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

4.7.1 Analysis of a Forward . . . . . . . . . . . . . . . . . . . 142

4.7.2 Feature Analysis for Defender Movement . . . . . . . . . 143

4.7.3 Shot-Event Feature Pattern Analysis . . . . . . . . . . . . 146

4.7.4 Back-Four Formation . . . . . . . . . . . . . . . . . . . 151

4.8 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

4.8.1 First Informal Expert Feedback . . . . . . . . . . . . . . 153

4.8.2 Expert Study . . . . . . . . . . . . . . . . . . . . . . . . 154

4.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

We discussed in the previous chapters several methods to improve visualizations for
both temporal and geospatial data. In the second chapter dealing with temporal data, we dis-
cussed visual boosting techniques, peak-aware predictionmethods, and a visual analysis system
for temporal power consumption data. We supported the analyst detecting and predicting in-
teresting patterns and visually boosting interesting patterns appropriately. The latter chapter
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dealing with geospatial data focused on an overlap-free representation of points and overlap-
reduced, simplified trajectories represented by lines. In this chapter, we will extend the tech-
niques discussed previously and discuss Visual Analytics techniques suitable for soccer data.
Recorded soccer matches are spatio-temporal data with a high resolution containing complex
movement patterns. Wewill apply somepreviously discussed techniques and proposemethods
specifically tailored to the soccer analysis scenario. Thebaseline for our presentedmethods is to
support soccer experts and enable an efficient analysis processwithout having the user to dig for
patterns by watching whole matches. We rather want to point out patterns and situations being
possibly of interest to the analyst and additionally learn from user feedback. Consequently, we
will discuss in this chapter different analysis and visualization techniques covering single- and
multi-player analysis.

This chapter is taken with slight modifications and some additions from the following pub-
lication¹:

Feature-Driven Visual Analytics of Soccer Data

H. Janetzko, D. Sacha, M. Stein, T. Schreck, D. A. Keim, and O. Deussen.

Proceedings Visual Analytics Science and Technology, 2014. [JSS+14]

4.1 Preface

The visual analysis of soccer data is interesting for two reasons: first of all it is scientifically
interesting since it is an instanceof a geo-spatial analysis problemwith complex, interdependent
trajectories and events. On the other hand, soccer is a very popular sport and actively played by

¹In this work, Dominik Sacha took care of the single-player analysis and the Horizon Graph integration.
Manuel Stein focused on the Visual Analytics multi-player analysis under my supervision. Tobias Schreck reor-
ganized and rephrased theRelatedWork section. Tobias Schreck, Daniel Keim, andOliverDeussen helpedwith
fruitful discussions and advices. I did all the research and implementation work not mentioned above, basically
implementing the analysis prototype, proposing Data Mining and visualization techniques, and performing a
first expert study. The second, more exhaustive expert study was conducted byManuel Stein for hisMaster the-
sis under my supervision. David Perlich did some basic implementations for the single player analysis during
his Bachelor studies. Feeras Al-Masoudi implemented an interactive trajectory simplification for selected time
intervals in soccer matches for his Master thesis. I had the idea to integrate Visual Analytics to the detection of
interesting game events, to present the history of classification results, to visually compare several classifiers, and
to develop an abstract line simplification method for arbitrary time intervals reflected in different abstraction
levels. All sections that were not written or rephrased during the paper writing process by myself are quoted.
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approximately 270 million people [FIF15]. Soccer plays a huge role in public media coverage
and also, poses analytical needs by sport decision makers. Recently, GPS- and video-based
tracking technology became available which allows recording spatio-temporal data of players at
high frequency and accuracy. The arising data is interesting to analyze for two main purposes:

• Scouts are looking for high-performance players, where performance needs to be as-
sessedbymanymeasurable parameters or combinations thereof, in relation toother play-
ers and play situations, and over time. For example, these attributes may be the accuracy
of shots, the quality of passes, or the willingness to run in the last minutes of a long and
exhausting match. Depending on these high-level attributes of a player, the underlying
analysismust focus ondifferent sets of basic features. Thewillingness to run, for instance,
depends on the time of the match, the speed of the player, and the current game situa-
tion. If the player’s team is already three points ahead of the other team, it is not that
important to run very fast in the last minutes of the match.

• Coaches are analyzing matches to improve the overall performance. The analysis can be
performed either in real-time, in the halftime break, or after the match. Depending on
when the analysis is performed the focus is different, which has to be reflected by the
analysis process. In defending situations, coaches are interested in dangerous situations,
how they occurred and how the team resolved those. For instance, an analysis of the
back-four formation can help in assessing the quality of the defense.

Soccer data is a representative of spatio-temporal datasets and therefore already inherently
challenging. Compared to standard movement data, the spatial restriction of the movement
stands out. Movement data of soccer matches is located on an approximately 105 by 68meters
pitch. As 22 players are moving in a relatively small area, the resulting data is very dense and
difficult to visualize by a single visualization. Furthermore, the observed movement patterns
are very complex as the movements of each player depend on the movement of all the other
players. Nearly everymovement action causes a reaction, becauseof thehigh interdependencies
between all players. Compared e.g., to the flock movement of birds, there are two opposing
teams aiming for different targets and trying to hinder the other team. Simple leaderships rules,
as e.g., in flock movement theory, are therefore not applicable. To make matters worse, soccer
is a very dynamic game as tactics and strategics change over time. Depending on the current
game situation a teammight, for example, switch their overall game-play from a defensive to an
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offensive one being directly reflected in the observedmovement patterns. Even historically the
formations changed from a sweeper up to the late nineties over the 4-4-2 formation to today’s
most often used 4-2-3-1 formation (see also Section 4.4.2). Though the outcome of the game,
basically who wins and who loses, is not necessary reflecting superiority. Some goals or non-
goals are lucky or due to incorrect referee decisions. But what is important when assessing
games is why a team won or lost. In order to assess the quality of a team, it is important to
take the respective context, e.g., strategy or movement patterns, into account. Switching from
offensive to defensive gameplay when losing the ball for instance can be an important clue for
coaches.

In this design study, we analyze soccer data with Visual Analytics methods using single-
player, multi-player and event-based features. We apply feature analysis techniques to present
the most important features to the analyst depending on the respective analysis task. We com-
bine data mining techniques detecting interesting game events with interactive visualizations
allowing immediate user feedback to the data mining process. Our focus is to help coaches in
investigating interesting and dangerous game situations. There are two points to tackle when
trying to support coaches. First of all, interesting game situations have to be identified and pre-
sented to the coach and, second, the coach should be able to analyze features of players with
respect to these situations. Analyzing a certain game situation can be performed on different
levels, such as taking only one single player into account or consider even several players. Our
implemented prototype is depicted in Figure 4.1.1.

The remainder of this paper is structured as follows. We outline existing and related ap-
proaches and system in Section 4.2. The analysis of a single-player is described in Section 4.3,
followed by a discussion of our multi-player analyses in Section 4.4. Furthermore, we perform
event-based analyses in Section 4.5. We implemented a modular, layer-based system allowing
an easy integration of existing data mining and visualization techniques, described briefly in
Section 4.6 with further outlook to the Visual Analytics capabilities. Our design is validated by
use cases and interesting findings in Section 4.7. We furthermore conducted an expert study
to evaluate our design in more depth in Section 4.8. We finally conclude our paper and give an
outlook to future work in Section 4.9.
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4.2 RelatedWork

We first discuss related work in general visual analysis of sports data in Section 4.2.1, followed
by specific works organized according to the considered analysis perspective in Sections 4.2.2
and 4.2.3. Section 4.2.4 positions our approach within the aforementioned works.

4.2.1 Visual Analysis of Sport Data in Research Interest

The visual analysis of data related to sports has recently come into focus of research and ap-
plication [BCC+13]. The interest is seen driven by advances in acquisition of high-resolution
sports data, and in advances in visualization and analysis of sensor and movement data. Sports
analysis is expected to foster many new applications for end users, sports coaches, and sports
managers alike [BCC+13]. Analytical goals in these applications include overview and com-
parison of player and team performance, prediction and correlation of behavior, and under-
standing changes over time on the short, medium and long term perspective. Commercial sys-
tems are very hard to compare to as the there are high financial interests behind the scenes. We
had some discussions with a professional soccer analyst telling us that existing automatic ap-
proaches cover more or less only single-player statistics. In-depth team analyses are typically
performed by manual inspection.

We just mention two of the most recent sport analysis systems here as examples, before sur-
veyingmore in the following paragraphs. A recentwork on visual analysis of sport data includes
[LCP+13], where a visual search system for scenes in a Rugby match was introduced. The
approach is based on the configuration of team players and their movement during a match,
where this data is extracted by means of video analysis. The approach offers a sketch-based
query processing for movement patterns extended by Visual Analytics methods. Instead of
using movement sketches, we directly look at manually annotated important and dangerous
situations and extract similar dangerous ones. We compute semantically meaningful features
with respect to soccer and use them for our data mining process. Regarding soccer, by means
of a design study, in [PVF+13] a tool was developed which combines different perspectives on
soccer match data with the aim of creating play reports. The data set used included raw player
positions and movement, as well as manually annotated match events like goals, fouls or ball
contacts. Thereby, the match data was segmented into meaningful units, which can be visual-
ized in different views. Thematches were for instance partitioned by looking at shots and going
back in time until the team gained the ball. We extend this work by detecting interesting event
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and phases semi-automatically by integrating statistical features.

4.2.2 Movement and Constellation-based Analysis

In general, many approaches for sports analytics consider trajectories extracted for players and
teamsas abasic abstractionof thedata tobeanalyzed. Consequently,methodsof spatio-temporal
data analysis are applicable [AAB+13b,AA06]. Important data analysismethods in this area in-
clude the segmentation, abstraction, correlation, clustering or classification of trajectories. To-
day, many applications for trajectory-based data analysis have been identified, including study-
ing of traffic data [WLY+13], movements of pedestrians in office spaces [IWSK07], or analyz-
ing eye tracking data in context of user studies [OAA+12]. Further applications of trajectory-
based analysis include understanding of animal movements [SJM+11], or analysis of time-
dependent measurements in a 2D diagram space [SBTK09, vLBSF13]. In general, key to suc-
cessful trajectory-based analysis is finding a meaningful trajectory representation [AAB+13c].

The trajectory of even a single player can already be useful for sports analysis of a game,
and it certainly is useful for measuring the performance of a given player. However, often also
properties of groups of players are relevant. To this end, certain approaches first detect specific
constellations among groups of players which may then again, be described by trajectories or
other time-dependent group features. Examples for soccer analysis include [KKL11], where
player formations are analyzed. Specifically, the spatial constellation between all defenders
of one team are analyzed over time, which can reveal tactical maneuvers. In [FMT+13], the
area on the field where a given player showed a particularly strong influence during the game,
was identified. In [TH00], speed and direction were considered as features in such areas of
interest. In [FS05], distances between player, puck and goal within hockey games were used
as features of analysis. Further extensions of the approach of associated areas can be found in
[KHL06, Kim04, NMMN10].

Other works detect specific scenes of interest during a match. In a work by Gudmundsson
et al. [GW13], pass alternatives and their specific contextual difficulty are visualized. Further-
more, paths frequently taken by individual players are considered in that work.

4.2.3 Analysis Based on Temporal and Statistical Aspects

Besides trajectory-based analysis, also methods from time series and multivariate analysis are
applicable to sports data analysis. In general, any relevant measure which is recorded over time
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(including properties of trajectories) can give rise to time series analysis approaches [Ham94].
Examples include comparison and correlation of measurements among players, or analyzing
for cyclic behaviors of measurements [AA06]. In addition, time-dependentmeasurements can
also be aggregated by descriptive statistics such as mean, variance or other statistical moments
of interest.

In [LPLBDG10], it was evaluated which statistic measures correlate with the outcome of a
game. The temporal development of geometric statistics, like the convex hull, circumference, or
center of a teamwere analyzed in [DAF+13]. Also, statistics were used in [DSBT+07] to differ-
entiate between players of different positions. A number of commercial and academic software
solutions for the analysis of statistical sports data exists. In [RSB11,RSB+10] an interactive sta-
tistical tool for coaches is introduced, enabling to analyze and compare players. Furthermore,
domain-dependent tools exist e.g., Matchpad [LCP+12], CourtVision [Gol12] and SnapShot
[PSBS12].

Statistical measures can, among other transformations, be defined based on a relational per-
spective on data: Passing networks can be seen as a rich source for investigating soccermatches
even further. Then, statistics can be extracted from a network (or graph-based) representation
of the data. E.g., in ball sports, the passing network indicates which player passes the ball to
which other players over time. In [PT12], the performance of players is measured by aggre-
gates of the ball passing network. In [DWA10], additional nodes for “shots to goal” and “shots
wide” are added to the passing network description.

4.2.4 Summary and Positioning of our Work

We distinguish two classes of analysis of sports data. Approaches based on low-level features
extract measurements from movement or other sensor data and perform statistical and cor-
relation analyses on the (possibly, pre-processed) data. On the other hand, approaches being
oriented toward higher-level representations, such as semantic annotations of data, exist. These
can stem, e.g., from manual annotation by human experts or crowds; or by recognition of spe-
cific constellations of interest, based on heuristics or Machine Learning approaches.

The work most closely related to ours is [PVF+13]. Similarly, we present an interactive sys-
tem for explorative analysis of soccerdata. Our system isflexible in that it incorporatesboth low-
level features (based on trajectory features, see Section 4.6) and semantic annotations (based
on recognition of play configurations, see Section 4.5) for the analysis. Our system flexibly al-
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lows todrawoneitherof these analysis perspectives, basedon theuser task. Our semi-automatic
selection of features helps to cope with the otherwise difficult problem of feature selection by
users. We achieve this by incorporating a user-configurable classifier which allows detecting
further events in the movement data, based on a number of example events and input features.
Thereby, our system is not limited to detect a certain number of pre-configured situations, but
helps in configuring detectors for many events of interest.

4.3 Single Player Analysis

The single player analysis investigates the performance and features of one player at a time. We
want for example to detectwhen a player is actively participating during amatch. Certain player
features, as speedor distance to the ball, will be of use for this kind of analysis. More abstract, we
divide the different behavior andmotion patterns of a player into different phases. The features
being relevant for a single player analysis can be divided into three categories: Individual Char-
acteristics (e.g., coordinates and speed), Game Context (e.g., distance to ball), and Events (e.g.,
shots, receptions and fouls) features. These features can be seen as numerical time series with
changing values over time, with events transformed into a binary time series with singletons.

In order to segment the match into different phases, we apply clustering and hereby detect
similar phases. Phases derived from the clustering results should be as homogeneous as possi-
ble with respect to the underlying numerical features. The overall analysis process in depicted
in Figure 4.3.1. We first partition all time series into small, fixed-size intervals and aggregate the
values into a numerical feature vector describing the respective time interval. The values are
linearly normalized to avoid any biases during the distance calculation. Additionally, we can
apply dimension reduction techniques such as PCA to remove noisy dimensions if necessary.
ThePCAisperformedbyWEKA[HFH+09] automatically reducing thenumberofdimensions
with a threshold of 95 percent of the variance being still explained. The intervals are afterwards
clustered resulting in a certain number of clusters (depicted by small letters in Figure 4.3.1). In
our analyses, we apply k-Means (allowing us to control the number of resulting clusters) and
DBSCAN (being a robust clustering technique with respect to noise and outliers). Finally, we
merge similarly clustered and adjacent intervals to phases.

We visualize the analysis results using colored trajectories, line charts, parallel coordinates
[ID91] and Small Multiples [TGM83] all linked via Brushing & Linking. In Figure 4.1.1, we

126



4.3. SINGLE PLAYER ANALYSIS

Player‘s Features

Normalized Feature Vectors

Dimension Reduced FVs

Clustering Result

Phases

Figure 4.3.1: Feature-based approach to detect similar activity phases of a single player.
Reprinted from [JSS+14].

present the visual interface showing the results analyzing a forward described in more detail in
Section 4.7.1. It is very crucial in the analysis process to understanding the semantical meaning
of found clusters or phases. We therefore integrated several views onto the segmentation results
and the human analyst can bring in his expertise.

A first overview is provided by a line chart with a freely selectable feature and background
coloring depicting the phases (bottomof Figure 4.1.1). Parallel coordinates help to understand
thedistributionsof feature values in the respective clusters. Finally, SmallMultiples offer several
interaction possibilities like filtering, sorting (according to a feature, phase similarity or time),
or visualization options (e.g., mapping feature values to the trajectory’s color).

A typical workflow for this kind of analysis is shown in Figure 4.3.2. We start specifying
parameters including the clustering parameters and features to regard during the segmentation
process. Afterwards, the analyst uses the line chart andparallel coordinates in combinationwith
the Small Multiples view allowing filtering, highlighting and inspecting phases. Furthermore,
all other implementedvisualization layers canbe applied to analyze the selected situationsof the
soccer match in more detail. As our system is interactively reflecting changes to the clustering
settings, all steps of the workflow may be revisited several times.

The resulting clusters and phases have to be semantically interpretable for a successful anal-
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Phase ExplorationPhase 
Construction

Figure 4.3.2: Schematic workflow for the analysis of a single player.

ysis. We support the analyst by visualizing each phase and the corresponding averaged feature
values in a parallel coordinate visualization. We integrated several interaction and visual boost-
ing techniques. In Figure4.3.3, we show a schematic depiction of our parallel coordinates im-
plementation for two dimensions with focus on the filtering capabilities. We added to each
dimension interactive range selectors providing the following interaction possibilities:

(I) Theupper boundary of the respective selection can be either moved individually or all up-
per bounds can be moved simultaneously.

(II) Instead of increasing or shrinking the selected range, the analyst can just drag the selection
range on the axis up and down.

(III) The lower selection limit can be either dragged individually or all lower limits can be
moved simultaneously.

Allowing the user to simultaneously change all upper and lower limits helps in performing
manual nearest-neighbor queries. In this case, the filter intervals would be initialized by the
system to fit one single, user-selected parallel coordinates line. The analyst is then able to adjust
all upper and lower filter boundaries simultaneously. Thefiltering results are presented applying
blurring techniques basedonour previous discussionon visual boosting in Section 2.1. All lines
in the parallel coordinates plot fulfilling the filter criteria (denoted by the blue hatched area in
Figure 4.3.3) are drawn unblurred. All other lines are blurred to guide the analyst’s awareness
to the filtered ones.
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Figure 4.3.3: Schematic parallel coordinates implementation showing the filtering capabili-
ties and the visual presentation of the filtering results.
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Overplottingof lines is a commonproblemoccurring inparallel coordinates visualizingmedium
amounts of data. We employ parallel coordinates to investigate segments of trajectories being
clustered. In order to semantically interpret the clustering results, it is crucial to be able to ex-
plore the value distributions for the different segments and clusters. We consequently support
the user in investigating the parallel coordinates plot by integrating a stacked bar chart visualiza-
tion. We visualize the frequency distribution of clusters along a dimension axis as exemplified
in Figure 4.3.4. Although the implemented visualization technique have drawbacks concerning
scalability and readability, the analyst get a feeling for the feature distribution of clusters and
interdependencies of dimensions. This technique is similar to the work presented by Hauser
et al. in [HLD02]. We will investigate one application scenario in the subsequent use cases
Section 4.7.2.

Figure 4.3.4: Example frequency visualization for parallel coordinates plot. The cluster
frequencies are computed and visualized along the dimension axis.

4.4 Multi Player Analysis

Regardingmore thanonly one player in the analysis process is very important as soccer is a team
sport. This section introduces our methods for the analysis of soccer matches with respect to
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the movement patterns of multiple players.

4.4.1 Player Comparison

Weenable the analyst to compare several players visually byprovidingHorizonGraphs [HKA09]
for selected players and features. In Figure 4.4.1, we show the speed of all field players of one
team in the first threeminutes of a soccermatch. The correlation and the similarity of the speed
feature is clearly visible. There are phases with high speed (blue) and also phases with almost
no speed (red) showing that the players act as a team. The bottom player can be seen as an
outlier to the coherent movement behavior. The bottom Horizon Graph represents a forward
who does usually not participate in all defense actions explaining the observed pattern.

Figure 4.4.1: Speed feature of all field players of one team in the first three minutes of a
soccer match. Reprinted from [JSS+14].

Wefurthermore extend the single-player segmentationprocess described in theprevious sec-
tion towards a multi-player analysis. The combination of phases together with the possibility
to inspect selected features visually can reveal interesting patterns. In Figure 4.4.2, we analyze
for example two central defense players. The trajectories are colored by detected phase and the
speed features are visualized by Horizon Graphs for the selected time interval (blue rectangle
in the timeline). Interestingly, both defense players act very similar, which is reflected in both,
the movement features and the phase coloring.
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Figure 4.4.2: Activity phases and trajectories for two defense players. Reprinted from
[JSS+14].
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We help the analyst in selecting interesting features to visually inspect by predefined sets of
features for the analysis of certain event types. Further details can be found in the use case
Section 4.7.

4.4.2 Constellations and Formations

In addition to low-level and statistical trajectory features, the analysis of spatio-temporal team
formations in soccer games is very important. This is because formations reveal semantically
meaningful patterns andmay relate to tactics or strategies of the teams. Formations tell usmore
about tactics than single player analysis. There exists a variety of formations in modern soccer,
like the nowadays very widely known and used 4-2-3-1, the 4-4-2 (a.k.a. “Diamond”), or the
4-3-2-1 (a.k.a. “Christmas Tree”) formation. In this section, we focus on the analysis of the
defensive lines and more specifically on the back-four formation. Other defensive structures,
such as the defensive triangle, could be also easily automatically assessed. Further descriptions
of different formations can be found in [Wik15].

The crucial point when analyzing the back-four formation is to assess the quality withmeans
to the defensive effectiveness. We therefor need a definition for a good and a bad back-four for-
mation. Themain task of the back-four formation is to defend their own goal. Nowadays, zonal
marking is the widely used defense strategy. Consulting soccer literature and training hand-
books, we found some criteria how the back-four formation should react to attacks [CDH12].
There exists an ideal line parallel to the ground lines of the pitch, where all back-four players
should be. Basically all players should be on the same height, which is also very relevant for
the offside trap. Scoring the defensive formation is then simply computing the average distance
from the ideal line. However, there exist different kinds of attacks that have to be dealt with
differently, resulting in a more complicated assessment. Incoming attacks can be differentiated
by the following criteria: As long as the distance between ball and goal is larger than 24 yards,
the back-four formation shall use the ideal line described above. If the ball is closer to the goal,
we will have to distinguish between an attack from the middle and one from the side. Attacks
from the side should be answered by a sickle-like formation. Further details can be seen in this
Youtube video [You15]. From the computational perspective, we need to check the curvature
betweenoutside andcentral defenderof the respective side. Furthermore, thedistancebetween
central and outside defender must not be too big, because the outside defender might need
help. The defenders of the side which is not attacked should then build an ideal line reflecting
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the positions of the other defenders. Defense triangles are the correct reaction to attacks from
the middle. The computational assessment is performed by angle computations between the
affected defenders. We score the defensive triangle by computing the angles and also include
the distances of the involved players. Figure 4.4.3 shows two examples for a bad and a good
back-four formation.

Figure 4.4.3: An example for a bad (left) and good (right) back-four formation evaluated
based on the ideal line. Reprinted from [JSS+14].

4.5 Event-Based Analysis

Soccermatches arenotonly continuousmovementsof players, but there are also incisive events.
Besides goals and fouls there are also events like passes or crosses. These events are manually
annotated and added to our datasets. We use these events as a basis for event-specific feature
pattern exploration. We support two modes of analysis within our system. The first visualizes
the development of selected features around user-chosen event types. The second analysis ap-
plies a classification technique to support discovery of previously unnoticed candidate events
of interest.

4.5.1 Interactive Feature Analysis

If the analyst wants to analyze a certain kind of events, we visualize features in a time frame
around the events with Horizon Graphs. Player specific features are derived from the involved
players and additionally game context features as ball specific features are available. We render
for each feature and event a single Horizon Graph, and lay them out in a tabular way. A line
within each visualization indicates the time point when the event occurs. We included also
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Brushing & Linking to enable the selection of single events being reflected in all other shown
visualizations.

Figure 4.5.1: Features for all crosses occurring in one half of a match. Standard crosses
like corners or free kicks can be clearly distinguished from crosses that happen within the
match. Before a standard cross speed and straightness are similar lower than other crosses
and there are almost no opposite players around the ball. Reprinted from [JSS+14].

Figure 4.5.1 illustrates as an example Horizon Graphs for all crosses occurring in one half
of a soccer match. Feature patterns for standard crosses like corners or free kicks are visible as
opposite players are typically not near of the executing player. Furthermore, the speed of the
executing player is very low at the beginning of the interval, as the player is waiting until he is
allowed to perform the free kick. This visualization serves also as a verification for the similar
phase analysis presented in the next section.

4.5.2 Similar Phase Analysis

Using manually annotated data comes with the advantage of human knowledge being added
to the data. Though at the same time, there is no guarantee that all events have been detected.
Manually annotating data is a tedious and expensive task but very common in the soccer do-
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main. Video analysts are employed to analyze soccer games and find interesting phases. We
try to learn algorithmically from the annotated data to propose a set of similar and therefore
potentially interesting phases. Our approach follows the subsequent points:

1. Investigate, which features are important for the classification process.

2. Explore and evaluate state-of-the-art classifiers to apply only the most promising classi-
fiers.

3. Employ the top five classifiers and integrate a Visual Analytics feedback loop to steer the
classification process.

We focus in this work on important events as shots on goal, fouls, crosses, and assists. We
analyze how specific features, some related to only the involved player and some related to the
team, develop right before these events over certain time intervals (2, 5 and10 seconds). Weuse
classifiers to detect similar phases in our data and validate the new found events in our tool as
described further in Section 4.6.4. We use KNIME [BCD+07] as a state-of-the-art datamining
framework for first experiments. Decision trees were used to get a hint, which features are im-
portant for the classification process. We applied all widely used classifiers asNeural Networks,
Decision Trees, Probabilistic Models, and Support Vector Machines. Evaluating the classifiers
by n-cross-fold validation, we came up with five classifiers performing best.

4.6 System

In this section, we describe the developed components of our system more technically. Our
developed Java prototype for the analysis of soccer data is depicted in Figure 4.1.1. We imple-
mented a layer-based soccer-pitch visualization, with several visualization techniques available
(e.g., player position renderer, phase renderer, and heat map). The visualization layers can be
added interactively and the order and further parameter settings can be controlled by a control
panel. Furthermore, we integrated a timeline visualization and additional panels related to the
analyses described in the previous sections. We designed the system in a modular and expand-
ableway in order to enable an easy development of new layers or visualizations being connected
to all the other components.
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Single Player Analysis
Speed Acceleration

Position Direction of movement
Distance covered Straightness

Distance to next opposite Distance to ball
Distance to own team center Distance to opposite team center

Multi Player Analysis
Width of team shape Height of team shape

Opposite players around player Back-four formation
Event Based Analysis

Shots on goal Passes
Fouls Off-site
Cards Reception
Goal Clearance

Running with ball Assists
Game Specific Analysis

Ball-goal distance Ball position
Angle of ball to goal

Table 4.6.1: Features implemented in our system.

4.6.1 Features

Most of our visualizations and analyses rely on different kinds of features (see previous sec-
tions). These features are extracted, derived, and finally delivered to all other components.
Player-specific features are computed and available for each player. Furthermore, team- and
ball-related features are calculated as well. In Table 4.6.1, we list all features that are already im-
plemented and available in our system. The extension of this list is an ongoing process triggered
by new use cases and analysis needs emerging by prototype usage and expert interviews.

4.6.2 Visualization Components

Our prototype offers several panels where visualization can be plugged into and also provides
synchronization functionality between the components. The analyst can control the currently
visualized time windows by using the timeline component showing the selected time interval
and event occurrences. We furthermore developed a layer manager where several layers can
be registered and rendered on a soccer pitch area simultaneously. For each layer it is possible
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to integrate an option panel handling the layer’s configuration (e.g., clustering parameters). Fi-
nally, we offer a feature export component allowing to export features based on selected players,
events, or time intervals. We make use of the export capabilities integrating external software
components, described in more detail in Section 4.6.4.

4.6.3 Visualizations

Depending on the analysis task, we provide different visualizations. Most of the visualizations
are realized as layers that can be drawn on a soccer pitch. In order to get details of a soccer
scene, we offer a player and ball renderer visualizing a selected scene. For larger time windows,
we provide a heat map that can be computed for every spatio-temporal object (e.g., player, ball,
event position). Selected features may be analyzed through line charts or horizon graphs. We
provide specific views being useful in combination with each other. For example, the single
player analysis view consists of the colored trajectory on the soccer pitch, the Small Multiples
view, a colored line chart and the parallel coordinates plot. Another example is the back-four
formation layer that renders formation dependent lines and colors on top other layers and also
adds information to the timeline component.

We described in the previous chapter techniques simplifying lines reducing the amount of
overplotting. We implemented line simplification also in our Visual Analytics system enabling
the analyst to better investigate the ball movement. The raw movement is simplified by only
showing the players directly involved in ball interactions and furthermore reduce the details. In
Figure 4.6.1, we show our implemented line simplification approach. We omit all player move-
ment not being directly interacting with the ball. Furthermore, we differentiate between passes
(lines consisting of small triangles) and dribbling (wavy lines). For further details, the ana-
lyst can hover over players (circles with numbers) and see their movement of the selected time
window. The timewindow visualized in Figure 4.6.1 starts with a pass from the blue goalkeeper
(rightmost player) and ends with a pass to a red attacker.

4.6.4 Similar Phase Analysis Facilities

This section briefly describes how our system integrates analysis functionality detecting similar
events.

WEKAClustering. Weused theWEKA-library [HFH+09] in order to support state-of-the-
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(a) original trajectories of players and ball

(b) simplified movement

(c) details on demand for hovered player (yellow)

Figure 4.6.1: Line simplification applied to soccer movement (top). We focus on the
ball movement and represent only ball interacting players (middle). Details on demand are
enabled by mouse hovering with the movement of the selected time span of the respective
player being shown (bottom).
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art analysis techniques. WEKA takes care of the cluster analysis described in section 4.3. We
integrated the clustering components K-Means, DBSCAN, and hierarchical clustering for the
single player analysis. The classification capabilities of WEKA are used in KNIME for the data
mining part of our Visual Analytics pipeline.

FirstVisualAnalytics Integration andMachineLearningwithKNIME.As stated above,
we are interested in gaining knowledge from investigating features of annotated events. Wewant
to study which features and values are significant for different kinds of events. Furthermore, we
want to use this knowledge for finding new events that were not annotated but can fulfill the
found criteria. We set up a KNIME workflow and integrated the workflow into the analysis
process depicted in Figure 4.6.2. We export all extracted and computed features into the KN-
IMEworkflow and partition the time series data into fixed-length intervals. Intervals including
an event are marked as class A, while all others are marked as class B. After preprocessing, we
train all available KNIME and WEKA classifiers with a 33% data sample and evaluate with the
remaining data. We take the best five classifiers (LMT, LibSVM, Logistic Base, FT, and Deci-
sion Stump) according to their accuracy measured by their confusion matrix. The accuracy of
the best classifiers ranges from 72 to 90 percent. We consider for our decision also the amount
of false positives, which should be reasonable. False positives indicate new potential interesting
intervals not yet annotated in our data. The classification results are then imported back into
our prototype allowing the analyst to investigate time points labeled as class A. Furthermore,
we integrate a feedback loop enabling the analyst to confirm found, previously untagged events
and use them as additional training data for the classifier. This feedback loop may be repeated
as often as the analyst wishes to.

Integration into our Visual Analytics System. Our next step is to integrate the Data Min-
ing part tightly into our Visual Analytics system for several reasons. We used the knowledge
gained from our experiments with KNIME and implemented the resulting, final workflow in
our system. We still useWEKA, but preprocess the data and invoke the classification directly in
our system. The first advantage of the integration is that there is no need for export and import
steps anymore. The second and more severe benefit is a strongly increased performance. By
self-implementing the analysis process, we could speed up the classification from 20minutes to
less than thirty seconds. The speed up was achieved by temporary data sets suiting the needs of
WEKA and by threading adjusted to the respective number of processor cores. The tight inte-
gration allows us furthermore to reuse the trained classifiers for new matches not seen before.
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Figure 4.6.2: Analysis process for the detection of similar events and feedback loop to
the classifier. Import and Export to KNIME needed for first experiments. Reprinted from
[JSS+14].

In Figure 4.6.3, we present the process pipeline after the integration. Note that the resulting
pipeline is basically the Visual Analytics pipeline reflecting our Visual Analytics claim.
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Figure 4.6.3: Analysis process for the detection of similar events and feedback loop to the
classifier. Integration of the classification process into our prototype.

4.6.5 Interaction and Animation

Every developed component offers several interaction possibilities allowing the analyst to steer
his analysis. Linking&Brushing is supported among all visualizations enablingmulti-view data
exploration. Besides mouse interactions and parameter setting controls, we provide common
keyboard shortcuts in order to facilitate power user operations (e.g., animation control). Ad-
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ditionally, animation of selected soccer scenes turned out to be useful in order to verify results
or to understand and investigate longer phases avoiding overplotting issues.

4.7 Use Cases

In this section, we demonstrate in applicability of our prototype in different analytical use cases.
Wepresent several analyses andfindings inwhich adomainexpert couldgain further knowledge
about his team. We analyze a single player, detect similar situations in the soccer game, and
investigate team formations as the back-four formation.

The data analyzed in our use cases is provided by prozone/mastercoach. The data set is not
publicly available and was anonymized as it was a professional game. For each of the 22 play-
ers timestamped, two-dimensional position data are available with a temporal resolution of 100
milliseconds. Furthermore, the data includes manually annotated events containing informa-
tion about position, time, and event-specific information as the involved player. These events
are less frequent and lack in accuracy as they are manually tagged.

The use-cases were designed to show how our prototype can help coaches in analyzing the
offensive and defensive qualities of their team. Wewill first analyze a single player and focus on
his active phases. Afterwards, we investigate the offensive gameplay and the defensive back-four
formation. These use-cases reflect some of the most important training aspects for a successful
training, basically the attacking and defending skills. The last paragraph will cover some expert
feedback we received when showing the tool to a subject matter expert.

4.7.1 Analysis of a Forward

Grouping and clustering interesting phases of a single player can be performed automatically by
applying the clustering approach presented in section 4.3. In this use case, we analyze a forward
and are interested in the attacks where he was involved. Therefore, we select the features Speed,
Direction of Movement (x and y-dimension), Distance to nearest opposite Player, Distance to Ball
and apply a k-Means clustering with two desired clusters in order to divide interesting from
non-interesting phases. The resulting phases can be inspected using the Small Multiples view
in combination with the other rendering layers and the Horizon Graphs. In Figure 4.1.1, we
show the analysis results of the forward’s attacks.

If we want to investigate the two clusters, we will use the parallel coordinates plot showing
the feature values for all phases. Though the labels of the parallel coordinates plot show the
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original data space, we used normalization before applying clustering. Obviously, green phases
are defined by large distances to the ball. These green phases are uninteresting phases which
we can ignore in our analysis. The uninteresting green phases can be hidden from the Small
Multiples view to focus only on the interesting phases. As a next step, we take a closer look at
the interesting (orange) phases where the player was very active and near to the ball. We sort
the Small Multiples according to his x-position in order to see the phases where the player was
closest to the opposite goal first. Selecting one Small Multiple will make all other components
showing the selected phase. Figure 4.1.1 shows the third phase the system found, in which
the forward receives the ball after he started to sprint and scores his first goal. The player is
rendered by an orange trajectory and the phase can be animated as well. As a next step, the
coach could inspect the other phases or arrange the Small Multiples by similarity in order to
find similar patterns. Another option would be to explore the player’s features using horizon
graphs as described previously.

4.7.2 Feature Analysis for Defender Movement

We introduced in a previous section our parallel coordinates implementation allowing interac-
tive filtering and additionally visualizing the cluster distribution on each axis. In this section,
we will investigate the clustering and segmentation results for a defender. We clustered the
movement data using the following four dimensions: speed, acceleration, distance to ball, and
distance to the nearest opponent. We applied k-Means clustering with a desired cluster num-
ber of four. The resulting phases are depicted in Figure 4.7.1 with color representing the four
clusters.

Without any further visualizations, the analyst is unfortunately not able to interpret the clus-
ters completely. Nevertheless, there are some patterns visible by coloring the trajectory accord-
ing to cluster membership as shown in Figure 4.7.1. From a spatial perspective, the defender
stays always on his assigned right side. More interesting and insightful is that the purple phases
seem to be the only ones occurring around the own goal. All other clusters are mostly located
outside the penalty area. Wewill further discuss this findingwhen analyzing the corresponding
parallel coordinates visualization.

There seems to be no clear spatial explanation for the other three clusters (red, yellow, and
turquois). For this purpose, we integratedparallel coordinates visualization andenhanced them
by a distribution visualization introduced previously. We visualize all phases of the defender’s
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Figure 4.7.1: Clustering and segmentation results of a defender. The movement is colored
according to cluster (top) and the temporal changes is depicted by colored bars with the
width representing the length of the respective phase (bottom).

movement in a parallel coordinates plot and represent each single phase as one data item (one
line in the parallel coordinate plot). We compute average values of each phase and use them in
the parallel coordinates plot. The corresponding visualization are depicted in Figure 4.7.2.

We show in Figure 4.7.2 two different filtering steps during the analysis process. In the upper
figure, the analyst selected one single phase to investigate the corresponding parallel coordinate
line (highlighted by black borders). The filtering intervals will be automatically adjusted to
fit the selected phase. As the analyst wants to understand the properties of yellow phases, he
moves all range sliders simultaneously starting from the single selected yellow phase (lower
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(a) single phase selected

(b) nearby phases filtered

Figure 4.7.2: Parallel coordinate plots for segmentation results with interactive filtering. A
phase of interest is selected (top) and interactively the filtering range is increased resulting
in similar phases being selected (bottom). The data items emphasized by black borders are
highlighted either by phase selection (top) or mouse hovering (bottom).
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figure). The analyst hovers over the previously selected line on the axis labeled distance to the
nearest opponent, in order to similar phases with the same distance to the nearest opponent.
All parallel coordinate lines at the mouse position will be highlighted by black borders and will
be rendered unblurred independent of filtering criteria (lower figure). Analyzing the phases
visualized in Figure 4.7.2 we were able to derive the following findings:

• Yellowphases correspond tomovementwith highdistances to the nearest opponent, low
speed, and low to medium distances to the ball.

• Red phases describe movement with a high distance to the ball. Red phases have a posi-
tive acceleration and by trend lower speed compared to turquois phases.

• Turquois phases are independent of the distance to the ball and describemovementwith
negative acceleration. Negative acceleration values will only occur if the speed is suffi-
ciently high.

• The purple phases being very visual salient in the geospatial representation are described
by below-average values of distance to the ball, speed, and distance to the nearest oppo-
nent. Furthermore, the acceleration values are around zero.

• The difference between purple and yellow phases is only dependent on the distance to
thenearest opponent. This is reflected in the spatial visualizationasopponents aremostly
near todefenderswhenopponents attack anddefenders should tobenear their owngoals
during opposite attacks.

From these observations, we see that we need several views to the data. For instance, the
difference between yellow and purple phases could be only fully understood when combining
the spatial and the multi-dimensional feature visualization. We believe that combining several
views and connecting them interactively by Brushing & Linking is an effective way to support
the analyst.

4.7.3 Shot-Event Feature Pattern Analysis

As described above, we try to gain knowledge from themanually annotated events. We focus in
this section on themost important event of a soccer event, namely the shot on goal. We applied
and investigated the Decision Trees mentioned above in Section 4.6.4 to classify the events.
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We found that themost relevant features are x-Position (near to left or right goal),TotalWidth of
Team (indangerous situations the teamwidth in x-dimension is greater that usual), andOpposite
Players around (more opposite players are around trying to prevent shots). Furthermore, the
speed feature turned out to be useful for all kind of events. Crosses and shots are events easily
detectable by classifiers, whereas fouls and assists are difficult to detect.

The main target of highlighting interesting situations to the analyst is to avoid him watching
the whole game over and over again. Our systems proposes situations that might be of interest
to the user depending on his selections and helps to skip uninteresting parts of a soccer match.

Figure 4.7.3: Horizon Graphs for the relevant features of all shots on goal events in first
half of the game. The second shot event is shown on the soccer pitch above. The time point
of the event is represented by a vertical white line. Reprinted from [JSS+14].
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Annotated Shot Events. We visually inspect all pre-annotated shots on goal by plotting
themnext to each other usingHorizonGraphs for themost relevant features. In Figure 4.7.3we
investigate all relevant features of the first half of the game by Horizon Graphs in combination
with the soccer pitch, players, and ball rendered for the second shot event. Similar to crosses
(analyzed inFigure 4.5.1), we candetect onedirect free kick (6th event) as there are noopposite
players around and there is no speed before the shot (the player is waiting until he is allowed to
perform the free kick). During all other shot events there are many of opposite players around
and the x-position is near to the relevant goal. In most of the events the team width is higher
than usual indicating that there is a fast movement of the offensive players towards the goal.

Shot Events Found by Classification. The analyst may also be interested in similar, dan-
gerous, and interesting situations not yet being marked in the data. We therefore exported the
transformed soccer data into the KNIME workflow as described in Section 4.6.4. We trained
and evaluated our classifiers and imported the results back into our prototype. Several new shot
on goal events could be detected by our classifier but were not yet marked in the original game
data. Figure 4.7.4 illustrates the classification results. Where green bars depict correctly found
events, red represent not found events, and yellow bars stand for potentially interesting events.

The analyst is able to validate new found shot on goal events and mark correct found as new
shot on goal events. Following the Visual Analytics pipeline it is possible to add the new events
to our KNIME workflow and to update the classifiers. It is therefore feasible to extend, update
and improve the classifiers to gain more insights.

Forour example,we inspectedall found shotsongoal eventsnot annotatedbefore andmarked
the correct ones. We retrained our classifiers with the additional training data and imported
the classification results into our tool. By this single iteration we discovered eight new events
of which five were relevant. An excerpt of the newly found events can be seen in Figure 4.7.5.

It seems that the extensionof our classifierswith additional interesting events helped tomove
away frompure shot on goal events to overall dangerous events. Theupper image in Figure 4.7.5
shows a new not yet marked shot on goal event, whereas the middle and lower image show
dangerous situations. In the bottom row for example a striker tried to enter the penalty area,
but was stopped in the very last moment. We see the discovery of overall dangerous situations
as a prove that the Visual Analytics pipeline helps in improving the classification results.
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Figure 4.7.4: Analysis of detected new shot on goal events. Green colored bars indicate
correct classified events, red represent not found events, and yellow bars show events found
by the classifier but not tagged in the original input data. Reprinted from [JSS+14].
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Figure 4.7.5: New events found after adding confirmed events to the classifier’s training
data. The classifier returns not only shots on goal (top) anymore but also semantically
dangerous situations (middle and bottom). Reprinted from [JSS+14].150
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4.7.4 Back-Four Formation

In this use case, we want to evaluate how the back-four formation performed right before a
goal was scored. We investigate a short period before the goal of the first use case is scored
(Section 4.7.1).

The key scene of the failure is shown in upper Figure 4.7.6. Our previously described as-
sessment of the back-four formation detects that there seems to be something wrong with the
back-four formation resulting in a red coloring. Investigating this time frame we can see why:
the back-four formation seems to have problems with their coordination. The nearest midfield
player to the right-back is not fulfilling any correct defensive tasks. Unfortunately, the central
right defender decides wrong and moves out to the sideline in order to cover another oppo-
site player. Instead, he should have stayed near his usual position to cover the central areas in
front of the goal. Although, a free opposite player at the sideline is not good, it is much more
dangerous to have large distances between defenders and uncovered opposite players near the
middle. A simple pass through the resulting free space leads to a situation with again too much
free space for the opposite striker. Three own defending players are consequently outplayed
and not involved in the defense anymore.

In lower Figure 4.7.6, the back-four formation has improved their positions and tries hard to
recover from their previous mistake. As the central right defender moved back, the overall for-
mation is better than before resulting in greenish coloring. Though the mistake was too severe
to recover from and the opposite players is already on his way to score a goal.

The coach of this team can learn from the analysis and teaches his central-back players to
stay near the center area and avoid any free spaces in the center. Furthermore, the coach should
improve the collaboration and coordination of defensive midfield players and the back-four
formation as well. If the midfield player at the sideline had covered his opposite number, the
central right defender would not have needed to assist at all.

4.8 Evaluation

During the development of our Visual Analytics prototype, we had some contacts to two do-
main experts. Expert A is involved into playing soccer since 23 years and into coaching since
nine years. Currently, he is working for FC Bayern München being an international successful
German soccer club. Expert B plays soccer since 18 years and is referee for matches in the local
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Figure 4.7.6: Back-four formations immediately before the goal occurs. The connecting line
is colored from red to green representing the computed quality of the back-four formation.
Reprinted from [JSS+14].
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area around the lake of Konstanz. We first gathered informal expert feedback in order to eval-
uate our overall approach and to get some hints for future development. In our second, more
formal user study, we decided to focus on the semi-automatic detection of interesting and dan-
gerous events.

4.8.1 First Informal Expert Feedback

We held our first informal feedback session with soccer expert A. He is certain about the ben-
efits a semi-automatic tool has and that such tools can be implemented in professional soccer
sports. The semi-automatic analysis will help coaches in cases where there is not enough time
for amanual analysis and it allows analyzingmore games in the same amount of time compared
to a pure manual analysis. Current developments in soccer show that coaches want to decide
less by intuition but more by hard facts and figures. We showed the capabilities of our current
prototype and the use-cases to the soccer expert and asked for his feedback and opinions. The
overall feedback was quite good, but he came immediately with suggestions for improvements
that will be included in future versions of this tool.

Wewere especially interested in the effectiveness of the implementedHorizonGraphs. Hori-
zon Graphs were not intuitive to the soccer expert and were explained to him by showing the
visual process of transforming a line chart into aHorizonGraph. After the explanations, he was
not only able to read the visualizations but was also convinced that this visualization technique
supports him better than traditional line charts. He was amazed by the possibility to see the
team’s coherence for certain features as speed or acceleration supported by the color changes
around the quartiles. In his opinion, Horizon Graphs are most beneficial when comparing the
same attribute across several players. Comparing several players reflects the spirit of soccer be-
ing a team sport.

Detecting dangerous situations and potential shots semi-automatically was regarded posi-
tively, especially with respect to fast analysis tasks. During half-time breaks, the detection of
potentially dangerous situations can be very helpful. He mentioned that it would be also inter-
esting to get hints about, why a certain attack did not succeed and lead to a goal.

With respect to future improvements and capabilities of our tool he sees the following po-
tential: Coaches could validate their – maybe intuitive or experience-based – hypotheses in
our tool, by looking for a certain kind of situation specified by the coach. Thereafter, the sys-
tem should automatically derive the corresponding features and detect similar situations and
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display them.

4.8.2 Expert Study

In our more formal expert study we invited both, expert A and B, and focused on the semi-
automatic detection of dangerous events. We first gave specific tasks to the expert, in order
to allow first insights and gain some understanding of our prototype. In a second step, we in-
terviewed the experts and asked them about some of our design decisions. We concluded our
studyby somegeneral questions about the usefulness of theVisualAnalytics approach to soccer
and asked for missing features.

Detailed Study Description

We followed in our study a set of tasks and questions depicted in Figure 4.8.1. The tasks were
developed, in order to guide the experts and let them explore our prototype. At first, we fo-
cused on the detection of dangerous situations using the annotated shot events. Theparticipant
should inspect the proposed situations and rate whether these situations are dangerous. We
were present during the study and could answer questions and write down interesting quotes
and results. We conducted an interview after the tasks and asked for the expert’s opinion re-
garding certain aspects of our prototype.

Study Results

Both experts spent several hours with analyzing the anonymized data sets with our prototype.
We were quite astonished that though they didn’t know anything about the matches, they were
really interested in insights and enjoyed working with our Visual Analytics tool. Furthermore,
we got very valuable feedback and suggestions for future improvements.

Concerning the visual classification representation both experts agreed that the history of
classification results and the corresponding user interactions are comprehensible and interest-
ing though not presentable to a coach. Coaches are not interested in the course of the analysis
but in the results.

The possibility tomanually add and remove dangerous situations wasmeant to be important
by both experts. According to expert A, a Visual Analytics system should be flexible to enable
coaches and analysts to steer the analysis process in the desired direction. Especially, as every
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Expert Study

Analysis Tasks

1. Investigate dangerous situations based on “shot” events. Use the Single
Classifier mode and LMT as classifier. Judge the quality of the found sit-
uations and iterate the classification process until you think there are no
more good results.

2. Repeat the first task using the All Classifiermode.

Interview

1. Howuseful is thehistoryof old classification results and the corresponding
user interaction?

2. How important is it to remove and add new dangerous situations?

3. Do you like to see the classification probability?

4. Doyouconsider the tooltips helpful at all and/orwhat information ismiss-
ing?

5. Do you want to compare the results of different classifiers?

Overall Usefulness

• Why is the application useful and in which situations can it be used?

• What can we improve?

• Do you have any miscellaneous remarks?

Figure 4.8.1: Sheet of tasks and questions guiding through our expert study.
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coach has his own opinion about good soccer. Expert B remarked that manually adding situ-
ations is beneficial when the coach knows about an important situation not being reflected in
the annotated data set before.

Both experts liked to see the classification probability especially with respect to the half time
break focusing only on the most important situations. Showing only the classification proba-
bility is not enough as the distance to the goal or other influencing factors should be reflected
as well.

Basically, tooltips were seen enriching the visualization. Nevertheless, we should integrate
more specific information about the kind of situation. For instance, which team is attacking and
from which side, who are the involved players, and how did the situation evolve.

Very interesting from our design perspective was to ask the experts whether they wanted to
compare different classifiers as shown in Figure 4.7.4. Both experts liked to see whether the
majority of classifiers found the same event. Seeing a visual comparison of different classifier
results in Small Multiples lead to a very good idea of expert B. He proposes to use the Small
Multiple comparison for visualizing the occurrence of different kind of situations. One row
could represent all free kicks and another one could represent all counterattacks. Figure 4.8.2
depicts a visual draft for visualizing different kind of situations.

Corner balls

Free kicks

Counter a�acks

Shots

 

 

Figure 4.8.2: Visual Draft for Small Multiples visualizing the occurrence of different kinds
of events.

Both experts are convinced that our Visual Analytics approach is beneficial and useful for
soccer analysts and coaches. They both see the usage scenario during a halftime break and for
the preparation and the debriefing of a match. Additionally, our system could support coaches
for the individual training of a player and therefore help to win.

During our expert study, we collected a number of improvement wishes and feature requests
ranging from user interface to new visualizations and analysis facilities. Some of these will issue
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new research work in our prototype. We are for instant currently working on visualizing arbi-
trary timewindowsof amatch, adjusting the visualization technique to the length andgameplay
of the selected time window. As the experts performed several iterations during the detection
of interesting situations, we could see how the classification results evolve over time. Summa-
rizing the results for three iterations, we detected that the results of the first iteration nearly
all situations detected were dangerous, unannotated shot events. The second iteration extends
this set of situations bymostly interesting ones though there are some less important situations.
The third iteration results in situations being not critical for the gameplay but can be used for
soccer training purposes. Based on these study results and our own experiments, we believe
that analysts do not need to perform more than three classification iterations, while two itera-
tions may be sufficient in most cases. Nevertheless, we will further investigate the number of
iterations and the corresponding results.

4.9 Conclusion

We presented a Visual Analytics approach to investigate soccer data and gain new insights.
Based on the analysis of single-player, multi-player, and event-based we were able to easily de-
tect standard situations as crosses for example. The integration of state-of-the-art data mining
techniques helps to find and understand interesting events. Additionally, even not previously
annotated interesting events could be found by Visual Analytics methods. Currently, our pro-
totype is set up as an expert tool. We followed a data-driven tool design, namely, we aimed to
combine Visual Analytics techniques deemed useful to answer analytical questions in context
of high-resolution soccer sensor data. These techniques include interactive and automatic data
filtering, visual representation of trajectories on a soccer field, and compact time series visual-
ization using Horizon Graphs. As we expect the types of required movement features to vary
between different analytical questions, we decided to compute a large number of features from
which the expert can chose. In addition, inspired by similar recent work [BTH+13], we incor-
porated an interactive classifier which can help to discover events of potential interest, based on
example event annotation, relying on a broad basis of features. Given our system is set up as an
expert system, we recommend it being used in Pair Analytic scenarios [AHKGF11]. Domain
experts were using our Visual Analytics framework and were able to detect dangerous game
situations semi-automatically. The domain experts were enjoying performing analyses and ex-
ploring soccer matches in our tool.
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Our future work includes to provide our prototype to coaches and to support the most of-
ten used analyses by predefined configuration settings and the definition of task-driven views.
The analysis of soccer features is at an early stage, but this pre-study showed already some in-
formation available in the data. We want to extend our approach to a semi-automatic detection
of mistakes of a team to help the coach in finding critical situations. Furthermore, we want to
integrate video material into our system whenever available and implement more assessment
criteria for formations. Furthermore, we want to integrate a better visualization for the move-
ment of players and soccer-specific artifacts as free spaces or running paths. Especially when
visualizing longer time windows, a more abstract visualization technique adapted to soccer is
necessary. Additionally, we will integrate the experts’ feedback in order to support the coach
in validating hypotheses and present the findings to his team.
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He who would learn to fly one day must first learn to stand
and walk and run and climb and dance; one cannot fly into
flying.

Friedrich Nietzsche

5
Conclusions and Future Perspectives

As Nietzsche phrased very accurately, it is impossible to achieve a high-level goal con-
sistingof several sub-accomplishmentswithout fulfilling those sub-tasks. Transferred to thedo-
main of Visual Analytics, wewant to enable the user to generate and validate hypotheses, derive
insights, and gain new knowledge. Designing suchVisual Analytics systems asks formany deci-
sions being wisely made. Beginning from the very first data preprocessing decisions to proper
visualizations and data mining techniques, all steps require not only skills in Visual Analytics
but also domain expertise. We can only achieve our ultimate goal of gaining new knowledge
when all techniques applied complement each other perfectly. In this thesis, we discussed and
enhanced visualization and analysis techniques in the domain of temporal and geospatial data.

5.1 Summary

We introduced state-of-the-art boosting methods enhancing the visual saliency of data items
and discussed their applicability and prerequisites. We believe that guiding the analyst’s atten-
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tion to data items of interest supports an effective and efficient analysis. The boosting tech-
niques were employed throughout this thesis and for instance highlighted anomalies in time
series of power consumption data. A main contribution of this section is a table comparing all
boosting techniques. The techniques are not equally effective in the different boosting tasks
and the design process of a visual analysis systems should reflect this knowledge.

Our peak-preserving prediction technique was developed to enhance the prediction result,
as state-of-the-art methods usually interpret peaks as outliers and disregard them. However, to
our domain experts these peaks were crucial as they may hint to severe problems. We decided
to design a prediction method being easily inspectable and interpretable based on weighted
averaging. Besides a higher accuracy, the main advantage of our prediction technique is that
the analyst can control the influence of peakiness to the prediction. Another interesting aspect
of this section is the determination of peaks using the inverse of the recursion level of an applied
Douglas-Peucker algorithm.

We combined both boosting and prediction in a visual analysis system for power consump-
tion data. We focused in this work on the detection of anomalies and the visual exploration of
the time series data. In close collaboration with our subject matter experts, we implemented
the major state-of-the-art visualization techniques for time series and allowed to easily switch
between the visualization techniques. In order to guide the analyst’s attention to exceptional
power consumptions, we integrated two anomaly scores with different properties and adjusted
thevisual layout according to the anomaly scores. Fordetailed analyses,we implemented similarity-
based queries to detect for instance root causes for a selected power consumption pattern.

Scatter plots are widely applied and are a basic technique visualizing two-dimensional data.
We enhanced scatter plots by an ellipsoid pixel placement representing local correlations. Our
pixel placement algorithm removes the overplotting of data points in dense regions by moving
overplotting points to a nearby free position based on the local correlation. We furthermore
added lighting to the scatter plot, in order to visualize the original position of a data point. The
advantage of an overplotting-free scatter plot is that points can be colored expressively repre-
senting a third dimension.

We discussed several methods to simplify line-based spatial visualizations and reduce the
amount of overplotting. However, line-based representations aremore complicated than point-
based visualizations. Lines overlap not only in dense regions but also because of intersections
and crossings. We presented approaches to simplify line-based movement representations by
reducing the number of segments based on feature distributions. Our technique allows a real-

160



5.2. FUTURE PERSPECTIVES

time adaption of the simplification to the current zoom level and enables both a simplified
overview and details on demand by zooming. Complementing the simplification, we proposed
an abstraction technique representing rather the concept of the movement patterns.

Visual Analytics for soccer matches combines aspects from the temporal and the spatial do-
main. We support the analyst in exploring and analyzing soccer matches without replaying the
whole recorded game by animation. We implemented several visualization and analysis tech-
niques based on movement related features. We provided a toolbox of methods enabling the
analyst investigating the behavior of single or multiple players in highly interactive and inter-
related views. Furthermore, we integrated Visual Analytics to guide the analyst’s attention to
important game situations based on his interests. In collaboration with our domain experts, we
could get insights into previously unknown games and could highlight different facets. From
an analytics perspective, using false positives resulting from classification for the proposal of
important situations is an interesting approach.

5.2 Future Perspectives

Whenwe compare the differentmethods and techniques being either discussed by relatedwork
or presented in this thesis, we can observe some similarities and challenges for future work.
During our research enhancing visualization for temporal and spatial data, we discovered sev-
eral open issues being too large to be covered in this thesis but being essential for a successful
integration of the analyst into the Visual Analytics process.

In our work, we enhanced visualization and data mining techniques, in order to support the
analyst and guiding his attention to the outlying and interesting aspects in the data. Especially
in the application-driven sections for the analysis of power consumption and soccer matches,
a tight integration of the analyst into the design process was crucial. During our research, we
recognized that materializing domain knowledge in the Visual Analytics process is quite chal-
lenging. There are several ways to integrate domain knowledge in form of actions, such as rel-
evance feedback or tuning of parameters. But these actions are results of the domain knowl-
edge and do not provide direct access to the domain expertise. This detour from analysts to
the Visual Analytics system via actions can be quite error-prone, as intentions and reasonings
of the analyst are not known to the system. Furthermore, from the system’s perspective it is not
obvious which information helps the analyst best in solving his tasks. For the anomaly detec-
tion in power consumption data for example, we thought of integrating additionalmaintenance
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events or weather information to help the analyst explaining detected unusual patterns. These
additional informationwill help, but selecting fromapotentially infinite number of additionally
available data sources the proper ones is already based on domain knowledge. Consequently,
the only waymaterializing domain knowledge is to tightly collaborate with domain experts and
to design the Visual Analytics system accordingly. It is unrealistic to ask the subject matter
expert to externalize all his domain knowledge, but his domain knowledge is crucial for the
design process. There are already approaches like User-Centered Design in software develop-
ment, however Visual Analytics tries to generate findings not known to the user beforehand
with complex analysis techniques based on domain knowledge. It would be very desirable to
have Visual Analytics techniques supporting arbitrary combinations of facts, rules and fuzzy
intuitions tightly integrated in the analysis process.

Bridging the gap between animations and still images is research-wise both interesting and
challenging. As we discussed in the introduction, both types of visualizations can convey dif-
ferent kinds of information. Depending on the task, the designer of a Visual Analytics system
can either choose animations or static images. But there is nothing in between, besides Small
Multiples or adjusting the animation speed according to the information load in a scene. A
novel technique bringing the best of both worlds together would be a huge contribution to our
field. It is obviously not clear, if at all there exists a singlemethod better than the state-of-the-art
techniques. The novel technique should be able to increase the situational awareness, visualize
correlations, gradual and abrupt changes, and enable the analyst to detect and investigate single,
interesting situations.

The simultaneous visualization of geospatial and temporal aspects in data is very challeng-
ing and there are not many convincing examples. Some techniques try to encode the temporal
dimensions as a third dimension on top of a two-dimensional map resulting in occlusions and
perception issues. Others apply techniques like Small Multiples, animation, or glyph repre-
sentation. Inventing an innovative method depicting temporal changes in a geospatial domain
without animation is something worth to pursue. Again, there might be no technique better
than the existing ones but any improvement for visualizing temporal and spatial data simulta-
neously is definitely worth researching.
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