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ExecuƟve Summary
The general objecƟve ofWP5 is to study, design and develop data analyƟcs soluƟons for knowledge extracƟon
from railway asset data. This objecƟve will be achieved through the following tasks:

• DefiniƟon of data analyƟcs scenarios (T5.1 - D5.1);

• Development and demonstraƟon of tools and methodologies aiming at extracƟng knowledge from
data analyƟcs algorithms, and contemporarily making them interpretable in an easier way (T5.4 - D5.3
& T5.3 - D5.4);

• Study and develop the proof-of-concept of metrics and methods/tools to measure the accuracy of
analyƟcs algorithms (T5.2 - D5.2).

This deliverable builds upon D5.1 and reports the work that has been conducted for each of the defined
scenarios. The scenarios focus on relevant railway assets whose malfuncƟon and maintenance policies have
an impact on the KPIs targeted by the SHIFT2RAIL program. The cross-scenarios cover many aspects of the
railway ecosystem while the five specific-scenarios focus on a single parƟcular aspect.

• Cross-Scenario 1: VisualizaƟons in the Control Center
The work described in CS1 details opƟmizaƟons and enhancements of the visualizaƟons for various
systems at RFI. It is further described how interacƟve visualizaƟons are introduced to provide addiƟonal
informaƟon to the users. The work carried out prepares the inclusion of the blockchain-technology
developed in WP4 and the data-driven-models as described SS3 for a demonstrator (D5.4);

• Cross-Scenario 2: Marketplace of Data and Data MoneƟzaƟon
CS2 is disconƟnued because of the absence of a Marketplace for Data which will not be developed in
WP4;

• Specific-Scenario 1: Track Circuits
Described is the visual analyƟcs approach and the development of interpretable gray-box models to
enable predicƟve maintenance. The results can be exploited in IN2SMART WP8. The defined metrics
are evaluated in T5.2;

• Specific-Scenario 2: Train Delays and PenalƟes
This scenario details the development of a hybrid-model consisƟng of interpretable and experience-
based models that oŌen lack accuracy, and less interpretable data-driven-models whereas the combi-
naƟon can miƟgate the disadvantages for each type of model;

• Specific-Scenario 3: RestoraƟon Time
Describes the development of a fully data-driven-model soluƟon and the usage of diagnosƟc models
in combinaƟon with visualizaƟons to extract knowledge about the funcƟonal dependencies between
input and output variables;

• Specific-Scenario 4: Switches
DisconƟnued because of Ɵme and resource constraints;

• Specific-Scenario 5: Train Energy ConsumpƟon
The work on the predicƟve models is conducted in WP6. Their quality will be reported in D5.2.
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AbbreviaƟons and Acronyms
AbbreviaƟon DescripƟon
AI ArƟficial Intelligence
AMS Asset Management System
CBI Computer-Based Interlocking system
CBM CondiƟon-Based Maintenance
CS Cross-Scenario
IM Infrastructure Manager
JSON JavaScript Object NotaƟon
KPI Key Performance Indicator
ML Machine Learning
PM PredicƟve Maintenance
PoC Proof of Concept
RFI Rete Ferroviaria Italiana
RTS Railway Transport System
SR Strukton Rail
SS Specific-Scenario
SVG Scalable Vector Graphics
TCS Track Circuit System
TMS Traffic Management System
TO Train Operator
UNIGE University of Genoa
UKON University of Konstanz
VA Visual AnalyƟcs
WP Work-Package
WS Work-Stream
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1 IntroducƟon
UlƟmately, the operaƟonal performance of a train system directly depends on the many individual decisions
operators make in their daily job rouƟne. Consequently, it stands to reason to support decision makers as
opƟmal as possible, especially for posiƟons where decisions of a single operator have potenƟally large im-
pacts on complex train schedules.

In complex systems, it is rather the rule than the excepƟon that the informaƟon and knowledge needed to
make informed decisions is distributed over different parts of one system or even enƟrely different systems.
Having to put together informaƟon from heterogeneous environments is challenging and error-prone, which
in turn creates uncertainƟes in the operators workflow. As Ellis and Dix [26] point out, “decision making
under uncertainty can result in cogniƟve biases and irraƟonal decisions”. Such effects, also as described by
Kahnemann and Egan [41], should be minimized, especially in the light of the consequences operaƟonal de-
cisions can have in TMS environments.

While it is impossible for an operator to oversee all consequences of his acƟons, incorporaƟng our knowl-
edge of previous decisions and developments of operaƟonal scenarios can help structuring the informaƟon
necessary for decision making. For example, an operator could be provided with soluƟon suggesƟons based
on previous decisions in similar scenarios. To use this kind of knowledge, models have to be created which
encode the records of past situaƟons and compare these events in real-Ɵme to present ones. As well, con-
clusions provided by such models do not necessarily consist of singular soluƟons, but allow to choose from
opƟons opƟmized for different outcomes. For example, delay management could opƟmize for passenger im-
pact, overall punctuality or most economic soluƟon. Yet, regarding the responsibility resƟng on typical users
in their decision making, it is also important for an expert to be able to verify the reasons why a model is
suggesƟng a soluƟon. Consequently, it is of importance to efficiently communicate the decision criteria to
users to build trust [39].

In this deliverable, the examples of several scenarios illustrate novel approaches to aid operators and plan-
ners in various scopes of responsibility by providing them both a comprehensive overview on a situaƟon and
condensed informaƟon for decision making. To do so, the Visual AnalyƟcs [45] approach is employed which
aims to interacƟvely bring together algorithmic models and visualizaƟon displays for efficient, informed de-
cision making. Before the Visual AnalyƟcs approach is introduced in SecƟon 1.2, SecƟon 1.1 provides an
overview on the challenges in the creaƟon of models for knowledge representaƟon. Following, secƟons 2.1
to 2.7 illustrate challenges, progress and intended soluƟons for the scenarios defined in D5.1.

The scenarios introduced in secƟons 2.3, 2.4 and 2.5 detail the fundamental models for the status idenƟfica-
Ɵon and extracƟon from the Track Circuit System, the role and analysis of train delays and penalƟes and the
esƟmaƟon of recovery Ɵme in case of failures. The results of these scenarios are the fundamental building
blocks for the visualizaƟons in the control center presented to the operators. SecƟon 2.1 covers the Visual
AnalyƟcs approach in the control center, which provides visual and interacƟve access to the knowledge ex-
tracted in the aforemenƟoned scenarios.
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1.1 Rule-Based Methods for Knowledge ExtracƟon
As already described in D5.1, someƟmes, even if a data analyƟcs model performs well, having solely a model
able to make predicƟons is not enough. In these cases more than the answer itself it is important why the
model made a certain decision since a single metric, such as classificaƟon accuracy, is an incomplete descrip-
Ɵon of most real-world tasks [23].
In predicƟve modeling, you have to make a trade-off: do we simply want to know what is predicted (i.e. the
probability that a switchwill brake or a score for the effecƟveness of some train dispatching soluƟon) or dowe
want to know why that predicƟon was made, possibly paying for the interpretability with a drop in accuracy?
In some cases we do not care why a decision was made, only the assurance that the predicƟve performance
was good enough but in other cases, knowing why can help understand more about the problem, the data
and why a model might fail. Some models might not need explanaƟons, because they are used in a low
risk environment, meaning a mistake has no severe consequences, (e.g. a train predicƟon system) or the
method has already been extensively studied and evaluated. The necessity for interpretability comes from an
incompleteness in the problem formalizaƟon [23], meaning that for certain problems or tasks it is not enough
to get the answer (the what). The model also has to give an explanaƟon about how it came to the answer
(the why), because a correct predicƟon only parƟally solves the original problem. The following reasons drive
the demand for interpretability and explanaƟons [23, 58]:

• Human curiosity and learning. Humans have amental model of their environment, which gets updated
when something unexpected happens;

• Find meaning in the world. We want to reconcile contradicƟons or inconsistencies between elements
of our knowledge structures;

• Data analyƟcs models are taking over real world tasks, that demand safety measurements and tesƟng;
• By default most data analyƟcs models pick up biases from the training data;
• The process of integraƟng machines and algorithms into our daily lives demands interpretability to

increase social acceptance;
• ExplanaƟons are used to manage social interacƟons;
• Only with interpretability data analyƟcs algorithms can be debugged and audited.

If you can ensure that the data analyƟcs model can explain decisions, the following traits can also be checked
more easily [12, 22–25, 37, 64]:

• Fairness: Making sure the predicƟons are unbiased and not discriminaƟng against protected groups
(implicit or explicit). An interpretable model can tell why it decided that a certain person is not worthy
of a credit and for a human it becomes easier to judge if the decision was based on a learned demo-
graphic (e.g. racial) bias;

• Privacy: Ensuring that sensiƟve informaƟon in the data is protected;
• Reliability or Robustness: Test that small changes in the input don’t lead to big changes in the predic-

Ɵon;
• Causality: Check if only causal relaƟonships are picked up, meaning a predicted change in a decision

due to arbitrary changes in the input values is also happening in reality;
• Trust: It is easier for humans to trust a system that explains its decisions compared to a black box.

The most straighƞorward way to get to interpretable data analyƟcs is to use only a subset of algorithms that
create interpretable models [84]. Very common model types of this group of interpretable models are:

• Linear models: linear models have been used since a long Ɵme by staƟsƟcians, computer scienƟsts,
and other people tackling quanƟtaƟve problems. Linearmodels learn linear (and thereforemonotonic)
relaƟonships between the features and the target. The linearity of the learned relaƟonship makes the
interpretaƟon easy [35];
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• Decision trees: tree-based models split the data according to certain cutoff values in the features mul-
Ɵple Ɵmes. Spliƫng means that different subsets of the dataset are created, where each instance
belongs to one subset. The final subsets are called terminal or leaf nodes and the intermediate subsets
are called internal nodes or split nodes. For predicƟng the outcome in each leaf node, a simple model
is fiƩed with the instances in these subsets. Trees can be used for classificaƟon and regression [35];

• Rule-based models: for example, the RuleFit algorithm [29] fits sparse linear models which include
automaƟcally detected interacƟon effects in the form of binary decision rules.

1.1.1 Linear Models
Linear models [10, 35, 59, 71, 78] learn linear (and therefore monotonic) relaƟonships between the features
and the target. The linearity of the learned relaƟonship makes the interpretaƟon easy. Moreover their lin-
earity makes the esƟmaƟon procedure straighƞorward and, most importantly, these linear equaƟons have
an easy to understand interpretaƟon on a modular level (i.e. the weights). That is one of the main reasons
why the linear model and all similar models are so widespread in academic fields like medicine, sociology,
psychology, and many more quanƟtaƟve research fields. Linear models also come with some assumpƟons
that make them easy to use and interpret but which are oŌen not saƟsfied in reality. The assumpƟons are:
Linearity, normality, homoscedasƟcity, independence, fixed features, and absence of mulƟcollinearity.
The interpretaƟon of a weight in the linear model depends on the type of the corresponding feature:

• Numerical feature: for an increase of the numerical feature byoneunit, the esƟmatedoutcome changes
by the corresponding weight for that feature;

• Binary feature: a feature, that for each instance takes one of two possible values. One of the val-
ues counts as the reference level. A change of the feature from the reference level to the other level
changes the esƟmated outcome by the corresponding weight for that feature;

• Categorical feature with mulƟple levels: in this case the problem is overparameterized, for this reason
the categorical feature must be coded with the one-hot-encoding schema and, in this way, we can
exploit again the approach described for the binary features.

Linearmodels have obviously also disadvantages. Linearmodels can only represent linear relaƟonships. Each
non-linearity or interacƟon has to be hand-craŌed and explicitly given to the model as an input feature.
Linear models are also oŌen not that good regarding predicƟve performance, because the relaƟonships that
can be learned are so restricted and usually oversimplifies how complex reality is. The interpretaƟon of a
weight can be unintuiƟve because it depends on all other features. A feature with high posiƟve correlaƟon
with the outcome and another feature might get a negaƟve weight in the linear model, because, given the
other correlated feature, it is negaƟvely correlatedwith in the high-dimensional space. Completely correlated
features make it even impossible to find a unique soluƟon for the linear equaƟon.
Linear models have been extensively studied and extended to fix some of the shortcomings.

• Lasso is a method to pressure weights of irrelevant features to get an esƟmate of zero. Having unim-
portant features weighted by zero is useful, because having less terms to interpret makes the model
more interpretable;

• Generalised Linear Models allow the target outcome to have different distribuƟons. The target out-
come is no longer required to be normally distributed given the features, but Generalised LinearModels
allow you to model for example Poisson distributed count variables. LogisƟc regression, is a Gener-
alised Linear Model for categorical outcomes;

• Generalised addiƟve models are Generalised Linear Models with the addiƟonal ability to allow non-
linear relaƟonships with features, while maintaining the linear equaƟon structure.
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It is possible to apply all sorts of tricks to go around some of the problems related to linear models:

• Adding interacƟons: it is possible to define interacƟons between features and add themas new features
before esƟmaƟng the linear model. The RuleFit algorithm can add interacƟons automaƟcally;

• Adding non-linear terms like polynomials to allow non-linear relaƟonships with features;
• StraƟfying data by feature and fiƫng linear models on subsets.

Finally in reality we might not have just a handful of features, but hundreds or thousands and, in this case
interpretability goes downriver. There are also situaƟons withmore features than instances and in this case it
is not possible to fit a standard linear model at all. Themost automaƟc and convenient way to introduce spar-
sity is to use the Lasso method. Lasso stands for Least Absolute Shrinkage and SelecƟon Operator and when
added to a linear model, it performs feature selecƟon and regularisaƟon of the selected feature weights.
Lasso is not the only soluƟon, a big spectrum of methods can be used to reduce the number of features in a
linear model.
Methods that include a pre-processing step:

• Hand selected features: it is possible to use expert knowledge to choose and discard some features.
The big drawback is, that it can’t be automated and you might not be an expert;

• Use some measures to pre-select features: an example is the correlaƟon coefficient. You only take
features into account that exceed some chosen threshold of correlaƟon between the feature and the
target. Disadvantage is that it only looks at the features one at a Ɵme. Some features might only show
correlaƟon aŌer the linear model has accounted for some other features. Those you will miss with this
approach.

Step-wise procedures:

• Forward selecƟon: fit the linear model with one feature. Do that with each feature. Choose the model
that works best. Now again, for the remaining features, fit different versions of your model by adding
each feature to your chosen model. Pick the one that performs best. ConƟnue unƟl some criterium is
reached, like the maximum number of features in the model;

• Backward selecƟon: same as forward selecƟon, but instead of adding features, start with the model
that includes all features and try out which feature you have to remove to get the highest performance
increase. Repeat unƟl some stopping criterium is reached.

In the case when we want to apply linear models to classificaƟon problems (e.g. binary {0,1} classificaƟon
problems) using, as a model, a simple linear combinaƟon some problems arise.

• A linear model does not output probabiliƟes, but it treats the classes as numbers (0 and 1) and fits the
best linear model (if you have one feature, it’s a line) that minimises the distances between the points
and the model. So it simply interpolates between the points, but there is no meaning in it and you
cannot interpret it as probabiliƟes;

• Also a linear model will extrapolate the features and give you values below zero and above one, which
are not meaningful and should tell you that there might be a more clever approach to classificaƟon;

• Since the predicted outcome is not a probability but some linear interpolaƟon between points there is
no meaningful threshold at which you can disƟnguish one class from the other;

• Linear models don’t extend to classificaƟon problems with mulƟple classes.

A soluƟon for classificaƟon is logisƟcmodels. Instead of fiƫng a straight line or hyperplane, the logisƟcmodel
uses a non-linear funcƟon, the logisƟc funcƟon to squeeze the output of a linear equaƟon between 0 and 1.
The interpretaƟon of the logisƟcmodels weights differs from the linearmodel case, because in logisƟcmodels
the outcome is a probability between 0 and 1, and the weights don’t affect the probability linearly, but are
squeezed through the logisƟc funcƟon.
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Here are the interpretaƟons for the logisƟc model with different feature types:

• Numerical feature: for an increase of one unit of the feature the esƟmated odds change (mulƟplica-
Ɵvely) by a factor proporƟonal to the exponenƟal funcƟon of the corresponding weights;

• Binary categorical feature: one of the two values of the feature is the reference level. A change of the
feature from the reference level to the other level changes the esƟmated odds (mulƟplicaƟvely) by a
factor proporƟonal to the exponenƟal funcƟon of its corresponding weights;

• Categorical feature with many levels: again, as for linear models, the featuremust be coded in mulƟple
binary features.

1.1.2 Decision Trees
Linear models and logisƟc models fail in situaƟons where the relaƟonship between features and outcome is
non-linear orwhere the features are interacƟngwith each other. Decision trees can fill this gap [48, 61, 66, 67,
79, 86, 89]. Tree-basedmodels split the data according to certain cutoff values in the features mulƟple Ɵmes.
Spliƫng means that different subsets of the dataset are created, where each instance belongs to one subset.
The final subsets are called terminal or leaf nodes and the intermediate subsets are called internal nodes or
split nodes. For predicƟng the outcome in each leaf node, a simple model is fiƩed with the instances in this
subset (for example the subsets average target outcome). Trees can be used for classificaƟon and regression.
There are a lot of tree algorithms with different approaches for how to grow a tree. They differ in the possible
structure of the tree (e.g. number of splits per node), criteria for how to find the splits, when to stop spliƫng
and how to esƟmate the simple models within the leaf nodes. ClassificaƟon and regression trees is one of
the more popular algorithms for tree inducƟon.
The interpretaƟon of decision trees is simple: starƟng from the root node you go to the next nodes and
the edges tell you which subsets you are looking at. Once you reach the leaf node, the node tells you the
predicted outcome. All the edges are connected by a logic AND.
The tree structure is perfectly suited to cover interacƟons between features in the data. The data also ends
up in disƟnct groups, which are oŌen easier to grasp than points on a hyperplane like in linear model. The
interpretaƟon is arguably preƩy straighƞorward. The tree structure also has a natural visualizaƟon, with its
nodes and edges. Trees create good explanaƟons as defined here. The tree structure automaƟcally invites
to think about predicted values for single instances in a counterfactual way: if a feature would have been
bigger / smaller than the split point, the predicƟon would have been different? The created explanaƟons
are contrasƟve, because you can always compare the predicƟon of an instance with relevant (as defined by
the tree) what-if-scenarios, which are simply the other leaf nodes of the tree. If the tree is short, like one to
three splits deep, the resulƟng explanaƟons are selecƟve. A tree with a depth of three needs a maximum of
three features and split points to create the explanaƟon for the predicƟon of an instance. The truthfulness of
the predicƟon depends on the predicƟve performance of the tree. The explanaƟons for short trees are very
simple and general, because for each split, the instance either falls into one or the other leave and binary
decisions are easy to understand. There is no need to transform features. In linear models it is someƟmes
necessary to take the logarithm of a feature. A decision tree can handle a feature regardless of monotonic
transformaƟons.
Handling of linear relaƟonships, that’s what trees cannot do. Any linear relaƟonship between an input feature
and the outcome has to be approximated by hard splits, which produces a step funcƟon. This is not efficient.
This goes hand in hand with lack of smoothness. Slight changes in the input feature can have a big impact on
the predicted outcome, which might not be desirable.
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Trees are also quite unstable, so a few changes in the training dataset might create a completely different
tree. That’s because each split depends on the parent split. And if a different feature gets selected as the
first split feature, the whole tree structure will change. It does not generate confidence in the model if the
structure flips so easily.

1.1.3 Rule-Based Models
A decision rule is a simple IF-THEN statement consisƟng of a condiƟon and a predicƟon. A single decision rule
or a combinaƟon of several rules can be used to make predicƟons [11, 17, 29, 30, 49, 88].
Decision rules follow a general structure: IF the condiƟon is true THENmake a parƟcular predicƟon. Decision
rules are probably themost interpretable predicƟonmodels. Their IF-THEN structure semanƟcally resembles
natural language and the way we think, provided that the condiƟon is built from intelligible features, the
length of the condiƟon is short (number of feature=value pairs combined with an AND) and there are not
too many rules. In programming it’s very natural to write IF-THEN rules. New in machine learning is that the
decision rules are learned through an algorithm.
A decision rule uses at least one feature=value statement in the condiƟon, with no upper limit on how many
more can be added with an AND. An excepƟon is the default rule that has no explicit IF-part and that applies
when no other rule applies, but more will be detailed later.
The usefulness of a decision rule is usually summarized in two

• Support of a rule: the percentage of instances to which the condiƟon of a rule applies is called the
support;

• Accuracy of a rule: the accuracy of a rule is a measure of how accurate the rule is in predicƟng the
correct class for the instances to which the condiƟon of the rule applies.

Usually there is a trade-off between accuracy and support: by adding more features in the condiƟon, we can
achieve higher accuracy, but lose support.
To create a good classifier for predicƟng the value of a house you might need to learn not only one rule, but
maybe 10 or 20. Then things can get more complicated:

• Rules can overlap: what if I want to predict the value of a house and two or more rules apply and they
give me contradictory predicƟons?;

• No rule applies: what if I want to predict the value of a house and none of the rules apply?

There are two main strategies for dealing with mulƟple rules: decision lists (ordered) and decision sets (un-
ordered). Both strategies imply different soluƟons to the problem of overlapping rules.

• A decision list introduces an order to the decision rules. If the condiƟon of the first rule is true for an
instance, we use the predicƟon of the first rule. If not, we go to the next rule and check if it is true
and so on. Decision lists are one-sided decision trees, where the first rule is the root node and with
each rule, the tree grows in one direcƟon. Decision lists solve the problem of overlapping rules by only
returning the predicƟon of the first rule in the list that applies;

• A decision set resembles a democracy of the rules, except that some rules might have a higher voƟng
power. In a set, the rules are eithermutually exclusive, or there is a strategy for resolving conflicts, such
as majority voƟng, which may be weighted by the individual rule accuracies or other quality measures.
Interpretability suffers potenƟally when several rules apply.

Both decision lists and sets can suffer from the problem that no rule applies to an instance. This can be
resolved by introducing a default rule. The default rule is the rule that applies when no other rule applies.
The predicƟon of the default rule is oŌen the most frequent class of the data points which are not covered
by other rules. If a set or list of rules covers the enƟre feature space, we call it exhausƟve.
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By adding a default rule, a set or list automaƟcally becomes exhausƟve.
There aremanyways to learn rules from data and this document is far from covering them all. The algorithms
are chosen to cover a wide range of general ideas for learning rules, so all three of them represent very
different approaches.

• OneR learns rules from a single feature. OneR is characterized by its simplicity, interpretability and its
use as a benchmark;

• SequenƟal covering is a general procedure that iteraƟvely learns rules and removes the data points
that are covered by the new rule. This procedure is used by many rule learning algorithms;

• Bayesian Rule Lists combine pre-mined frequent paƩerns into a decision list using Bayesian staƟsƟcs.
Using pre-mined paƩerns is a common approach used by many rule learning algorithms.

There are many benefits of IF-THEN rules in general.

• IF-THEN rules are easy to interpret. They are probably the most interpretable of the interpretable
models. This statement only applies if the number of rules is small, the condiƟons of the rules are
short and if the rules are organised in a decision list or a non-overlapping decision set;

• Decision rules can be as expressive as decision trees, while being more compact. Decision tree oŌen
also suffer from replicated sub-trees, that is, when the splits following a leŌ and a right child node have
the same structure;

• The predicƟon with IF-THEN rules is fast, since only a few binary statements need to be checked to
determine which rules apply;

• Decision rules are robust against monotonous transformaƟons of the input features, because only the
threshold in the condiƟons changes. They are also robust against outliers, since it only maƩers if a
condiƟon applies or not;

• IF-THEN rules usually generate sparse models, which means that not many features are included. They
select only the relevant features for the model. For example, a linear model assigns a weight to every
input feature by default. Features that are irrelevant can simply be ignored by IF-THEN rules;

• Simple rules like from OneR can be used as baseline for more complex algorithms.

Nevertheless, there are also downsides in IF-THEN rules in general.

• The research and literature for IF-THEN rules focuses on classificaƟon and almost completely neglects
regression. While you can always divide a conƟnuous target into intervals and turn it into a classificaƟon
problem, you always lose informaƟon. In general, approaches are more aƩracƟve if they can be used
for both regression and classificaƟon;

• OŌen the features also have to be categorical. That means numeric features must be binned, if you
want to use them. There are many ways to cut a conƟnuous feature into intervals, but this is not trivial
and comes with many quesƟons without clear answers. How many intervals should the feature be
divided into? What’s the spliƫng criteria: fixed interval lengths, quanƟles or something else? Dealing
with binning conƟnuous features is a non-trivial issue that is oŌen neglected and people just use the
next best method (like I did in the examples);

• Many of the older rule-learning algorithms are prone to overfiƫng. The algorithms presented here all
have at least some safeguards to prevent overfiƫng: OneR is limited because it can only use one feature
(only problemaƟc if the feature has toomany levels or if there are many features, which equates to the
mulƟple tesƟng problem), RIPPER does pruning and Bayesian Rule Lists impose a prior distribuƟon on
the decision lists;
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• Decision rules are bad in describing linear relaƟonships between features and output. That’s a prob-
lem they share with the decision trees. Decision trees and rules can only produce step-like predicƟon
funcƟons, where changes in the predicƟon are always jumps and never smooth curves. This is related
to the issue that the inputs have to be categorical (in decision trees, they are implicitly categorized by
spliƫng them).

An important algorithms for rule fiƫng purposes is the RuleFit algorithm [29]. The RuleFit algorithm fits
sparse linear models which include automaƟcally detected interacƟon effects in the form of binary decision
rules.
The standard linear model doesn’t account for interacƟons between the features so it is convenient to have
a model that is as simple and interpretable as linear models, but that also integrates feature interacƟons.
RuleFit addresses this issue and fits a sparse linear model with the original features and also a set of new
features which are decision rules. These new features capture interacƟons between the original features.
RuleFit generates these features automaƟcally from decision trees. Each path through a tree can be turned
into a decision rule by combining the split decisions to a rule.
These are trees that are trained to predict the outcome of interest, so that the splits are meaningful for the
task at hand and not arbitrary. Any algorithm that creates a lot of trees can be used for RuleFit, like a Random
Forest [14] for example. Each tree is disassembled into decision rules, which are used as addiƟonal features
in a linear Lasso model.
RuleFit also comes with a feature importance measurement, which helps to idenƟfy linear terms and rules
that are important for the predicƟon. The feature importance is calculated from theweights of the regression
model. The importance measure can be aggregated for the original features (which appear once untrans-
formed and possibly in many decision rules).
RuleFit also introduces parƟal dependence plots to plot the average change of the predicƟon by changing
one feature. The parƟal dependence plot is a model-agnosƟc method, which can be used with any model,
and it has its own part in the book.
The quesƟon that raises now is what are the advantages and disadvantages of RuleFit and how it is possible
to interpret it?
The interpretaƟon is analogue to linear models.
The advantages are:

• RuleFit adds feature interacƟons automaƟcally to linear models. Therefore it solves the problem of
linear models that you have to add interacƟon terms manually and it helps a bit with the issue of
modeling non-linear relaƟonships;

• RuleFit can handle both classificaƟon and regression tasks;
• The created rules are easy to interpret, because they are binary decision rules. Either the rule applies

to an instance or not. Good interpretability is only guaranteed as long as the number of condiƟons
within a rule is not to big. A rule with 1 to 3 condiƟons seems reasonable to me. This translates into a
maximum depth of 3 for the trees in the tree ensemble;

• Even if there are many rules in the model, they do not apply to each instance, so for one instance only
a handful of rules are important (non-zero weights). This improves local interpretability;

• The RuleFit proposes a bunch of useful diagnosƟc tools. These tools are model-agnosƟc, that’s why
you will find them in the model-agnosƟc secƟon: feature importance, parƟal dependence plots and
feature interacƟons.
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While the disadvantages are:

• SomeƟmes RuleFit creates many rules which get a non-zero weight in the Lasso model. The inter-
pretability degrades with higher number of features in the model. A promising soluƟon is to force
feature effects to be monotonic, meaning that an increase in a feature has to result in an increase of
the predicted outcome;

• An anecdotal drawback: the papers claim good performance of RuleFit - oŌen close to the predicƟve
performance of Random Forests! - yet in the few cases where I personally tried it, the performance
was disappoinƟng;

• The end product of the RuleFit procedure is a linear model with addiƟonal fancy features (the decision
rules). But since it is a linear model, the weight interpretaƟon is sƟll unintuiƟve.

1.2 Visual AnalyƟcs Methods for Knowledge ExtracƟon
The challenges in the IN2DREAMS project comprise a variety of tasks substanƟally differing in nature: Pro-
cessing and presenƟng, analysis and decision making, simulaƟon and interpolaƟon are very different duƟes
whose integraƟon cannot be achievedwith convenƟonal soluƟons. In addiƟon, extracƟng relevant andmean-
ingful informaƟon from heterogeneous data sources is notoriously complex and cumbersome.
Researchers have been trying to solve these problems through either automaƟc data analysis or interacƟve
visualizaƟon approaches. However, only the combinaƟon of both approaches allows to leverage both the
computaƟonal power of modern algorithms and machines as well as a user’s experience and unmatched
ability to perceive and interpret paƩerns.
Visual AnalyƟcs (VA) is an interdisciplinary approach towards complex data analysis scenarios based on this
combinaƟon of man and machine. VA “combines automated analysis techniques with interacƟve visualiza-
Ɵons for an effecƟve understanding, reasoning and decision making on the basis of very large and complex
datasets”, a definiƟon given by Keim et al. as summary of the VisMaster EU research project [45]. Besides
direct knowledge generaƟon, following Visual AnalyƟcs principles also fosters a user’s construcƟve reflecƟon
and correcƟon of conducted analyses, resulƟng in improvements for processes and models, and ulƟmately,
of decisions taken and knowledge generated by the users.
VA combines mulƟple research areas and subjects including data management and analysis, spaƟo-temporal
data processing, staƟsƟcs, human-computer-interacƟon and visualizaƟon [46]. It is intended to allow to de-
rive insights from large, in-homogeneous and ambiguous datasets and enables both to confirm expected
results as well as finding unexpected coherence. Users can quickly come to comprehensible, verifiable re-
sults and are able to communicate their findings and derived consequences for acƟon efficiently. The Visual
AnalyƟcs process has been described and modeled extensively. A refined view is provided by Sacha et al.[73]
with the introducƟon of the Knowledge GeneraƟonModel. This model for VA defines and relates human and
machine concepts embedded in a three-loop framework [73]. The model is shown in Figure 1 and consists
of the VA process model on the leŌ hand side and is related to human knowledge generaƟon process on the
right hand side. Themodel clearly conveys that lower-level processes, which are part of the exploraƟon loop,
are guided by higher-level analyƟc acƟviƟes, which are part of the verificaƟon and knowledge generaƟon
loops.
The applicaƟon of VA principles for knowledge extracƟon to specific scenarios is a process which can not be
generalized, but that is dependent on the domain problem. Yet, VA workflows follow general rules which
can be implemented for any data-analyƟcal model creaƟon process as applied in the train scheduling models
applied in Cross-Scenario 1 in SecƟon 2.1, for example as provided by Sacha et al. [72]. To incorporate expert
knowledge and to explore parameter spaces, already at this point dedicated VA soluƟons should be deployed.
Figure 2 illustrates the complex steps necessary for the creaƟon of valid models with realisƟc predicƟon or
classificaƟon results.
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Figure 1: The Knowledge GeneraƟon Model for Visual AnalyƟcs. It describes the relaƟon between the
algorithmic processing of data and human data exploraƟon and analysis through interacƟve visualizaƟon
approaches. In combinaƟon, an expert goes through several loops to arrive at a conclusion.

Besides the model creaƟon process itself, models already deployed in applicaƟons also have to adapt to
changing situaƟons and regimes. In other words, the models have to be able to learn from the decisions an
operatormakes, and, through acƟve learning processes [77], incorporate the same into the digital knowledge
representaƟon. Consequently, the wealth of available sensor informaƟon and predicƟons generated by the
models applied in the various scenarios can be employed to create a holisƟc view on a train system, merging
informaƟon usually separated in different systems (e.g. maintenance, scheduling, delay management and
Ɵcket sales).
The integraƟon of the collected data into models through interacƟvemachine learning entails the adaptaƟon
of these models to process spaƟally and temporally changing data sources. Thus, changing spaƟal and tem-
poral uncertainƟes have to be considered and adapƟve interpolaƟon methods implemented for the whole
predicƟon process. Due to these circumstances, the development of suitable, progressive Visual AnalyƟcs
systems as introduced by Stolperer et al. [81] is necessary to ensure the understanding of the whole pro-
cess from data cleaning over model building to validaƟon tasks by the experts. Progressive VA approaches
enable analysts to intervene in the model learning process. By inspecƟng parƟal results directly when avail-
able, experts can influence the modelling process and put emphasis on interesƟng subspaces based on their
experƟse and domain knowledge. This way, the ML process can be steered early on and computaƟonally
costly, but ineffecƟve parts of the decision space can potenƟally be avoided. This process heavily relies on
the visualizaƟon of intermediary results and the interacƟon with the same, and consequently is very much
suited for the applicaƟon of VA approaches.

2 Achievements for WP5 Scenarios
WP5 targets many systems and domain-specific, real-world problems of the operators and asset managers
working at RFI. As in D5.1 “Data AnalyƟcs Scenarios”, we divide this into 7 different scenarios whereas the
Cross-Scenarios (1, 2) target mulƟple systems at once and the Specific-Scenarios (1-5) seek soluƟons to spe-
cific problems. However, the final demonstrator (D5.4) will merge the soluƟons of Cross-Scenario 1, Specific-
Scenario 3, as well as the soluƟons in blockchain technology of Work-Package 4 (WP4). In the following,
we detail the problems and requirements for each scenario, report on our progress and achievements, and
discuss the findings and soluƟons.
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Figure 2: The ontology for VA-assisted machine learning. The major steps are Examining/Preparing Data
(G1), Examining and Understanding themachine learningmodel (G2), feature and parameter analysis (G3),
the learning process (G4), quality and result analysis (G5) and comparaƟve analysis (G6).
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Figure 3: Cross-Scenario 1: Theworking staƟon of one operator. In this picture the systems of Task 1 (lower
four monitors) and 3 (upper five monitors) are being shown.

2.1 Cross-Scenario 1: VisualizaƟons in Control Center
Cross-Scenario 1 (CS1) provides visualizaƟon techniques for the control room. More specifically, this involves
the Traffic Management System (TMS, Figure 3) and the Asset Management System (AMS, Figure 4).
The goal is to improve the exisƟng systems and enhance themwith state-of-the-art visualizaƟon and visual an-
alyƟcs (VA) techniques. Especially the VA-part prepares to include the models generated in Specific-Scenario
3 (SecƟon 2.3) in combinaƟonwith the blockchain technologies developed inWork-Package 4 (WP4). This will
provide the user with the ability to reason about the input of the models, their output and the model itself
enabling her/him to receive a good understanding about the reasoning of a predicƟon model (Explainable-
AI) as well as the impact of the outcomes. In general, this shall enable the operators and managers to gain
a beƩer overview of the systems as well as understand proposed resoluƟons and automaƟc predicƟons bet-
ter. This also involves past decisions and available uncertainƟes. CS1 targets different systems, we therefore
divide this scenario into three tasks:

1. Decision Support System for Rail-Conflict ResoluƟon

2. Alert Management and PrioriƟzaƟon System for AMS

3. Improving the TMS and DirecƟng the Awareness of the Operator

Each system respecƟve to its task supports the user in various domain-tasks. Therefore, each of the tasks
are developed and enhanced separately. However, the final PoC will include the models (Specific-Scenario
3, 2.3) and the blockchain-technologies (WP4) in more than one system. The integraƟon will vary on the
users necessiƟes. For all tasks we follow the Design-Study Methodology of Sedlmair et al. [76]. We therefore
report our progress in 5 Phases which describe essenƟal changes in the design and features:

Phase 1 State-of-the-Art, Requirement SpecificaƟon and VectorizaƟon

Phase 2 Adding InteracƟons and First Improvements

Phase 3 DataficaƟon

Phase 4 Including Machine-Learning-Models

Phase 5 FinalizaƟon of PoC

Each of the phases includes a review-cycle with the end-users from RFI. Their feedback is being evaluated
and included in the next phase, respecƟvely.
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Figure 4: Cross-Scenario 1: Parts of the working staƟon of an asset manager. The lower leŌmonitor shows
an overview of an area displaying alarms generated at various train-staƟons. The remaining threemonitors
represent filtered lists of alarms for criƟcal systems. Task 2 targets the topological overview system (lower
leŌ).
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Phase 1 included three visits at different control-centers of RFI (Milan, Florence & Genoa). The purpose of
these visits incorporates demonstraƟons of the systems, interviews with different operators to understand
their tasks and domain-specific problems aswell as a first requirement analysis and the features and improve-
ments the operators wish for. From the pictures taken, we selected typical representaƟves for each system
and vectorized these photos using Scalable Vector Graphics (SVG) [6]. SVG allows a seamless rendering on
different monitors and enables us to present our current states on a website providing RFI an easy access to
the visualizaƟons. Feedback can then be received using video-calls.
In Phase 2, we added interacƟon possibiliƟes and first improvements to our visualizaƟons. This ismainly done
using JavaScript with the D3-library [4]. The overall framework architecture is powered by Angular [2] which
supports a development environment, stateful pages and provides many uƟliƟes.
Phase 3 describes the dataficaƟon. This enables us to assemble the interacƟve systemwith real data provided
by RFI. Furthermore, it allows addiƟonal interacƟons that require re-rendering of the visualizaƟon. The infor-
maƟon can be recomputed from the data and be ploƩed. Aside from this, feedback from RFI is implemented
which was obtained during a feedback session at the end of Phase 2.
At the Ɵme of wriƟng, we are currently in the beginning of Phase 4. The kick-off for this phase dates on 2018-
09-27 at the 5thWork-Stream2 (WS2)meeƟngheld in Konstanz. At the sameevent, another feedback-session
was conducted with RFI. This feedback is currently being evaluated and implemented as part of Phase 4.
Phase 5 will cover the finalizaƟon of the PoC (D5.4) and will again implement detailed feedback from RFI.
Furthermore, the different systems of each task will be interconnected. This linking-and-brushing [44] will
allow the user to seamlessly switch between the visualizaƟon systems and keeping track of the context in
mulƟ-screen environments.

In the following, we report on the achievements and progress of the systems for each task in detail.

2.1.1 Task 1 - Decision Support System for Rail-Conflict ResoluƟon
The purpose of this system is to give the operator a temporal overview of the train-schedule within a specific
region she/he controls. The future train-schedule is predicted with a rule-based system based on the fix,
programmed schedule of the trains.

2.1.1.1 Phase 1

Figure 5 shows the train schedule system of a specific region. The x-axis represents the Ɵme. The y-axis shows
the different staƟons. The colored lines represent trains based on a schedule or real-data. Green are person-
trains, blue are freight-trains, and red represent single locomoƟves. Everything right of the yellow bar shows
future trains and there schedule according to a rule-based system. The yellow crosses (Figure 5a) represent
conflicts. For a conflict the operator may decide which of the two trains can go first. The underlying rule-
based system tries to resolve the conflict automaƟcally. The operators stated that they typically wait with the
resoluƟon of a conflict if it is 20 or less minutes into the future. Otherwise the conflict may disappear due to
false predicƟons of the system. Furthermore, the users state that the resoluƟon of conflicts is typically based
on their experience which also already includes changing an automaƟcally resolved conflict by the system.
The experienced is gained through the daily rouƟne and the daily schedules. Most of the conflicts appear at
the same Ɵme andwith the same trains. This is due to daily delays in peak-commuƟng Ɵmes or other periodic
events. The users complain that the current system is not able to present more sophisƟcated resoluƟons as
well as showing the impact of a resoluƟon. OpƟmizedmodels (Specific-Scenario 2, SecƟon 2.4) output global
metrics such as train delays or costs. The operator should be able to see how these global metrics change
based on the decision and how the decision impacts the predicted schedule.
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(a) The original photo. (b) The vectorized image.

Figure 5: Cross-Scenario 1, Task 1, Phase 1: The x-axis represents the Ɵme. The y-axis shows the different
staƟons. The colored lines represent trains based on a schedule or real-data. Green are person-trains, blue
are freight-trains, and red represent single locomoƟves. Everything right of the yellow bar shows future
trains and their schedule according to a rule-based system. The yellow crosses (only leŌ image) represent
conflicts.

The vectorized image (Figure5b) copies the informaƟon showed in the photo.

2.1.1.2 Phase 2

(a) The lines are interpolated and are outlined with a black, thin
border to improve their traceability.

(b) A new overlay-visualizaƟon is prepared to display the global
metrics of predicƟon models.

Figure 6: Cross-Scenario 1, Task 1, Phase 2

Phase 2 introduces an interpolaƟon of the lines with the goal to introduce their traceability (Figure 6a). This
is especially important when mulƟple trains have a temporal overlap within one staƟon. To underline this,
the lines are ploƩed with an addiƟonal black, thin border which further shows when one line branches off to
the next staƟon. The user can also hover the lines to highlight them whereas the opacity for the rest of the
lines is reduced. Figure 6b shows an overlay which prepares the inclusion of the predicƟons by the models
generated in Specific-Scenario 2 (SecƟon 2.4). The current state-of-the-art system merely lets the user pick
one train which is allowed to go first. The selecƟon may be pre-selected by the rule-based system however
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without an explanaƟon why this automated decision was made. The prepared overlay allows the inclusion
of global metrics such as train delays or costs. Furthermore, the user will be able to see how the decision
impacts the schedule which is displayed in the background. This is important for the operator as specific
changes in the schedule may have a higher impact on the decision than the global metrics.
A video-conference call with RFI was conducted in the end of this phase. RFI agrees to the changes made
and that the traceability has been improved. RFI wishes for addiƟonal informaƟon within this visualizaƟon:
besides the staƟons the operators should also knowwhich plaƞorm is occupied by a specific train. This allows
a beƩer scheduling of the trains.

2.1.1.3 Phase 3

(a) The interpolaƟon was improved to beƩer represent the tem-
poral aspect. An addiƟonal reference Ɵme-line (blue) adjusts to
the user’s cursor providing a reference of several trains at the
same Ɵme and allows their comparison.

(b) When selecƟng the staƟons, addiƟonal informaƟon is pro-
vided by displaying the plaƞorms and the respecƟve trains. The
lines are animated allowing to trace this addiƟonal informaƟon
and compare it to the more compact representaƟon.

Figure 7: Cross-Scenario 1, Task 1, Phase 3

In Phase 3 we created a data files that represent the previous train schedule. The data is serialized in a JSON-
format. This step allows us to add further interacƟons such as panning and zooming the visualizaƟon. Each of
these interacƟons causes a reploƫng of the data, this informaƟon must therefore be data-driven and cannot
origin from a staƟc image. Also, this allows us to simply modify scenarios or represenƟng a different region.
We further improved the interpolaƟon of the lines to improve their accuracy with respect to the temporal-
dimension.
In this version, the curves in the interpolaƟon are more narrow and do not cause a major part of the line to
be bent.
Finally, in this phase we introduce the interacƟve ploƫng of addiƟonal informaƟon in response to the feed-
back gained aŌer Phase 2. Visualizing all plaƞorms at the same Ɵme causes the visualizaƟon to be cluƩered.
Therefore, we decide to show this informaƟon only when the user interacts with the system. SelecƟng the
staƟon lets the plaƞorms of a staƟon appear. One of the plaƞorms overlays the horizontal line that is shown
in the staƟc mode. All plaƞorms are labeled (e.g., binario 1). The interacƟon further triggers an animaƟon
that moves the train-lines onto the respecƟve plaƞorm. This animaƟon supports the traceability and allows
the user to beƩer remember which train occupies which plaƞorm when the selecƟon is dismissed. Unused
plaƞorms appear in a darker color to easily let the user spot opportuniƟes for rescheduling trains onto other
plaƞorms.
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2.1.1.4 Phase 4

Although themain task of the final PoC targets the restoraƟon Ɵme, we aim to also include this informaƟon in
this interacƟve visualizaƟon. The operator will likely receive limited informaƟon only necessary to her/him.
At least, the informaƟonwill contain the restoraƟon Ɵmewith an uncertainty or Ɵmewindow. Further details
may be provided on demand.

2.1.2 Task 2 - Alert Management and PrioriƟzaƟon System for AMS
The user of this system, called asset manager, is required to oversee a large region of staƟons and rail-
network, track alarms generated by various systems within these staƟons and is further required to schedule
maintenance and repair teams. We specifically focus on the overview visualizaƟon (Figure 4, lower leŌ mon-
itor).

2.1.2.1 Phase 1

(a) The original photo. (b) The vectorized image.

Figure 8: Cross-Scenario 1, Task 2, Phase 1

A through demonstraƟon and interviews with asset managers were conducted in a visit at RFI’s premises in
Genoa. The used system was developed about 18 years ago and requires specific hard and soŌware to be
operated.
We observed that the system is rather unresponsive as each interacƟon causes the system to freeze for 1-
2 seconds unƟl the system responds. The overview screen is highly distracƟve and cluƩered. The colored
blocks represent train staƟons or logically important points within the rail-network. Their color represents
a state that indicates the alert level. The system collects many alarms, more specifically around 15.000 for
each day. The alarms belong to a specific asset or system. Logically, these systems can be modeled in a
hierarchy, e.g., network; switch; asset; network-adapter of the asset. However, in the current system these
hierarchies are not displayed or modeled. AddiƟonally, there is no prioriƟzaƟon of alarms. An alarm of a
failing Ɵcket-machine triggers the same alert as a failing railroad switch. A work around is visible in Figure 4.
Besides the overview visualizaƟon there are three monitors showing lists of alarms. These lists have a filter
applied to a specific set of assets or alarms. These lists then have to be observed and when a new alarm
appears an immediate reacƟon is required. The overview-screen, however, is not suitable to disƟnguish dif-
ferent prioriƟes of systems or alarms. Moreover, each alarm should be acknowledged by the asset manager.
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Figure 9: Cross-Scenario 1, Task 2, Phase 2

An unacknowledged alarm triggers a blinking-animaƟon in the system. The system displays a high amount
of alarms, mostly for non-criƟcal systems. The addiƟonal unresponsive behavior of the system causes the
asset managers to not acknowledge incoming alarms which essenƟally effects a highly blinking, distracƟve
overview.
As in the previous task, the first phase included the transformaƟon of a photo to the vectorized image (Fig-
ure 8).

2.1.2.2 Phase 2

Phase 2 already introduces many visible modificaƟons (Figure 9). First and foremost, a reducƟon of colors
and contrast is visible. In the previous version, colors of the staƟon labels are used for regions within the rail-
network and the state of the staƟons. Using similar and bright colors for more than one variable may confuse
a user. The reducƟon of contrast and brightness provides a less Ɵring visualizaƟon. This is important as an
asset-manager has to watch and observe this screen in parƟcular. The color of the staƟon labels is replaced
by bounding rectangles that contain a very unobtrusive, moderate coloring which is highly different to the
colors of the staƟons.
The same applies to the lines of the rail-network that connects the staƟons. This informaƟon is less important
to the asset-manager but should sƟll be available. The user is therefore able to highlight various lines by
hovering them.
The previously colored areas represenƟng a train staƟon are now divided into four rectangles. This split pro-
vides a semanƟc categorizaƟon of the assets into the four highest and most important categories according
to RFI. The placement of these categories is displayed in the legend on the top-right of Figure 9. Each of the
Ɵles can be colored differently. This glyph visualizaƟon gives the user access on what kind of system is pro-
ducing an alarmwithout the need to interact with the system. Furthermore, if more than one system accross
the categories are failing this causes more of the area to be red raising a higher awareness.
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2.1.2.3 Phase 3

(a) An extended version of the glyph is shown when the user
hovers a staƟon. The number of alarms is added to each Ɵle of
the glyph.

(b) Clicking on a staƟon or an asset triggers a calendar visualiza-
Ɵon and a sunburst visualizaƟon represenƟng the hieararchy.

Figure 10: Cross-Scenario 1, Task 2, Phase 3

The resulƟng system of Phase 2 provides a richer informaƟon space without the necessity to interact with the
system and yet the overview seems to be less cluƩered. However, this does not allow the user to navigate
the hierarchy and explore lower levels. We support this through interacƟon. The user can hover a staƟon to
trigger a small overlay visualizaƟon showing the glyph with more details (Figure 10a). The addiƟonal infor-
maƟon contains the icons as shown in the legend to provide an easy reference. Furthermore, the number of
alarms within the respecƟve category is shown in the lower right corner of each Ɵle. The glyph is currently
extended such that the user can navigate the hierarchy and reach the underlying levels through a rubber-
sheet metaphor [75]. Figure 11 shows how this navigaƟon works. The user may click on the red, upper, right
Ɵle (network) and the Ɵles are laid out again. The other three Ɵles are shrunk to the side of the glyph while
the area of interest is expanded revealing the underlying levels of the hierarchy. Now the user can see that
there is one warning (yellow) regarding the WiFi, the database systems as well as the security cameras are
working and there are two alarms in for the train-schedule displays.
Clicking on a staƟon reveals a temporal view called calendar vis (Figure 10b). This view aids the user in
reasoning about the failure of an asset as she/he might be able to detect temporal paƩerns when the asset
fails. AddiƟonally, this view can also provide informaƟon about the restoraƟon Ɵme of previous repairs for
this asset. Another view is the hierarchical view that provides a similar informaƟon as the interacƟve glyph,
however it displays all the informaƟonof thewhole hierarchy at once. The chosen technique is called sunburst
visualizaƟon [80].

Figure 11: Cross-Scenario 1, Task 2, Phase 3: Rubber-Sheet NavigaƟon
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2.1.2.4 Phase 4

This task has the closest relaƟon to the task of the PoC as the restoraƟon Ɵme of an asset is of high interest
to the asset manager. The restoraƟon Ɵme is predicted by a decision tree. While many of the input parame-
ters are provided, the user may wish to modify some of these parameters interacƟvely as unforseen events
happened and the provided parameters are obsolete. For example the Actual Beginning Time (see Table 12)
of the reparaƟon of the asset may be delayed and needs to be adjusted. There might be cases where the
next possible seƫng is not opƟmal regarding the restoraƟon Ɵme, therefore the user must be empowered
to interacƟvely find the best parameter seƫngs.
Besides the input and output, the model itself can be visualized supporƟng the user in understanding the
model beƩer. This is a trust-building measure and helps the user to understand the predicƟons of a model
beƩer.
The foundaƟons are already created in Phase 3. The historical views help the user understand how previ-
ous repairs of a specific asset were conducted and what problems may have occurred. In combinaƟon with
predicƟon models the user can beƩer esƟmate the restoraƟon Ɵme for an asset.

2.1.3 Task 3 - Improving the TMS and DirecƟng the Awareness of the Operator
This task focuses on the status screens as shown in Figure 3 (upper screens). The purpose of this system is
to inform the operator of the current state of the rail-network and especially the trains running in the area
the operator oversees. In contrast to Task 1, this system does not provide any historical or future lookahead
regarding the train schedule. It therefore focuses on the spaƟal orientaƟon, accuracy, and ease.

2.1.3.1 Phase 1

(a) The original photo. (b) The vectorized image.

Figure 12: Cross-Scenario 1, Task 3, Phase 1

As visible in Figure 3 this system makes heavy use of a mulƟ-screen environment. The operators we inter-
viewed with explained that through training and experience they can quickly find and idenƟfy trains at a spe-
cific locaƟon. However, the posiƟon on the screens does oŌen not match the real-world posiƟon. Distances
in between staƟons are heavily distorted in order to fit even larger areas onto several monitors. Furthermore,
a verƟcal expansion is not possible due to the layout of the monitors. This may result in heavy distorƟons
which may also include rotaƟons of tracks such that a north-south direcƟon in the real-world may be ploƩed
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Figure 13: Cross-Scenario 1, Task 3 Phase 2: ReducƟon of informaƟon

horizontally. Similar layout algorithms are for example used to create metro-maps for ciƟes [87]. Besides
the trains itself the system also visualizes occupied segments of trains. This is important as the TMS will not
allow to route a train on a currently occupied rail-segment or if this segment is already claimed by another
train. When a train is about to occupy a segment, this segment starts blinking in orange. When the segment
is occupied the color of the segment changes to orange. This blinking animaƟon is, however, oŌen hardly vis-
ible as the operator cannot oversee all of the area at once. Furthermore, due to singular usage of the colors
white and orange this may not be perceived. Operators also menƟoned that the visualizaƟon propagates a
lot of informaƟon and seems thus cluƩered. Especially, trainees oŌen have difficulƟes orienƟng themselves
within this heavily distorted map. Through observaƟon and interviews we learned that the operators are
mostly working with the systems covered in Task 1. A typical use case to use this system is to verify the cur-
rent situaƟon when a conflict appears (Task 1). Then the operators may check the area where the conflict
appears to make a more informed decision on which train can go first. As this system only shows the current
situaƟon, conflicts which typically appear and are resolved ahead of Ɵme, are not shown. The visualizaƟons
of Task 1 and 3 are not visually connected so the user-task “finding the posiƟon of the conflict on the map” is
difficult for less experienced operators. The operators further menƟoned that many transiƟons between the
systems for a longer period are Ɵring as, besides the cogniƟve performance, it is also physically challenging
because it oŌen requires to move the head or body.
RFI demands soluƟons to reduce the number of monitors such that the same area is covered in less space.
This is extremely challenging because it requires more distorƟons which increases the complexity of spaƟal
orientaƟon. Moreover, this imposes that overall the size of the visualizaƟon is reducedmaking it harder read-
ing, for example, the train numbers that are being displayed. This also means that even though less physical
movement is necessary it possibly may not improve the situaƟon as the more dense ploƫng in combinaƟon
with the rather distant screens is exhausƟng for the eyes and our percepƟon.

2.1.3.2 Phase 2

As a preliminary measure wemodified the symbols of the signals in the visualizaƟon because we learned that
in the daily business of the operators the signals aremostly out of interest and only in specific cases their state
needs to be checked. The shape of the symbols differs describing different signal-systems. We removed the
filling of the symbols only leaving the outline and plot this outline in a dark, grey color which makes them
unobtrusive. The feedback from RFI emphasizes the effect of less occlusion due to the reducƟon of symbols.
RFI points out that a linking between the visualizaƟon of Task 1 and 3 is necessary to ease the workflow of
the operator.

2.1.3.3 Phase 3

Phase 3 introduces four extensions. The dataficaƟon allows us to run a stateful system where trains can be
moved. Figure 14 shows three states where two trains are progressing in the network.
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(a) Train 139 is occupying the next segment.

(b) Train 139 is progressing to the next segment. Train 6117 is occupying the next segment.

(c) Train 6177 is progressing to the next segment.

Figure 14: Cross-Scenario 1, Task 3, Phase 3: A stateful system.

The difference that is most apparent is the circular highlighƟng around the trains. This highlighƟng allows the
user to spot the areas of interest much faster while the remaining network and other details are sƟll visible
and thus, no context is lost. The highlighƟng is currently only applied on the trains but can be extended to
any part of the visualizaƟon and vary in size. Future systems may also change the highlighƟng depending on
their current state or provide the opportunity to the user to change the areas of interest.
The state-of-the-art system uses flashing cue when a new railway-segment is claimed for a train. Blinking
however, aƩracts the user’s aƩenƟon very much, especially in form of a bright and saturated color [38]. This
is a good cue for excepƟonal cases such as when alerts or warnings are triggered. However, in a frequently oc-
curring scenario such an overused cuemay distract the user, cause stress, and faƟgue. We therefore changed
this cue to a white-orange-striped overlay which moderately moves. While this animaƟon sƟll aƩracts the
user’s awareness it is less alerƟng to the user.

Figure 15: Cross-Scenario 1, Task 3, Phase 3: AƩract the user’s aƩenƟon.
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The fourth extension is shown in Figure 15. The enhancement is designed for excepƟonal cases when the
user’s awareness is required at a certain locaƟon on the screen and at a specific Ɵme. The animaƟon draws
a large circle which shrinks down to a specific locaƟon on the screen. We call this “inverted ping”. Even
on mulƟple screens the eyes follow the circle’s boundaries automaƟcally towards the point of interest. As
menƟoned before, this feature should not be used too frequently. For example, Figure 14 shows purple
icons. The meaning of these icons is the temperature of the railway-segment. If the temperature reaches
a threshold the icon is shown alerƟng the user that trains may have to pass this segment slower or less
frequently. In a complex visual environment the simple placement of the icon may happen unrecognized by
the user. AddiƟonally, the “inverted ping” animaƟon could be used to steer the user to this segment. This
should however only happenwhen the icon is added or removed and not regularly when the icon is displayed.
The end-users welcome the aforemenƟoned extensions as they visibly improve the steering of the users
awareness. The systemwas presented on amulƟ-screen environment. Again, RFI highlighted the importance
on a linked environment that improves the relaƟons of the systems of Task 1 and 3.

2.1.3.4 Phase 4

Similar to the other tasks, Phase 4 focuses on the linking and brushing to the other tasks and the inclusion
and extension to the PoC (D5.4). The linking and brushing will be mostly implemented in combinaƟon with
Task 1 as both systems are used the operator’s workstaƟon in the TMS. As also the operator should be aware
of the restoraƟon Ɵme, especially when it concerns the trains and their rouƟng. On the other hand, the
operator of the TMS does not need excessive informaƟon as the asset manager would need. The focus will
lie on compact visualizaƟons that are easily interpretable and require less interacƟon.

2.1.4 Conclusion
For this scenario we chose three systems used by the operators in a daily fashion. We opƟmize these visual-
izaƟon systems to present the same or more informaƟon without cluƩering the visualizaƟons. We introduce
interacƟons to let the usermore conveniently request addiƟonal informaƟon. The development is conducted
with regular feedback-sessions in collaboraƟon with the end-users (RFI). This iteraƟve development ensures
that the users are not overwhelmed with too many new changes and that the incremental changes can be
evaluated separately and be refined in the next phase(s). The current state of the progress prepared the
inclusion of specific predicƟon models that are developed and described in the following scenarios. The final
inclusion will be shown in the proof of concept (D5.4).

2.2 Cross-Scenario 2: Marketplace of Data and Data MoneƟzaƟon
Because of absence of actual data, since theMarketplace of Data does not yet exist andwill be not developed
in WP4, we decided to not to develop further the Cross-Scenario 2.

2.3 Specific-Scenario 1: Track Circuits
2.3.1 IntroducƟon
As described in D5.1 the main objecƟve of this scenario is to develop data-driven models for online sta-
tus idenƟficaƟon and behaviour modelling of the Track Circuit System (TCS), in order to enable diagnosƟcs
and prognosƟcs funcƟonaliƟes. In this context, the exploitaƟon of gray-box models and the development of
metrics and KPIs able to assess models performance (i.e. understanding under what condiƟons they can be
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Figure 16: Current flow in the track circuit.

effecƟvely be applied in real operaƟons) represent a core task in this scenario. Moreover, the work done
inside this scenario, together with the maintenance operators, revealed the possibility to develop and study
some interesƟng features more related to Visual AnalyƟcs (VA), which is a core topic of IN2DREAMSWP5. VA
processes are designed in close cooperaƟon with domain experts in order to create semi-automaƟc work-
flows, which allow to leave the operators in full control, while supporƟng them with context-sensiƟve and
automaƟcally extracted informaƟon. In the context of TCS maintenance, the applicaƟon of a VA approach
could support the maintenance process, improving decision making before and during maintenance opera-
Ɵons, speeding up and renewing condiƟon-base and prevenƟve maintenance processes. This possibility has
arisen from the pracƟcal needs of the maintenance operators which emerged during the course of work. On
the other side, the development of the data-driven model for anomaly detecƟon has been slowed by some
technical issues related to the frequency of data acquisiƟon (thiswill be discussed later in SecƟon 2.3.4). Thus,
the work on the model will be completed in a later stage of the project and reported in the next deliverable
once the technical issues will be solved and some evidence will be achieved.
Based on what have been stated in D5.1, the deliverable is organized as follows. SecƟon 2.3.2 contains a de-
tailed descripƟon of the system involved and the idenƟfied problem. The first processing step, which enable
visual analyƟcs funcƟonaliƟes, is described in SecƟon 2.3.3, while in SecƟon 2.3.4 the work related to the
anomaly detecƟon model development is presented. Finally, results achieved in all the acƟviƟes described
above are contained in SecƟon 2.3.5.

2.3.2 Problem and System DescripƟon
The TCS is a device used to detect the presence (or the absence) of a train on a rail track. Moreover, it allows
the transmission of digital cab signalling data, in the form of binary informaƟon, with the purpose of enabling
automaƟc train protecƟon funcƟons. The TCS is composed by an electronic board, which communicate with
the Computer-Based Interlocking system (CBI) enabling trains management funcƟons, and a physical com-
ponent which includes the electrical network and other equipment like transmission cables or direcƟonal
relays.
In order to enable train detecƟon funcƟons, each secƟon of the rail track is electrically separated from the
other secƟons and a different TCS is associated to each secƟon. The electrical network is mainly composed
by a transmiƩer which transmits a current signal through the two rails to a receiver, where the signal is
measured (Figure 16). Moreover, current leakage between adjacent secƟons through the railway track is
prevented by insulated joints, while impedance bonds allow direct current to flow but they block inside the
secƟon alternaƟng current (which is used for the detecƟon funcƟons). With this setup, if the track is free (no
train present on it) the current signal flow through the rails to the end of the secƟon. If a train occupies the
track secƟon, thewheels give rise to a short-circuit which prevents the signal to reach the receiver (Figure 17).
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Figure 17: Current flow in the track circuit when a train is passing on the track secƟon.

Figure 18: Train detecƟon behaviour of a track circuit: when the current signal Irec goes below the thresh-
old γ, the track is reported as occupied.

2.3.2.1 Train DetecƟon

Track occupancy is observed fromTCS through themeasure of the current signal at the receiver. Considering a
healthy TCS in normal condiƟons, signal level lies in a defined range of values (above α threshold, as depicted
in Figure 18) while it sharply decreases to a nil value when a train enters in the track secƟon. The system
idenƟfies a track as occupied if the signal level falls below the threshold γ. Thus, TCS are tuned such that,
even in the case of small current deviaƟons, the presence and absence of a train are correctly reported.

2.3.2.2 Track Circuit Failures

Track circuits have been designed to be robust to many different problems, and their performances are
durable over Ɵme. Despite this, though the analysis of historical data, it is possible to demonstrate that
some degradaƟon effects, undesired behaviours or physical impairment exist and unexpected failures may
occur. For example, some defects affecƟng a rail can cause an increase in the rail resistance resulƟng in a
current signal at the receiver too low. This kind of behaviour can affect the right funcƟoning of the train
detecƟon system causing a funcƟonal failure. The TCS have to meet two different type of requirements [40]:

• Safety requirement: the track secƟon have to be reported as occupied when a train is present on it.
Failures related to this requirement are referred as False NegaƟve ( FN);

• OperaƟonal requirement: the track secƟon have to be reported as free when a train is not present on
it. Failures related to this requirement are referred as False PosiƟve (FP) or False Occupancy ( FO).
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While the safety requirement is guaranteed by the CBI system itself, operaƟonal requirement is less restricƟve
and FO failures occur quite oŌen. Since FO consequences could include traffic disrupƟon and penalƟes this
type of failures represents the main issue invesƟgated in this work. FO failures are mainly related to TCS
faulty behaviour which results in current level drop. In that condiƟon, even if some degree of fluctuaƟon is
acceptable (thanks to the tolerance of the receiver threshold system) when the current level becomes too
low, the secƟon will be reported as occupied, even if there is actually no train present.

2.3.2.3 Faults affecƟng the TCS

Before going in depth with the specific system involved and the analysis conducted in this work, a descripƟon
and categorizaƟon of the main faults affecƟng the track circuit system is required. As proposed in [40], the
following categories of faults can be idenƟfied:

• InsulaƟon imperfecƟon. To prevent the AC current signal of one secƟon from spreading to adjacent
secƟons energizing their relays, insulated joints are used. Problems occur when insulated joints de-
grade during Ɵme or when conducƟve objects lie over them. In the case of an insulaƟon problem, the
circuit leaks current and, thus, the current signal is too low;

• Rail conductance impairment. The proper funcƟoning of a TCS is based on the conductance properƟes
of the rails and if the Impedance of the rail is characterized by a too high resistance the current level at
the receiver decreases. This anomalous behaviour could be caused by a damaged or degraded rail, by
an insufficient quality of the bonds in jointed track or by disturbance currents along the rail;

• Ballast condiƟon. The condiƟon of the ballast determines the resistance that currents encounter when
flowing from one rail to the other rail or to the ground. Because the effect of a decreasing ballast
resistance is similar to that of a train shunt, it is important that the ballast resistance is sufficiently high
and constant. Due to environmental disturbances (mainly related toweather condiƟons) and aging, the
ballast resistance will fluctuate over Ɵme. This behaviour could again lead to a current drop causing FO
failures;

• Train shunt imperfecƟon. The proper funcƟoning of a TCS requires that every train short-circuits the
secƟon in order to guarantee train detecƟon funcƟonaliƟes. A good train shunt can be inhibited by
different causes of which the two most important ones are: contaminaƟon between the rail surface
and the wheels and lightweight trains. Even if this kind of faults is related to FN failures (the system is
unable to comply with safety requirement) they are reported here for completeness;

• Circuit-related and other faults. Even if track circuits have a high reliability, their components (e.g.,
relays, cables, and power supply) can break. Moreover, some malfuncƟons could affect the electronic
board of the TCS (i.e. CriƟcal Error in the board soŌware). With the excepƟon of cables and similar
equipment degradaƟon, these faults are abrupt and no parameters are available in order to monitor
their source (i.e. relays or electronic boards). For this reason, these kind of faults are not treated
further.

In [40], a categorizaƟon of these faults is given in relaƟon with their evoluƟon during Ɵme and their spaƟal
dependencies. For what concerns the evoluƟon in Ɵme, four types of behaviour exist: abrupt (A), linear (L),
exponenƟal (E), intermiƩent (I). On the other side, the following spaƟal dependencies are presented: no cor-
relaƟon with other secƟons (D1), correlaƟon with secƟons on the same track (D2), train-specific correlaƟon
(D3), correlaƟon with all nearby secƟons (D4). Results of the study are summarized in Table 1, where we
kept only faults related to FO and we have added the circuit equipment degradaƟon fault.
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Table 1: TCS Faults types and features.

Fault (F) Problem Cause Signal level Time Trend SpaƟal Dependency
1 - Healty ok - -
2 InsulaƟon imperfecƟon Insulated joint defect low L/E D1

3 ConducƟve objects low A D1

4 Rail conductance impairment Mechanical defect low E D1

5 Electrical disturbances low I/A D2

6 Ballast condiƟon Ballast degradaƟon low L/E D1-D2

7 Ballast variaƟon low/ok/high A/L/E/I D4

8 Circuit-related faults Circuit equipment degradaƟon Unknown Unknown Unknown

2.3.2.4 Observed Parameters

In the system analyzed in this scenario, the following parameters are available for the monitoring of the track
circuits behaviour:

• Received Signal Level (R1). This parameter is important because it verifies that the received signal level
is within the operaƟng range of the receiver circuit. It is acquired as the raƟo between the value of the
signal and the maximum range of the receiver in percentage;

• Shunt Level (S). As with the Received Signal Level this value indicates the track signal level (but with a
higher resoluƟon). When the track circuit is iniƟalized or calibrated a value of 162% is assigned to the
actual received signal level. This is the main parameter;

• Variance (V ). This parameter can be used to determine whether the coupling unit is tuned correctly
or a coupling unit has failed. Variance can also indicate whether interference from another source is
becoming a problem in the reliable operaƟon of the track circuit;

• Raw Signal Level (R2). The Raw Signal Level is the total signal received by the TCS (it includes noise and
adjacent track signals). As for R1 is expressed in percentage with reference to the maximum range of
the receiver.

2.3.2.5 TCS Redundancy

In order to meet the safety requirement TCS is composed by two different electronic boards, Primary (P) and
Backup (B). With this setup, when the primary board is acƟve and fails, the system automaƟcally transfers all
the safety and operaƟonal funcƟonaliƟes to the Backup board and vice-versa. Moreover, in order to guar-
antee the proper funcƟoning of both P and B boards, they are interchanged periodically during scheduled
maintenance acƟons and/or aŌer the recalibraƟon process (which will be discussed in the following secƟon).

2.3.2.6 TCS CalibraƟon

When the track circuit is iniƟally adjusted with high ballast resistance, the threshold level of the track circuit’s
receiver is equal to nominal current of the track circuit (α > γ). In this condiƟon, the threshold selected
represents an overdrive value of 100% (or 1). With only an overdrive of 100% (or 1), the track circuit would
become occupied if the ballast resistance changes to any value lower than the one assumed at the iniƟal
adjustment value and also if the current signal presents some small variaƟons. In order to enable it to operate
over a changing ballast value, the overdrive has to be added to the track circuit and it is obtained by changing
the threshold of the receiver. The magnitude of overdrive is selected as a funcƟon of different factors such as
frequency, shunƟng sensiƟvity, minimum ballast and rail-to-rail voltage. An example is depicted in Figure 19,
where an overdrive value of 1.62 (or 162%) is obtained by adjusƟng the receiver threshold to 62 mA (in this
situaƟon the threshold α is represented by a Shunt Level value of 150%).
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Figure 19: Comparison between current signal Irec and Shunt Level Srec: here an overdrive value of 1.62
(or 162%) is obtained by adjusƟng the receiver threshold to 62 mA (in this situaƟon the threshold α is
represented by a Shunt Level value of 150%).

Once the track circuit is adjusted with high ballast resistance, the received signal strength can change as the
ballast changes. Thus, from the laƩer condiƟon, if the track circuit is recalibrated, the threshold of the receiver
will be changed. For example, if the ballast value is low and the Shunt Level value is different from its original
value, performing recalibraƟon will adjust the threshold of the receiver to a new value: the recalibraƟon
process allows the operators to change the threshold γ depending of the signal level and the ballast condiƟon
in order to keep the system reliable. The downside of the process is that the Shunt Level value is reset to its
original value and this can hide ballast degradaƟon and aging effects (low current signal at the receiver).
RecalibraƟon is the main acƟon performed during the prevenƟve maintenance rouƟne.

2.3.2.7 TCS Monitoring and CorrecƟve Maintenance AcƟons

During their operaƟons, track circuits are monitored in two different ways:

• TCS specific informaƟon and parameters’ value could be monitored from a specific panel which is ac-
cessed only when a maintenance acƟon has to be performed (not for prevenƟve acƟons);

• Alarms, coming from the central automaƟc control system, are monitored in real-Ɵme. These alarms
include the ones related to TCS (i.e. electronic board failure or FO alarms). More details about data
coming from the central automaƟc control system are contained in D5.1.

Main correcƟve maintenance acƟons which are performed on TCS (FO failures and causes taken into account
for this study):

• RecalibraƟon, which is used to guarantee that TCS works properly, mainly to face Faults of type 6 and
7, but it does not resolve the cause of the problem;

• Insulated Joints cleaning, which solves Faults of type 2 or 3.

Other specific acƟons are performed when problems cannot be solved with a standard approach or for prob-
lems which are very rare (i.e. cables and equipment replacements). On the other side, main correcƟve
maintenance acƟons which are performed on TCS to solve FO failures for circuit-related and other faults, are:

• Relay replacement;
• Electronic board reset or replacement;
• Power Supply replacement.
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As stated before failures related to these acƟons are outside of the scope of this work.

2.3.3 Data Processing and Visual AnalyƟcs
DefiniƟon of the problem, idenƟficaƟon and understanding of the system behaviour, data exploraƟon and
data acquisiƟon process have been conducted in close collaboraƟonwith themaintenance operators working
on the line selected for this study. This collaboraƟon highlighted the possibility of studying an analysis process
and a data representaƟon in order to support, through visual analyƟcs, maintenance operators with context-
sensiƟve and automaƟcally extracted informaƟon. In this context, the following requirements have been
idenƟfied from the operators:

• VisualizaƟon of TCS parameters trend. At the moment the system allows to monitor a single track
circuit, without a visual representaƟon and without the possibility of accessing historical data. Thus,
a visual representaƟon of historical data is required in order to make more reasoned consideraƟons
on track circuits health and plan more efficient maintenance strategies. Moreover, the real behaviour
of the TCS should be visualized: observaƟons associated with an occupancy should not be considered
and data coming from P and B boards should be merged to idenƟfy observaƟons which belongs to the
acƟve board (at the moment the system does not provide informaƟon about which of the two boards
is working);

• Alarms and Events reporƟng. The system does not provide staƟsƟcal summary or reporƟng of system
failures, alarms and main events. Alarms and events data are available from the central automaƟc
control system and used only for real-Ɵme monitoring. A high-level knowledge of the status and past
history of the system would be extremely useful to support operators in their decisions in the mainte-
nance workflow.

Thus, the analysis conducted in this work led to a two-fold contribuƟon: on one side, it allowed to meet
that requirements idenƟfied with the maintenance operators, on the other, it represents the main step, for
what concerns data understanding and preprocessing, for the development of an interpretable data-driven
model for the idenƟficaƟon of faulty track-circuits. In the following secƟons the data process is described
with results related to visual analyƟcs task idenƟfied.

2.3.3.1 TCS logs data processing

The aim of TCS data processing is to obtain a dataset with all the track circuits related parameters (Shunt
Level, Variance, Receive Level, Raw Signal Level) representaƟve of the TCS behaviour. The analysis focuses on
Shunt Level (Figure 20) because it is both the most relevant parameter and the one that can be treated more
easily in order to clean data. Two main issues have to be solved:

• ObservaƟons relaƟve to Primary and Backup boards are acquired separately (Figure 21 and 22) and a
single paƩern has to be extracted during Ɵme from the board which is acƟve;

• As depicted in Figure 20, raw data contains train passage observaƟons (i.e. observaƟons with a value
equal to zero or with a value sampled during a drop to zero) and this fact makes difficult both the
visualizaƟon and the analysis of the behaviour in normal condiƟon.

The final data format is represented in Table 2.

2.3.3.2 Central Control System logs data processing

A typical log record is composed of six main parts as showed in Table 3. In case of alarms, an addiƟonal file
in the log record indicates the alarm code (WSTRCODE) and it is to classify it properly. This field allows to
filter the logs based on a certain subset of alarm/events codes of interest. From these log files, a cleaning
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Table 2: TCS logs data variables aŌer the processing step.

Variable Name DescripƟon
Timestamp Date and Ɵme of the observaƟon
StaƟon Reference staƟon (TCS board rack locaƟon)
Track ID TCS unique identufier
Primary/Backup Reports to which board (primary or backup) the observaƟon is referred
Shunt Level TCS status parameter
Variance TCS status parameter
Raw Signal Level TCS status parameter
Receive Level TCS status parameter
DirecƟon DirecƟon in which the TCS is set
AcƟve True if the board is currently working, else False
Occupied True if the track is occupied by a train, else False

Table 3: Central Control System logs data variables aŌer the processing step.

Variable Name DescripƟon
FMT Summary of all the informaƟon contained in the log
TS Timestamp related to the event/alarm reported
CP LocaƟon of the event (i.e. StaƟon)
CX More detailed locaƟon of the event (i.e. StaƟon + Track ID)
STY Log type (i.e. event or alarm)
EQ Event unique code

and extracƟon process is applied in order to obtain the two main sources of informaƟon in which we are
interested: the occupancy events and alarms related to the TCS. The laƩer group of extracted informaƟon
contains only a subset of relevant alarms which has been selected in collaboraƟon with the operators.

2.3.3.3 AcƟve Boards

In order to find which board is acƟve, considering a single observaƟon, the concept is to look at n previous
observaƟons of Shunt Level and count the number of zero values: If the number of zero values is greater
than a value m (for example 3) the board is reported as InacƟve, otherwise it is reported as AcƟve (the
value m depends on the frequency of acquisiƟon). Assuming we have an observaƟon each minute, if 3 or
less observaƟons are found it is due to an occupancy (less than 3 minutes of occupancy) but if more than 3
observaƟons are found it is supposed to be due to an inacƟve board (an occupancy cannot last for more than
4 minutes, neither for track circuits lying in the staƟons).

Figure 20: Shunt Level values for a specific track circuit (raw data).
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Figure 21: Shunt Level values of a specific track circuit observed from the Primary board.

Figure 22: Shunt Level values of the same track circuit of Figure 21 observed from the Backup board.

Figure 23: Shunt Level observaƟons from a specific track circuit relaƟve to the board which is acƟve: Pri-
mary (P) in blue, Backup (B) in orange.
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Figure 24: Shunt Level observaƟons from a specific track circuit relaƟve to the board which is acƟve and
occupancy events for the sameƟmewindow: occupancy-onevents are represented in redwhile occupancy-
off events in green.

2.3.3.4 Occupancy Events

In order to idenƟfy the normal behaviour of a TCS, using a simple filter with a threshold (e.g. selecƟng ob-
servaƟon with 100%) is not enough to achieve the desired precision. For example, if an occupancy occurs
immediately aŌer an observaƟon the Shunt Level value could be recorded while is going down to zero from
its normal value. In this condiƟon, considering a normal value of 160%, a value of 120% could be idenƟfied
as normal while it is due to the signal drop caused by a train approaching. To achieve a reliable esƟmate
of real occupancies, Shunt Level observaƟons have to be correlated to occupancy events (occupancy on and
occupancy off events) from Central Control System logs, as depicted in Figure 24. Thus, for each Shunt Level
observaƟonX , we look in the occupancy events dataset for occurrences where TS (occupancy on) is greater
than Timestamp –δ and TS (occupancy off ) is less than Timestamp+δ (with reference to Table 2 and 3). Thus,
if one or more occurrences exist the track is reported as occupied and the observaƟon will not be taken into
account for the analysis of the track circuit behaviour.
The parameter δ has to be tuned considering different factors, such as occupancies duraƟon and frequency of
acquisiƟon (at themoment a value of 10 seconds has been tested). To note that the above process represents
the simplest technique to find real occupancies but it does not take into account all the aspect of the problem
and thus can improved.

2.3.4 Anomaly DetecƟon Approach
The final goal of this use case is the development of interpretable and gray-box models of the track circuits
behaviour in order to idenƟfy faulty assets (i.e. assets which suffer from a fault and may therefore be subject
to FO failure). These models will support maintenance operators with addiƟonal and useful informaƟon in
order to take decision about maintenance planning, starƟng a shiŌ toward predicƟve maintenance. More-
over, we are also interested in finding metrics and KPIs able to understand if our models can be effecƟvely
used in real operaƟons or if the developed models are not reliable enough. Once these KPIs will be available,
they could be exploited for the evaluaƟon of the quality of the predicƟvemodels developed inside IN2SMART
WP8, in which this scenario is analysed with slightly different objecƟves.
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Figure 25: Example of a possible representaƟon of the Shunt Level trend over Ɵme aŌer the data processing
step: color informaƟon is added to idenƟfy which board is acƟve in a specific moment.

For what concerns the anomaly detecƟon models, two possible approaches could be idenƟfied depending
on the Ɵme window used for the analysis. The first approach, which is the most promising, is based on the
analysis of the TCS behaviour in the neighbourhood of themoments inwhich a train is about to enter, or leave,
the track secƟon (short Ɵme window). The second approach consists in analysing the long term behaviour of
the TCS, trying to idenƟfy unusual paƩerns in a larger Ɵme window. While the first approach could idenƟfy
different type of faults, also intermiƩent and abrupt ones, the second one is focused to faults characterized
by a slow degradaƟon in Ɵme, which could be linear or exponenƟal.
Data quality and in depth data exploraƟon acƟvity, in order to idenƟfy the best andmore effecƟve approach to
the problem, have been performed up to now. Considering the first approach, on which we mainly focused,
the main issue we faced is related to the data frequency (one observaƟon every five minute) which it has
been verified is not high enough to understand TCS behaviour inside the occupancy event Ɵme window (the
occupancy could last less than ten second). In this context, we are working with operators on the field in
order to develop a soluƟon which should allow an update in the TCS logs acquisiƟon frequency (e.g. one
observaƟon every seconds): this could widely change possible results achievable in this scenario. Finally, we
started to work with the second approach and results will be presented in detailed in the next deliverable.

2.3.5 Results and Conclusions
Due to the complexity of the system a great effort has been made in order to idenƟfy and understand the
problem, with the help of the operators, to acquire a detailed knowledge of the assets behaviour (fault and
failure) and their interacƟon with operators (maintenance process). Results achieved in this context, as de-
scribed in SecƟon 2.3.2, lay the foundaƟon for the development of effecƟve KPIs and represent a fundamental
step for all the other foreseen acƟviƟes. The knowledge of the system allowed the idenƟficaƟon of relevant
variables and informaƟon and the definiƟon of a standard data format, which is viable both for descripƟve
analyƟcs and data visualizaƟon (meaningful and readable for the operators) and for data modelling. The new
format is achieved through a specific process which is described in SecƟon 2.3.3. To note that these results
are shared between IN2DREAMSWP5 and IN2SMARTWP8, where this scenario is exploited for other studies.
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Figure 26: Bubble plot of alarms occurrences (FO alarms) along the railway lines. Three different kind in-
formaƟon are represented: geographical (bubble distribuƟon) quanƟtaƟve (bubbles dimension) and cate-
gorical (the color represents the zone to which an asset belongs).
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Figure 27: Heat-mapof alarms coming from theCentral Control System: the size of the boxes is proporƟonal
to number of occurrences for each specific alarm

In order to take advantage of the available data in themaintenance process and fulfill operators’ requirements
different soluƟons have been idenƟfied. The two major points are reported below:

• The data process developed allows to understand TCS normal behaviour, which is represented by four
parameters (Shunt Level, Variance, Received Level and Raw Signal Level). As depicted in Figure 25 the
trend over Ɵme of these parameters can be now visualized (also in a near-real-Ɵme fashion) and used
as a diagnosƟc tool to monitor TCS status. Moreover, addiƟonal informaƟon could be provided to the
operators (e.g. informaƟon about which board is acƟve or the actual direcƟon);

• The historical collecƟon of the alarms can be exploited for reporƟng about the status of the whole rail-
way secƟon object of this work, supporƟng decisions about maintenance planning at a strategic level.
Visual analyƟcs techniques enable efficient and understandable reports which can highlight different
aspect of the problem and provide addiƟonal informaƟon in a very simple way: for example, it is possi-
ble to provide geographical informaƟon together with quanƟtaƟve informaƟon, as shown in Figure 26,
and communicate quanƟtaƟve data in a way which they can be understood in a simple and immediate
way (e.g. using heat-maps, as shown in Figure 27).

For what concern predicƟvemodelling, some experiments have been performedwith the short-Ɵme-window
approach described in SecƟon 2.3.4, but no relevant results have been achieved due to the sampling fre-
quency of the signals, which is too low. Thus, during the next steps of the work, for the development of
predicƟve models we will focus on a different approach (focusing on wider Ɵme windows) and, at the same
Ɵme, we will conƟnue to work with the operators involved in order to modify the data acquisiƟon process (to
increase sampling frequency) and to develop KPIs formodels and prevenƟvemaintenance evaluaƟon. Finally,
due to the saƟsfactory results achieved with the used of visual analyƟcs techniques we will proceed on this
branch of the work to improve results achieved up to now and to study new soluƟons for the opportuniƟes
which will emerge.
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2.4 Specific-Scenario 2: Train Delays and PenalƟes
We invesƟgate the problem of analyzing the train movements in Large-Scale Railway Networks for the pur-
pose of understanding and predicƟng their behaviour. We focus on different important aspects: the Running
Time of a train between two staƟons, the Dwell Time of a train in a staƟon, the Train Delay, and the Penalty
Costs associated to a delay. Two main approaches exist in literature to study these aspects. One is based on
the knowledge of the network and the experience of the operators. The other one is based on the analysis
of the historical data about the network with advanced data analyƟcs methods. In this work, we will propose
an hybrid approach in order to address the limitaƟons of the current soluƟons. In fact, experience-based
models are interpretable and robust but not really able to take into account all the factors which influence
train movements resulƟng in low accuracy. From the other side, Data-Driven models are usually not easy to
interpret, nor robust to infrequent events, and require a representaƟve amount of data which is not always
available if the phenomenon under examinaƟon changes too fast. Results on real world data coming from the
Italian railway network will show that the proposed soluƟon outperforms both state-of-the-art experience
and Data-Driven based systems in terms of interpretability, robustness, ability to handle non recurrent events
and changes in the behaviour of the network, and ability to consider complex and exogenous informaƟon.

2.4.1 IntroducƟon
Railway Transport Systems (RTSs) play a crucial role in servicing the global society and the transport backbone
of a sustainable economy. A well funcƟoning RTS should met the requirements defined in the form of the
7R formula [62, 70]: Right Product, Right QuanƟty, Right Quality, Right Place, Right Time, Right Customer,
and Right Price. Therefore, an RTS should provide: (i) availability of appropriate products (the provisioning
of different categories of train), (ii) proper number of executed transportaƟon tasks (enough trains to fulfill
the request), (iii) proper quality of execuƟon of transportaƟon tasks (safety, correct scheduling, and effecƟve
conflicts resoluƟon), (iv) right place of desƟnaƟon according to a Ɵmetable (correct transportaƟon routes),
(v) appropriate lead Ɵme (reduced Train Delays), (vi) appropriate recipients (focused on different customer
needs and requirements), and (vii) appropriate price (both from the point of view of the customers and the
infrastructure managers).
In this work we focus on the problem of analyzing the train movements in Large-Scale RTSs for the purpose
of understanding and predicƟng their behaviour. Hence, we will study four important aspects: the Running
Time, the Dwell Time, the Train Delay, and the Penalty Costs. The first one is the amount of Ɵme a train
spends in travelling between two consecuƟve staƟons. The second one is the amount of Ɵme a train spends
in a staƟon. The third one is the difference between the actual arrival (or deparƟng Ɵme) and the scheduled
one in each of the staƟons composing the iƟnerary of a train. Finally, the fourth one is the penalty that the
Infrastructure Managers (IMs) and the Train Operators (TOs) have to pay because of the delays in proporƟon
to their responsibiliƟes. These aspects are of paramount importance in the context of an RTS. Studying them,
and being able to predict their behaviour, allows to improve the quality of service, the train circulaƟon, and
the IMs and TOs management costs. More specifically, in relaƟon with the 7R formula, it allows to improve
the Right QuanƟty (improving circulaƟon improves the network capacity without requiring massive public
investments in new physical assets), the Right Quality (it helps the operators to understand howmuch a train
needs from one checkpoint to another, to provide a Ɵmely resoluƟon of the conflicts on the network and, to
correctly schedule all the trains), the Right Time (efficiently predict the train transits improves the ability of
the operators to maintain the correct train circulaƟon), and the Right Price (it helps to minimize the penalƟes
for the IMs and TOs).
A large literature covering the aforemenƟoned problems already exists [31]. However, the majority of the
works focus just on a single aspect of the train movements. The Running Time and Dwell Time have been
exploited mainly to retrieve train posiƟons and track occupaƟons [18, 42], or to detect train conflicts [33], or
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to perform a correct dispatching [7, 47, 52]. The Train Delay predicƟon is themost invesƟgated aspect of train
movements [8, 9, 27, 34, 43, 53, 57, 85]. Some works study how the Train Delays propagate in subsequent
staƟons [19], for online track conflict predicƟons [34], and for deriving dependencies between trains [28, 82].
For what concern the study and the predicƟon of the Penalty Costs in [54] it has been studied the relaƟon
between Penalty Costs and Train Delays in the Britain’s railway.
To the best knowledge of the authors, there is no work in the literature which deals comprehensively with all
the aspects of the train movements as we will propose in this work.
From a methodological point of view, the models adopted in literature to solve the train movements related
problems can be grouped in two categories [31]. Models in the first category, called Experience-Based Mod-
els (EBMs), aƩempt to exploit the knowledge of the network in order to derive a model which takes into
account the physical characterisƟcs and limitaƟons of the network (e.g. speed limits, usury, and slopes) and
the trains (e.g. acceleraƟon, weight, and number of wagons) together with the experience of the opera-
tors [15, 20, 28, 31, 32, 34]. Models in the second category, called Data-Driven Models (DDMs), are based
on the analysis of the historical data about the network coming from the most recent Railway InformaƟon
System with advanced analyƟc methods [31, 42, 63]. Both EBMs and DDMs have strengths and weaknesses.
EBMs are usually low computaƟonal demanding, easy to interpret, and robust. A the same Ɵme, EBMs are
usually not very accurate, hard to modify in order to contemplate complex phenomena (e.g. congesƟon of
the network and weather condiƟons), and not dynamic (they tend to oversimplify the phenomenon not tak-
ing into account behaviour’s driŌs). On the other side, DDMs aremuchmore accurate but they are alsomuch
more computaƟonal demanding (at least for building them and someƟmes also for making predicƟons), of-
ten not easy to interpret (interpretability in learning from data is a crucial issue nowadays), not really robust
(they do not handle well infrequent events), and not very dynamic (if the phenomena under examinaƟon
change too fast with respect to the possibility to collect enough data about it).
For these reasons, in this work we propose an hybrid approach, that we will call Hybrid Model (HM), taking
the best from EBMs and DDMs. In parƟcular, the proposed HM will be interpretable (the HM will be easy to
understand from an operator point of view), robust and dynamic (HMwill handlewell both infrequent events,
like the passage of Freight trains, and fast changes of the train movements phenomena, like a Ɵmetable
modificaƟon), easily extensible (it will be able to take into account complex phenomena like the congesƟon of
the network and exogenous factors like the weather condiƟons), and able to take into account the knowledge
about the network and the experience of the operators.
The rest of the paper is organized as follows. SecƟon 2.4.2 describes the RTS train movements related prob-
lems. SecƟon 2.4.3 focuses the aƩenƟon on the parƟcular case of the Italian RTS. SecƟon 2.4.4 presents the
actual EBM and DDM exploited in the Italian RTS. In SecƟon 2.4.5 we present our contribuƟon: the HM. In
SecƟon 2.4.6 we compare the performance of the HM against the EBM and the DDM on a set of real world
data provided by Rete Ferroviaria Italiana (the Italian IM) showing the effecƟveness of the proposed approach
both in terms of dynamicity, interpretability, and robustness. SecƟon 2.4.7 concludes the scenario.

2.4.2 Problem DescripƟon
A railway network can be easily described with a graph. Figure 28 depicts a simplified railway network where
a train follows an iƟnerary characterized by a staƟon of origin (staƟon A), a staƟon of desƟnaƟon (staƟon F),
some stops (staƟons A, D, and F) and some transits (checkpoints B, C, and E).
We call checkpoint a staƟon without differenƟaƟng between a staƟon where the train stops or transits and
between actual staƟons and points of measure. In fact, not all checkpoints are actual staƟons since in long
railway secƟons it is oŌen needed to add a point of measure for following the trains with a beƩer granularity.
The railway secƟons are the pieces of the network between two consecuƟve checkpoints, note that railway
secƟons have also an orientaƟon (e.g. transit D to E is different from transit E to D).

IN2D-T5.4-D-UKO-002-02 Page 45 19/11/2018



Contract No. 777596

Figure 28: A railway network. The iƟnerary of a train is depicted with the grey nodes where A is the origin
staƟon and F is the desƟnaƟon.

Figure 29: Running Time and Dwell Time.

For any checkpoint in the iƟnerary, the train is scheduled to arrive and depart at different specified Ɵmes,
defined in the Ɵmetable, respecƟvely tsa and tsd. Usually, the Ɵme references included in the Ɵmetable are
approximated with a precision of 30s. The difference between the scheduled Ɵme and the actual Ɵme, either
for arrival (taa) or for departure (tad), is defined as Train Delay. If the delay is greater than 30s, then a train
is considered as delayed. Note that, for the origin staƟon there is no arrival Ɵme, while for the desƟnaƟon
staƟon there is no departure Ɵme. We define the Running Time as the amount of Ɵme needed to depart from
the first of two subsequent checkpoints and to arrive to the second one (see Figure 29, for railway secƟon D
to E the scheduled Running Time is tsa(E)−tsd(D)while the actual Running Time is taa(E)−tad(D)) and theDwell
Time is the difference between the departure Ɵme and the arrival Ɵme in a fixed checkpoint (see Figure 29,
in checkpoint D the scheduled Dwell Time is tsd(D)− tsa(D) and the actual Dwell Time is tad(D)− taa(D)).
Furthermore, each train has an unique idenƟfier fromwhich it is possible to retrieve the category of the train
(e.g. Regional, Freight, and High Speed). Analogously, each checkpoint has an unique idenƟfier from which
it is possible to retrieve the category of the network (e.g. Node, High Speed, and Second Complementary
Network). Train, network category, Ɵme of the day, and other factors allow to compute the Penalty Costs
associated to a delayed train.
Based on these definiƟons, it is possible to describe the train movements related predicƟon problems that
we will face in this work.

2.4.2.1 Running Time and Dwell Time PredicƟon

The predicƟon of the Running Time and Dwell Time are the first problems that we address. For a specific
train, the problem is to predict the Running Time for all the subsequent railway secƟons it will traverse and
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the Dwell Time for all the subsequent checkpoints in which it will stop, updaƟng these predicƟons every
Ɵme it reaches the next checkpoint. Providing an accurate predicƟon of the Running Time and the Dwell
Time allows to provide to the operators a clear understanding of how much Ɵme a train needs to complete
the iƟnerary. Moreover, as we will describe later, the Running Time and the Dwell Time predicƟons can be
exploited as a building block for the Train Delay predictors (see the EBM of SecƟon 2.4.4.1).

2.4.2.2 Train Delay PredicƟon

The Train Delay predicƟon is the problem of forecasƟng the arrival and deparƟng delay of a train for all the
subsequent checkpoints in its iƟnerary, updaƟng this predicƟons every Ɵme it reaches a new checkpoint. The
predicƟon of the future delays is a problem of paramount importance and yields several benefits: a reliable
informaƟon for the passengers currently on the trains or waiƟng in a checkpoint, a beƩer exploitaƟon of the
railway network while maintaining the safety of the passengers and avoiding resource conflicts, beƩer train
rescheduling and dispatching, and more.
Note that, Train Delay predicƟon can be seen as a standalone task (see the DDM of SecƟon 2.4.4.2) or it
can be retrieved from the combinaƟon of the Running Time and the Dwell Time predicƟons (see the EBM of
SecƟon 2.4.4.1).

2.4.2.3 Penalty Costs PredicƟon

In an RTS the IMs and the TOs have to pay penalƟes, when trains are delayed, in proporƟon to their actual
responsibiliƟes. For this reason, predicƟng the Penalty Costs is a strategic issue: an effecƟve predicƟon system
can be exploited to choose the best dispatching soluƟon which minimizes both Train Delays and Penalty
Costs. However, this problem is rather complex since the Penalty Costs computaƟon is the result of a complex
procedure that has to be fully understood.
Currently, in every State a document of management principles (for example, in Italy is the PIR1) defines the
rules, agreed between the State, the IMs (e.g. Rete Ferroviaria Italiana is an Italian IM), and the TOs (e.g.
Trenitalia is an Italian TO), that must be followed to solve the conflicts when one or more trains are delayed
and the associated Penalty Costs that IMs and TOs have to pay based on their responsibiliƟes. Such rules
define the level of priority of each train based on different variables such as the category of the train and
Ɵme of the day. For instance, during the daily commuter Ɵme slot, some Regional trains could have the same
priority as the High Speed trains, even if the laƩer have usually higher priority. In order to enforce the IMs
to follow these rules, if a train is delayed, the prioriƟes also influence the Penalty Costs associated to a Train
Delay. Consequently, in order to compute the Penalty Costs, it is required to retrieve a series of informaƟon
regarding the trains and their iƟnerary. Although a determinisƟc relaƟon exists to compute the penalƟes,
not all these variables are known at the Ɵme of the train transit. The final penalty is usually agreed aŌer the
train has completed its journey (even aŌer months). For example, the percentage of responsibility may be
the results of a legal dispute between the IM and the TO.
More in details, the Penalty Costs is the result of a determinisƟc combinaƟon of the following variables:

• the category of the train (e.g. a train belonging to the market service delayed of one hour has larger
Penalty Costs than a Freight train affected by the same delay);

• the operaƟonal category of the train (e.g. if the iƟnerary is scheduled in the Ɵmetable, or it is cre-
ated/modified in the last few days before the actual train transit);

• the type of railway secƟon (similarly to the category of the train, the High Speed Lines are affected by
a higher Penalty Costs);

1http://www.rfi.it/rfi/SERVIZI-E-MERCATO/Accesso-alla-rete/Prospetto-informativo-della-rete
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Figure 30: Handling the conflicts using Train Delay and Penalty Costs predicƟon models. ExploiƟng the
Penalty Costs predicƟon would result in stopping Train A because is less expensive for the IM. ExploiƟng,
instead the delay would resort in stopping Train B for reducing the grater delay of Train A.

• the amount of delay of the train (e.g. the average and maximum delay for Regional trains, or just the
delay in the final checkpoint for Freight trains);

• the percentage of responsibility of the IMs, of the TOs, and of the exogenous factors (e.g. flooding and
strikes).

2.4.2.4 Example

In this secƟon, we present an example to show the usefulness of the predicƟve models described above.
Let us suppose to have two trains travelling the simplified railway network depicted in Figure 28, with two
different iƟneraries as depicted in Figure 30. The first train, Train A, travels along its gray iƟnerary from
checkpoint A to F, while the second one, Train B, travels its yellow iƟnerary from G to F. The two trains
share three checkpoints in their iƟneraries (checkpoint D, E, and the desƟnaƟon F). The Ɵmetable has been
constructed in order to give the correct headway to the trains for safety and regularity purposes. Suppose
also that Train A is in checkpoint B, and that Train B is in checkpoint H.
ExploiƟng the Train Delay predictor, we discover that both trains will arrive at approximately the same Ɵme
in checkpoint D, leading to a conflict. Then, we have to decide which one of the two trains should have
the priority over the other. ExploiƟng just the Penalty Costs predicƟon would result in stopping the Train A
because is less expensive for the IM, while exploiƟng just the Train Delays predicƟon would resort in giving
the priority to the Train A for reducing its grater delay. Considering instead both Penalty Costs and Train
Delays predicƟons, would result in a more aware decision. In this case, the most reasonable soluƟon is to
stop Train A since it will negligibly increase its delay (few addiƟonal minutes) to make Train B go forward,
possibly regaining some delay which is instead very costly for the IM (so, probably, it is a more important
train).

2.4.3 The Italian Railway TransportaƟon System
In this document, we consider the specific case of the Italian RTS, which is substanƟally handled by just one
IM, Rete Ferroviaria Italiana (RFI), which provided to us both the knowledge of the network and the data
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needed for this study.
According to the InternaƟonal Union of Railways, the Italian RTS is in the Top 3 and the Top 10 largest RTS
respecƟvely in Europe and Worldwide. RFI controls every day ≈10.000 trains travelling along the naƟonal
railway network of ≈25.000km. Every train is characterized by an iƟnerary composed of an average of ≈12
checkpoints. This means that the number of train movements is greater than or equal to≈300.000 per day.
This results in more than one message per second and more than 10GB of messages per day to be stored.
Note that, every Ɵmeamessage describing the iƟnerary of a parƟcular train is retrieved, the predicƟvemodels
can take advantage of this new informaƟon both to make beƩer predicƟons and to updated the model itself.
This allows to have always the best performing models which exploits all the available informaƟon, and to
follow the effects of small or big changes in the Ɵmetables that occur during the year.
Apart from the daily messages of the train movements, RFI is also able to provide all the informaƟon about
the travelling trains and network characterisƟcs needed to compute the Penalty Costs according to the PIR
(see SecƟon 2.4.2.3).
Finally, other exogenous informaƟon regarding the network can be retrieved from many Italian freely avail-
able data sources which can help in improving the accuracy of the DDMs. In this work, we will take into
consideraƟon the weather informaƟon (see e.g. [68, 69]) since in previous works it has been shown to be an
effecƟve soluƟon for improving the DDM accuracy [63].

2.4.4 The Actual Systems
This secƟon describes two different state-of-the-art approaches employed in RFI to tackle the problems de-
scribed in this paper. In parƟcular, RFI exploits both a EBM which is quite similar to the one described in [34]
(although the laƩer includes process mining refinements which potenƟally increase its performance) and a
DDM [63] that produces beƩer predicƟons of the Train Delays with respect to EBM.

2.4.4.1 The Actual Experience-Based Model

The actual RFI EBM performs the predicƟons based on the knowledge of the railway network and the expe-
rience of the operators. It focuses mostly on the problem of predicƟng the Running Time. The Dwell Time
is considered fixed to the difference between the scheduled departure and arrival Ɵme in a staƟon. The
Train Delays and the Penalty Costs are derived from the predicted Running Times and the fixed Dwell Times
assuming that the percentage of responsibility for a delay is always 100% of RFI.
More in details, the idea of the EBM is to analyze the amount of Ɵme that a train needs to traverse each railway
secƟon of the network, taking into account the speed limits, the state of the network, the type of train etc.
The Ɵmetables are produced taking in consideraƟon such physical constraints and a working margin is kept
for dealing with delays. Then, for each railway secƟon and each train category, a coefficient, called Gaining
Time, is computed which represents the Ɵme that be can regained in case of delay (the Gaining Time takes
into account also a possible smaller Dwell Time). The Gaining Time is staƟc, i.e. it does not change based
on the state of the network, weather condiƟons, etc. The Gaining Time, is exploited to solve the Train Delay
predicƟon problem. When predicƟng a delay, it is assumed that a delayed train is always able to regain, in a
given railway secƟon, an amount of Ɵme equals to its Gaining Time. Then, when RFI predicts the Train Delay
in a subsequent checkpoint it subtracts from the current delay all the Gaining Times of the railway secƟons
between the actual staƟon unƟl the considered checkpoint. Once the delay is computed, the Penalty Costs
can be derived straighƞorwardly if, as in RFI, it is assumed that 100% of the delay costs is to impute to RFI,
thanks to the determinisƟc formula that can be found in the PIR.
The Gaining Times of the RFI EBM do not depend on the Ɵme of the days, on the fact that it is a weekend
or a weekday, on the train actual delay, on the network congesƟon, on the weather condiƟons since no easy
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relaƟon can be retrieved. On the other side, the RFI EBM is quite robust and easy to understand from an
operator perspecƟve even if not very accurate and dynamic.

2.4.4.2 The Actual Data-Driven Model

Given the low accuracy of the EBM, in RFI it has been decided to exploit also the DDM developed in [63]. The
DDM does not take into account the knowledge of the railway network nor the experience of the operators,
but it is based just on the historical data about train movements, weather condiƟons, and weather forecasts.
For this purpose, the DDM exploits advanced analyƟc methods able to extract accurate models of the future
behaviour of each train. The advantage of thesemethods is that there is no need of any a-priori knowledge of
the underline physical system but, most of the Ɵme, they produce non-parametric models that are not easy
to interpret nor supported by any physical intuiƟon or interpretaƟon. Moreover, in general, a great amount
of historical data is needed in order to build an accurate model and it is not so easy to make these systems
strongly dynamics. In fact, if for example the Ɵmetable changes, they require at least one month of data
before achieving a reasonable accuracy.
The RFI DDM is composed of many DDMs that, working together, make it possible to perform a regression
analysis on the past delay profiles in order to predict the future ones. In parƟcular, for each train and for
each checkpoint composing its iƟnerary, a set of DDMs is built to predict the delay in all the subsequent
checkpoints. Consequently, the total number of DDMs to be built for each train is ≈n(n−1) where n is the
number of checkpoints visited by the train. These DDMs work together to esƟmate the delays of a parƟcular
train during its enƟre journey. For a single train, every Ɵme it arrives at (departs from) a specific checkpoint
included in its trip, the DDMs take as inputs its previous sequence of arrival and departure Train Delays,
Running Times, and Dwell Times to predict delay for all the subsequent checkpoints. These DDMs are also
able to take into account the state of the congesƟon of the network and other exogenous variables (e.g. the
weather informaƟon) [63]. The DDMs can be built using many different learning algorithms, exploiƟng the
Random Forest (RF) usually leads to beƩer results [14].
Unfortunately, the RFIDDM has some drawbacks. Many historical informaƟon about the trains are requested
before performing the predicƟon, otherwise it performs badly (e.g. on new trains or aŌer changes in the
Ɵmetable). Moreover, each model composing the DDM is specific for one parƟcular train and checkpoint
limiƟng its interpretability on a larger scale (it cannot group similar trains or trains in the same category) and
the complexity of the DDM is higher with respect to EBM (too many models to build). Finally, the DDM does
not integrate the knowledge and the experience of the operators nor gives to the operators an interpretaƟon
of the Train Delay phenomenon.

2.4.5 The Proposed Hybrid Model
In this work, we propose an HM to perform the Running Time, Dwell Time, Train Delay, and Penalty Costs
predicƟons, merging together the EBM and the DDM to exploit their strengths and limit their weaknesses.
The goal is to build accurate, dynamic, robust, and interpretable models able to provide insights for both
solving the train conflicts and minimizing the Train Delays and the Penalty Costs.
Similarly to the EBM, theHM relies, on the top, on an interpretablemodel able to encapsulate the experience
of the operators in the form of a decision tree and, at the boƩom, the leafs, instead of being defined relying
on the physical knowledge of the network as in the EBM, are constructed following the ideas of the DDM
where the historical data about the network and other exogenous informaƟon (e.g. weather) are exploited
via advanced analyƟc methods. Moreover, contrary to the DDM, the HM does not implement one model for
each train and, contrary to the EBM, the HM does not group all the trains just based on their category and
railway secƟon. In fact, the HM groups the trains based on a series of similarity variables, defined together
with the RFI operators, which allow to have, from one side, robust staƟsƟcs, thanks to the possibility to
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Table 4: DescripƟon of the HM top level decision tree feature set.

Feature Name Categorical DescripƟon
Railway SecƟon Yes The considered railway secƟon
Railway Checkpoint Yes The considered railway checkpoint
Train Type Yes The considered Train Type
DayƟme No The Ɵme of the day with an hourly granularity
Weekday Yes The day of the week
Last Delay No The last known delay with the following granularity in minutes ([0, 2], (2, 5], (5, 10],

(10, 20], (20, 30], (30, 60], (60, 120], (120,∞));
Weather CondiƟons Yes The weather condiƟons (Sunny, Light Rain, Heavy Rain, Snow).

Table 5: DescripƟon of the HM boƩom level RF feature set.

Feature Name Categorical DescripƟon
Weather InformaƟon Yes Weather condiƟon (Sunny, Light Rain, etc.) in all the checkpoints of the train iƟnerary (for

the already traveled checkpoints we use the actual weather while for the future check-
points we use the predicted weather condiƟons)

Past Train Delays No Average value of the past Train Delays in seconds & Last known Train Delay
Past Dwell Times No Average value of the past differences between actual and scheduled Dwell Times in sec-

onds & Last known difference between actual and scheduled Dwell Time
Past Running Times No Average value of the past differences between actual and scheduled Running Times in

seconds & Last known difference between actual and scheduled Running Time
Network CongesƟon No Number of trains traversing the checkpoints of the train iƟnerary in a slot of 20minutes

around the actual and scheduled Ɵmes respecƟvely for the past and future checkpoints
Network CongesƟon Delays No Average Train Delay of the trains traversing the checkpoints of the train iƟnerary in a slot

of 20minutes around the actual and scheduled Ɵmes respecƟvely for the past and future
checkpoints

learn from a reasonable group of train, but also a rich feature set, to be able to capture the variability of
the phenomena. The proposed HM is then able to be extremely dynamic: grouping the trains increases
the number of historical data to exploit during the leaf creaƟon and follow, in a reasonable amount of Ɵme,
Ɵmetable changes and new train schedules, thanks to the robustness introduced by theHM experience based
top level structure.
We exploited the above menƟoned approach for predicƟng both the Running Time and the Dwell Time.
For what concern the Train Delay, instead, we opted for the same soluƟon of the actual RFI EBM (see Sec-
Ɵon 2.4.4.1). In fact, in order to predict the Train Delay at a desired subsequent checkpoint, we sum all the
needed Running Time and Dwell Time predicƟons to the current train Ɵme and then we compute the differ-
ence between the esƟmated and the scheduled train Ɵme. Finally, in order to predict the Penalty Costs, we
made use of the HM described in the previous paragraph to predict an auxiliary variable, the Responsibil-
ity, which is the percentage of responsibility of the IM for the delays. Then, combining the Train Delay and
the Responsibility predicƟons, we were able to predict the Penalty Costs exploiƟng the determinisƟc relaƟon
described in the PIR.
The work has been conduced side by side with the RFI operators taking into account their needs and their
working environment which is constrained, in terms of complexity of the soluƟon, to something that can
provide simple and effecƟve insights.
In the subsequent subsecƟons, we will first present in details how we constructed the above menƟoned HM
decision tree based top structure and its Data-Driven based boƩom structure (see SecƟon 2.4.5.1), and then
we will describe how this HM has been exploited for predicƟng the Running Time, the Dwell Time, the Train
Delay, and the Penalty Costs (see SecƟon 2.4.5.2).
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Figure 31: The proposedHM for the Running Time predicƟon: updaƟng themodel every Ɵme a newmove-
ment is recorded and predicƟng the future Running Time in the subsequent secƟons.

2.4.5.1 Hybrid Decision Tree

As described before, the HM exploits, as a basic structure, a top level experience based decision tree and a
boƩom level Data-Driven model which is able to easily take into account the network congesƟon state and
other exogenous informaƟon, like the weather condiƟons, which are not easy to model with the experience.
The top level structure can be easily adapted to the predicƟon task under examinaƟon. For instance, for the
Running Time we are interested in considering each railway secƟon separately, instead for the Dwell Time
predicƟon it is beƩer to differenƟate each of the checkpoints. The variables that we consider in the top level
structure, definedwith the RFI experts, are a subset of the ones reported in Table 4. Then, as leafs of the tree,
instead of plugging an esƟmate of the quanƟty that wewant to predict based on the experience of the opera-
tors and the knowledge of the network, we exploit a Data-Driven model able to learn from the historical data
regarding all the trains which fall in that parƟcular leaf (basically all trains which share similar characterisƟcs
and iƟnerary) plus addiƟonal complex features. In parƟcular, each leaf is a RF regressor [14] (following the
experience of the DDM developed in [63]), which predicts the quanƟty that we want to esƟmate based on
a series of features designed with the RFI experts and based also on the lesson learned with the DDM [63].
This feature set is reported in Table 5.
The whole HM is constructed and updated incrementally as soon as a new train movement is recorded. In
the top level decision tree, a new leaf is added each Ɵme we record a new train movement which belongs to
a previously unexplored branch of the decision tree. Then, the RF regressor in the leaf is learned based on
all the past train movements which fall in that parƟcular leaf. In order to follow the changes in behaviour of
the phenomena we forgot the train movements older than three months. The predicƟons phase, instead, is
simpler: we just visit the tree considering the informaƟon that we want to predict and we exploit the correct
RF regressor to make the actual predicƟon.
As described at the beginning of SecƟon 2.4.5, the HM will be exploited for predicƟng:

• the Running Time: in this case we exploit, in the HM top level decision tree, all the variables of Table 4
except the one relaƟve to the checkpoints since Running Time is a property of the railway secƟons and
do not depend on the checkpoints;

• Dwell Time: in this case we exploit, in the HM top level decision tree, all the variables of Table 4 except
the one relaƟve to the railway secƟons since Dwell Time is a property of the checkpoints and do not
depend on the railway secƟons;
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• Responsibility: in this case we exploit, in the HM top level decision tree, all the variables of Table 4.

Figure 31 depicts an example of use of the HM for the Running Time predicƟon problem. As one can see from
Figure 31, every Ɵme a new movement is recorded the HM is updated based on the informaƟon inside the
train movement record and we exploit this new informaƟon about the travel of the train to update all the
predicƟons about the subsequent railway secƟons.

2.4.5.2 Train Movements Predictors via Hybrid Model

In this secƟon we describe how the previously described HM has been exploited for predicƟng the Running
Time, the Dwell Time, the Train Delay, and the Penalty Costs.

2.4.5.2.1 Running Time PredicƟon

In this case we apply the HM described in SecƟon 2.4.5.1 and we directly predict the values of the Running
Times. Every Ɵme a train movement is recorded, the model and the predicted future Running Times are
updated based on this new informaƟon.

2.4.5.2.2 Dwell Time PredicƟon

Regarding the Dwell Time predicƟon we exploit exactly the same approach described for the Running Time
predicƟon. Note that, the only difference between the two models stays in the feature set of the HM top
level decision tree (see SecƟon 2.4.5.1).

2.4.5.2.3 Train Delay PredicƟon

In order to predict the Train Delays, instead of building another HM, we exploit, similarly to the EBM, the
Running Time and Dwell Time predictors as building blocks. Each Ɵme a predicƟon is required, we predict all
the Running Times of the secƟons and all the Dwell Times of the checkpoints between the current checkpoint
and the one for whichwe request the Train Delay predicƟon. Then, the desired result is obtained by summing
all these Ɵmes to the current Ɵme and subtracƟng from the results the scheduled Ɵme.

2.4.5.2.4 Penalty Costs PredicƟon

In order to compute the Penalty Costs of a parƟcular Train Delay, we have to combine two quanƟƟes. First,
we obtain the predicted Train Delay exploiƟng the approach described in SecƟon 2.4.5.2.3. Then, we predict
the Responsibility with a new HM as described in SecƟon 2.4.5.1. Once these two predicƟons are available,
we combine themwith the determinisƟc relaƟon described in the PIR, obtaining the Penalty Costs predicƟon.
Specifically, we compute the Penalty Costs P of a train as follows:

P = PU

∑
j∈I

mjrjCTCNCD, (1)

wherePU is the unitary costs, I is the set of checkpoints composing the iƟnerary,mj are theminutes of delay
at secƟon j, rj is the percentage of responsibility for secƟon j, CT is coefficient relaƟve to the type of the
train T ,CN is the coefficient relaƟve to the type of railway networkN , andCD is a coefficient which depends
on the average and maximum delay registered for the train. The parametersmj and CD are esƟmated with
the Train Delay predictor. The parameters rj are esƟmated with the Responsibility predictor. More details
about Eq. (1) can be found in the PIR.
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2.4.6 Experimental EvaluaƟon
In this secƟon we test the proposed HM, presented in SecƟon 2.4.5, against the actual RFI EBM, presented
in SecƟon 2.4.4.1, and DDM, presented in SecƟon 2.4.4.2.
All the experiments have been conducted on a virtual machine in the Google Cloud Plaƞorm2 (GCP). The
machine is the n1-standard-8 characterized by 8 core and 30GB of RAM and 500GB of SSD disk space. Each
experiment has been repeated 30 Ɵmes in order to ensure the staƟsƟcal robustness of the results.

2.4.6.1 Available Data

The experiments have been conducted exploiƟng the real data provided by RFI:

• data about train movements which contains the following informaƟon: Date, Train ID, Checkpoint ID,
Actual Arrival Time, Arrival Delay, Actual Departure Time, Departure Delay and Event Type. The Event
Type field can assume different values: Origin (O), DesƟnaƟon (D), Stop (F), Transit (T);

• data about the delay responsibiliƟes: for every delay the percentage of RFI responsibility is available;
• Ɵmetables, including planning of excepƟonal train, cancellaƟons, and Gaining Time of each secƟon.

For the purpose of this work, RFI provided the access to the data of 12months (the whole 2016 solar year) of
train movements of one big Italian Region (Liguria). The data are relaƟve to more than 2.500 trains and 146
checkpoints. The dataset contains 4.127.380 train passages.
From the PIR, freely available on the RFI website1, we retrieved all the informaƟon needed to compute the
Penalty Costs as described in SecƟon 2.4.5.2.4.
We also exploit, as exogenous informaƟon, the weather condiƟons from the weather staƟons in the area.
For each checkpoint we consider the closest weather staƟon to the railway staƟon/line. We collect the data
relaƟve to the solar radiaƟon and precipitaƟons for the same Ɵme span of the train passages from Italian
naƟonal weather service databases, which are publicly accessible for the Liguria Italian Region at [68]. From
this data it is possible to extract both the actual and the forecasted weather condiƟons (Sunny, Rain, Heavy
Rain, and Snow).

2.4.6.2 Key Performance Indicators

In the experiments, we exploit the following Key Performance Indicators (KPIs) for measuring the quality of
the different models (in parenthesis we report the predicƟon problemwhere they have been applied). These
KPIs have been designed together with RFI based also on the lesson learned during the exploitaƟon of the
DDM [63]:

• AASk (Running Time predicƟon): the Average Accuracy for a parƟcular SecƟon k. AASk is computed as
the averaged absolute value of the difference between the predicted and the actual Running Times in
minutes;

• AAS (Running Time predicƟon): is the average over the different secƟons k of AASk;
• AACk (Dwell Time predicƟon): the Average Accuracy for a parƟcular Checkpoint k. AACk is computed

as the averaged absolute value of the difference between the predicted and the actual Dwell Times in
minutes;

• AAC (Dwell Time predicƟon): is the average over the different checkpoints k of AACk;
• AAiCTk (Train Delay predicƟon): the Average Accuracy at the i−th subsequent Checkpoint for Train k.

For a parƟcular Train k, the absolute value of the difference between the predicted delay and its actual
Train Delay is averaged, at the i−th subsequent checkpoint with respect to the actual checkpoint in
minutes;

2Google Compute https://cloud.google.com/products/
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Table 6: Comparison between HM and
EBM for Running Time predicƟon. (n) is
the number of train passages in the sec-
Ɵon.

AASk
k n EBM HM
1 7344 1.1 0.9
2 10672 1.7 0.8
3 22082 1.2 0.9
4 1013 1.4 0.4
5 25228 0.5 0.4
6 18090 0.8 0.5
7 398 3.2 2.9
8 12671 1.2 0.6
9 29357 1.4 0.9
10 5614 2.7 1.5

· · ·
AAS Regional 1.3 0.8

AAS High Speed 0.8 0.6
AAS Freight 1.9 1.2

AAS 1.3 0.9

Table 7: Comparison between HM and
EBM for Dwell Time predicƟon. (n) is the
number of train passages in the check-
point.

AACk
k n EBM HM
1 49134 1.7 0.7
2 61888 0.1 0.3
3 22210 1.4 1.2
4 23629 2.4 1.8
5 29652 2 1.6
6 29271 1.3 1
7 33350 1.2 0.9
8 22508 0.5 0.2
9 33418 0.8 1
10 24307 0.5 0.9

· · ·
AAC Regional 1.1 1.1

AAC High Speed 0.5 0.7
AAC Freight 2.5 1.5

AAC 1.1 1

• AAiC (Train Delay predicƟon): is the average over the different trains j of AAiC;
• AAP (Penalty Costs predicƟon): is the Average Accuracy over the different trains between the predicted

and actual Penalty Costs in Euros.

2.4.6.3 Results

In this secƟon we compare the proposed HM for predicƟng Running Times, Dwell Times, Train Delays, and
Penalty Costs against the EBM andDDM, by using the data described in SecƟon 2.4.6.1 and the KPIs described
in SecƟon 2.4.6.2

2.4.6.3.1 Running Time PredicƟon

In this first set of experiment we compare the HM with the EBM on the Running Time predicƟon problem.
We could not compare them also with the DDM since it does not provide a soluƟon for this problem [63].
Table 6 reports the AASk for a subset of the railway secƟons and the AAS also considering the different train
types3. From the results it is possible to observe that:

• HM clearly outperforms the EBM;
• the improvement is more evident for Freight and Regional trains, instead for High Speed trains the two

approaches provide similar results.

In order to show the ability of the proposed soluƟons to handle changes in the Ɵmetable, Figure 32 reports
the value of AAS during the 2016. From Figure 32 it is possible to observe that:

• HM is constantly beƩer with respect to the EBM during the whole year;
• HM needs really liƩle Ɵme to learn a goodmodel, for example in January aŌer 10 days of data it reaches

almost its opƟmal accuracy;
• HM and EBM exhibit an increase in the error in June (days from 180 to 210), this is moƟvated by a

change in the Ɵmetable happened the 12th of June.
3Because of confidenƟality issues we cannot report the results and the ids for all the secƟons and all the checkpoints available.
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Table 8: Comparison between HM, EBM, and DDM for Train Delay predicƟon. (n) means the number of
days that the train transit according to our dataset. (–) means not available since data is not enough to
build the model.

AAiCTk EBM DDM HM EBM DDM HM EBM DDM HM EBM DDM HM

· · ·

k i n 1st 2st 3st 4st
1 349 1 0.6 0.5 1.2 0.7 1 1.7 1.1 1.5 2.1 1.4 2.1
2 346 1 0.5 0.4 1.2 0.8 0.9 1.5 1 1.3 1.8 1.2 1.6
3 345 0.5 0.4 0.3 0.9 0.6 0.4 1.1 0.8 0.6 1.2 1 0.7
4 308 0.9 0.5 0.5 1.5 1 1.2 1.7 1.3 1.4 1.9 1.4 1.8
5 235 0.9 0.9 0.7 1.5 1.3 1.3 2 1.5 1.8 2.5 1.8 2.3
6 175 0.7 0.4 0.5 1.1 0.7 1 1.4 0.7 1.3 1.8 1 1.7
7 169 0.7 0.4 0.4 1 0.6 0.9 1.3 0.6 1.2 1.6 0.8 1.6
8 129 2.4 3.4 1.6 5.1 6.2 3.9 7.8 9 6.4 9.9 11.3 8.2
9 14 1.4 – 1.1 2.1 – 1.7 2.8 – 2.2 3.1 – 2.6
10 2 1.8 – 1.1 3.8 – 1.9 5.9 – 3 7.6 – 4

· · ·
AAiC Regional 1.2 0.8 0.9 2.1 1.5 1.7 3 2.2 2.5 3.8 2.8 3.3

AAiC High Speed 0.7 0.7 0.5 1.2 1.1 1 1.6 1.4 1.4 2 1.7 1.8
AAiC Freight 1.9 3.5 1.6 3.6 5.2 3.1 5.3 6.9 4.7 6.9 8.2 6.1

AAiC 1 0.9 0.8 1.8 1.5 1.6 2.5 1.8 2.3 3.2 2.1 2.9

Table 9: Comparison between HM and EBM for Penalty Costs predicƟon.

EBM HM
AAP Regional 4.15 2.49

AAP High Speed 0.2 0.14
AAP Freight 0.11 0.1

AAP 4.44 2.71

Note that, even if the HM has a Data-Driven core, it is sƟll robust and the EBM and much more dynamic of
any DDM.

2.4.6.3.2 Dwell Time PredicƟon

For what concerns theDwell Time predicƟon problem, the approach, the results, and the comments are quite
similar to the one made for the Running Time predicƟon problem. Table 7, analogously to Table 6, reports
the AACk for a subset of the checkpoints and the and AAC also considering the different train types3. From
Table 7 it is possible to observe that:

• in this problem EBM and HM provide similar results, HM being slightly beƩer;
• similarly to the result for the Running Time predicƟon problem the HM approach results to be parƟc-

ularly effecƟve for the Freight trains.

We do not report the equivalent of Figure 32 since results are basically the same.

2.4.6.3.3 Train Delay PredicƟon

In this secƟon we compare the HM with both the EBM and the DDM for the Train Delay predicƟon problem.
Table 8 reports theAAiCTk for a subset of the trains and subsequent checkpoints and theAAiC also considering
the different train types3. From the results it is possible to observe that:

• both the HM and DDM perform beƩer with respect to the EBM approach;
• the HM beƩer predicts the delays in the subsequent checkpoint (i = 1);
• the DDM beƩer predicts the delays when the distance from the actual checkpoint is larger;
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Figure 32: AAS for the Running Time during the year.

• DDM is not able to perform the predicƟon for the trains for which we have too liƩle informaƟon (i.e.
infrequent trains) while HM is always able to provide an answer;

• for what concern the Freight trains, DDM provides the largest error while HM improves of≈20% over
also the EBM.

2.4.6.3.4 Penalty Cost PredicƟon

In this secƟon we compare the HM with the EBM on the Penalty Costs predicƟon problem. We could not
compare them also with the DDM since it does not provide a soluƟon for this problem [63].
Table 9 reports the AAP considering the different train types3. From Table 9 it is possible to observe that:

• the HM is much more effecƟve with respect to the EBM for all the train categories;
• the difference is much more evident for the Regional trains which are also the most expensive in terms

of Penalty Costs for RFI.

2.4.6.4 ComputaƟonal Requirements

Finally, we compare the computaƟonal requirements of the different models. Figure 33 depicts both the
scalability varying the number of cores (leŌ) and the trade-off between accuracy and computaƟonal require-
ments (right) for the Train Delay predicƟon case (AAiC with i = 1). The Ɵme reported on the axis is the Ɵme
needed for performing the analysis of all the 12months of data provided by RFI.
From Figure 33 we can observe that:

• EBM and HM have a similar scalability, the computaƟonal Ɵme decreases smoothly when more cores
are added to the computaƟon;

• DDM, when 8 cores are exploited, requires 100× the Ɵme with respect to EBM and HM (we did not
execute DDM with less than 8 cores because the computaƟon required more than 10 hours);
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• EBM and HM have similar computaƟonal requirements, HM being just slightly slower with respect to
EBM;

• HM provides clearly the best trade-off between accuracy and computaƟonal requirements.

In conclusion, EBM is the fastest method but, with a small addiƟonal computaƟonal effort with respect to
EBM, HM is able to deliver a model which is extremely more accurate with respect to EBM and DDM.

2.4.7 Conclusions
In this work we dealt with the problem of understanding and predicƟng the train movements in Large-Scale
Railway Networks. In parƟcular, our purposewas to predict the Running Time of a train between two staƟons,
the Dwell Time of a train in a staƟon, the Train Delay, and the Penalty Costs, four important aspects which
fully characterize the train movements and that were never studied together before. For this purpose, we
proposed, for the first Ɵme, an hybrid approach which is able to merge together two approaches adopted in
literature: the one which develops models based on the knowledge of the network and the experience of the
operators and the one based on the analysis of the historical data about the network with advanced analyƟc
methods. The result is a dynamic, interpretable, and robust hybrid data analyƟcs system able to handle non
recurrent events, changes in the behaviour of the network, and ability to consider complex and exogenous
informaƟon like weather informaƟon. Basically, the proposed approach is able to take the strengths of the
two original approaches and to limit their weaknesses. Results on real world data coming from the Italian
railway network shown that the proposed soluƟon outperforms both state-of-the-art experience and Data-
Driven based systems.

2.5 Specific-Scenario 3: RestoraƟon Time
2.5.1 IntroducƟon
Every Ɵme an infrastructure asset is affected by a failure, it is clear that it will affect not only the single asset
funcƟonal behaviour, but also the normal execuƟon of railway operaƟons.
Modern railway networks have to guarantee that security systems, trains and assets -and consequently main-
tenance operaƟons- are able to provide an effecƟve and efficient service to their customers.
The general aim is to study and prove the applicaƟon of advanced visual and rule-based data analyƟcs in the
railway ecosystems.
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A fully data-driven approach is here proposed for the soluƟon of two similar problems in the scope of rail-
way transportaƟon system: predicƟng Ɵme to restoraƟon for future maintenance acƟons (RFI scenario) and
detecƟng the underlying funcƟonal dependencies and useful relaƟonships between the funcƟon restoraƟon
Ɵme of an asset and various features describing its iniƟal condiƟons (SR scenario).
The informaƟon outpuƩed by the models can be very useful because it could be used by the traffic manage-
ment system to reroute trains through safer paths, minimizing the risks of any problem.

2.5.1.1 Problem descripƟon

The general objecƟve of this work is to study, design and develop data and visual analyƟcs soluƟons for
knowledge extracƟon from railway asset data. The two scenarios that will be presented cover the same
aspect of the railway system -the Ɵme to restoraƟon- and exploit similar data, but they differ in terms of
aims:

• In the first scenario, a set of predicƟve models for forecasƟng purposes have been developed, based
on both data provided by RFI about maintenance/repair acƟons and weather data;

• In the second scenario, different diagnosƟc models have been designed to capture, understand and
visualize the knowledge enclosed into maintenance reports (provided by SR) and historical weather
condiƟons, without predicƟve aims.

2.5.1.2 State of the art

Nowadays, vast amounts of data are being generated in many fields, including the railway one; data analyƟcs
and machine learning are tools able to collect, clean, process, analyze, and gain useful insights from them.
The task of data analyƟcs comes in as there is a need to extract concise and possibly acƟonable insights from
the available data for applicaƟon-specific goals: the raw data may be arbitrary, unstructured, or even in a
format that is not immediately suitable to be processed by an automated computer program; to address
this issue, data analysts use different processing techniques to collect, clean and transform raw data into
standardized formats.
ApplicaƟons of data analyƟcs are oŌen closely connected to supervised learning problems. The concept of
machine learning was born in the NineƟes. It can be seen as a union of ArƟficial Intelligence, ComputaƟonal
Intelligence and StaƟsƟcs [83]. In this field a lot of algorithms for supervised and unsupervised learning were
born, e.g. Support Vector Machine, Neural Networks, Decision Trees and StaƟsƟcal PaƩern RecogniƟon.
The learning process can be viewed as the process of generaƟng automaƟcally new knowledge from past
experience/data [56]. In this context, the term “supervised” indicates the presence of the outcome variable
to guide the learning process. Typically, the development of a machine learning algorithm follows two or
three fundamental phases: training, validaƟon (when the learner is parametric) and tesƟng. These phases
correspond, in their more basic applicaƟons, to so-called data “sets”, i.e. subsecƟons of the original data:
training set, validaƟon set and test set. A typical example of supervised learning is the regression case: an
outcome measurement is provided and the objecƟve is to predict it based on a set of known features; the
learner observes the outcome and the feature measurements for a set of objects in the historical data (train-
ing) and, using this “experience”, a model is built to predict the outcome for new unseen objects (in the test
set).
Learners can be black-box -i.e. they hide the algorithm’s details from the user and just allow parameter ad-
justment, so that “the algorithm learns whatever it learns” [5]- or white-box -the algorithm’s structure is
revealed. A good white-box learner can be defined as the one that can accurately predict the outcome based
on the problem specific metrics and can be easily interpreted.
In recent Ɵmes, as public agencies responsible for areas such as criminal jusƟce, health and welfare are in-
creasingly using algorithms and soŌware to steer or make decisions on life-changing events, research insƟ-
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tutes are focusing more and more on the social implicaƟons of arƟficial intelligence; the debate around how
these systems can be “opaque” seems to be of greater importance than ever. In some cases, algorithms are
now capable of accomplishing almost incredible tasks and handling an unfathomably complex world beƩer
than a human can, but, exactly because they can, the way they work risks to become unfathomable too. For
these reasons, the employment of white box algorithms is also assuming ethical connotaƟons [1].
In the scope of railway systems, machine learning is oŌen synonymous with CondiƟon Based Maintenance
(CBM) and PredicƟveMaintenance (PM), other than TrafficManagement System (TMS). Thanks to the rapidly
expanding scale of manufacturing and asset maintenance industries, they are now adapƟng to the wider
applicaƟons of advanced algorithms on consumer generated big data [3].
In fact, according to [90], maintenance of railway assets is not regarded anymore as something that needs to
be done, butmore andmore as a professional business delivering very important products for rail operaƟons:

• Availability: the Ɵme that the infrastructure is available for operaƟons per calendar period. A part
of the Ɵme the infrastructure is out of service due to planned prevenƟve maintenance acƟons. An-
other part of the Ɵme the infrastructure can be unavailable due to infrastructure failures (correcƟve
maintenance), possession over-runs or external factors, such as vandalism and bad weather;

• Reliability: the Ɵme that the infrastructure is available for operaƟons during the periods agreed. In
other words, with regard to the reliability, only the unplanned maintenance and repair are consid-
ered. The reliability depends on e.g. the asset quality and maintainability, the amount of prevenƟve
maintenance, and the failure restoraƟon Ɵmes.

Various data analyƟcs applicaƟons have beendeveloped to guidemaintenance planning: data-driven decision
support models have been built either to studymaintenance performance [60] and to achieve the availability
target in both the scheduled and the condiƟon based maintenance regimes [65].
Maintenance issues are also strictly connectedwith speed of line-haul movement between terminals: among
many determinants of overall network velocity, a key driver is service interrupƟon, including lowered oper-
aƟng speed due to track condiƟons [50].
Using huge volumes of historical detector data, in combinaƟon with failure data, maintenance acƟon data,
train type data and weather data, several analyƟcal approaches have been explored, including correlaƟon
analysis, causal analysis, Ɵme series analysis and machine learning techniques to automaƟcally learn rules
and build failure predicƟon models.
AddiƟonally, the analyƟcs and models can also be used with diagnosƟc intent -as in the second scenario of
this work- detecƟng the root cause of several failure modes, which can be proacƟvely used by maintenance
organizaƟons to opƟmize trade-offs related to maintenance schedule, costs and shop capacity.
Arjen Zoeteman, researcher in Life Cycle CosƟng for Rail Infrastructures at TU DelŌ, in 2001 pointed out
that available data about failures in rail systems were of low quality [90]. Failure types were missing, failure
frequencies, restore Ɵmes and speed restricƟons were not consistent. However, his efforts in improving the
performance of railway systems using data led to the recogniƟon of the importance of the subject and helped
in opening a dialogue between the construcƟon and maintenance staff.
Interest in predicƟng Ɵme to restoraƟon resulted in a need for acƟonable and Ɵdy data about repair acƟons
-not only in railway scope- so that in the last decade a literature about maintenance and repair Ɵmes for
components in technological faciliƟes was born [16].
Indeed, informaƟon about restoraƟon Ɵme is crucial not just regarding infrastructures. For instance, greater
accuracy in predicƟng the Ɵme needed to repair soŌware defects would be useful for devising beƩer test-
ing plans, schedules, and for allocaƟon of tesƟng resources, helping in keeping projects on Ɵme and within
budget [36].
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2.5.1.3 Proposed approach

As the objecƟve of the previously menƟoned EU funded projects is the development of tools and method-
ologies aiming at extracƟng knowledge from data analyƟcs algorithms and at the same Ɵme making them
interpretable in an easier way, white-box (and grey-box) learning algorithms are the best choice for this work.
In parƟcular, two algorithms have been employed: Decision Trees and Random Forests.

2.5.1.3.1 Decision Trees

Decision trees are oŌen the best way to understand themain funcƟonal dependencies between the variables
in the first instance.
Decision trees are trees where each node represents a feature (or aƩribute), each link (or branch) represents
a decision (or rule) and each leaf represents an outcome.
Other than being white-box and nonparametric, they tend tomimic the human thinking so theymake it quite
simple to understand the data and produce some good visual interpretaƟons -especially useful in SR scenario.
Tree models where the target variable can take a discrete and limited set of values are called classificaƟon
trees; in these tree structures, leaves represent class labels. Decision trees where the target variable can take
conƟnuous values (typically real numbers) are called regression trees.
Building a decision tree is especially a maƩer of choosing which aƩribute to test at each node.
In classificaƟon trees, a measure of informaƟon gain can be defined for this purpose, using Entropy or Gini
Impurity.
Given a binary categorizaƟon, C, and a set of examples, S, for which the proporƟon of examples labelled 0
by C is p0 and the proporƟon of examples categorized as 1 by C is p1, then the entropy of S is:

Entropy(S) = −p0log2(p0)− p1log2(p1) (2)

Therefore, given an arbitrary categorizaƟon C into categories c1, ..., cn, and a set of examples, S, for which
the proporƟon of examples in ci is pi, then the entropy of S is:

Entropy(S) =
n∑

i=1

−pilog2(pi) (3)

In simple words, entropy characterizes the (im)purity of an arbitrary collecƟon of examples. [56] Please note
that, when p gets close to zero (i.e., the category has only a fewexamples in it), then the log2(p) becomes a big
negaƟve number, but the p part dominates the calculaƟon, so entropy is nearly zero. As entropy calculates the
disorder in the data, this low score is good and it reflects the intent to reward categories with few examples
in. Similarly, if p gets close to 1 (i.e., the category hasmost of the examples in), then the log2(p) part gets very
close to zero and so the overall value. Hence we see that both when the category is nearly (or completely)
empty, or when the category nearly (or completely) contains all the examples, the score for the category gets
close to zero.
IntuiƟvely, the Gini Impurity can be understood as a criterion to minimize the probability of misclassificaƟon:

GiniImpurity(S) =

n∑
i=1

pi(1− pi) (4)

Similar to the Entropy, the Gini Impurity ismaximal if the classes are perfectlymixed. In pracƟce, Gini Impurity
and Entropy typically produce very similar results.
The informaƟon gain of an aƩributeA can be seen as the expected reducƟon in impurity caused by knowing
the value of the aƩribute. Given a collecƟon of examples, S, informaƟon gain is calculated as:
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Gain(S,A) = Entropy(S)−
∑

v∈V alues(A)

|Sv|
|S|

Entropy(Sv) (5)

or

Gain(S,A) = GiniImpurity(S)−
∑

v∈V alues(A)

|Sv|
|S|

GiniImpurity(Sv) (6)

So, defined these measures, the algorithm goes as follows: it chooses the root node to be the aƩribute, A,
which scores the highest for informaƟon gain relaƟve to S; for each value v thatA can possibly take, it draws
a branch from the node; for each branch fromA corresponding to value v, calculates Sv. Then, if Sv contains
only examples from a category c, then the algorithm puts c as the leaf node category which ends that branch.
Otherwise, it puts a new node in the decision tree, where the new aƩribute being tested in the node is the
one which scores highest for informaƟon gain relaƟve to Sv. The algorithm terminates either when all the
aƩributes have been exhausted, or the decision tree perfectly classifies the examples.
Regression trees work in a similar way: the basic idea is again measuring impurity and reducing it. While
Entropy does not suit regression problems, Gini Impurity is the most common spliƫng criteria for regression
trees -and the one used in this work.
Different measures of disorder could be used in quanƟtaƟve cases, e.g. MSE (mean squared error). Given
a quanƟtaƟve (response) variable Y :

MSE =
1

n

n∑
i=1

(Ŷi − Yi)
2 (7)

MSE is one of the measures used in this work to evaluate models.
Decision trees suffer from overfiƫng, because they are trained to stop when they have perfectly classified all
the training data, i.e., each branch is extended far enough to correctly categorize each example. To avoid this
problem, the most popular approach is post-pruning some of the branches from the complete tree. There-
fore, it is clear that pruning raises the issue of determining the correct tree size. On the other hand, decision
tree learning is robust to errors in the data: it will funcƟon well in the light of errors in the classificaƟon
instances provided or missing values for certain aƩributes for certain examples.
Given the characterisƟcs of the two scenarios in thiswork, decision trees are a goodmethod for these learning
tasks. In both RFI and SR cases, the outcome -repair Ɵme- is a quanƟtaƟve variable, so the kind of tree used
is the regression one.

2.5.1.3.2 Random Forests

The natural next step aŌer Decision Trees is Random Forest, an ensemble algorithm which, in simple words,
builds mulƟple Decision Trees and merges them together to get a more accurate and stable predicƟon.
The general idea behind ensemble algorithms is that a combinaƟon of learning models increases the overall
result. In fact, Random Forests overcome the limitaƟons of single trees, first of all the problem of overfiƫng.
In random forests, tree predictors are combined such that each tree depends on the values of a randomvector
sampled independently and with the same distribuƟon for all trees in the forest. Thanks to these properƟes,
error for forests converges to a limit as the number of trees in the forest becomes large [14].
To inject randomness into the ensemble algorithm, different techniques can be used. An example is bag-
ging [13], where to grow each tree a random selecƟon (without replacement) is made from the examples in
the training set. Another example is random split selecƟon [21] where at each node the split is selected at
random from among theK best splits.
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In classificaƟon cases, each tree casts a unit vote for the most popular class, which represents the output;
in regression problems, numeric results are calculated by each tree and the output value is either the mean,
the median or the mode of them, depending on the algorithm.
In many applicaƟons random forests produce very saƟsfying results and have important advantages over
other techniques in terms of ability to handle highly non-linear data and robustness to noise; furthermore,
one of the most interesƟng points boil down to the interpretability of random forests in the eyes of variable
importance measures.
Random Forest -as implemented in the R package used in this work- provides two different importance mea-
sures, mean decrease accuracy (MDA) and mean decrease Gini (MDG), that can be used for ranking variables
and for variable selecƟon. MDA quanƟfies the importance of a variable by measuring the change in predic-
Ɵon accuracy when the values of the variable are randomly permuted compared to the original observaƟons.
MDG is the sum of all decreases in Gini impurity due to a given variable (when this variable is used to form a
split in the random forest).
For this reasons, in RFI scenario (the predicƟve one) Random Forests were parƟcularly useful, though they
can’t be considered completely white box.

2.5.1.3.3 Error EsƟmaƟon

In this work, both K-Fold Cross ValidaƟon and Out-Of-Bag techniques have been used to esƟmate error.
In K-Fold Cross-ValidaƟon, the original sample is randomly parƟƟoned into k equal sized subsamples. Of the
k subsamples, a single one is retained as validaƟon data for tesƟng the model, and the remaining k − 1
subsamples are used as training data. The cross-validaƟon process is then repeated k Ɵmes, with each of
the k subsamples used exactly once as validaƟon data. The k results can then be averaged to produce a
single esƟmaƟon. The advantage of this method over repeated random sub-sampling is that all observaƟons
are used for both training and validaƟon, and each observaƟon is used for validaƟon exactly once. 10-fold
cross-validaƟon is commonly used [55], but in general k remains an unfixed parameter.
In random forest algorithms, when using bagging, each tree is grown on a new training set, which is drawn,
with replacement, from the original training set. Bagging, other than enhancing accuracy, can be used to
give ongoing esƟmates of the error of the combined ensemble of trees. These esƟmates are done out-of-bag
(OOB): each observaƟon xi is used to test only the aggregaƟons of trees which were built on training sets not
containing xi. The study of error esƟmates for bagged classifiers gives empirical evidence to show that the
out-of-bag esƟmate is as accurate as using a test set of the same size as the training set [14].

2.5.2 RFI - Rete Ferroviaria Italiana
The main objecƟve of this scenario is to esƟmate the Ɵme to restoraƟon for future planned and urgent main-
tenance operaƟons, based on historical data about repair acƟons in Liguria -provided by RFI- and weather
data -provided by Regione Liguria.
The predicƟve models that will be designed will be able to exploit the knowledge enclosed into maintenance
reports so to predict the Ɵme needed to complete an acƟon over an asset in order to restore its funcƟonal sta-
tus. Moreover, historical weather condiƟons datawill be included in the analyses in order to take into account
the atmospheric factors affecƟng railwaymaintenance and repair operaƟons (e.g. temperature, rainfall, solar
radiaƟon, wind intensity).
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Name Data Type
Type Factor

‘P’= Planned Maintenance
‘S’= Extraordinary Maintenance

CondiƟon Factor
‘C’= Allowed
‘NC’= Not Allowed
‘Rn’= Renounced
‘R’= Requested

Beginning StaƟon Factor: 69 levels
Included/Excluded Factor

‘I’= Included
‘E’= Excluded

End StaƟon Factor: 66 levels
Included/Excluded Factor

‘I’= Included
‘E’= Excluded

Track Factor
‘D’= LeŌ
‘P’= Right
‘L’= EnƟre Line

Planned Beginning Time Chron (planned works only)
Planned End Time Chron (planned works only)
Planned Repair Time Chron (planned works only)
Actual Beginning Time Chron
Actual End Time Chron
Actual Repair Time Chron

Table 10: Structure of the iniƟal dataset

2.5.2.1 Data descripƟon and basic staƟsƟcs

2.5.2.1.1 Historical data

The analysis will consider reports of maintenance works from 01-06-2017 to 31-01-2018. There are 4945
observaƟons and 13 variables. This iniƟal structure of the dataset can be seen in Table 10.
From now on “Repair Ɵme” will indicate the numeric response variable -unit of measurement: minute-, de-
rived from the already exisƟng “Actual repair Ɵme”. As shown in the staƟsƟcs and in the figure below (Fig-
ure 34 and Table 11), there are few big outliers in the distribuƟon of the variable. For this reason, obser-
vaƟons with a value greater than 540 minutes (the highest datum sƟll within 1.5 interquarƟle range of the
upper quarƟle) have not been considered (129 observaƟons out of 4945).

Min. 1st Qu. Median Mean 3rd Qu. Max.
1 33 82 247.5 201 83160

Table 11: Summary of Repair Ɵme
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Figure 34: DistribuƟon of Repair Ɵme.
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Figure 35: Barplots of cathegorical variables Type, Track and CondiƟon
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Figure 36: Repair Time in different levels of the variables Type and Track

Briefly looking at the most relevant categorical variables, in Figure 35 it can be seen that Track and Type have
quite an even distribuƟon; almost every maintenance work, instead, is labelled as Allowed.
The distribuƟon of Repair Time in the levels of Type and Track (Figure 36) shows that the response variable is
not staƟsƟcally independent from both the factors: planned works seem to have longer duraƟon on average
than the extraordinary ones, and, aswould be expected, whenmaintenance involves a single track it is usually
shorter than on the enƟre line. Not surprisingly, the disƟncƟon between right and leŌ track doesn’t seem to
be effecƟve on repair Ɵme.
Eventually, about the variable Planned repair Ɵme, it is interesƟng to note that the correlaƟonwith the actual
one is 0.91, so it can be considered very predicƟve.

2.5.2.1.2 ExtracƟon of other relevant features

It is possible to extract some new features from the original ones; it will be considered, especially:

• The day of the week of the beginning date;
• The hour of the day of the beginning date;
• The province of the beginning staƟon.

While, at a first glance, the day of the week seems relevant just concerning the disƟncƟon between Sunday
and other days (first graph in Figure 37), Hour of the day and Province appear to be quite influenƟal in the
variaƟons of the response variable (Figure 37 and 38).
Please note that, as parƟally menƟoned, most of the staƟons are in Liguria (Genova, Savona, Imperia) and
the few whose province is Alessandria (Piedmont) are actually very near to Liguria’s border.
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Figure 37: Repair Time in different levels of the variables Day of the week and Province.
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Figure 38: Repair Time in different levels of the variable Hour of the day.
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Figure 39: DistribuƟon of weather variables

2.5.2.1.3 Weather data

Historical weather data have been retrieved from Regione Liguria - Meteorological Service website. For each
month, 4 datasets -one for each variable: rainfall, temperature, solar radiaƟon and wind intensity- represent-
ing hourly weather measurements have been considered.
The datasets include informaƟon coming from different weather staƟons all over Liguria. As previously men-
Ɵoned, the geographical locaƟons of the railway staƟons have been divided into provinces; for every province,
aweather staƟon has then been chosen, in order to associate historicalmaintenance datawith corresponding
weather condiƟons.
All of the weather data collected by Regione Liguria is archived by the UTC Ɵme. So, to convert it into local
Ɵme, it has been shiŌed one hour forward (or two when DST is observed).
As can be seen in Figure 39, the distribuƟon of Rainfall, Wind intensity and Solar radiaƟon is concentrated
around lowest values -in the Solar radiaƟon case, this is due to the fact that during the night this value is
always 0. Temperature, instead, shows a more homogeneous distribuƟon.
The effect of these variables on repair Ɵme is not immediately visible from the data: for instance, the cor-
relaƟon between Solar radiaƟon and Repair Ɵme is about -0.35, while Rainfall and Temperature seem to be
almost uncorrelated with the response. Despite this fact, these features could sƟll be influenƟal in a non-
linear way, as can be parƟally seen in Figure 40.
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Figure 40: DistribuƟon of Repair Ɵme in different subsets of the variable Temperature

2.5.2.1.4 The structure of the final dataset

Now the dataset has 23 variables and 4837 observaƟons. The structure of the final dataset can be seen in
Table 12.
In the modeling phase all these variables will be used except Beginning and End Time (both Planned and
Actual) as well as Beginning and End staƟon, whose amounts of levels are too large.

2.5.2.2 Regression trees

The first models considered are regression trees. Decision tree algorithms arewhite-box, nonparametric and,
therefore, make no assumpƟons regarding the distribuƟon of input data, so they can be one of the easiest
ways to understand the problem in the first instance.

2.5.2.2.1 Planned maintenance

The table and figures below (Table 13 and Figures 41 to 43) show some interesƟng results about an ex-
ploratory regression tree trained with data referring to planned works (labelled as ‘P’ in the Type variable).
The dataset has been divided into a training set -75% of data- and a test set -25% of data.
The feature importance ranking can be seen in Table 13; it is calculated using mean decrease Gini (also called
mean decrease in node impurity). The most relevant variable is, as would be expected, Planned Repair Time.
It can also be seen from the pruned tree (Figure 42 and 43): the feature Planned Repair Time is used in a large
amount of splits, and branches with lower values of planned repair Ɵme always correspond to lower values of
actual repair Ɵme in the leaves. Other important features are Solar RadiaƟon, Hour of the Day, Province, Track
and Temperature; these results point out the importance of a thorough extracƟon and addiƟon of features
of interest.
Figure 41 shows how the cross-validated esƟmate of relaƟve error -i.e., in this case, 1 − R2- changes due
to the changes of size of the tree. This plot suggested that the size could be reduced to about 15 leaves:
a good choice for pruning is oŌen the leŌmost value for which the mean lies below the horizontal dashed
line, which represents the highest cross-validated error minus the minimum cross-validated error, plus the
standard deviaƟon of the error. On the lower axis, ‘cp’ stands for Complexity Parameter of the tree, ameasure
of the amount by which further spliƫng would improve the relaƟve error.
Pruning decision trees reduces the complexity of the final algorithm, hence improving predicƟve accuracy by
the reducƟon of overfiƫng.

IN2D-T5.4-D-UKO-002-02 Page 69 19/11/2018



Contract No. 777596

Name Data Type Source
Type Factor RFI

‘P’= Planned Maintenance
‘S’= Extraordinary Maintenance

CondiƟon Factor RFI
‘C’= Allowed
‘NC’= Not Allowed
‘Rn’= Renounced
‘R’= Requested

Beginning StaƟon Factor: 69 levels RFI
Included/Excluded Factor RFI

‘I’= Included
‘E’= Excluded

End StaƟon Factor: 66 levels RFI
Included/Excluded Factor RFI
Track Factor RFI

‘D’= LeŌ
‘P’= Right
‘L’= EnƟre Line

Planned Beginning Time Chron (planned works only) RFI
Planned End Time Chron (planned works only) RFI
Planned Repair Time Chron (planned works only) RFI
Planned Repair Time - numeric Integer (planned works only) Derived
Actual Beginning Time Chron RFI
Day of the Week (beginning Ɵme) Factor: 7 levels Derived
Hour of the Day (beginning Ɵme) Integer: 1,2...23,24 Derived
Month of the Year (beginning Ɵme) Factor: 8 levels Derived
Province (beginning staƟon) Factor: ‘GE’,‘SV’,‘IM’,‘AL’ Derived
Rainfall (beginning Ɵme) Numeric Regione Liguria
Temperature (beginning Ɵme) Numeric Regione Liguria
Solar RadiaƟon (beginning Ɵme) Numeric Regione Liguria
Wind Intensity (beginning Ɵme) Numeric Regione Liguria
Actual End Time Chron RFI
Actual Repair Time Chron RFI
Actual Repair Time - numeric Integer Derived

Table 12: Structure of the final dataset

Variable Mean decrease in node impurity
Planned Repair Time - Numeric 44
Solar RadiaƟon 19
Hour of the Day 14
Province 8
Track 5
Temperature 4
Actual Beginning Time 2
Month of the Year 1
Day of the week 1
Wind Intensity 1

Table 13: Variable Importance
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Figure 41: Cross-validaƟon results
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Median of absolute percentage error: 14%

Mean of absolute percentage error: 42%

Table 14: Mean and Median of Absolute Percentage Error

Please note that in this case R2 -here esƟmated about 0.8- is a measure of how well the model fits the data
on which it is built -not of how well it would perform on an independent test set. In any staƟsƟcal model,
including convenƟonal regressions,R2 is an overly opƟmisƟc predicƟon of model performance on previously
unseen data.
The scaƩer plot in Figure 44, instead, shows how the model performs on the test set (Figure 44). As the dots
show a clear uphill paƩern moving from leŌ to right and are concentrated around the diagonal red line, it is
possible to say that the model captures the existence of some informaƟon inside data.
As the probability of having a certain error decreases as the error increases, a similar conclusion can be drawn
by looking at Figure 45. In fact, the graph is a histogram showing the distribuƟon of the absolute percentage
error, which is defined as the absolute difference between the true values and the predicted values as a
percentage of the true values. This measure expresses how close the esƟmates are to the real values. In
parƟcular, the histogram includes the values of percentage error on the x-axis, and the frequency of that
parƟcular value of percentage error on the y-axis.
For a beƩer visualizaƟon the biggest outliers (30 out of 504 values of absolute percentage error are greater
than 100%) have not been reported in this graph.
Eventually, in Table 14 mean and median of absolute percentage error can be seen. Please note that median
is a more robust measure when big outliers are involved in calculaƟon.

2.5.2.2.2 Extraordinary works

While the ideal size of the tree (Figure 46) is not really different from the one of the previous model, feature
importance andpredicƟve accuracy vary substanƟallywhenworks are not planned and theƟme to restoraƟon
is not previously scheduled.
Table 15 suggests that themost influenƟal features are Track and Hour of the Day, followed by Province,Wind
Intensity and other variables relaƟve to the actual beginning Ɵme and the weather condiƟons. The role of
these features can be seen in detail in Figure 48 and 49.
Even if the histogram (Figure 47) uƩerly suggests that some informaƟon has been captured, both the scaƩer
plot (Figure 50) and the mean/median of absolute percentage error (Table 16) show that predicƟve accuracy
is not saƟsfying.

2.5.2.3 Random Forests

As previously menƟoned, Random Forests are an ensemble learning method, that operate by construcƟng
a mulƟtude of decision trees at training Ɵme and outpuƫng -in the regression case- the mean predicƟon of
the individual trees. Random forests are usually more accurate than single trees and, furthermore, correct
for decision trees’ habit of overfiƫng.
In first instance, two random forest models have been built to predict repair Ɵme, one for planned and one
for extraordinary works. As for the previous modeling, both datasets have been divided into a training set
(75% of data) and a test set (25% of data).
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Figure 43: Detail of Pruned Tree for planned maintenance

Variable Mean decrease in node impurity
Track 23
Hour of the Day 23
Province 14
Wind Intensity 10
Month of the Year 7
Actual Beginning Time 6
Day of the weeek 6
Temperature 5
Solar RadiaƟon 3
Rainfall 1
Wind Intensity 1

Table 15: Variable Importance
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Figure 44: ScaƩer plot of actual vs predicted values (test set)
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Figure 45: Histogram of absolute percentage error
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Figure 46: Cross-validaƟon results

Histogram of Absolute Error in Extraordinary Works
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Figure 47: Histogram of absolute percentage error
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Figure 49: Detail of Pruned Tree for extraordinary works

Median of absolute percentage error: 58%

Mean of absolute percentage error: 132%

Table 16: Mean and Median of Absolute Percentage Error
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Figure 50: ScaƩer plot of actual vs predicted values (test set)
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Figure 51: ScaƩer plot of actual vs predicted values (test set)

The number of trees is set to 500, one of the most common opƟons; the number of variables tried at each
split is set to ⌈

√
r⌉, given r the number of features.

2.5.2.3.1 Planned maintenance

Type of random forest: regression
Number of trees: 500
No.~of variables tried at each split: 4
Mean of squared residuals: 1122.874
Var explained: 88.83%

Mean of Squared Residuals and ProporƟon of Variance Explained are calculated as out-of-bag (OOB) esƟ-
mates, hence they are the mean predicƟons ofMSR andR2 on each training sample xi, using only the trees
that did not have xi in their bootstrap sample.
As would be expected,R2 is much higher in this model than in the single tree one. The scaƩer plot, instead,
shows how the model performs on the test set (Figure 51). As the dots are evidently concentrated around
the diagonal red line the model can be considered very saƟsfying. Furthermore, dots which deviate from the
bisector have quite an even distribuƟon, which does not highlight any bias in the residuals.
The feature ranking is similar to the previous one, confirming the importance of Planned Repair Time (Table 17
and 18). The two rankings were built using mean decrease in impurity (as for the trees) and mean decrease
in accuracy; the results are similar but not idenƟcal, especially as regards Province and Solar RadiaƟon, which
however can be considered relevant in both cases.
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Histogram of Absolute Percentage Error in Planned Maintenance
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Figure 52: Two graphs of percentage error (test set)

Variable Mean decrease in accuracy
Planned.Repair.Time.Num 70.6
Hour.Beginning 32.0
Province.Beginning 29.4
Track 25.8
Actual.Beginning.Time 23.2
Day.of.Week.Beginning 23.0
Month.Beginning 22.0
Wind.Intensity 21.6
Temperature 19.4
Solar.RadiaƟon 17.0
Incl..Escl 14.2
Rainfall 8.5
CondiƟon 8.5
Incl..Escl.1 3.4

Table 17: Variable Importance (mean decrease in accuracy)
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Variable Mean decrease in node impurity
Planned.Repair.Time.Num 7720030
Hour.Beginning 2490630
Solar.RadiaƟon 1917280
Track 604470
Actual.Beginning.Time 509470
Temperature 495970
Day.of.Week.Beginning 394040
Month.Beginning 356630
Wind.Intensity 335740
Province.Beginning 322750
CondiƟon 693560
Incl..Escl 67990
Rainfall 64440
Incl..Escl.1 12520

Table 18: Variable Importance (mean decrease in node impurity)

Median of absolute percentage error: 10%

Mean of absolute percentage error: 26%

Table 19: Mean and Median of Absolute Percentage Error

The histogram in Figure 52 is similar to the previous one (Figure 45) too; the second graph in the figure is a
boxplot of the (not absolute) percentage error, which shows in detail how oŌen the model overesƟmates or
underesƟmates actual values, including the outliers not considered in the histogram (23 out of 504 values of
absolute percentage error are greater than 1 and have not been reported for a beƩer visualizaƟon).
As can be seen both from the boxplot above and from the difference between mean and median, the dis-
tribuƟon of the (absolute) error is completely uneven and its concentraƟon is especially around the 0 value,
though there are some great negaƟve outliers. This would suggest that overesƟmates are much more fre-
quent than underesƟmates, but this can be not completely true: model oŌen overesƟmates liƩle values, so
that the (negaƟve) differencewith the predicted values, expressed as a percentage of a liƩle number, seems a
more relevant value than the errors calculated as a percentage of grater values, more oŌen underesƟmated.
Eventually, it has been noƟced that the observaƟons with higher percentage error have values of Planned
Repair Time which differ from Actual Repair Time more than the average.

2.5.2.3.2 Extraordinary works

Type of random forest: regression
Number of trees: 500
No.~of variables tried at each split: 4
Mean of squared residuals: 3120.265
Var explained: 58.32%
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Figure 53: ScaƩer plot of actual vs predicted values (test set)

Histogram of Absolute Percentage Error in Extraordinary Works
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Figure 54: Two graphs of percentage error (test set)
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The importance ranking of the variables (Tables 21 and 22) is similar to the single tree one: track, beginning
Ɵme and weather condiƟons become much more important as repair acƟons are not scheduled. The low
posiƟon of the variable Rainfall can be parƟally explained with the fact that Solar RadiaƟon provides a similar
informaƟon -but more complete as marks the difference between night and daylight.
It is also interesƟng to note that the variables relaƟve to inclusion or exclusion of the involved staƟons are
not in the very last posiƟons in both the rankings.
As would be expected, the results with the extraordinary works aremuchworse than the results with planned
ones. MSE, R2 and all the graphs and staƟsƟcs suggest that the model, though more saƟsfying than the
single regression tree, has a predicƟve accuracy which cannot be compared with scheduled maintenance.
Explained variance is about 40% lower than the planned works one and the median of absolute percentage
error (26%) is almost three Ɵmes the other one -but about half the error of the single tree. The scaƩer plot
shows a quite indefinite shape of dots, though an uphill trend is sƟll roughly visible.

2.5.2.3.3 Extraordinary works divided into provinces

It has been observed that the beginning condiƟons (in terms of Ɵme, weather and space) are really influenƟal
in the predicƟon of Ɵme to restoraƟon in extraordinary works. For this reason, taking into account Beginning
StaƟon and End StaƟon could enhance significantly the performance of the predictors. While using these
two factors in the previous random forest models -which were trained on data relaƟve to different provinces-
caused some issues due to the too large amount of levels, training new province-specific models could work.
Data are divided into four datasets, each containing observaƟons from the same province, and then each
further divided in training and test set.
Province-specific random forests -when beginning and end staƟons are involved inmodels- showmuch beƩer
performances than the generic ones in the predicƟon of extraordinary works (Tables 23 - 26).
In fact:

• Mean of squared residuals is lower in all the comparisons;
• In the models involving data from Savona and Imperia -which are the smallest datasets- the proporƟon

of variance explained is significantly higher, from 9 to 30 percentage points. As regards Genoa and
Alessandria, the proporƟons are quite similar, though a liƩle decrease is sƟll visible;

• While the two models on Alessandria’s data show similar performances, in the other cases the median
and mean of percentage error is not comparable: by taking into account beginning and end staƟons,
relaƟve error is remarkably reduced.

Furthermore, the importance of the addiƟonal features is confirmed in the variable ranking (Figure 55). This
graph regards Genoa’s data, but almost idenƟcal results were obtained with other provinces.
However, it is interesƟng to observe that this kind of approach does not enhance the performance of the
predictor when trained (and tested) with planned maintenance data, neither in terms of accuracy or impor-
tance ranking. Other possible splits of the data have been tried, but, for the scheduledmaintenance, the best
model found in this work is the one involving the enƟre dataset.

Median of absolute percentage error: 26%

Mean of absolute percentage error: 73%

Table 20: Mean and Median of Absolute Percentage Error
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Variable Mean decrease in accuracy
Track 72.8
Hour.Beginning 48.1
Province.Beginning 44.2
Day.of.Week.Beginning 34.33
Month.Beginning 32.6
Wind.Intensity 31.6
Actual.Beginning.Time 27.7
Temperature 25.7
Solar.RadiaƟon 24.4
Incl..Escl.1 8.1
Incl..Escl 6.4
Rainfall 5.7
CondiƟon 1.4

Table 21: Variable Importance (mean decrease in accuracy)

Variable Mean decrease in node impurity
Hour.Beginning 3184730
Track 2379270
Solar.RadiaƟon 1525520
Actual.Beginning.Time 1503400
Wind.Intensity 1404040
Province.Beginning 1402581
Day.of.Week.Beginning 1381970
Temperature 1310180
Month.Beginning 1018650
Incl..Escl 118350
Incl..Escl.1 116250
Rainfall 108760
CondiƟon 11030

Table 22: Variable Importance (mean decrease in node impurity)

Without Beginning and End StaƟon With Beginning and End StaƟon
Mean of squared residuals: 2749 Mean of squared residuals: 2727

% Var explained: 40.94 % Var explained: 41.42
Mean of abs. percentage error: 106% Mean of abs. percentage error: 52%
Median of abs. percentage error: 64% Median of abs. percentage error: 16%

Table 23: Results from Genoa’s data
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Without Beginning and End StaƟon With Beginning and End StaƟon
Mean of squared residuals: 4702 Mean of squared residuals: 2427

% Var explained: 51.04 % Var explained: 81.22
Mean of abs. percentage error: 283% Mean of abs. percentage error: 32%
Median of abs. percentage error: 41% Median of abs. percentage error: 13%

Table 24: Results from Savona’s data

Without Beginning and End StaƟon With Beginning and End StaƟon
Mean of squared residuals: 2628 Mean of squared residuals: 1935

% Var explained: 65.08 % Var explained: 74.41
Mean of abs. percentage error: 168% Mean of abs. percentage error: 37%
Median of abs. percentage error: 44% Median of abs. percentage error: 17%

Table 25: Results from Imperia’s data

Without Beginning and End StaƟon With Beginning and End StaƟon
Mean of squared residuals: 3687 Mean of squared residuals: 3366

% Var explained: 66.37 % Var explained: 68.38
Mean of abs. percentage error: 87% Mean of abs. percentage error: 83%
Median of abs. percentage error: 32% Median of abs. percentage error: 29%

Table 26: Results from Alessandria’s data

Condition

Rainfall
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Figure 55: Variable importance ranking (Genoa)
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2.5.3 SR - Strukton Rail
This scenario was previously analyzed in [74].
IniƟally, a predicƟve approach had been proposed; it showed that it was possible to capture interesƟng func-
Ɵonal dependencies between input and output variables, though the average percentage error in predicƟon
was not saƟsfying in the perspecƟve of an actual real-world applicaƟon. The noise in data and the few exam-
ples of failures for some of the many different failure types affected the predicƟve accuracy, so a diagnosƟc
approach is here proposed instead.
Strukton Rail is one of the most qualified railroad contractor in Northern Europe for all rail systems and rail
works; in this scenario data from Netherlands are exploited.

2.5.3.1 Data descripƟon and basic staƟsƟcs

The analysis will consider reports ofmaintenanceworks from01-01-2010 to 31-12-2015. There are 17243 ob-
servaƟons of 47 variables. Each observaƟon idenƟfies a single failure/repair acƟon, for which a large amount
of informaƟon about Ɵme, place, mechanic’s characterisƟcs and weather is provided.
At the very first step, Strukton receives a noƟficaƟon from the Infrastructure Manager that a failure on an
asset has been detected. The noƟficaƟon includes several informaƟon, such as a priority level, the ID and
locaƟon of the asset to be repaired, etc. AŌer the noƟficaƟon has been received, mechanics are informed
that a failure on an asset has been reported; whenmechanics arrive on the asset locaƟon, travelling from the
closest headquarter, they communicate that they reached the asset locaƟon and start inspecƟng the asset
for assessing its status. Based on this first inspecƟon, the mechanics perform a ”soŌ” forecast on the kind of
acƟon and the Ɵme needed to complete the intervenƟon. Then the Ɵmestamp in which the mechanics start
the repair intervenƟon is recorded.
The funcƟon is restored when themechanics have completed the intervenƟon so that the line has been freed
and trains can travel again over it.
This structure of the dataset (Table 27) is the result of a process of feature extracƟon and selecƟon.
In addiƟon to the original variables (provided by Strukton Rail), in fact, weather data have been retrieved from
the Royal Netherlands Meteorological InsƟtute (KNMI) and some other useful features have been derived.

2.5.3.1.1 SR variables

Considering the problem as a regression one, there are three response variables:

• Response Ɵme is the Ɵme needed by the mechanics to start operaƟng on the asset from the moment
in which the failure noƟficaƟon has been received;

• Repair Ɵme is the Ɵme needed by the mechanics to perform the repair on the asset;
• FuncƟon restoraƟon Ɵme is the Ɵme needed to complete the intervenƟon and free the railway line.

The scaƩerplots (Figure 56) show different associaƟons between the three variables: both Repair and Re-
sponse Ɵme seem to be posiƟvely correlated with FuncƟon RestoraƟon Ɵme, while not with each other.
This could be expected -as FuncƟon RestoraƟon Ɵme is influenced by both the other two variables- and is
confirmed by correlaƟon coefficients: 0.74, 0.59 and 0.06 (respecƟvely, looking at the graphs).
It is interesƟng to note that, in both the first and the second plot, dots show two different paƩerns: ‘short’ re-
pair Ɵme distribuƟon is almost independent from funcƟon restoraƟon Ɵme, while as values grow the posiƟve
linear associaƟon become clear.
Furthermore, these graphs highlight some anomalies, e.g. a few observaƟons have values of repair Ɵme
grater than funcƟon restoraƟon Ɵme, which is meaningless. This informaƟon, combined with that contained
in Table 28, can be used to detect and delete some outliers.
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Name Data Type Source
Geographic Code Factor: 139 levels SR
Failure Type Factor: 28 levels SR
Failure Type Dutch Factor: 143 levels SR
Object Type Factor: 10 levels SR
Object ID Factor: 6964 levels SR
Technical Department Factor: 14 levels SR
Part Code Factor: 187 levels SR
AcƟon Carried Out Factor: 76 levels SR
Failure Main Group Factor: 4 levels SR
Failure Cause Factor: 60 levels SR
Longitude Numeric SR
LaƟtude Numeric SR
Mechanic ID Factor: 533 levels SR
Diagnosis Time Numeric SR
Year Factor: 6 levels Derived
Month Factor: 12 levels Derived
Day Numeric Derived
Hour Numeric Derived
Day of the Week Factor: 7 levels Derived
Zone Factor: 3 levels Derived
Year of AcƟvity Integer Derived
Mechanic’s Past AcƟons (in the zone) Integer Derived
Past AcƟons - Normed (in the zone) Numeric Derived
Past AcƟons - Difference from mean (in the zone) Numeric Derived
Past AcƟons (same priority) Integer Derived
Past AcƟons - Normed (same priority) Numeric Derived
Past AcƟons - Difference from mean (same priority) Numeric Derived
Past AcƟons (total) Integer Derived
Past AcƟons - Normed (total) Numeric Derived
Past AcƟons - Difference from mean (total) Numeric Derived
Past Failures in the Week Integer Derived
Past Failures in the Month Integer Derived
Past Failures in Six Months Integer Derived
Open Failures in the Zone Integer Derived
Wind Speed Numeric KNMI
Temperature Numeric KNMI
Dew Point Numeric KNMI
Global RadiaƟon Numeric KNMI
Wind DirecƟon Factor: 10 levels KNMI
Sunshine duraƟon Numeric KNMI
Rainfall duraƟon Numeric KNMI
Rainfall Numeric KNMI
Response Time Numeric SR
Repair Time Numeric SR
FuncƟon RestoraƟon Time Numeric SR

Table 27: Structure of the dataset
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Figure 56: ScaƩerplots of response variables
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Min.~1st Qu.~Median Mean 3rd Qu.~Max.
0 27 42 47.2 57 1383

Min.~1st Qu.~Median Mean 3rd Qu.~Max.
0 2 11 31 37 1325

Min.~1st Qu.~Median Mean 3rd Qu.~Max.
2 45 70 88.6 106 1320

Table 28: Summary of Response, Repair and FuncƟon restoraƟon Ɵme

2.5.3.1.2 Weather variables

As previously noted in RFI’s case, weather condiƟons can noƟceably affect Ɵme to restoraƟon, and therefore
taking them into account can enhance the performance of data-driven models.
Weather data consisted of 39 variables fro which 8 have been extracted by selecƟng or recombining the
original ones, in order to obtain the most relevant features and to avoid redundant ones. The enƟre data
refers to Netherlands, where Strukton is the responsible for asset maintenance.
The two datasets -SR data and weather data- have been linked by correlaƟng the geographical locaƟons of
the assets to the locaƟons of the weather staƟons, so to find the closest one for which it is possible to extract
the most accurate weather informaƟon related to each asset.

2.5.3.1.3 Derived variables

It is possible to extract some new features relaƟve to Ɵme and locaƟon from the original ones; it will be
considered, especially:

• The month, day and hour of the beginning date;
• The day of the week of the beginning date;
• The “Zone” of the beginning staƟon.

The variable “Zone” -based on the laƟtude and longitude coordinates of the failure locaƟons- idenƟfies three
different areas. In fact, by looking at the map (Figure 57), a peculiar triparƟte distribuƟon is evident.
The three zones have similar size but some different characterisƟcs, as can be seen in Figure 58 and 59.
In order to explain and predict the repair Ɵme, mechanic’s experience can be another useful piece of informa-
Ɵon. It can be parƟally described by the number of past repair acƟons in which the mechanic was involved,
so 9 features of this kind have been computed. They can be divided into three subgroups: the first one re-
lates to the past acƟons in general; the second one refers to the past acƟons in the geographical area of the
asset failure under examinaƟon (zone); the third group is related to the past acƟons on failures with the same
priority.
Another group of features has been extracted from the failures that occurred before a certain noƟficaƟon is
received. These “Past Failures” features are computed for different Ɵme horizons -a week, a month and six
months before the noƟficaƟon under examinaƟon.
Eventually, the variable “Open Failures” has beenderivedby considering all the unresolvedmaintenance/repair
acƟons that sƟll have to be completed at a certain Ɵme.
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Figure 57: Map of failure locaƟons

2.5.3.1.4 Data preparaƟon

As already shown in the staƟsƟcs and in the figures above, there are few outliers in the distribuƟon of the
response variables. For this reason, observaƟons with a value greater than 360 minutes (400 for FuncƟon
RestoraƟon Ɵme) and less than 2minutes have not been considered (about 4000 observaƟons out of 17243).

2.5.3.2 Regression trees

As already said, the objecƟve of this scenario was to esƟmate the significance of the different parameters on
the Ɵme to restoraƟon. Thanks to regression trees, it has been possible to realize an effecƟve visualizaƟon of
the role of the variables. As models were built with a descripƟve purpose more than a predicƟve one, some
overfiƫng has been tolerated. Furthermore, feature ranking methodology made it possible to esƟmate the
relevance of each single input parameter of the models with the real outputs.
Data are no more divided into test and train set: as the aim is not predicƟve, there is no need to measure
models’ performance on previously unseen data, so all data can be considered training data. DescripƟve ac-
curacy of the developed algorithms is connected, instead, with their ability to manage the trade-off between
fidelity to data (overfiƫng) and generalizable significance of the detected dependencies.
Many different splits of the dataset have been tried in order to reach the right compromise between gain
and loss of informaƟon due to size -and therefore impurity- reducƟon. The best split has been found to be
-similarly to RFI’s case- a zone-specific one: for each response variable, three different models have been
built, one for every level of the variable Zone.
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Figure 58: Past AcƟons and Zone
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Figure 59: Open Failures and Zone
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2.5.3.2.1 Repair Time

In the aforemenƟoned previous analyses [74], the Repair Time was the most difficult quanƟty to predict. In
all the simulaƟons, the performance of the associated data-driven models were the less saƟsfactory.
Also in the diagnosƟcmodels here presented the performance relaƟve to this quanƟty -intended as the ability
of the models to generalize other than describe available data- is the worst. This can be seen in Figure 60,
which shows how the error varies according to the size of the tree: the cross-validated error barely declines
under 100% error at the very first split, but it rises almost immediately, making overfiƫng uƩerly visible -
and reaching an error value of about 1.5. Results are similar in the three zones, so just one of the graphs is
reported.
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Figure 60: Cross-validated relaƟve error and size of the tree (Zone 3)

Figures 61, 62 and 63 represent the trees describing the data of the three zones.
As the intent was to use these trees to visualize data and their connecƟons, a part of the work was focused on
the research of correct visualizaƟon tools. The two objecƟves of the visualizaƟon were parƟally in contrast
with each other: while comprehension should be easy and direct, without too much complex or redundant
content interfering with it, the descripƟon of nodes and branches -and the subsets involved- should be accu-
rate and meƟculous.
AŌer different aƩempts, quite detailed and at the same Ɵme legible trees have been produced, also thanks
to specific packages.
The final leaves show the average repair Ɵme and the number of observaƟons in the final branches. Colours
vary from green to red as the values of the response variable increase. It is interesƟng to note how the
different splits idenƟfy from leŌ to right different subsets with increasing values of repair Ɵme. Furthermore,
please note that the size of the final leaves is quite unbalanced, with values varying approximately between
10 and 800. These differences can be analyzed with parƟcular aƩenƟon to the smaller sizes; in fact, trees and
forests are oŌen used also to detect anomalies: the sooner a very small subset is isolated in a leaf, the most
anomalous the subset is [51].
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Figure 61: Tree of repair Ɵme, Zone 1

It is significant that the ‘Part Code’ node comes at the top of the tree in all the zones and that, in the impor-
tance ranking, this variable is always in one of the top three posiƟons. In general, the other most important
features are Geographic Code, Failure Type Dutch (more specific than Failure Type), Mechanic ID, Failure
Cause and AcƟon Carried Out. The influence of technical characterisƟcs is not surprising, and seems coher-
ent with the fact that some features relaƟve to mechanics’ experience are in high importance posiƟons in
every ranking. Between the weather variables, temperature and rainfall (and wind in the third zone) are the
most influenƟal.
Different pruning levels have been tried in order to reachmore or less specific visualizaƟons. Looking in more
detail (Figure 64, 65) interesƟng similariƟes and significant differences can be seen in the split of the part
codes and failure causes as the zone changes.

• As regards the partcode splits, it must be noted that different zones have some different partcodes, so
comparison cannot be completely accurate; however, it is evident that certain codes (e.g. 8001, 8002,
8003 and many others) correspond systemaƟcally to lower values of repair Ɵme and certain codes
(e.g. 8101, 8170, 9611 etc.) correspond to longer Ɵmes. A few codes, anyway, appear in different
branches as the zone changes, less consistently;

• Failure Causes can be compared more easily and a quite systemaƟc behaviour is evident, as the splits
in Figure 64 and 65 are almost idenƟcal.

2.5.3.2.2 Response Time

As can be seen in Figures 66 and 67, the performance associated with the variable Response Time -and also
with FuncƟon RestoraƟon, as will be shown in the next pages- is not the same in different zones, and the
Zone 1 model outperforms the other two.
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Figure 62: Tree of repair Ɵme, Zone 2

Figure 63: Tree of repair Ɵme, Zone 3
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Variable Mean decrease in node impurity
Part Code 5718453
Failure Type Dutch 5385223
Geographic Code 5299649
Mechanic ID 5096325
AcƟon Carried Out 4458908
Failure Cause 2590437
Month 2380255
Rainfall 2006347
Object ID 1784495
Diagnosis Time 1587553
Past AcƟons - Normed (same priority) 1470584
Past AcƟons Difference from mean (same priority) 1469033
Object Type 1324140
LaƟtude 1321793
Past AcƟons - Difference from mean 1289806
Past AcƟons - Normed 1086578
Rainfall DuraƟon 1081368
Past AcƟons (same priority) 1023389
Temperature 982643
Past AcƟons - Normed (Zone) 903564
Dew Point 854316
Day 814062
Sunshine DuraƟon 801657
Past AcƟons (Zone) 780481
Day of the Week 752652
Failure Type 709722
Longitude 700064
Wind Speed 520322
Past Failures in the Week 318597
Failure Main Group 297220
Wind DirecƟon 283841
12046106 Past AcƟons - Difference from mean (Zone) 239033
Hour 223792
Past Failures in the Month 181707
Technical Department 110354
Year of AcƟvity 87987
Global RadiaƟon 84206
Past AcƟons 76956
Year 65719
Past Failures in Six Months 36525

Table 29: Variable importance - Zone 1
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Variable Mean decrease in node impurity
Geographic Code 2861331
Failure Type Dutch 2371546
Part Code 2273050
Mechanic ID 2106038
Failure Cause 1099114
AcƟon Carried Out 995704
Failure Type 787991
Rainfall 622828
Object ID 562957
Past AcƟons - Normed (Zone) 542999
Rainfall DuraƟon 509819
Temperature 475314
Global RadiaƟon 387264
Day of the Week 351604
Wind DirecƟon 347064
Longitude 307345
Wind Speed 303705
Sunshine DuraƟon 282612
Month 262589
Object Type 247650
Pat AcƟons (same priority) 230569
Dew Point 224770
Past AcƟons - Normed 204405
Past AcƟons - Difference from mean (same priority) 167567
Diagnosis Time 146541
Past AcƟons Difference from mean (Zone) 145010
Past AcƟons (same priority) 123313
LaƟtude 110500
Year of AcƟvity 86645
Failure Main Group 84460
Year 82124
Past AcƟons (Zone) 57979
Past Failures in the Week 47779
Technical Department 46594
Past AcƟons - Difference from mean 45710
Day 37865
Hour 28086
Past AcƟons 8374
Past Failures in the Month 604

Table 30: Variable importance - Zone 2
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Variable Mean decrease in node impurity
Geographic Code 4400421
Part Code 3764296
Failure Type Dutch 3450569
Mechanic ID 3235184
AcƟon Carried Out 2217742
Diagnosis Time 1761837
Failure Cause 1522351
Wind Speed 1192196
Rainfall 1191593
Failure Type 986948
Past AcƟons (Zone) 952128
Temperature 901352
Dew Point 781256
Longitude 779063
Day 614681
Year 583459
Object ID 570371
LaƟtude 553063
Month 538195
Past AcƟons Difference from mean (Zone) 467017
Wind DirecƟon 466126
Year of AcƟvity 444903
Past AcƟons - Normed (same priority) 421977
Object Type 417610
Past AcƟons - Difference from mean (same priority) 414417
Past AcƟons - Normed (Zone) 402325
Day of the Week 320400
Hour 311559
Global RadiaƟon 270036
Past AcƟons - Difference from mean 265273
Sunshine DuraƟon 89366
Past Failures in the Month 85373
Technical Department 79960
Past AcƟons - Normed 60507
Past Failures in Six Months 59484
Past Failures in the Week 48638
Past AcƟons 33473
Rainfall DuraƟon 16936

Table 31: Variable importance - Zone 3
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Figure 64: Tree of repair Ɵme, Zone 2 (detail)
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Figure 65: Tree of repair Ɵme, Zone 3 (detail)
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Figure 66: Cross-validated relaƟve error and size of the tree (Zone 1)

In fact, in Figure 66 a great decrease in the cross-validated relaƟve error can be seen, and overfiƫng starts
affecƟng the model only when the size exceeds the amount of 12 leaves. In Figure 67, relaƟve to Zone 3 -but
really similar to Zone 2 results- relaƟve error is instead conƟnuously increasing.
The feature ranking is similar in the three zones: the Geographic Code is one of the most important variables
and the weather features are very relevant in all the areas. Furthermore, Failure Type Dutch is in the top
posiƟons in both Zone 2 and 3, while not in the first zone.
These results differ from the Repair Time ones: Response Time is significantly affected by weather condiƟons
more than by technical details. Actually, it can be quite intuiƟve that the Ɵme needed by the mechanics to
start operaƟng on the asset from the moment in which the failure noƟficaƟon has been received depends
much more from external agents than from the characterisƟcs of the asset.
The ranking of the weather features, however, is not idenƟcal in the three zones; as for Repair Time, Zone 1
seems to be more affected from the rain and less from the wind, which plays a more important role in Zone
2 and Zone 3. Temperature, instead, appears fundamental in all the areas.
In Figure 71, a detail of the Zone 1 model shows how the variable Open Failures affects the average response
Ɵme, demonstraƟng the usefulness of this extracted feature.
It is interesƟng to note that the Open Failures split involves a subset of data where the average value of
response Ɵme is higher than in the other branch of the first split; furthermore, the final leaves generated
by this split have uƩerly unbalanced sizes, about 1 to 30 raƟo. This facts could suggest that unresolved
maintenance acƟons -and therefore the line congesƟon derived from them- tend to affect the response Ɵme
especially when it is already longer than the average and to make the difference in a parƟcular way when the
level of congesƟon is anomalous.
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Figure 67: Cross-validated relaƟve error and size of the tree (Zone 3)

Figure 68: Tree of response Ɵme, Zone 1
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Figure 69: Tree of response Ɵme, Zone 2

Figure 70: Tree of response Ɵme, Zone 3
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Variable Mean decrease in node impurity
Rainfall DuraƟon 5400471
Temperature 4825519
Geographic Code 3715352
Dew Point 3608482
Rainfall 3443582
Day of the Week 3108017
Open Failures (Zone) 2990304
Wind Speed 2778887
Day 1463593
Failure Type Dutch 1317006
Wind DirecƟon 1190420
Global RadiaƟon 1168304
LaƟtude 1010350
Hour 818811
Object ID 785418
Longitude 745151
Sunshine DuraƟon 630309
Failure Type 437907
Month 435034
Technical Department 361136
Object Type 267819
Year 33198

Table 32: Variable importance - Zone 1

Variable Mean decrease in node impurity
Geographic Code 1630080
Wind DirecƟon 1449348
Failure Type Dutch 545608
Wind Speed 533079
Temperature 366622
Sunshine DuraƟon 292439
Object ID 272044
Failure Type 232208
Month 207238
Dew Point 186096
Hour 179779
LaƟtude 147337
Open Failures (Zone) 144468
Longitude 128134
Rainfall 114565
Day of the Week 111562
Object Type 96752
Rainfall DuraƟon 87814
Global RadiaƟon 84012
Technical Department 68608
Day 32498
Year 23479

Table 33: Variable importance - Zone 2
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Variable Mean decrease in node impurity
Geographic Code 1469241
Temperature 1214444
Failure Type Dutch 1186063
Wind Speed 664149
Rainfall 590212
Longitude 409382
Sunshine DuraƟon 357500
Failure Type 296746
Rainfall DuraƟon 266996
Hour 260897
Object ID 258066
Wind DirecƟon 250876
Global RadiaƟon 240097
Dew Point 212850
Object Type 211317
LaƟtude 202691
Day 195588
Day of the Week 137054
Month 121850
Open Failures (Zone) 121564
Technical Department 59600
Year 9791

Table 34: Variable importance - Zone 3
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Figure 71: Tree of response Ɵme, Zone 1 (detail)
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2.5.3.2.3 FuncƟon RestoraƟon Time

The total Ɵme needed to complete the maintenance or repair intervenƟon, as previously menƟoned, is con-
nected with both response and repair Ɵme. So, as would be expected, results relaƟve to this variable present
various similariƟes with the previous ones.
While Zone 1 and Zone 3 have a similar distribuƟon of the cross-validated error (Figure 72), which decreases
substanƟally unƟl the size of the tree remains under about 10 leaves, in Zone 2 error presents a lower vari-
ability (Figure 73).
Unlike the previous models, the three trees referred to the funcƟon restoraƟon Ɵme have different variables
in the node at the top.
However, the pruned trees in Figure 77, 78 and 79 show how the first splits involve the same variables though
they have a different disposiƟon: Part Code, Mechanic’s ID and AcƟon Carried Out.
According to the mean decrease in node impurity, the features Mechanic’s ID and Diagnosis Time are really
relevant in all the three models, along with the features menƟoned in 2.5.3.2.1. In fact, technical details of
both the asset and the kind of intervenƟon become again more relevant than collateral condiƟons, such as
the weather ones, when the global duraƟon of the repair acƟon is considered.
Some common characterisƟcs underpin all the models here illustrated:

• Weather importance seems to vary according with the zone considered: rainfall is the most significant
condiƟon in Zone 1, while wind plays a more relevant role in Zone 3. Temperature, instead, is almost
equally important in all the areas;

• Models relaƟve to Zone 1 generally outperform the other ones in terms of cross-validated error;
• The size of the final leaves is highly unbalanced in most cases, and the trees oŌen tend to detect and

isolate some small groups of observaƟons with peculiar characterisƟcs and, usually, extreme values of
the response variable.

The use of regression trees in this chapter made it possible to explore the data in a thorough and deep
way, highlighƟng specific dependencies and peculiariƟes without losing an overall view. This would not have
been so easy with the only use of the classical staƟsƟcal methods, especially as regards the visualizaƟon’s
aspect. The role of weather condiƟons, mechanic’s experience and single failure causes or part codes have
been described both in a graphic way and in a quanƟtaƟve one; other than the points made in the previous
paragraphs, meƟculous analyses can be made also by laypeople on single branches in order to determine
exactly which characterisƟcs of the assets or of the failures are decisive in restoraƟon Ɵme variaƟons. These
analyses could be exploited to plan and manage line possessions in an informed way.

2.5.4 Conclusions and future perspecƟves
In this work, various models were built based on real-world data.
In both studies the analyses demonstrate the reliability of the achieved results.
Therefore, it is possible to draw the following consideraƟons:

• The predicƟve models developed in the first scenario can be considered saƟsfying. Random Forests
resulted a good choice and the general results achieved are very interesƟng; the trained algorithms
perform quite accurate predicƟons of Ɵme to restoraƟon on previously unseen data, both for planned
and extraordinary maintenance acƟons;

• Concerning the second scenario, the diagnosƟc models proposed are easy to interpret and immedi-
ately acƟonable. The cross-validated esƟmates of the error confirm that the diagnosƟc aim was more
appropriate than the predicƟve one, based on the available data.
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Figure 72: Cross-validated relaƟve error and size of the tree (Zone 1)

Figure 73: Cross-validated relaƟve error and size of the tree (Zone 2)

IN2D-T5.4-D-UKO-002-02 Page 107 19/11/2018



Contract No. 777596

Figure 74: Tree of restoraƟon Ɵme, Zone 1

Figure 75: Tree of restoraƟon Ɵme, Zone 2
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Variable Mean decrease in node impurity
Mechanic ID 14440222
Part Code 11223125
Geographic Code 9468236
Diagnosis Time 8713387
Failure Type Dutch 7457569
AcƟon Carried Out 5958067
Failure Cause 4867516
Rainfall DuraƟon 3951659
Dew Point 2872431
Wind DirecƟon 2711325
Longitude 2587335
Object ID 2518884
Temperature 2504470
Failure Type 2464687
LaƟtude 2361075
Past AcƟons - Normed (same priority) 1690633
Global RadiaƟon 1617133
Rainfall 1599123
Past AcƟons (Zone) 1555454
Month 1542107
Past AcƟons - Normed (Zone) 1449671
Day of the Week 1417079
Past AcƟons (same priority) 1411358
Past AcƟons - Difference from mean (same priority) 1333806
Past AcƟons - Difference from mean (Zone) 1182355
Wind Speed 1123994
Past Failures in the Week 1097194
Past Failures in the Month 1089590
Open Failures (Zone) 1056858
Past Failures in Six Months 1030395
Object Type 1024729
Day 977824
Hour 782953
Failure Main Group 608065
Sunshine RadiaƟon 589260
Year of AcƟvity 329971
Past AcƟons - Normed 308707
Past AcƟons 197615
Year 90303
Technical Department 87602
Past AcƟons - Difference from mean 10449

Table 35: Variable importance - Zone 1
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Variable Mean decrease in node impurity
Mechanic ID 5389728
Diagnosis Time 5037524
Geographic Code 4164375
Part Code 3891730
Failure Cause 2156727
Failure Type Dutch 1881605
AcƟon Carried Out 1790935
Wind Speed 1606117
Dew Point 1429770
Sunshine DuraƟon 1183283
Rainfall DuraƟon 1125203
Past AcƟons - Normed 614242
Month 575149
Past AcƟons - Difference from mean (Zone) 425690
Object ID 398168
Past AcƟons - Normed (Zone) 391617
Past AcƟons - Normed (same priority) 368056
Past AcƟons - Difference from mean 362070
Wind DirecƟon 361528
Failure Type 348569
Failure Main Group 309445
Hour 278130
Object Type 235522
Longitude 221823
Past AcƟons - Difference from mean (same priority) 194701
Rainfall 193141
LaƟtude 182003
Past Failures in the Week 167836
Year 165492
Year of AcƟvity 165492
Temperature 161978
Global RadiaƟon 144593
Past AcƟons (same priority) 137592
Past Failures in the Month 99623
Day of the Week 91957
Day 85032
Open Failures (Zone) 76867
Technical Department 73086
Past AcƟons 71976
Past Failures in Six Months 60626
Past AcƟons (Zone) 49624

Table 36: Variable importance - Zone 2
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Variable Mean decrease in node impurity
PartCode 7674926
Mechanic ID 6726293
Diagnosis Time 6361600
Failure Type Dutch 5207802
Geographic Code 4959113
AcƟon Carried Out 4356728
Failure Cause 3675377
Failure Type 1555942
Object Type 1401239
Longitude 1390062
LaƟtude 1326941
Object ID 1289646
Wind DirecƟon 1150418
Temperature 1132747
Wind Speed 1101381
Past AcƟons - Difference from mean (same priority) 1098718
Past AcƟons (Zone) 1049506
Dew Point 1016944
Hour 872887
Failure Main Group 788397
Past AcƟons - Difference from mean (Zone) 752338
Month 649657
Past AcƟons - Difference from mean 638289
Past AcƟons - Normed (Zone) 619202
Sunshine DuraƟon 504639
Past AcƟons (same priority) 361134
Year of AcƟvity 359088
Global RadiaƟon 286013
Year 281467
Rainfall 266128
Technical Department 241479
Day of the Week 225496
Rainfall DuraƟon 222142
Open Failures (Zone) 199855
Past AcƟons - Normed (same priority) 151241
Past AcƟons - Normed 122891
Past Failures in the Week 30024
Past Failures in Six Months 27471
Past AcƟons 14325
Day 10387

Table 37: Variable importance - Zone 3
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Figure 76: Tree of restoraƟon Ɵme, Zone 3

It is interesƟng to note that -maybe not so surprisingly- in both cases themost effecƟve split of the datasetwas
an area-specific one, despite the fact that Liguria and Netherlands obviously differ in dimensions, structure
etc.
In both the scenarios, the quality of the models could be significantly enhanced by the availability of beƩer
data. In RFI’s case, the dataset was quite Ɵdy, but limited in number: both the amounts of observaƟons and
features were relaƟvely small. SR data, instead, were complex and numerous, but quite noisy and, for some
of the many different failure types, few examples were provided.

2.6 Specific-Scenario 4: Switches
Because of Ɵme and resource constraints, we decided to not to develop further the Specific-Scenario 4.

2.7 Specific-Scenario 5: Train Energy ConsumpƟon
The predicƟve models of this scenario will be developed in WP6 and their quality will be assessed by WP5 in
D5.2.
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Figure 77: Tree of restoraƟon Ɵme, Zone 1 (detail)
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Figure 78: Tree of restoraƟon Ɵme, Zone 2 (detail)
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Figure 79: Tree of restoraƟon Ɵme, Zone 3 (detail)
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3 Conclusions
The general objecƟve ofWP5 is to study, design and develop data and visual analyƟcs soluƟons for knowledge
extracƟon from railway asset data. This deliverable reports to soluƟons and work-in-progress-soluƟons on
relevant railway assets whose malfuncƟon and maintenance policies have an impact on the KPIs targeted by
the SHIFT2RAIL program. This deliverable presents the soluƟons and reports on the executed work in the
scenarios that were defined in D5.1. The work reported in CS1 focuses on the visualizaƟons used at RFI and
opƟmizes and enhances them. Cross-Scenario 2 is disconƟnued because of the absence of the Marketplace
of Data. Specific soluƟons and data-driven-models are developed in Specific-Scenario 1, 2, and 3. The carried
out work prepares the final demonstrator (D5.4) which will combine the developments of CS1, SS3 and the
blockchain-technologies developed in WP4. CooperaƟon with IN2DREAMS WS1 WP6 is assured by partner
EVOLUTION ENERGIE and the coordinaƟon with other SHIFT2RAIL recipients is assured by the collaboraƟon
with IN2SMART and IN2RAIL.
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