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Executive Summary

The general objective of WP5 is to study, design and develop data analytics solutions for knowledge extraction
from railway asset data. This objective will be achieved through the following tasks:

¢ Definition of data analytics scenarios (T5.1 - D5.1);

e Development and demonstration of tools and methodologies aiming at extracting knowledge from
data analytics algorithms, and contemporarily making them interpretable in an easier way (T5.4 - D5.3
& T5.3 - D5.4);

e Study and develop the proof-of-concept of metrics and methods/tools to measure the accuracy of
analytics algorithms (T5.2 - D5.2).

This deliverable builds upon D5.1 and reports the work that has been conducted for each of the defined
scenarios. The scenarios focus on relevant railway assets whose malfunction and maintenance policies have
an impact on the KPIs targeted by the SHIFT2RAIL program. The cross-scenarios cover many aspects of the
railway ecosystem while the five specific-scenarios focus on a single particular aspect.

e Cross-Scenario 1: Visualizations in the Control Center
The work described in CS1 details optimizations and enhancements of the visualizations for various
systems at RFI. It is further described how interactive visualizations are introduced to provide additional
information to the users. The work carried out prepares the inclusion of the blockchain-technology
developed in WP4 and the data-driven-models as described SS3 for a demonstrator (D5.4);

¢ Cross-Scenario 2: Marketplace of Data and Data Monetization
CS2 is discontinued because of the absence of a Marketplace for Data which will not be developed in
WP4;

e Specific-Scenario 1: Track Circuits
Described is the visual analytics approach and the development of interpretable gray-box models to
enable predictive maintenance. The results can be exploited in IN2SMART WP8. The defined metrics
are evaluated in T5.2;

¢ Specific-Scenario 2: Train Delays and Penalties
This scenario details the development of a hybrid-model consisting of interpretable and experience-
based models that often lack accuracy, and less interpretable data-driven-models whereas the combi-
nation can mitigate the disadvantages for each type of model;

¢ Specific-Scenario 3: Restoration Time
Describes the development of a fully data-driven-model solution and the usage of diagnostic models
in combination with visualizations to extract knowledge about the functional dependencies between
input and output variables;

e Specific-Scenario 4: Switches
Discontinued because of time and resource constraints;

¢ Specific-Scenario 5: Train Energy Consumption
The work on the predictive models is conducted in WP6. Their quality will be reported in D5.2.
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Abbreviation | Description

Al Artificial Intelligence

AMS Asset Management System
CBI Computer-Based Interlocking system
CBM Condition-Based Maintenance
CS Cross-Scenario

IM Infrastructure Manager
JSON JavaScript Object Notation
KPI Key Performance Indicator
ML Machine Learning

PM Predictive Maintenance
PoC Proof of Concept

RFI Rete Ferroviaria Italiana
RTS Railway Transport System
SR Strukton Rail

SS Specific-Scenario

SVG Scalable Vector Graphics
TCS Track Circuit System

TMS Traffic Management System
TO Train Operator

UNIGE University of Genoa

UKON University of Konstanz

VA Visual Analytics

WP Work-Package

WS Work-Stream
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1 Introduction

Ultimately, the operational performance of a train system directly depends on the many individual decisions
operators make in their daily job routine. Consequently, it stands to reason to support decision makers as
optimal as possible, especially for positions where decisions of a single operator have potentially large im-
pacts on complex train schedules.

In complex systems, it is rather the rule than the exception that the information and knowledge needed to
make informed decisions is distributed over different parts of one system or even entirely different systems.
Having to put together information from heterogeneous environments is challenging and error-prone, which
in turn creates uncertainties in the operators workflow. As Ellis and Dix [26] point out, “decision making
under uncertainty can result in cognitive biases and irrational decisions”. Such effects, also as described by
Kahnemann and Egan [41], should be minimized, especially in the light of the consequences operational de-
cisions can have in TMS environments.

While it is impossible for an operator to oversee all consequences of his actions, incorporating our knowl-
edge of previous decisions and developments of operational scenarios can help structuring the information
necessary for decision making. For example, an operator could be provided with solution suggestions based
on previous decisions in similar scenarios. To use this kind of knowledge, models have to be created which
encode the records of past situations and compare these events in real-time to present ones. As well, con-
clusions provided by such models do not necessarily consist of singular solutions, but allow to choose from
options optimized for different outcomes. For example, delay management could optimize for passenger im-
pact, overall punctuality or most economic solution. Yet, regarding the responsibility resting on typical users
in their decision making, it is also important for an expert to be able to verify the reasons why a model is
suggesting a solution. Consequently, it is of importance to efficiently communicate the decision criteria to
users to build trust [39].

In this deliverable, the examples of several scenarios illustrate novel approaches to aid operators and plan-
ners in various scopes of responsibility by providing them both a comprehensive overview on a situation and
condensed information for decision making. To do so, the Visual Analytics [45] approach is employed which
aims to interactively bring together algorithmic models and visualization displays for efficient, informed de-
cision making. Before the Visual Analytics approach is introduced in Section 1.2, Section 1.1 provides an
overview on the challenges in the creation of models for knowledge representation. Following, sections 2.1
to 2.7 illustrate challenges, progress and intended solutions for the scenarios defined in D5.1.

The scenarios introduced in sections 2.3, 2.4 and 2.5 detail the fundamental models for the status identifica-
tion and extraction from the Track Circuit System, the role and analysis of train delays and penalties and the
estimation of recovery time in case of failures. The results of these scenarios are the fundamental building
blocks for the visualizations in the control center presented to the operators. Section 2.1 covers the Visual
Analytics approach in the control center, which provides visual and interactive access to the knowledge ex-
tracted in the aforementioned scenarios.
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1.1 Rule-Based Methods for Knowledge Extraction

As already described in D5.1, sometimes, even if a data analytics model performs well, having solely a model
able to make predictions is not enough. In these cases more than the answer itself it is important why the
model made a certain decision since a single metric, such as classification accuracy, is an incomplete descrip-
tion of most real-world tasks [23].

In predictive modeling, you have to make a trade-off: do we simply want to know what is predicted (i.e. the
probability that a switch will brake or a score for the effectiveness of some train dispatching solution) or do we
want to know why that prediction was made, possibly paying for the interpretability with a drop in accuracy?
In some cases we do not care why a decision was made, only the assurance that the predictive performance
was good enough but in other cases, knowing why can help understand more about the problem, the data
and why a model might fail. Some models might not need explanations, because they are used in a low
risk environment, meaning a mistake has no severe consequences, (e.g. a train prediction system) or the
method has already been extensively studied and evaluated. The necessity for interpretability comes from an
incompleteness in the problem formalization [23], meaning that for certain problems or tasks it is not enough
to get the answer (the what). The model also has to give an explanation about how it came to the answer
(the why), because a correct prediction only partially solves the original problem. The following reasons drive
the demand for interpretability and explanations [23, 58]:

e Human curiosity and learning. Humans have a mental model of their environment, which gets updated
when something unexpected happens;

Find meaning in the world. We want to reconcile contradictions or inconsistencies between elements
of our knowledge structures;

Data analytics models are taking over real world tasks, that demand safety measurements and testing;
By default most data analytics models pick up biases from the training data;

The process of integrating machines and algorithms into our daily lives demands interpretability to
increase social acceptance;

Explanations are used to manage social interactions;

¢ Only with interpretability data analytics algorithms can be debugged and audited.

If you can ensure that the data analytics model can explain decisions, the following traits can also be checked
more easily [12, 22-25, 37, 64]:

e Fairness: Making sure the predictions are unbiased and not discriminating against protected groups
(implicit or explicit). An interpretable model can tell why it decided that a certain person is not worthy
of a credit and for a human it becomes easier to judge if the decision was based on a learned demo-
graphic (e.g. racial) bias;

e Privacy: Ensuring that sensitive information in the data is protected;

¢ Reliability or Robustness: Test that small changes in the input don’t lead to big changes in the predic-
tion;

e Causality: Check if only causal relationships are picked up, meaning a predicted change in a decision
due to arbitrary changes in the input values is also happening in reality;

e Trust: It is easier for humans to trust a system that explains its decisions compared to a black box.

The most straightforward way to get to interpretable data analytics is to use only a subset of algorithms that
create interpretable models [84]. Very common model types of this group of interpretable models are:

e Linear models: linear models have been used since a long time by statisticians, computer scientists,
and other people tackling quantitative problems. Linear models learn linear (and therefore monotonic)
relationships between the features and the target. The linearity of the learned relationship makes the
interpretation easy [35];
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e Decision trees: tree-based models split the data according to certain cutoff values in the features mul-
tiple times. Splitting means that different subsets of the dataset are created, where each instance
belongs to one subset. The final subsets are called terminal or leaf nodes and the intermediate subsets
are called internal nodes or split nodes. For predicting the outcome in each leaf node, a simple model
is fitted with the instances in these subsets. Trees can be used for classification and regression [35];

¢ Rule-based models: for example, the RuleFit algorithm [29] fits sparse linear models which include
automatically detected interaction effects in the form of binary decision rules.

1.1.1 Linear Models

Linear models [10, 35, 59, 71, 78] learn linear (and therefore monotonic) relationships between the features
and the target. The linearity of the learned relationship makes the interpretation easy. Moreover their lin-
earity makes the estimation procedure straightforward and, most importantly, these linear equations have
an easy to understand interpretation on a modular level (i.e. the weights). That is one of the main reasons
why the linear model and all similar models are so widespread in academic fields like medicine, sociology,
psychology, and many more quantitative research fields. Linear models also come with some assumptions
that make them easy to use and interpret but which are often not satisfied in reality. The assumptions are:
Linearity, normality, homoscedasticity, independence, fixed features, and absence of multicollinearity.

The interpretation of a weight in the linear model depends on the type of the corresponding feature:

e Numerical feature: for anincrease of the numerical feature by one unit, the estimated outcome changes
by the corresponding weight for that feature;

e Binary feature: a feature, that for each instance takes one of two possible values. One of the val-
ues counts as the reference level. A change of the feature from the reference level to the other level
changes the estimated outcome by the corresponding weight for that feature;

e Categorical feature with multiple levels: in this case the problem is overparameterized, for this reason
the categorical feature must be coded with the one-hot-encoding schema and, in this way, we can
exploit again the approach described for the binary features.

Linear models have obviously also disadvantages. Linear models can only represent linear relationships. Each
non-linearity or interaction has to be hand-crafted and explicitly given to the model as an input feature.
Linear models are also often not that good regarding predictive performance, because the relationships that
can be learned are so restricted and usually oversimplifies how complex reality is. The interpretation of a
weight can be unintuitive because it depends on all other features. A feature with high positive correlation
with the outcome and another feature might get a negative weight in the linear model, because, given the
other correlated feature, it is negatively correlated with in the high-dimensional space. Completely correlated
features make it even impossible to find a unique solution for the linear equation.

Linear models have been extensively studied and extended to fix some of the shortcomings.

e Lasso is a method to pressure weights of irrelevant features to get an estimate of zero. Having unim-
portant features weighted by zero is useful, because having less terms to interpret makes the model
more interpretable;

¢ Generalised Linear Models allow the target outcome to have different distributions. The target out-
come s no longer required to be normally distributed given the features, but Generalised Linear Models
allow you to model for example Poisson distributed count variables. Logistic regression, is a Gener-
alised Linear Model for categorical outcomes;

¢ Generalised additive models are Generalised Linear Models with the additional ability to allow non-
linear relationships with features, while maintaining the linear equation structure.
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It is possible to apply all sorts of tricks to go around some of the problems related to linear models:

¢ Addinginteractions: itis possible to define interactions between features and add them as new features
before estimating the linear model. The RuleFit algorithm can add interactions automatically;

¢ Adding non-linear terms like polynomials to allow non-linear relationships with features;

e Stratifying data by feature and fitting linear models on subsets.

Finally in reality we might not have just a handful of features, but hundreds or thousands and, in this case
interpretability goes downriver. There are also situations with more features than instances and in this case it
is not possible to fit a standard linear model at all. The most automatic and convenient way to introduce spar-
sity is to use the Lasso method. Lasso stands for Least Absolute Shrinkage and Selection Operator and when
added to a linear model, it performs feature selection and regularisation of the selected feature weights.
Lasso is not the only solution, a big spectrum of methods can be used to reduce the number of featuresin a
linear model.

Methods that include a pre-processing step:

¢ Hand selected features: it is possible to use expert knowledge to choose and discard some features.
The big drawback is, that it can’t be automated and you might not be an expert;

e Use some measures to pre-select features: an example is the correlation coefficient. You only take
features into account that exceed some chosen threshold of correlation between the feature and the
target. Disadvantage is that it only looks at the features one at a time. Some features might only show
correlation after the linear model has accounted for some other features. Those you will miss with this
approach.

Step-wise procedures:

e Forward selection: fit the linear model with one feature. Do that with each feature. Choose the model
that works best. Now again, for the remaining features, fit different versions of your model by adding
each feature to your chosen model. Pick the one that performs best. Continue until some criterium is
reached, like the maximum number of features in the model;

e Backward selection: same as forward selection, but instead of adding features, start with the model
that includes all features and try out which feature you have to remove to get the highest performance
increase. Repeat until some stopping criterium is reached.

In the case when we want to apply linear models to classification problems (e.g. binary {0,1} classification
problems) using, as a model, a simple linear combination some problems arise.

¢ Alinear model does not output probabilities, but it treats the classes as numbers (0 and 1) and fits the
best linear model (if you have one feature, it’s a line) that minimises the distances between the points
and the model. So it simply interpolates between the points, but there is no meaning in it and you
cannot interpret it as probabilities;

¢ Also a linear model will extrapolate the features and give you values below zero and above one, which
are not meaningful and should tell you that there might be a more clever approach to classification;

¢ Since the predicted outcome is not a probability but some linear interpolation between points there is
no meaningful threshold at which you can distinguish one class from the other;

¢ Linear models don’t extend to classification problems with multiple classes.

A solution for classification is logistic models. Instead of fitting a straight line or hyperplane, the logistic model
uses a non-linear function, the logistic function to squeeze the output of a linear equation between 0 and 1.
The interpretation of the logistic models weights differs from the linear model case, because in logistic models
the outcome is a probability between 0 and 1, and the weights don’t affect the probability linearly, but are
squeezed through the logistic function.
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Here are the interpretations for the logistic model with different feature types:

¢ Numerical feature: for an increase of one unit of the feature the estimated odds change (multiplica-
tively) by a factor proportional to the exponential function of the corresponding weights;

¢ Binary categorical feature: one of the two values of the feature is the reference level. A change of the
feature from the reference level to the other level changes the estimated odds (multiplicatively) by a
factor proportional to the exponential function of its corresponding weights;

e Categorical feature with many levels: again, as for linear models, the feature must be coded in multiple
binary features.

1.1.2 Decision Trees

Linear models and logistic models fail in situations where the relationship between features and outcome is
non-linear or where the features are interacting with each other. Decision trees can fill this gap [48, 61, 66, 67,
79, 86, 89]. Tree-based models split the data according to certain cutoff values in the features multiple times.
Splitting means that different subsets of the dataset are created, where each instance belongs to one subset.
The final subsets are called terminal or leaf nodes and the intermediate subsets are called internal nodes or
split nodes. For predicting the outcome in each leaf node, a simple model is fitted with the instances in this
subset (for example the subsets average target outcome). Trees can be used for classification and regression.
There are a lot of tree algorithms with different approaches for how to grow a tree. They differ in the possible
structure of the tree (e.g. number of splits per node), criteria for how to find the splits, when to stop splitting
and how to estimate the simple models within the leaf nodes. Classification and regression trees is one of
the more popular algorithms for tree induction.

The interpretation of decision trees is simple: starting from the root node you go to the next nodes and
the edges tell you which subsets you are looking at. Once you reach the leaf node, the node tells you the
predicted outcome. All the edges are connected by a logic AND.

The tree structure is perfectly suited to cover interactions between features in the data. The data also ends
up in distinct groups, which are often easier to grasp than points on a hyperplane like in linear model. The
interpretation is arguably pretty straightforward. The tree structure also has a natural visualization, with its
nodes and edges. Trees create good explanations as defined here. The tree structure automatically invites
to think about predicted values for single instances in a counterfactual way: if a feature would have been
bigger / smaller than the split point, the prediction would have been different? The created explanations
are contrastive, because you can always compare the prediction of an instance with relevant (as defined by
the tree) what-if-scenarios, which are simply the other leaf nodes of the tree. If the tree is short, like one to
three splits deep, the resulting explanations are selective. A tree with a depth of three needs a maximum of
three features and split points to create the explanation for the prediction of an instance. The truthfulness of
the prediction depends on the predictive performance of the tree. The explanations for short trees are very
simple and general, because for each split, the instance either falls into one or the other leave and binary
decisions are easy to understand. There is no need to transform features. In linear models it is sometimes
necessary to take the logarithm of a feature. A decision tree can handle a feature regardless of monotonic
transformations.

Handling of linear relationships, that’s what trees cannot do. Any linear relationship between an input feature
and the outcome has to be approximated by hard splits, which produces a step function. This is not efficient.
This goes hand in hand with lack of smoothness. Slight changes in the input feature can have a big impact on
the predicted outcome, which might not be desirable.
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Trees are also quite unstable, so a few changes in the training dataset might create a completely different
tree. That’s because each split depends on the parent split. And if a different feature gets selected as the
first split feature, the whole tree structure will change. It does not generate confidence in the model if the
structure flips so easily.

1.1.3 Rule-Based Models

A decision rule is a simple IF-THEN statement consisting of a condition and a prediction. A single decision rule
or a combination of several rules can be used to make predictions [11, 17, 29, 30, 49, 88].

Decision rules follow a general structure: IF the condition is true THEN make a particular prediction. Decision
rules are probably the most interpretable prediction models. Their IF-THEN structure semantically resembles
natural language and the way we think, provided that the condition is built from intelligible features, the
length of the condition is short (number of feature=value pairs combined with an AND) and there are not
too many rules. In programming it’s very natural to write IF-THEN rules. New in machine learning is that the
decision rules are learned through an algorithm.

A decision rule uses at least one feature=value statement in the condition, with no upper limit on how many
more can be added with an AND. An exception is the default rule that has no explicit IF-part and that applies
when no other rule applies, but more will be detailed later.

The usefulness of a decision rule is usually summarized in two

e Support of a rule: the percentage of instances to which the condition of a rule applies is called the
support;

e Accuracy of a rule: the accuracy of a rule is a measure of how accurate the rule is in predicting the
correct class for the instances to which the condition of the rule applies.

Usually there is a trade-off between accuracy and support: by adding more features in the condition, we can
achieve higher accuracy, but lose support.

To create a good classifier for predicting the value of a house you might need to learn not only one rule, but
maybe 10 or 20. Then things can get more complicated:

¢ Rules can overlap: what if | want to predict the value of a house and two or more rules apply and they
give me contradictory predictions?;
e No rule applies: what if | want to predict the value of a house and none of the rules apply?

There are two main strategies for dealing with multiple rules: decision lists (ordered) and decision sets (un-
ordered). Both strategies imply different solutions to the problem of overlapping rules.

¢ A decision list introduces an order to the decision rules. If the condition of the first rule is true for an
instance, we use the prediction of the first rule. If not, we go to the next rule and check if it is true
and so on. Decision lists are one-sided decision trees, where the first rule is the root node and with
each rule, the tree grows in one direction. Decision lists solve the problem of overlapping rules by only
returning the prediction of the first rule in the list that applies;

¢ A decision set resembles a democracy of the rules, except that some rules might have a higher voting
power. In a set, the rules are either mutually exclusive, or there is a strategy for resolving conflicts, such
as majority voting, which may be weighted by the individual rule accuracies or other quality measures.
Interpretability suffers potentially when several rules apply.

Both decision lists and sets can suffer from the problem that no rule applies to an instance. This can be
resolved by introducing a default rule. The default rule is the rule that applies when no other rule applies.
The prediction of the default rule is often the most frequent class of the data points which are not covered
by other rules. If a set or list of rules covers the entire feature space, we call it exhaustive.
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By adding a default rule, a set or list automatically becomes exhaustive.

There are many ways to learn rules from data and this document is far from covering them all. The algorithms
are chosen to cover a wide range of general ideas for learning rules, so all three of them represent very
different approaches.

OneR learns rules from a single feature. OneR is characterized by its simplicity, interpretability and its
use as a benchmark;

Sequential covering is a general procedure that iteratively learns rules and removes the data points
that are covered by the new rule. This procedure is used by many rule learning algorithms;

Bayesian Rule Lists combine pre-mined frequent patterns into a decision list using Bayesian statistics.
Using pre-mined patterns is a common approach used by many rule learning algorithms.

There are many benefits of IF-THEN rules in general.

IF-THEN rules are easy to interpret. They are probably the most interpretable of the interpretable
models. This statement only applies if the number of rules is small, the conditions of the rules are
short and if the rules are organised in a decision list or a non-overlapping decision set;

Decision rules can be as expressive as decision trees, while being more compact. Decision tree often
also suffer from replicated sub-trees, that is, when the splits following a left and a right child node have
the same structure;

The prediction with IF-THEN rules is fast, since only a few binary statements need to be checked to
determine which rules apply;

Decision rules are robust against monotonous transformations of the input features, because only the
threshold in the conditions changes. They are also robust against outliers, since it only matters if a
condition applies or not;

IF-THEN rules usually generate sparse models, which means that not many features are included. They
select only the relevant features for the model. For example, a linear model assigns a weight to every
input feature by default. Features that are irrelevant can simply be ignored by IF-THEN rules;

Simple rules like from OneR can be used as baseline for more complex algorithms.

Nevertheless, there are also downsides in IF-THEN rules in general.

The research and literature for IF-THEN rules focuses on classification and almost completely neglects
regression. While you can always divide a continuous target into intervals and turn it into a classification
problem, you always lose information. In general, approaches are more attractive if they can be used
for both regression and classification;

Often the features also have to be categorical. That means numeric features must be binned, if you
want to use them. There are many ways to cut a continuous feature into intervals, but this is not trivial
and comes with many questions without clear answers. How many intervals should the feature be
divided into? What’s the splitting criteria: fixed interval lengths, quantiles or something else? Dealing
with binning continuous features is a non-trivial issue that is often neglected and people just use the
next best method (like | did in the examples);

Many of the older rule-learning algorithms are prone to overfitting. The algorithms presented here all
have at least some safeguards to prevent overfitting: OneR is limited because it can only use one feature
(only problematic if the feature has too many levels or if there are many features, which equates to the
multiple testing problem), RIPPER does pruning and Bayesian Rule Lists impose a prior distribution on
the decision lists;

IN2D-T5.4-D-UKO-002-02 Page 15 19/11/2018



POREAMS G~ [

Contract No. 777596

e Decision rules are bad in describing linear relationships between features and output. That’s a prob-
lem they share with the decision trees. Decision trees and rules can only produce step-like prediction
functions, where changes in the prediction are always jumps and never smooth curves. This is related
to the issue that the inputs have to be categorical (in decision trees, they are implicitly categorized by
splitting them).

An important algorithms for rule fitting purposes is the RuleFit algorithm [29]. The RuleFit algorithm fits
sparse linear models which include automatically detected interaction effects in the form of binary decision
rules.

The standard linear model doesn’t account for interactions between the features so it is convenient to have
a model that is as simple and interpretable as linear models, but that also integrates feature interactions.
RuleFit addresses this issue and fits a sparse linear model with the original features and also a set of new
features which are decision rules. These new features capture interactions between the original features.
RuleFit generates these features automatically from decision trees. Each path through a tree can be turned
into a decision rule by combining the split decisions to a rule.

These are trees that are trained to predict the outcome of interest, so that the splits are meaningful for the
task at hand and not arbitrary. Any algorithm that creates a lot of trees can be used for RuleFit, like a Random
Forest [14] for example. Each tree is disassembled into decision rules, which are used as additional features
in a linear Lasso model.

RuleFit also comes with a feature importance measurement, which helps to identify linear terms and rules
that are important for the prediction. The feature importance is calculated from the weights of the regression
model. The importance measure can be aggregated for the original features (which appear once untrans-
formed and possibly in many decision rules).

RuleFit also introduces partial dependence plots to plot the average change of the prediction by changing
one feature. The partial dependence plot is a model-agnostic method, which can be used with any model,
and it has its own part in the book.

The question that raises now is what are the advantages and disadvantages of RuleFit and how it is possible
to interpret it?

The interpretation is analogue to linear models.

The advantages are:

¢ RuleFit adds feature interactions automatically to linear models. Therefore it solves the problem of
linear models that you have to add interaction terms manually and it helps a bit with the issue of
modeling non-linear relationships;

¢ RuleFit can handle both classification and regression tasks;

e The created rules are easy to interpret, because they are binary decision rules. Either the rule applies
to an instance or not. Good interpretability is only guaranteed as long as the number of conditions
within a rule is not to big. A rule with 1 to 3 conditions seems reasonable to me. This translates into a
maximum depth of 3 for the trees in the tree ensemble;

e Even if there are many rules in the model, they do not apply to each instance, so for one instance only
a handful of rules are important (non-zero weights). This improves local interpretability;

e The RuleFit proposes a bunch of useful diagnostic tools. These tools are model-agnostic, that’s why
you will find them in the model-agnostic section: feature importance, partial dependence plots and
feature interactions.

IN2D-T5.4-D-UKO-002-02 Page 16 19/11/2018



PDREAMS G~ [

Contract No. 777596

While the disadvantages are:

e Sometimes RuleFit creates many rules which get a non-zero weight in the Lasso model. The inter-
pretability degrades with higher number of features in the model. A promising solution is to force
feature effects to be monotonic, meaning that an increase in a feature has to result in an increase of
the predicted outcome;

¢ An anecdotal drawback: the papers claim good performance of RuleFit - often close to the predictive
performance of Random Forests! - yet in the few cases where | personally tried it, the performance
was disappointing;

¢ The end product of the RuleFit procedure is a linear model with additional fancy features (the decision
rules). But since it is a linear model, the weight interpretation is still unintuitive.

1.2 Visual Analytics Methods for Knowledge Extraction

The challenges in the IN2DREAMS project comprise a variety of tasks substantially differing in nature: Pro-
cessing and presenting, analysis and decision making, simulation and interpolation are very different duties
whose integration cannot be achieved with conventional solutions. In addition, extracting relevant and mean-
ingful information from heterogeneous data sources is notoriously complex and cumbersome.

Researchers have been trying to solve these problems through either automatic data analysis or interactive
visualization approaches. However, only the combination of both approaches allows to leverage both the
computational power of modern algorithms and machines as well as a user’s experience and unmatched
ability to perceive and interpret patterns.

Visual Analytics (VA) is an interdisciplinary approach towards complex data analysis scenarios based on this
combination of man and machine. VA “combines automated analysis techniques with interactive visualiza-
tions for an effective understanding, reasoning and decision making on the basis of very large and complex
datasets”, a definition given by Keim et al. as summary of the VisMaster EU research project [45]. Besides
direct knowledge generation, following Visual Analytics principles also fosters a user’s constructive reflection
and correction of conducted analyses, resulting in improvements for processes and models, and ultimately,
of decisions taken and knowledge generated by the users.

VA combines multiple research areas and subjects including data management and analysis, spatio-temporal
data processing, statistics, human-computer-interaction and visualization [46]. It is intended to allow to de-
rive insights from large, in-homogeneous and ambiguous datasets and enables both to confirm expected
results as well as finding unexpected coherence. Users can quickly come to comprehensible, verifiable re-
sults and are able to communicate their findings and derived consequences for action efficiently. The Visual
Analytics process has been described and modeled extensively. A refined view is provided by Sacha et al.[73]
with the introduction of the Knowledge Generation Model. This model for VA defines and relates human and
machine concepts embedded in a three-loop framework [73]. The model is shown in Figure 1 and consists
of the VA process model on the left hand side and is related to human knowledge generation process on the
right hand side. The model clearly conveys that lower-level processes, which are part of the exploration loop,
are guided by higher-level analytic activities, which are part of the verification and knowledge generation
loops.

The application of VA principles for knowledge extraction to specific scenarios is a process which can not be
generalized, but that is dependent on the domain problem. Yet, VA workflows follow general rules which
can be implemented for any data-analytical model creation process as applied in the train scheduling models
applied in Cross-Scenario 1 in Section 2.1, for example as provided by Sacha et al. [72]. To incorporate expert
knowledge and to explore parameter spaces, already at this point dedicated VA solutions should be deployed.
Figure 2 illustrates the complex steps necessary for the creation of valid models with realistic prediction or
classification results.
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Figure 1: The Knowledge Generation Model for Visual Analytics. It describes the relation between the
algorithmic processing of data and human data exploration and analysis through interactive visualization
approaches. In combination, an expert goes through several loops to arrive at a conclusion.

Besides the model creation process itself, models already deployed in applications also have to adapt to
changing situations and regimes. In other words, the models have to be able to learn from the decisions an
operator makes, and, through active learning processes [77], incorporate the same into the digital knowledge
representation. Consequently, the wealth of available sensor information and predictions generated by the
models applied in the various scenarios can be employed to create a holistic view on a train system, merging
information usually separated in different systems (e.g. maintenance, scheduling, delay management and
ticket sales).

The integration of the collected data into models through interactive machine learning entails the adaptation
of these models to process spatially and temporally changing data sources. Thus, changing spatial and tem-
poral uncertainties have to be considered and adaptive interpolation methods implemented for the whole
prediction process. Due to these circumstances, the development of suitable, progressive Visual Analytics
systems as introduced by Stolperer et al. [81] is necessary to ensure the understanding of the whole pro-
cess from data cleaning over model building to validation tasks by the experts. Progressive VA approaches
enable analysts to intervene in the model learning process. By inspecting partial results directly when avail-
able, experts can influence the modelling process and put emphasis on interesting subspaces based on their
expertise and domain knowledge. This way, the ML process can be steered early on and computationally
costly, but ineffective parts of the decision space can potentially be avoided. This process heavily relies on
the visualization of intermediary results and the interaction with the same, and consequently is very much
suited for the application of VA approaches.

2 Achievements for WP5 Scenarios

WPS5 targets many systems and domain-specific, real-world problems of the operators and asset managers
working at RFI. As in D5.1 “Data Analytics Scenarios”, we divide this into 7 different scenarios whereas the
Cross-Scenarios (1, 2) target multiple systems at once and the Specific-Scenarios (1-5) seek solutions to spe-
cific problems. However, the final demonstrator (D5.4) will merge the solutions of Cross-Scenario 1, Specific-
Scenario 3, as well as the solutions in blockchain technology of Work-Package 4 (WP4). In the following,
we detail the problems and requirements for each scenario, report on our progress and achievements, and
discuss the findings and solutions.
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Figure 2: The ontology for VA-assisted machine learning. The major steps are Examining/Preparing Data
(G1), Examining and Understanding the machine learning model (G2), feature and parameter analysis (G3),
the learning process (G4), quality and result analysis (G5) and comparative analysis (G6).
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Figure 3: Cross-Scenario 1: The working station of one operator. In this picture the systems of Task 1 (lower
four monitors) and 3 (upper five monitors) are being shown.

2.1 Cross-Scenario 1: Visualizations in Control Center

Cross-Scenario 1 (CS1) provides visualization techniques for the control room. More specifically, this involves
the Traffic Management System (TMS, Figure 3) and the Asset Management System (AMS, Figure 4).

The goal is to improve the existing systems and enhance them with state-of-the-art visualization and visual an-
alytics (VA) techniques. Especially the VA-part prepares to include the models generated in Specific-Scenario
3 (Section 2.3) in combination with the blockchain technologies developed in Work-Package 4 (WP4). This will
provide the user with the ability to reason about the input of the models, their output and the model itself
enabling her/him to receive a good understanding about the reasoning of a prediction model (Explainable-
Al) as well as the impact of the outcomes. In general, this shall enable the operators and managers to gain
a better overview of the systems as well as understand proposed resolutions and automatic predictions bet-
ter. This also involves past decisions and available uncertainties. CS1 targets different systems, we therefore
divide this scenario into three tasks:

1. Decision Support System for Rail-Conflict Resolution
2. Alert Management and Prioritization System for AMS

3. Improving the TMS and Directing the Awareness of the Operator

Each system respective to its task supports the user in various domain-tasks. Therefore, each of the tasks
are developed and enhanced separately. However, the final PoC will include the models (Specific-Scenario
3, 2.3) and the blockchain-technologies (WP4) in more than one system. The integration will vary on the
users necessities. For all tasks we follow the Design-Study Methodology of Sedimair et al. [76]. We therefore
report our progress in 5 Phases which describe essential changes in the design and features:

Phase 1 State-of-the-Art, Requirement Specification and Vectorization
Phase 2 Adding Interactions and First Improvements

Phase 3 Datafication

Phase 4 Including Machine-Learning-Models

Phase 5 Finalization of PoC

Each of the phases includes a review-cycle with the end-users from RFI. Their feedback is being evaluated
and included in the next phase, respectively.
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Figure 4: Cross-Scenario 1: Parts of the working station of an asset manager. The lower left monitor shows
an overview of an area displaying alarms generated at various train-stations. The remaining three monitors
represent filtered lists of alarms for critical systems. Task 2 targets the topological overview system (lower
left).
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Phase 1 included three visits at different control-centers of RFI (Milan, Florence & Genoa). The purpose of
these visits incorporates demonstrations of the systems, interviews with different operators to understand
their tasks and domain-specific problems as well as a first requirement analysis and the features and improve-
ments the operators wish for. From the pictures taken, we selected typical representatives for each system
and vectorized these photos using Scalable Vector Graphics (SVG) [6]. SVG allows a seamless rendering on
different monitors and enables us to present our current states on a website providing RFl an easy access to
the visualizations. Feedback can then be received using video-calls.

In Phase 2, we added interaction possibilities and first improvements to our visualizations. This is mainly done
using JavaScript with the D3-library [4]. The overall framework architecture is powered by Angular [2] which
supports a development environment, stateful pages and provides many utilities.

Phase 3 describes the datafication. This enables us to assemble the interactive system with real data provided
by RFI. Furthermore, it allows additional interactions that require re-rendering of the visualization. The infor-
mation can be recomputed from the data and be plotted. Aside from this, feedback from RFl is implemented
which was obtained during a feedback session at the end of Phase 2.

At the time of writing, we are currently in the beginning of Phase 4. The kick-off for this phase dates on 2018-
09-27 at the 5th Work-Stream 2 (WS2) meeting held in Konstanz. At the same event, another feedback-session
was conducted with RFI. This feedback is currently being evaluated and implemented as part of Phase 4.
Phase 5 will cover the finalization of the PoC (D5.4) and will again implement detailed feedback from RFI.
Furthermore, the different systems of each task will be interconnected. This linking-and-brushing [44] will
allow the user to seamlessly switch between the visualization systems and keeping track of the context in
multi-screen environments.

In the following, we report on the achievements and progress of the systems for each task in detail.

2.1.1 Task 1 - Decision Support System for Rail-Conflict Resolution

The purpose of this system is to give the operator a temporal overview of the train-schedule within a specific
region she/he controls. The future train-schedule is predicted with a rule-based system based on the fix,
programmed schedule of the trains.

2.1.1.1 Phasel

Figure 5 shows the train schedule system of a specific region. The x-axis represents the time. The y-axis shows
the different stations. The colored lines represent trains based on a schedule or real-data. Green are person-
trains, blue are freight-trains, and red represent single locomotives. Everything right of the yellow bar shows
future trains and there schedule according to a rule-based system. The yellow crosses (Figure 5a) represent
conflicts. For a conflict the operator may decide which of the two trains can go first. The underlying rule-
based system tries to resolve the conflict automatically. The operators stated that they typically wait with the
resolution of a conflict if it is 20 or less minutes into the future. Otherwise the conflict may disappear due to
false predictions of the system. Furthermore, the users state that the resolution of conflicts is typically based
on their experience which also already includes changing an automatically resolved conflict by the system.
The experienced is gained through the daily routine and the daily schedules. Most of the conflicts appear at
the same time and with the same trains. This is due to daily delays in peak-commuting times or other periodic
events. The users complain that the current system is not able to present more sophisticated resolutions as
well as showing the impact of a resolution. Optimized models (Specific-Scenario 2, Section 2.4) output global
metrics such as train delays or costs. The operator should be able to see how these global metrics change
based on the decision and how the decision impacts the predicted schedule.
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(a) The original photo. (b) The vectorized image.

Figure 5: Cross-Scenario 1, Task 1, Phase 1: The x-axis represents the time. The y-axis shows the different
stations. The colored lines represent trains based on a schedule or real-data. Green are person-trains, blue
are freight-trains, and red represent single locomotives. Everything right of the yellow bar shows future
trains and their schedule according to a rule-based system. The yellow crosses (only left image) represent
conflicts.

The vectorized image (Figure5b) copies the information showed in the photo.

2.1.1.2 Phase?2

(a) The lines are interpolated and are outlined with a black, thin (b) A new overlay-visualization is prepared to display the global
border to improve their traceability. metrics of prediction models.

Figure 6: Cross-Scenario 1, Task 1, Phase 2

Phase 2 introduces an interpolation of the lines with the goal to introduce their traceability (Figure 6a). This
is especially important when multiple trains have a temporal overlap within one station. To underline this,
the lines are plotted with an additional black, thin border which further shows when one line branches off to
the next station. The user can also hover the lines to highlight them whereas the opacity for the rest of the
lines is reduced. Figure 6b shows an overlay which prepares the inclusion of the predictions by the models
generated in Specific-Scenario 2 (Section 2.4). The current state-of-the-art system merely lets the user pick
one train which is allowed to go first. The selection may be pre-selected by the rule-based system however
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without an explanation why this automated decision was made. The prepared overlay allows the inclusion
of global metrics such as train delays or costs. Furthermore, the user will be able to see how the decision
impacts the schedule which is displayed in the background. This is important for the operator as specific
changes in the schedule may have a higher impact on the decision than the global metrics.

A video-conference call with RFI was conducted in the end of this phase. RFl agrees to the changes made
and that the traceability has been improved. RFI wishes for additional information within this visualization:
besides the stations the operators should also know which platform is occupied by a specific train. This allows
a better scheduling of the trains.

2.1.1.3 Phase3

(a) The interpolation was improved to better represent the tem- (b) When selecting the stations, additional information is pro-
poral aspect. An additional reference time-line (blue) adjusts to vided by displaying the platforms and the respective trains. The
the user’s cursor providing a reference of several trains at the lines are animated allowing to trace this additional information
same time and allows their comparison. and compare it to the more compact representation.

Figure 7: Cross-Scenario 1, Task 1, Phase 3

In Phase 3 we created a data files that represent the previous train schedule. The data is serialized in a JSON-
format. This step allows us to add further interactions such as panning and zooming the visualization. Each of
these interactions causes a replotting of the data, this information must therefore be data-driven and cannot
origin from a static image. Also, this allows us to simply modify scenarios or representing a different region.
We further improved the interpolation of the lines to improve their accuracy with respect to the temporal-
dimension.

In this version, the curves in the interpolation are more narrow and do not cause a major part of the line to
be bent.

Finally, in this phase we introduce the interactive plotting of additional information in response to the feed-
back gained after Phase 2. Visualizing all platforms at the same time causes the visualization to be cluttered.
Therefore, we decide to show this information only when the user interacts with the system. Selecting the
station lets the platforms of a station appear. One of the platforms overlays the horizontal line that is shown
in the static mode. All platforms are labeled (e.g., binario 1). The interaction further triggers an animation
that moves the train-lines onto the respective platform. This animation supports the traceability and allows
the user to better remember which train occupies which platform when the selection is dismissed. Unused
platforms appear in a darker color to easily let the user spot opportunities for rescheduling trains onto other
platforms.
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2.1.1.4 Phase4

Although the main task of the final PoC targets the restoration time, we aim to also include this information in
this interactive visualization. The operator will likely receive limited information only necessary to her/him.
At least, the information will contain the restoration time with an uncertainty or time window. Further details
may be provided on demand.

2.1.2 Task 2 - Alert Management and Prioritization System for AMS

The user of this system, called asset manager, is required to oversee a large region of stations and rail-
network, track alarms generated by various systems within these stations and is further required to schedule
maintenance and repair teams. We specifically focus on the overview visualization (Figure 4, lower left mon-
itor).

2.1.2.1 Phasel

7/01118 15:07:16 5-QUIRIC

Ti/o1/16 14:49:26 5-OUIRICY

(a) The original photo. (b) The vectorized image.

Figure 8: Cross-Scenario 1, Task 2, Phase 1

A through demonstration and interviews with asset managers were conducted in a visit at RFl’s premises in
Genoa. The used system was developed about 18 years ago and requires specific hard and software to be
operated.

We observed that the system is rather unresponsive as each interaction causes the system to freeze for 1-
2 seconds until the system responds. The overview screen is highly distractive and cluttered. The colored
blocks represent train stations or logically important points within the rail-network. Their color represents
a state that indicates the alert level. The system collects many alarms, more specifically around 15.000 for
each day. The alarms belong to a specific asset or system. Logically, these systems can be modeled in a
hierarchy, e.g., network; switch; asset; network-adapter of the asset. However, in the current system these
hierarchies are not displayed or modeled. Additionally, there is no prioritization of alarms. An alarm of a
failing ticket-machine triggers the same alert as a failing railroad switch. A work around is visible in Figure 4.
Besides the overview visualization there are three monitors showing lists of alarms. These lists have a filter
applied to a specific set of assets or alarms. These lists then have to be observed and when a new alarm
appears an immediate reaction is required. The overview-screen, however, is not suitable to distinguish dif-
ferent priorities of systems or alarms. Moreover, each alarm should be acknowledged by the asset manager.
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Figure 9: Cross-Scenario 1, Task 2, Phase 2

An unacknowledged alarm triggers a blinking-animation in the system. The system displays a high amount
of alarms, mostly for non-critical systems. The additional unresponsive behavior of the system causes the
asset managers to not acknowledge incoming alarms which essentially effects a highly blinking, distractive
overview.

As in the previous task, the first phase included the transformation of a photo to the vectorized image (Fig-
ure 8).

2.1.2.2 Phase?2

Phase 2 already introduces many visible modifications (Figure 9). First and foremost, a reduction of colors
and contrast is visible. In the previous version, colors of the station labels are used for regions within the rail-
network and the state of the stations. Using similar and bright colors for more than one variable may confuse
a user. The reduction of contrast and brightness provides a less tiring visualization. This is important as an
asset-manager has to watch and observe this screen in particular. The color of the station labels is replaced
by bounding rectangles that contain a very unobtrusive, moderate coloring which is highly different to the
colors of the stations.

The same applies to the lines of the rail-network that connects the stations. This information is less important
to the asset-manager but should still be available. The user is therefore able to highlight various lines by
hovering them.

The previously colored areas representing a train station are now divided into four rectangles. This split pro-
vides a semantic categorization of the assets into the four highest and most important categories according
to RFIl. The placement of these categories is displayed in the legend on the top-right of Figure 9. Each of the
tiles can be colored differently. This glyph visualization gives the user access on what kind of system is pro-
ducing an alarm without the need to interact with the system. Furthermore, if more than one system accross
the categories are failing this causes more of the area to be red raising a higher awareness.
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2.1.2.3 Phase3

(a) An extended version of the glyph is shown when the user (b) Clicking on a station or an asset triggers a calendar visualiza-
hovers a station. The number of alarms is added to each tile of tion and a sunburst visualization representing the hieararchy.
the glyph.

Figure 10: Cross-Scenario 1, Task 2, Phase 3

The resulting system of Phase 2 provides a richer information space without the necessity to interact with the
system and yet the overview seems to be less cluttered. However, this does not allow the user to navigate
the hierarchy and explore lower levels. We support this through interaction. The user can hover a station to
trigger a small overlay visualization showing the glyph with more details (Figure 10a). The additional infor-
mation contains the icons as shown in the legend to provide an easy reference. Furthermore, the number of
alarms within the respective category is shown in the lower right corner of each tile. The glyph is currently
extended such that the user can navigate the hierarchy and reach the underlying levels through a rubber-
sheet metaphor [75]. Figure 11 shows how this navigation works. The user may click on the red, upper, right
tile (network) and the tiles are laid out again. The other three tiles are shrunk to the side of the glyph while
the area of interest is expanded revealing the underlying levels of the hierarchy. Now the user can see that
there is one warning (yellow) regarding the WiFi, the database systems as well as the security cameras are
working and there are two alarms in for the train-schedule displays.

Clicking on a station reveals a temporal view called calendar vis (Figure 10b). This view aids the user in
reasoning about the failure of an asset as she/he might be able to detect temporal patterns when the asset
fails. Additionally, this view can also provide information about the restoration time of previous repairs for
this asset. Another view is the hierarchical view that provides a similar information as the interactive glyph,
however it displays all the information of the whole hierarchy at once. The chosen technique is called sunburst
visualization [80].

o

1

3

2

Figure 11: Cross-Scenario 1, Task 2, Phase 3: Rubber-Sheet Navigation
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2.1.2.4 Phase4

This task has the closest relation to the task of the PoC as the restoration time of an asset is of high interest
to the asset manager. The restoration time is predicted by a decision tree. While many of the input parame-
ters are provided, the user may wish to modify some of these parameters interactively as unforseen events
happened and the provided parameters are obsolete. For example the Actual Beginning Time (see Table 12)
of the reparation of the asset may be delayed and needs to be adjusted. There might be cases where the
next possible setting is not optimal regarding the restoration time, therefore the user must be empowered
to interactively find the best parameter settings.

Besides the input and output, the model itself can be visualized supporting the user in understanding the
model better. This is a trust-building measure and helps the user to understand the predictions of a model
better.

The foundations are already created in Phase 3. The historical views help the user understand how previ-
ous repairs of a specific asset were conducted and what problems may have occurred. In combination with
prediction models the user can better estimate the restoration time for an asset.

2.1.3 Task 3 - Improving the TMS and Directing the Awareness of the Operator

This task focuses on the status screens as shown in Figure 3 (upper screens). The purpose of this system is
to inform the operator of the current state of the rail-network and especially the trains running in the area
the operator oversees. In contrast to Task 1, this system does not provide any historical or future lookahead
regarding the train schedule. It therefore focuses on the spatial orientation, accuracy, and ease.

2.1.3.1 Phasel

(a) The original photo. (b) The vectorized image.

Figure 12: Cross-Scenario 1, Task 3, Phase 1

As visible in Figure 3 this system makes heavy use of a multi-screen environment. The operators we inter-
viewed with explained that through training and experience they can quickly find and identify trains at a spe-
cific location. However, the position on the screens does often not match the real-world position. Distances
in between stations are heavily distorted in order to fit even larger areas onto several monitors. Furthermore,
a vertical expansion is not possible due to the layout of the monitors. This may result in heavy distortions
which may also include rotations of tracks such that a north-south direction in the real-world may be plotted
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Figure 13: Cross-Scenario 1, Task 3 Phase 2: Reduction of information

horizontally. Similar layout algorithms are for example used to create metro-maps for cities [87]. Besides
the trains itself the system also visualizes occupied segments of trains. This is important as the TMS will not
allow to route a train on a currently occupied rail-segment or if this segment is already claimed by another
train. When a train is about to occupy a segment, this segment starts blinking in orange. When the segment
is occupied the color of the segment changes to orange. This blinking animation is, however, often hardly vis-
ible as the operator cannot oversee all of the area at once. Furthermore, due to singular usage of the colors
white and orange this may not be perceived. Operators also mentioned that the visualization propagates a
lot of information and seems thus cluttered. Especially, trainees often have difficulties orienting themselves
within this heavily distorted map. Through observation and interviews we learned that the operators are
mostly working with the systems covered in Task 1. A typical use case to use this system is to verify the cur-
rent situation when a conflict appears (Task 1). Then the operators may check the area where the conflict
appears to make a more informed decision on which train can go first. As this system only shows the current
situation, conflicts which typically appear and are resolved ahead of time, are not shown. The visualizations
of Task 1 and 3 are not visually connected so the user-task “finding the position of the conflict on the map” is
difficult for less experienced operators. The operators further mentioned that many transitions between the
systems for a longer period are tiring as, besides the cognitive performance, it is also physically challenging
because it often requires to move the head or body.

RFI demands solutions to reduce the number of monitors such that the same area is covered in less space.
This is extremely challenging because it requires more distortions which increases the complexity of spatial
orientation. Moreover, this imposes that overall the size of the visualization is reduced making it harder read-
ing, for example, the train numbers that are being displayed. This also means that even though less physical
movement is necessary it possibly may not improve the situation as the more dense plotting in combination
with the rather distant screens is exhausting for the eyes and our perception.

2.1.3.2 Phase?2

As a preliminary measure we modified the symbols of the signals in the visualization because we learned that
in the daily business of the operators the signals are mostly out of interest and only in specific cases their state
needs to be checked. The shape of the symbols differs describing different signal-systems. We removed the
filling of the symbols only leaving the outline and plot this outline in a dark, grey color which makes them
unobtrusive. The feedback from RFl emphasizes the effect of less occlusion due to the reduction of symbols.
RFI points out that a linking between the visualization of Task 1 and 3 is necessary to ease the workflow of
the operator.

2.1.3.3 Phase3

Phase 3 introduces four extensions. The datafication allows us to run a stateful system where trains can be
moved. Figure 14 shows three states where two trains are progressing in the network.
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(c) Train 6177 is progressing to the next segment.

Figure 14: Cross-Scenario 1, Task 3, Phase 3: A stateful system.

The difference that is most apparent is the circular highlighting around the trains. This highlighting allows the
user to spot the areas of interest much faster while the remaining network and other details are still visible
and thus, no context is lost. The highlighting is currently only applied on the trains but can be extended to
any part of the visualization and vary in size. Future systems may also change the highlighting depending on
their current state or provide the opportunity to the user to change the areas of interest.

The state-of-the-art system uses flashing cue when a new railway-segment is claimed for a train. Blinking
however, attracts the user’s attention very much, especially in form of a bright and saturated color [38]. This
is a good cue for exceptional cases such as when alerts or warnings are triggered. However, in a frequently oc-
curring scenario such an overused cue may distract the user, cause stress, and fatigue. We therefore changed
this cue to a white-orange-striped overlay which moderately moves. While this animation still attracts the
user’s awareness it is less alerting to the user.
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Figure 15: Cross-Scenario 1, Task 3, Phase 3: Attract the user’s attention.
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The fourth extension is shown in Figure 15. The enhancement is designed for exceptional cases when the
user’s awareness is required at a certain location on the screen and at a specific time. The animation draws
a large circle which shrinks down to a specific location on the screen. We call this “inverted ping”. Even
on multiple screens the eyes follow the circle’s boundaries automatically towards the point of interest. As
mentioned before, this feature should not be used too frequently. For example, Figure 14 shows purple
icons. The meaning of these icons is the temperature of the railway-segment. If the temperature reaches
a threshold the icon is shown alerting the user that trains may have to pass this segment slower or less
frequently. In a complex visual environment the simple placement of the icon may happen unrecognized by
the user. Additionally, the “inverted ping” animation could be used to steer the user to this segment. This
should however only happen when the icon is added or removed and not regularly when the icon is displayed.
The end-users welcome the aforementioned extensions as they visibly improve the steering of the users
awareness. The system was presented on a multi-screen environment. Again, RFI highlighted the importance
on a linked environment that improves the relations of the systems of Task 1 and 3.

2.1.3.4 Phase 4

Similar to the other tasks, Phase 4 focuses on the linking and brushing to the other tasks and the inclusion
and extension to the PoC (D5.4). The linking and brushing will be mostly implemented in combination with
Task 1 as both systems are used the operator’s workstation in the TMS. As also the operator should be aware
of the restoration time, especially when it concerns the trains and their routing. On the other hand, the
operator of the TMS does not need excessive information as the asset manager would need. The focus will
lie on compact visualizations that are easily interpretable and require less interaction.

2.1.4 Conclusion

For this scenario we chose three systems used by the operators in a daily fashion. We optimize these visual-
ization systems to present the same or more information without cluttering the visualizations. We introduce
interactions to let the user more conveniently request additional information. The development is conducted
with regular feedback-sessions in collaboration with the end-users (RFI). This iterative development ensures
that the users are not overwhelmed with too many new changes and that the incremental changes can be
evaluated separately and be refined in the next phase(s). The current state of the progress prepared the
inclusion of specific prediction models that are developed and described in the following scenarios. The final
inclusion will be shown in the proof of concept (D5.4).

2.2 Cross-Scenario 2: Marketplace of Data and Data Monetization

Because of absence of actual data, since the Marketplace of Data does not yet exist and will be not developed
in WP4, we decided to not to develop further the Cross-Scenario 2.

2.3 Specific-Scenario 1: Track Circuits

2.3.1 Introduction

As described in D5.1 the main objective of this scenario is to develop data-driven models for online sta-
tus identification and behaviour modelling of the Track Circuit System (TCS), in order to enable diagnostics
and prognostics functionalities. In this context, the exploitation of gray-box models and the development of
metrics and KPIs able to assess models performance (i.e. understanding under what conditions they can be
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Figure 16: Current flow in the track circuit.

effectively be applied in real operations) represent a core task in this scenario. Moreover, the work done
inside this scenario, together with the maintenance operators, revealed the possibility to develop and study
some interesting features more related to Visual Analytics (VA), which is a core topic of IN2DREAMS WP5. VA
processes are designed in close cooperation with domain experts in order to create semi-automatic work-
flows, which allow to leave the operators in full control, while supporting them with context-sensitive and
automatically extracted information. In the context of TCS maintenance, the application of a VA approach
could support the maintenance process, improving decision making before and during maintenance opera-
tions, speeding up and renewing condition-base and preventive maintenance processes. This possibility has
arisen from the practical needs of the maintenance operators which emerged during the course of work. On
the other side, the development of the data-driven model for anomaly detection has been slowed by some
technical issues related to the frequency of data acquisition (this will be discussed later in Section 2.3.4). Thus,
the work on the model will be completed in a later stage of the project and reported in the next deliverable
once the technical issues will be solved and some evidence will be achieved.

Based on what have been stated in D5.1, the deliverable is organized as follows. Section 2.3.2 contains a de-
tailed description of the system involved and the identified problem. The first processing step, which enable
visual analytics functionalities, is described in Section 2.3.3, while in Section 2.3.4 the work related to the
anomaly detection model development is presented. Finally, results achieved in all the activities described
above are contained in Section 2.3.5.

2.3.2 Problem and System Description

The TCS is a device used to detect the presence (or the absence) of a train on a rail track. Moreover, it allows
the transmission of digital cab signalling data, in the form of binary information, with the purpose of enabling
automatic train protection functions. The TCS is composed by an electronic board, which communicate with
the Computer-Based Interlocking system (CBI) enabling trains management functions, and a physical com-
ponent which includes the electrical network and other equipment like transmission cables or directional
relays.

In order to enable train detection functions, each section of the rail track is electrically separated from the
other sections and a different TCS is associated to each section. The electrical network is mainly composed
by a transmitter which transmits a current signal through the two rails to a receiver, where the signal is
measured (Figure 16). Moreover, current leakage between adjacent sections through the railway track is
prevented by insulated joints, while impedance bonds allow direct current to flow but they block inside the
section alternating current (which is used for the detection functions). With this setup, if the track is free (no
train present on it) the current signal flow through the rails to the end of the section. If a train occupies the
track section, the wheels give rise to a short-circuit which prevents the signal to reach the receiver (Figure 17).
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Figure 17: Current flow in the track circuit when a train is passing on the track section.
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Figure 18: Train detection behaviour of a track circuit: when the current signal I,... goes below the thresh-
old v, the track is reported as occupied.

2.3.2.1 Train Detection

Track occupancy is observed from TCS through the measure of the current signal at the receiver. Considering a
healthy TCS in normal conditions, signal level lies in a defined range of values (above « threshold, as depicted
in Figure 18) while it sharply decreases to a nil value when a train enters in the track section. The system
identifies a track as occupied if the signal level falls below the threshold ~. Thus, TCS are tuned such that,
even in the case of small current deviations, the presence and absence of a train are correctly reported.

2.3.2.2 Track Circuit Failures

Track circuits have been designed to be robust to many different problems, and their performances are
durable over time. Despite this, though the analysis of historical data, it is possible to demonstrate that
some degradation effects, undesired behaviours or physical impairment exist and unexpected failures may
occur. For example, some defects affecting a rail can cause an increase in the rail resistance resulting in a
current signal at the receiver too low. This kind of behaviour can affect the right functioning of the train
detection system causing a functional failure. The TCS have to meet two different type of requirements [40]:

e Safety requirement: the track section have to be reported as occupied when a train is present on it.
Failures related to this requirement are referred as False Negative ( FN);

e Operational requirement: the track section have to be reported as free when a train is not present on
it. Failures related to this requirement are referred as False Positive (FP) or False Occupancy ( FO).
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While the safety requirement is guaranteed by the CBI system itself, operational requirement is less restrictive
and FO failures occur quite often. Since FO consequences could include traffic disruption and penalties this
type of failures represents the main issue investigated in this work. FO failures are mainly related to TCS
faulty behaviour which results in current level drop. In that condition, even if some degree of fluctuation is
acceptable (thanks to the tolerance of the receiver threshold system) when the current level becomes too
low, the section will be reported as occupied, even if there is actually no train present.

2.3.2.3 Faults affecting the TCS

Before going in depth with the specific system involved and the analysis conducted in this work, a description
and categorization of the main faults affecting the track circuit system is required. As proposed in [40], the
following categories of faults can be identified:

¢ Insulation imperfection. To prevent the AC current signal of one section from spreading to adjacent
sections energizing their relays, insulated joints are used. Problems occur when insulated joints de-
grade during time or when conductive objects lie over them. In the case of an insulation problem, the
circuit leaks current and, thus, the current signal is too low;

¢ Rail conductance impairment. The proper functioning of a TCS is based on the conductance properties
of the rails and if the Impedance of the rail is characterized by a too high resistance the current level at
the receiver decreases. This anomalous behaviour could be caused by a damaged or degraded rail, by
an insufficient quality of the bonds in jointed track or by disturbance currents along the rail;

¢ Ballast condition. The condition of the ballast determines the resistance that currents encounter when
flowing from one rail to the other rail or to the ground. Because the effect of a decreasing ballast
resistance is similar to that of a train shunt, it is important that the ballast resistance is sufficiently high
and constant. Due to environmental disturbances (mainly related to weather conditions) and aging, the
ballast resistance will fluctuate over time. This behaviour could again lead to a current drop causing FO
failures;

¢ Train shunt imperfection. The proper functioning of a TCS requires that every train short-circuits the
section in order to guarantee train detection functionalities. A good train shunt can be inhibited by
different causes of which the two most important ones are: contamination between the rail surface
and the wheels and lightweight trains. Even if this kind of faults is related to FN failures (the system is
unable to comply with safety requirement) they are reported here for completeness;

¢ Circuit-related and other faults. Even if track circuits have a high reliability, their components (e.g.,
relays, cables, and power supply) can break. Moreover, some malfunctions could affect the electronic
board of the TCS (i.e. Critical Error in the board software). With the exception of cables and similar
equipment degradation, these faults are abrupt and no parameters are available in order to monitor
their source (i.e. relays or electronic boards). For this reason, these kind of faults are not treated
further.

In [40], a categorization of these faults is given in relation with their evolution during time and their spatial
dependencies. For what concerns the evolution in time, four types of behaviour exist: abrupt (A), linear (L),
exponential (E), intermittent (/). On the other side, the following spatial dependencies are presented: no cor-
relation with other sections (1), correlation with sections on the same track (D-), train-specific correlation
(Ds3), correlation with all nearby sections (D,4). Results of the study are summarized in Table 1, where we
kept only faults related to FO and we have added the circuit equipment degradation fault.
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Table 1: TCS Faults types and features.

[ Fault (F) [ Problem [ Cause [ Signal level [ Time Trend | Spatial Dependency
1 - Healty ok
2 Insulation imperfection Insulated joint defect low L/E D1
3 Conductive objects low A Dy
4 Rail conductance impairment | Mechanical defect low E Dy
5 Electrical disturbances low 1/A Do
6 Ballast condition Ballast degradation low L/E D1-Do
7 Ballast variation low/ok/high | A/L/E/I Dy
8 Circuit-related faults Circuit equipment degradation | Unknown Unknown Unknown

2.3.2.4 Observed Parameters

In the system analyzed in this scenario, the following parameters are available for the monitoring of the track
circuits behaviour:

e Received Signal Level (R1). This parameter is important because it verifies that the received signal level
is within the operating range of the receiver circuit. It is acquired as the ratio between the value of the
signal and the maximum range of the receiver in percentage;

e Shunt Level (S). As with the Received Signal Level this value indicates the track signal level (but with a
higher resolution). When the track circuit is initialized or calibrated a value of 162% is assigned to the
actual received signal level. This is the main parameter;

e Variance (V). This parameter can be used to determine whether the coupling unit is tuned correctly
or a coupling unit has failed. Variance can also indicate whether interference from another source is
becoming a problem in the reliable operation of the track circuit;

* Raw Signal Level (R2). The Raw Signal Level is the total signal received by the TCS (it includes noise and
adjacent track signals). As for 21 is expressed in percentage with reference to the maximum range of
the receiver.

2.3.2.5 TCS Redundancy

In order to meet the safety requirement TCS is composed by two different electronic boards, Primary (P) and
Backup (B). With this setup, when the primary board is active and fails, the system automatically transfers all
the safety and operational functionalities to the Backup board and vice-versa. Moreover, in order to guar-
antee the proper functioning of both P and B boards, they are interchanged periodically during scheduled
maintenance actions and/or after the recalibration process (which will be discussed in the following section).

2.3.2.6 TCS Calibration

When the track circuit is initially adjusted with high ballast resistance, the threshold level of the track circuit’s
receiver is equal to nominal current of the track circuit (o« > ). In this condition, the threshold selected
represents an overdrive value of 100% (or 1). With only an overdrive of 100% (or 1), the track circuit would
become occupied if the ballast resistance changes to any value lower than the one assumed at the initial
adjustment value and also if the current signal presents some small variations. In order to enable it to operate
over a changing ballast value, the overdrive has to be added to the track circuit and it is obtained by changing
the threshold of the receiver. The magnitude of overdrive is selected as a function of different factors such as
frequency, shunting sensitivity, minimum ballast and rail-to-rail voltage. An example is depicted in Figure 19,
where an overdrive value of 1.62 (or 162%) is obtained by adjusting the receiver threshold to 62 mA (in this
situation the threshold « is represented by a Shunt Level value of 150%).
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Figure 19: Comparison between current signal I,... and Shunt Level S....: here an overdrive value of 1.62
(or 162%) is obtained by adjusting the receiver threshold to 62 mA (in this situation the threshold « is
represented by a Shunt Level value of 150%).

Once the track circuit is adjusted with high ballast resistance, the received signal strength can change as the
ballast changes. Thus, from the latter condition, if the track circuit is recalibrated, the threshold of the receiver
will be changed. For example, if the ballast value is low and the Shunt Level value is different from its original
value, performing recalibration will adjust the threshold of the receiver to a new value: the recalibration
process allows the operators to change the threshold v depending of the signal level and the ballast condition
in order to keep the system reliable. The downside of the process is that the Shunt Level value is reset to its
original value and this can hide ballast degradation and aging effects (low current signal at the receiver).
Recalibration is the main action performed during the preventive maintenance routine.

2.3.2.7 TCS Monitoring and Corrective Maintenance Actions

During their operations, track circuits are monitored in two different ways:

e TCS specific information and parameters’ value could be monitored from a specific panel which is ac-
cessed only when a maintenance action has to be performed (not for preventive actions);

¢ Alarms, coming from the central automatic control system, are monitored in real-time. These alarms
include the ones related to TCS (i.e. electronic board failure or FO alarms). More details about data
coming from the central automatic control system are contained in D5.1.

Main corrective maintenance actions which are performed on TCS (FO failures and causes taken into account
for this study):

¢ Recalibration, which is used to guarantee that TCS works properly, mainly to face Faults of type 6 and
7, but it does not resolve the cause of the problem;
¢ Insulated Joints cleaning, which solves Faults of type 2 or 3.

Other specific actions are performed when problems cannot be solved with a standard approach or for prob-
lems which are very rare (i.e. cables and equipment replacements). On the other side, main corrective
maintenance actions which are performed on TCS to solve FO failures for circuit-related and other faults, are:

¢ Relay replacement;
e Electronic board reset or replacement;
e Power Supply replacement.
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As stated before failures related to these actions are outside of the scope of this work.

2.3.3 Data Processing and Visual Analytics

Definition of the problem, identification and understanding of the system behaviour, data exploration and
data acquisition process have been conducted in close collaboration with the maintenance operators working
on the line selected for this study. This collaboration highlighted the possibility of studying an analysis process
and a data representation in order to support, through visual analytics, maintenance operators with context-
sensitive and automatically extracted information. In this context, the following requirements have been
identified from the operators:

¢ Visualization of TCS parameters trend. At the moment the system allows to monitor a single track
circuit, without a visual representation and without the possibility of accessing historical data. Thus,
a visual representation of historical data is required in order to make more reasoned considerations
on track circuits health and plan more efficient maintenance strategies. Moreover, the real behaviour
of the TCS should be visualized: observations associated with an occupancy should not be considered
and data coming from P and B boards should be merged to identify observations which belongs to the
active board (at the moment the system does not provide information about which of the two boards
is working);

e Alarms and Events reporting. The system does not provide statistical summary or reporting of system
failures, alarms and main events. Alarms and events data are available from the central automatic
control system and used only for real-time monitoring. A high-level knowledge of the status and past
history of the system would be extremely useful to support operators in their decisions in the mainte-
nance workflow.

Thus, the analysis conducted in this work led to a two-fold contribution: on one side, it allowed to meet
that requirements identified with the maintenance operators, on the other, it represents the main step, for
what concerns data understanding and preprocessing, for the development of an interpretable data-driven
model for the identification of faulty track-circuits. In the following sections the data process is described
with results related to visual analytics task identified.

2.3.3.1 TCS logs data processing

The aim of TCS data processing is to obtain a dataset with all the track circuits related parameters (Shunt
Level, Variance, Receive Level, Raw Signal Level) representative of the TCS behaviour. The analysis focuses on
Shunt Level (Figure 20) because it is both the most relevant parameter and the one that can be treated more
easily in order to clean data. Two main issues have to be solved:

¢ Observations relative to Primary and Backup boards are acquired separately (Figure 21 and 22) and a
single pattern has to be extracted during time from the board which is active;

e As depicted in Figure 20, raw data contains train passage observations (i.e. observations with a value
equal to zero or with a value sampled during a drop to zero) and this fact makes difficult both the
visualization and the analysis of the behaviour in normal condition.

The final data format is represented in Table 2.

2.3.3.2 Central Control System logs data processing

A typical log record is composed of six main parts as showed in Table 3. In case of alarms, an additional file
in the log record indicates the alarm code (WSTRCODE) and it is to classify it properly. This field allows to
filter the logs based on a certain subset of alarm/events codes of interest. From these log files, a cleaning
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Table 2: TCS logs data variables after the processing step.

[ Variable Name [ Description ]
Timestamp Date and time of the observation
Station Reference station (TCS board rack location)
Track ID TCS unique identufier
Primary/Backup Reports to which board (primary or backup) the observation is referred
Shunt Level TCS status parameter
Variance TCS status parameter
Raw Signal Level | TCS status parameter
Receive Level TCS status parameter
Direction Direction in which the TCS is set
Active True if the board is currently working, else False
Occupied True if the track is occupied by a train, else False

Table 3: Central Control System logs data variables after the processing step.

Variable Name [ Description |

FMT Summary of all the information contained in the log

TS Timestamp related to the event/alarm reported

CcpP Location of the event (i.e. Station)

CX More detailed location of the event (i.e. Station + Track ID)
STY Log type (i.e. event or alarm)

EQ Event unique code

and extraction process is applied in order to obtain the two main sources of information in which we are
interested: the occupancy events and alarms related to the TCS. The latter group of extracted information
contains only a subset of relevant alarms which has been selected in collaboration with the operators.

2.3.3.3 Active Boards

In order to find which board is active, considering a single observation, the concept is to look at n previous
observations of Shunt Level and count the number of zero values: If the number of zero values is greater
than a value m (for example 3) the board is reported as Inactive, otherwise it is reported as Active (the
value m depends on the frequency of acquisition). Assuming we have an observation each minute, if 3 or
less observations are found it is due to an occupancy (less than 3 minutes of occupancy) but if more than 3
observations are found it is supposed to be due to an inactive board (an occupancy cannot last for more than
4 minutes, neither for track circuits lying in the stations).

e, i ﬂd
5 1501 |
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|
S 50/
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Figure 20: Shunt Level values for a specific track circuit (raw data).
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Figure 21: Shunt Level values of a specific track circuit observed from the Primary board.
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Figure 22: Shunt Level values of the same track circuit of Figure 21 observed from the Backup board.
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Figure 23: Shunt Level observations from a specific track circuit relative to the board which is active: Pri-
mary (P) in blue, Backup (B) in orange.
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Figure 24: Shunt Level observations from a specific track circuit relative to the board which is active and
occupancy events for the same time window: occupancy-on events are represented in red while occupancy-
off events in green.

2.3.3.4 Occupancy Events

In order to identify the normal behaviour of a TCS, using a simple filter with a threshold (e.g. selecting ob-
servation with 100%) is not enough to achieve the desired precision. For example, if an occupancy occurs
immediately after an observation the Shunt Level value could be recorded while is going down to zero from
its normal value. In this condition, considering a normal value of 160%, a value of 120% could be identified
as normal while it is due to the signal drop caused by a train approaching. To achieve a reliable estimate
of real occupancies, Shunt Level observations have to be correlated to occupancy events (occupancy on and
occupancy off events) from Central Control System logs, as depicted in Figure 24. Thus, for each Shunt Level
observation X, we look in the occupancy events dataset for occurrences where TS (occupancy on) is greater
than Timestamp —0 and TS (occupancy off) is less than Timestamp +4 (with reference to Table 2 and 3). Thus,
if one or more occurrences exist the track is reported as occupied and the observation will not be taken into
account for the analysis of the track circuit behaviour.

The parameter § has to be tuned considering different factors, such as occupancies duration and frequency of
acquisition (at the moment a value of 10 seconds has been tested). To note that the above process represents
the simplest technique to find real occupancies but it does not take into account all the aspect of the problem
and thus can improved.

2.3.4 Anomaly Detection Approach

The final goal of this use case is the development of interpretable and gray-box models of the track circuits
behaviour in order to identify faulty assets (i.e. assets which suffer from a fault and may therefore be subject
to FO failure). These models will support maintenance operators with additional and useful information in
order to take decision about maintenance planning, starting a shift toward predictive maintenance. More-
over, we are also interested in finding metrics and KPIs able to understand if our models can be effectively
used in real operations or if the developed models are not reliable enough. Once these KPIs will be available,
they could be exploited for the evaluation of the quality of the predictive models developed inside IN2SMART
WP8, in which this scenario is analysed with slightly different objectives.
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Figure 25: Example of a possible representation of the Shunt Level trend over time after the data processing
step: color information is added to identify which board is active in a specific moment.

For what concerns the anomaly detection models, two possible approaches could be identified depending
on the time window used for the analysis. The first approach, which is the most promising, is based on the
analysis of the TCS behaviour in the neighbourhood of the moments in which a train is about to enter, or leave,
the track section (short time window). The second approach consists in analysing the long term behaviour of
the TCS, trying to identify unusual patterns in a larger time window. While the first approach could identify
different type of faults, also intermittent and abrupt ones, the second one is focused to faults characterized
by a slow degradation in time, which could be linear or exponential.

Data quality and in depth data exploration activity, in order to identify the best and more effective approach to
the problem, have been performed up to now. Considering the first approach, on which we mainly focused,
the main issue we faced is related to the data frequency (one observation every five minute) which it has
been verified is not high enough to understand TCS behaviour inside the occupancy event time window (the
occupancy could last less than ten second). In this context, we are working with operators on the field in
order to develop a solution which should allow an update in the TCS logs acquisition frequency (e.g. one
observation every seconds): this could widely change possible results achievable in this scenario. Finally, we
started to work with the second approach and results will be presented in detailed in the next deliverable.

2.3.5 Results and Conclusions

Due to the complexity of the system a great effort has been made in order to identify and understand the
problem, with the help of the operators, to acquire a detailed knowledge of the assets behaviour (fault and
failure) and their interaction with operators (maintenance process). Results achieved in this context, as de-
scribed in Section 2.3.2, lay the foundation for the development of effective KPIs and represent a fundamental
step for all the other foreseen activities. The knowledge of the system allowed the identification of relevant
variables and information and the definition of a standard data format, which is viable both for descriptive
analytics and data visualization (meaningful and readable for the operators) and for data modelling. The new
format is achieved through a specific process which is described in Section 2.3.3. To note that these results
are shared between IN2DREAMS WP5 and IN2SMART WP8, where this scenario is exploited for other studies.
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Figure 26: Bubble plot of alarms occurrences (FO alarms) along the railway lines. Three different kind in-
formation are represented: geographical (bubble distribution) quantitative (bubbles dimension) and cate-
gorical (the color represents the zone to which an asset belongs).
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Figure 27: Heat-map of alarms coming from the Central Control System: the size of the boxes is proportional
to number of occurrences for each specific alarm

In order to take advantage of the available data in the maintenance process and fulfill operators’ requirements
different solutions have been identified. The two major points are reported below:

¢ The data process developed allows to understand TCS normal behaviour, which is represented by four
parameters (Shunt Level, Variance, Received Level and Raw Signal Level). As depicted in Figure 25 the
trend over time of these parameters can be now visualized (also in a near-real-time fashion) and used
as a diagnostic tool to monitor TCS status. Moreover, additional information could be provided to the
operators (e.g. information about which board is active or the actual direction);

¢ The historical collection of the alarms can be exploited for reporting about the status of the whole rail-
way section object of this work, supporting decisions about maintenance planning at a strategic level.
Visual analytics techniques enable efficient and understandable reports which can highlight different
aspect of the problem and provide additional information in a very simple way: for example, it is possi-
ble to provide geographical information together with quantitative information, as shown in Figure 26,
and communicate quantitative data in a way which they can be understood in a simple and immediate
way (e.g. using heat-maps, as shown in Figure 27).

For what concern predictive modelling, some experiments have been performed with the short-time-window
approach described in Section 2.3.4, but no relevant results have been achieved due to the sampling fre-
guency of the signals, which is too low. Thus, during the next steps of the work, for the development of
predictive models we will focus on a different approach (focusing on wider time windows) and, at the same
time, we will continue to work with the operators involved in order to modify the data acquisition process (to
increase sampling frequency) and to develop KPIs for models and preventive maintenance evaluation. Finally,
due to the satisfactory results achieved with the used of visual analytics techniques we will proceed on this
branch of the work to improve results achieved up to now and to study new solutions for the opportunities
which will emerge.

IN2D-T5.4-D-UKO-002-02 Page 43 19/11/2018



PDREAMS G~ [

Contract No. 777596

2.4 Specific-Scenario 2: Train Delays and Penalties

We investigate the problem of analyzing the train movements in Large-Scale Railway Networks for the pur-
pose of understanding and predicting their behaviour. We focus on different important aspects: the Running
Time of a train between two stations, the Dwell Time of a train in a station, the Train Delay, and the Penalty
Costs associated to a delay. Two main approaches exist in literature to study these aspects. One is based on
the knowledge of the network and the experience of the operators. The other one is based on the analysis
of the historical data about the network with advanced data analytics methods. In this work, we will propose
an hybrid approach in order to address the limitations of the current solutions. In fact, experience-based
models are interpretable and robust but not really able to take into account all the factors which influence
train movements resulting in low accuracy. From the other side, Data-Driven models are usually not easy to
interpret, nor robust to infrequent events, and require a representative amount of data which is not always
available if the phenomenon under examination changes too fast. Results on real world data coming from the
Italian railway network will show that the proposed solution outperforms both state-of-the-art experience
and Data-Driven based systems in terms of interpretability, robustness, ability to handle non recurrent events
and changes in the behaviour of the network, and ability to consider complex and exogenous information.

2.4.1 Introduction

Railway Transport Systems (RTSs) play a crucial role in servicing the global society and the transport backbone
of a sustainable economy. A well functioning RTS should met the requirements defined in the form of the
7R formula [62, 70]: Right Product, Right Quantity, Right Quality, Right Place, Right Time, Right Customer,
and Right Price. Therefore, an RTS should provide: (i) availability of appropriate products (the provisioning
of different categories of train), (ii) proper number of executed transportation tasks (enough trains to fulfill
the request), (iii) proper quality of execution of transportation tasks (safety, correct scheduling, and effective
conflicts resolution), (iv) right place of destination according to a timetable (correct transportation routes),
(v) appropriate lead time (reduced Train Delays), (vi) appropriate recipients (focused on different customer
needs and requirements), and (vii) appropriate price (both from the point of view of the customers and the
infrastructure managers).

In this work we focus on the problem of analyzing the train movements in Large-Scale RTSs for the purpose
of understanding and predicting their behaviour. Hence, we will study four important aspects: the Running
Time, the Dwell Time, the Train Delay, and the Penalty Costs. The first one is the amount of time a train
spends in travelling between two consecutive stations. The second one is the amount of time a train spends
in a station. The third one is the difference between the actual arrival (or departing time) and the scheduled
one in each of the stations composing the itinerary of a train. Finally, the fourth one is the penalty that the
Infrastructure Managers (IMs) and the Train Operators (TOs) have to pay because of the delays in proportion
to their responsibilities. These aspects are of paramount importance in the context of an RTS. Studying them,
and being able to predict their behaviour, allows to improve the quality of service, the train circulation, and
the IMs and TOs management costs. More specifically, in relation with the 7R formula, it allows to improve
the Right Quantity (improving circulation improves the network capacity without requiring massive public
investments in new physical assets), the Right Quality (it helps the operators to understand how much a train
needs from one checkpoint to another, to provide a timely resolution of the conflicts on the network and, to
correctly schedule all the trains), the Right Time (efficiently predict the train transits improves the ability of
the operators to maintain the correct train circulation), and the Right Price (it helps to minimize the penalties
for the IMs and TOs).

A large literature covering the aforementioned problems already exists [31]. However, the majority of the
works focus just on a single aspect of the train movements. The Running Time and Dwell Time have been
exploited mainly to retrieve train positions and track occupations [18, 42], or to detect train conflicts [33], or
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to perform a correct dispatching [7, 47, 52]. The Train Delay prediction is the most investigated aspect of train
movements [8, 9, 27, 34, 43, 53, 57, 85]. Some works study how the Train Delays propagate in subsequent
stations [19], for online track conflict predictions [34], and for deriving dependencies between trains [28, 82].
For what concern the study and the prediction of the Penalty Costs in [54] it has been studied the relation
between Penalty Costs and Train Delays in the Britain’s railway.

To the best knowledge of the authors, there is no work in the literature which deals comprehensively with all
the aspects of the train movements as we will propose in this work.

From a methodological point of view, the models adopted in literature to solve the train movements related
problems can be grouped in two categories [31]. Models in the first category, called Experience-Based Mod-
els (EBMs), attempt to exploit the knowledge of the network in order to derive a model which takes into
account the physical characteristics and limitations of the network (e.g. speed limits, usury, and slopes) and
the trains (e.g. acceleration, weight, and number of wagons) together with the experience of the opera-
tors [15, 20, 28, 31, 32, 34]. Models in the second category, called Data-Driven Models (DDMs), are based
on the analysis of the historical data about the network coming from the most recent Railway Information
System with advanced analytic methods [31, 42, 63]. Both EBMs and DDMs have strengths and weaknesses.
EBMs are usually low computational demanding, easy to interpret, and robust. A the same time, EBMs are
usually not very accurate, hard to modify in order to contemplate complex phenomena (e.g. congestion of
the network and weather conditions), and not dynamic (they tend to oversimplify the phenomenon not tak-
ing into account behaviour’s drifts). On the other side, DDMs are much more accurate but they are also much
more computational demanding (at least for building them and sometimes also for making predictions), of-
ten not easy to interpret (interpretability in learning from data is a crucial issue nowadays), not really robust
(they do not handle well infrequent events), and not very dynamic (if the phenomena under examination
change too fast with respect to the possibility to collect enough data about it).

For these reasons, in this work we propose an hybrid approach, that we will call Hybrid Model (HM), taking
the best from EBMs and DDMs. In particular, the proposed HM will be interpretable (the HM will be easy to
understand from an operator point of view), robust and dynamic (HM will handle well both infrequent events,
like the passage of Freight trains, and fast changes of the train movements phenomena, like a timetable
modification), easily extensible (it will be able to take into account complex phenomena like the congestion of
the network and exogenous factors like the weather conditions), and able to take into account the knowledge
about the network and the experience of the operators.

The rest of the paper is organized as follows. Section 2.4.2 describes the RTS train movements related prob-
lems. Section 2.4.3 focuses the attention on the particular case of the Italian RTS. Section 2.4.4 presents the
actual EBM and DDM exploited in the Italian RTS. In Section 2.4.5 we present our contribution: the HM. In
Section 2.4.6 we compare the performance of the HM against the EBM and the DDM on a set of real world
data provided by Rete Ferroviaria Italiana (the Italian IM) showing the effectiveness of the proposed approach
both in terms of dynamicity, interpretability, and robustness. Section 2.4.7 concludes the scenario.

2.4.2 Problem Description

A railway network can be easily described with a graph. Figure 28 depicts a simplified railway network where
a train follows an itinerary characterized by a station of origin (station A), a station of destination (station F),
some stops (stations A, D, and F) and some transits (checkpoints B, C, and E).

We call checkpoint a station without differentiating between a station where the train stops or transits and
between actual stations and points of measure. In fact, not all checkpoints are actual stations since in long
railway sections it is often needed to add a point of measure for following the trains with a better granularity.
The railway sections are the pieces of the network between two consecutive checkpoints, note that railway
sections have also an orientation (e.g. transit D to E is different from transit E to D).
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Figure 28: A railway network. The itinerary of a train is depicted with the grey nodes where A is the origin
station and F is the destination.
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Figure 29: Running Time and Dwell Time.

For any checkpoint in the itinerary, the train is scheduled to arrive and depart at different specified times,
defined in the timetable, respectively ¢; and ¢;j. Usually, the time references included in the timetable are
approximated with a precision of 30s. The difference between the scheduled time and the actual time, either
for arrival (t;) or for departure (t), is defined as Train Delay. If the delay is greater than 30s, then a train
is considered as delayed. Note that, for the origin station there is no arrival time, while for the destination
station there is no departure time. We define the Running Time as the amount of time needed to depart from
the first of two subsequent checkpoints and to arrive to the second one (see Figure 29, for railway section D
to E the scheduled Running Timeis t (E) —t5(D) while the actual Running Time is t3(E) —t$(D)) and the Dwell
Time is the difference between the departure time and the arrival time in a fixed checkpoint (see Figure 29,
in checkpoint D the scheduled Dwell Time is t(D) — t;,(D) and the actual Dwell Time is t%(D) — t3(D)).
Furthermore, each train has an unique identifier from which it is possible to retrieve the category of the train
(e.g. Regional, Freight, and High Speed). Analogously, each checkpoint has an unique identifier from which
it is possible to retrieve the category of the network (e.g. Node, High Speed, and Second Complementary
Network). Train, network category, time of the day, and other factors allow to compute the Penalty Costs
associated to a delayed train.

Based on these definitions, it is possible to describe the train movements related prediction problems that
we will face in this work.

2.4.2.1 Running Time and Dwell Time Prediction

The prediction of the Running Time and Dwell Time are the first problems that we address. For a specific
train, the problem is to predict the Running Time for all the subsequent railway sections it will traverse and
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the Dwell Time for all the subsequent checkpoints in which it will stop, updating these predictions every
time it reaches the next checkpoint. Providing an accurate prediction of the Running Time and the Dwell
Time allows to provide to the operators a clear understanding of how much time a train needs to complete
the itinerary. Moreover, as we will describe later, the Running Time and the Dwell Time predictions can be
exploited as a building block for the Train Delay predictors (see the EBM of Section 2.4.4.1).

2.4.2.2 Train Delay Prediction

The Train Delay prediction is the problem of forecasting the arrival and departing delay of a train for all the
subsequent checkpoints in its itinerary, updating this predictions every time it reaches a new checkpoint. The
prediction of the future delays is a problem of paramount importance and yields several benefits: a reliable
information for the passengers currently on the trains or waiting in a checkpoint, a better exploitation of the
railway network while maintaining the safety of the passengers and avoiding resource conflicts, better train
rescheduling and dispatching, and more.

Note that, Train Delay prediction can be seen as a standalone task (see the DDM of Section 2.4.4.2) or it
can be retrieved from the combination of the Running Time and the Dwell Time predictions (see the EBM of
Section 2.4.4.1).

2.4.2.3 Penalty Costs Prediction

In an RTS the IMs and the TOs have to pay penalties, when trains are delayed, in proportion to their actual
responsibilities. For this reason, predicting the Penalty Costs is a strategic issue: an effective prediction system
can be exploited to choose the best dispatching solution which minimizes both Train Delays and Penalty
Costs. However, this problem is rather complex since the Penalty Costs computation is the result of a complex
procedure that has to be fully understood.

Currently, in every State a document of management principles (for example, in Italy is the PIR?) defines the
rules, agreed between the State, the IMs (e.g. Rete Ferroviaria Italiana is an Italian IM), and the TOs (e.g.
Trenitalia is an Italian TO), that must be followed to solve the conflicts when one or more trains are delayed
and the associated Penalty Costs that IMs and TOs have to pay based on their responsibilities. Such rules
define the level of priority of each train based on different variables such as the category of the train and
time of the day. For instance, during the daily commuter time slot, some Regional trains could have the same
priority as the High Speed trains, even if the latter have usually higher priority. In order to enforce the IMs
to follow these rules, if a train is delayed, the priorities also influence the Penalty Costs associated to a Train
Delay. Consequently, in order to compute the Penalty Costs, it is required to retrieve a series of information
regarding the trains and their itinerary. Although a deterministic relation exists to compute the penalties,
not all these variables are known at the time of the train transit. The final penalty is usually agreed after the
train has completed its journey (even after months). For example, the percentage of responsibility may be
the results of a legal dispute between the IM and the TO.

More in details, the Penalty Costs is the result of a deterministic combination of the following variables:

¢ the category of the train (e.g. a train belonging to the market service delayed of one hour has larger
Penalty Costs than a Freight train affected by the same delay);

¢ the operational category of the train (e.g. if the itinerary is scheduled in the timetable, or it is cre-
ated/modified in the last few days before the actual train transit);

¢ the type of railway section (similarly to the category of the train, the High Speed Lines are affected by
a higher Penalty Costs);

"http://www.rfi.it/rfi/SERVIZI-E-MERCATO/Accesso-alla-rete/Prospetto-informativo-della-rete
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Figure 30: Handling the conflicts using Train Delay and Penalty Costs prediction models. Exploiting the
Penalty Costs prediction would result in stopping Train A because is less expensive for the IM. Exploiting,
instead the delay would resort in stopping Train B for reducing the grater delay of Train A.

¢ the amount of delay of the train (e.g. the average and maximum delay for Regional trains, or just the
delay in the final checkpoint for Freight trains);

¢ the percentage of responsibility of the IMs, of the TOs, and of the exogenous factors (e.g. flooding and
strikes).

2.4.2.4 Example

In this section, we present an example to show the usefulness of the predictive models described above.
Let us suppose to have two trains travelling the simplified railway network depicted in Figure 28, with two
different itineraries as depicted in Figure 30. The first train, Train A, travels along its gray itinerary from
checkpoint A to F, while the second one, Train B, travels its yellow itinerary from G to F. The two trains
share three checkpoints in their itineraries (checkpoint D, E, and the destination F). The timetable has been
constructed in order to give the correct headway to the trains for safety and regularity purposes. Suppose
also that Train A is in checkpoint B, and that Train B is in checkpoint H.

Exploiting the Train Delay predictor, we discover that both trains will arrive at approximately the same time
in checkpoint D, leading to a conflict. Then, we have to decide which one of the two trains should have
the priority over the other. Exploiting just the Penalty Costs prediction would result in stopping the Train A
because is less expensive for the IM, while exploiting just the Train Delays prediction would resort in giving
the priority to the Train A for reducing its grater delay. Considering instead both Penalty Costs and Train
Delays predictions, would result in a more aware decision. In this case, the most reasonable solution is to
stop Train A since it will negligibly increase its delay (few additional minutes) to make Train B go forward,
possibly regaining some delay which is instead very costly for the IM (so, probably, it is a more important
train).

2.4.3 The Italian Railway Transportation System

In this document, we consider the specific case of the Italian RTS, which is substantially handled by just one
IM, Rete Ferroviaria Italiana (RFI), which provided to us both the knowledge of the network and the data

IN2D-T5.4-D-UKO-002-02 Page 48 19/11/2018



PDREAMS G~ [

Contract No. 777596

needed for this study.

According to the International Union of Railways, the ltalian RTS is in the Top 3 and the Top 10 largest RTS
respectively in Europe and Worldwide. RFI controls every day ~10.000 trains travelling along the national
railway network of ~25.000km. Every train is characterized by an itinerary composed of an average of ~12
checkpoints. This means that the number of train movements is greater than or equal to ~300.000 per day.
This results in more than one message per second and more than 10GB of messages per day to be stored.
Note that, every time a message describing the itinerary of a particular trainis retrieved, the predictive models
can take advantage of this new information both to make better predictions and to updated the model itself.
This allows to have always the best performing models which exploits all the available information, and to
follow the effects of small or big changes in the timetables that occur during the year.

Apart from the daily messages of the train movements, RFl is also able to provide all the information about
the travelling trains and network characteristics needed to compute the Penalty Costs according to the PIR
(see Section 2.4.2.3).

Finally, other exogenous information regarding the network can be retrieved from many Italian freely avail-
able data sources which can help in improving the accuracy of the DDMs. In this work, we will take into
consideration the weather information (see e.g. [68, 69]) since in previous works it has been shown to be an
effective solution for improving the DDM accuracy [63].

2.4.4 The Actual Systems

This section describes two different state-of-the-art approaches employed in RFI to tackle the problems de-
scribed in this paper. In particular, RFl exploits both a EBM which is quite similar to the one described in [34]
(although the latter includes process mining refinements which potentially increase its performance) and a
DDM [63] that produces better predictions of the Train Delays with respect to EBM.

2.4.4.1 The Actual Experience-Based Model

The actual RFI EBM performs the predictions based on the knowledge of the railway network and the expe-
rience of the operators. It focuses mostly on the problem of predicting the Running Time. The Dwell Time
is considered fixed to the difference between the scheduled departure and arrival time in a station. The
Train Delays and the Penalty Costs are derived from the predicted Running Times and the fixed Dwell Times
assuming that the percentage of responsibility for a delay is always 100% of RFI.

More in details, the idea of the EBM is to analyze the amount of time that a train needs to traverse each railway
section of the network, taking into account the speed limits, the state of the network, the type of train etc.
The timetables are produced taking in consideration such physical constraints and a working margin is kept
for dealing with delays. Then, for each railway section and each train category, a coefficient, called Gaining
Time, is computed which represents the time that be can regained in case of delay (the Gaining Time takes
into account also a possible smaller Dwell Time). The Gaining Time is static, i.e. it does not change based
on the state of the network, weather conditions, etc. The Gaining Time, is exploited to solve the Train Delay
prediction problem. When predicting a delay, it is assumed that a delayed train is always able to regain, in a
given railway section, an amount of time equals to its Gaining Time. Then, when RFI predicts the Train Delay
in a subsequent checkpoint it subtracts from the current delay all the Gaining Times of the railway sections
between the actual station until the considered checkpoint. Once the delay is computed, the Penalty Costs
can be derived straightforwardly if, as in RFl, it is assumed that 100% of the delay costs is to impute to RFlI,
thanks to the deterministic formula that can be found in the PIR.

The Gaining Times of the RFI EBM do not depend on the time of the days, on the fact that it is a weekend
or a weekday, on the train actual delay, on the network congestion, on the weather conditions since no easy
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relation can be retrieved. On the other side, the RFI EBM is quite robust and easy to understand from an
operator perspective even if not very accurate and dynamic.

2.4.4.2 The Actual Data-Driven Model

Given the low accuracy of the EBM, in RFI it has been decided to exploit also the DDM developed in [63]. The
DDM does not take into account the knowledge of the railway network nor the experience of the operators,
but it is based just on the historical data about train movements, weather conditions, and weather forecasts.
For this purpose, the DDM exploits advanced analytic methods able to extract accurate models of the future
behaviour of each train. The advantage of these methods is that there is no need of any a-priori knowledge of
the underline physical system but, most of the time, they produce non-parametric models that are not easy
to interpret nor supported by any physical intuition or interpretation. Moreover, in general, a great amount
of historical data is needed in order to build an accurate model and it is not so easy to make these systems
strongly dynamics. In fact, if for example the timetable changes, they require at least one month of data
before achieving a reasonable accuracy.

The RFI DDM is composed of many DDMs that, working together, make it possible to perform a regression
analysis on the past delay profiles in order to predict the future ones. In particular, for each train and for
each checkpoint composing its itinerary, a set of DDMs is built to predict the delay in all the subsequent
checkpoints. Consequently, the total number of DDMs to be built for each train is ~n(n—1) where n is the
number of checkpoints visited by the train. These DDMs work together to estimate the delays of a particular
train during its entire journey. For a single train, every time it arrives at (departs from) a specific checkpoint
included in its trip, the DDMs take as inputs its previous sequence of arrival and departure Train Delays,
Running Times, and Dwell Times to predict delay for all the subsequent checkpoints. These DDMs are also
able to take into account the state of the congestion of the network and other exogenous variables (e.g. the
weather information) [63]. The DDMs can be built using many different learning algorithms, exploiting the
Random Forest (RF) usually leads to better results [14].

Unfortunately, the RFI DDM has some drawbacks. Many historical information about the trains are requested
before performing the prediction, otherwise it performs badly (e.g. on new trains or after changes in the
timetable). Moreover, each model composing the DDM is specific for one particular train and checkpoint
limiting its interpretability on a larger scale (it cannot group similar trains or trains in the same category) and
the complexity of the DDM is higher with respect to EBM (too many models to build). Finally, the DDM does
not integrate the knowledge and the experience of the operators nor gives to the operators an interpretation
of the Train Delay phenomenon.

2.4.5 The Proposed Hybrid Model

In this work, we propose an HM to perform the Running Time, Dwell Time, Train Delay, and Penalty Costs
predictions, merging together the EBM and the DDM to exploit their strengths and limit their weaknesses.
The goal is to build accurate, dynamic, robust, and interpretable models able to provide insights for both
solving the train conflicts and minimizing the Train Delays and the Penalty Costs.

Similarly to the EBM, the HM relies, on the top, on an interpretable model able to encapsulate the experience
of the operators in the form of a decision tree and, at the bottom, the leafs, instead of being defined relying
on the physical knowledge of the network as in the EBM, are constructed following the ideas of the DDM
where the historical data about the network and other exogenous information (e.g. weather) are exploited
via advanced analytic methods. Moreover, contrary to the DDM, the HM does not implement one model for
each train and, contrary to the EBM, the HM does not group all the trains just based on their category and
railway section. In fact, the HM groups the trains based on a series of similarity variables, defined together
with the RFI operators, which allow to have, from one side, robust statistics, thanks to the possibility to
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Table 4: Description of the HM top level decision tree feature set.

Feature Name [ Categorical [ Description

Railway Section Yes The considered railway section

Railway Checkpoint Yes The considered railway checkpoint

Train Type Yes The considered Train Type

Daytime No The time of the day with an hourly granularity

Weekday Yes The day of the week

Last Delay No The last known delay with the following granularity in minutes ([0, 2], (2, 5], (5, 10],
(10, 20], (20, 30], (30, 60], (60, 120], (120, 0));

Weather Conditions Yes The weather conditions (Sunny, Light Rain, Heavy Rain, Snow).

Table 5: Description of the HM bottom level RF feature set.

Feature Name | Categorical | Description |

Weather Information Yes Weather condition (Sunny, Light Rain, etc.) in all the checkpoints of the train itinerary (for
the already traveled checkpoints we use the actual weather while for the future check-
points we use the predicted weather conditions)

Past Train Delays No Average value of the past Train Delays in seconds & Last known Train Delay

Past Dwell Times No Average value of the past differences between actual and scheduled Dwell Times in sec-
onds & Last known difference between actual and scheduled Dwell Time

Past Running Times No Average value of the past differences between actual and scheduled Running Times in
seconds & Last known difference between actual and scheduled Running Time

Network Congestion No Number of trains traversing the checkpoints of the train itinerary in a slot of 20 minutes
around the actual and scheduled times respectively for the past and future checkpoints

Network Congestion Delays No Average Train Delay of the trains traversing the checkpoints of the train itinerary in a slot

of 20 minutes around the actual and scheduled times respectively for the past and future
checkpoints

learn from a reasonable group of train, but also a rich feature set, to be able to capture the variability of
the phenomena. The proposed HM is then able to be extremely dynamic: grouping the trains increases
the number of historical data to exploit during the leaf creation and follow, in a reasonable amount of time,
timetable changes and new train schedules, thanks to the robustness introduced by the HM experience based
top level structure.

We exploited the above mentioned approach for predicting both the Running Time and the Dwell Time.
For what concern the Train Delay, instead, we opted for the same solution of the actual RFI EBM (see Sec-
tion 2.4.4.1). In fact, in order to predict the Train Delay at a desired subsequent checkpoint, we sum all the
needed Running Time and Dwell Time predictions to the current train time and then we compute the differ-
ence between the estimated and the scheduled train time. Finally, in order to predict the Penalty Costs, we
made use of the HM described in the previous paragraph to predict an auxiliary variable, the Responsibil-
ity, which is the percentage of responsibility of the IM for the delays. Then, combining the Train Delay and
the Responsibility predictions, we were able to predict the Penalty Costs exploiting the deterministic relation
described in the PIR.

The work has been conduced side by side with the RFI operators taking into account their needs and their
working environment which is constrained, in terms of complexity of the solution, to something that can
provide simple and effective insights.

In the subsequent subsections, we will first present in details how we constructed the above mentioned HV
decision tree based top structure and its Data-Driven based bottom structure (see Section 2.4.5.1), and then
we will describe how this HM has been exploited for predicting the Running Time, the Dwell Time, the Train
Delay, and the Penalty Costs (see Section 2.4.5.2).
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Figure 31: The proposed HM for the Running Time prediction: updating the model every time a new move-
ment is recorded and predicting the future Running Time in the subsequent sections.

2.4.5.1 Hybrid Decision Tree

As described before, the HM exploits, as a basic structure, a top level experience based decision tree and a
bottom level Data-Driven model which is able to easily take into account the network congestion state and
other exogenous information, like the weather conditions, which are not easy to model with the experience.
The top level structure can be easily adapted to the prediction task under examination. For instance, for the
Running Time we are interested in considering each railway section separately, instead for the Dwell Time
prediction it is better to differentiate each of the checkpoints. The variables that we consider in the top level
structure, defined with the RFI experts, are a subset of the ones reported in Table 4. Then, as leafs of the tree,
instead of plugging an estimate of the quantity that we want to predict based on the experience of the opera-
tors and the knowledge of the network, we exploit a Data-Driven model able to learn from the historical data
regarding all the trains which fall in that particular leaf (basically all trains which share similar characteristics
and itinerary) plus additional complex features. In particular, each leaf is a RF regressor [14] (following the
experience of the DDM developed in [63]), which predicts the quantity that we want to estimate based on
a series of features designed with the RFI experts and based also on the lesson learned with the DDM [63].
This feature set is reported in Table 5.

The whole HM is constructed and updated incrementally as soon as a new train movement is recorded. In
the top level decision tree, a new leaf is added each time we record a new train movement which belongs to
a previously unexplored branch of the decision tree. Then, the RF regressor in the leaf is learned based on
all the past train movements which fall in that particular leaf. In order to follow the changes in behaviour of
the phenomena we forgot the train movements older than three months. The predictions phase, instead, is
simpler: we just visit the tree considering the information that we want to predict and we exploit the correct
RF regressor to make the actual prediction.

As described at the beginning of Section 2.4.5, the HM will be exploited for predicting:

e the Running Time: in this case we exploit, in the HM top level decision tree, all the variables of Table 4
except the one relative to the checkpoints since Running Time is a property of the railway sections and
do not depend on the checkpoints;

e Dwell Time: in this case we exploit, in the HM top level decision tree, all the variables of Table 4 except
the one relative to the railway sections since Dwell Time is a property of the checkpoints and do not
depend on the railway sections;
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e Responsibility: in this case we exploit, in the HM top level decision tree, all the variables of Table 4.

Figure 31 depicts an example of use of the HM for the Running Time prediction problem. As one can see from
Figure 31, every time a new movement is recorded the HM is updated based on the information inside the
train movement record and we exploit this new information about the travel of the train to update all the
predictions about the subsequent railway sections.

2.4.5.2 Train Movements Predictors via Hybrid Model

In this section we describe how the previously described HM has been exploited for predicting the Running
Time, the Dwell Time, the Train Delay, and the Penalty Costs.

2.4.5.2.1 Running Time Prediction

In this case we apply the HM described in Section 2.4.5.1 and we directly predict the values of the Running
Times. Every time a train movement is recorded, the model and the predicted future Running Times are
updated based on this new information.

2.4.5.2.2 Dwell Time Prediction

Regarding the Dwell Time prediction we exploit exactly the same approach described for the Running Time
prediction. Note that, the only difference between the two models stays in the feature set of the HM top
level decision tree (see Section 2.4.5.1).

2.4.5.2.3 Train Delay Prediction

In order to predict the Train Delays, instead of building another HM, we exploit, similarly to the EBM, the
Running Time and Dwell Time predictors as building blocks. Each time a prediction is required, we predict all
the Running Times of the sections and all the Dwell Times of the checkpoints between the current checkpoint
and the one for which we request the Train Delay prediction. Then, the desired result is obtained by summing
all these times to the current time and subtracting from the results the scheduled time.

2.4.5.2.4 Penalty Costs Prediction

In order to compute the Penalty Costs of a particular Train Delay, we have to combine two quantities. First,
we obtain the predicted Train Delay exploiting the approach described in Section 2.4.5.2.3. Then, we predict
the Responsibility with a new HM as described in Section 2.4.5.1. Once these two predictions are available,
we combine them with the deterministic relation described in the PIR, obtaining the Penalty Costs prediction.
Specifically, we compute the Penalty Costs P of a train as follows:

P=Py» mriCrCnCh, (1)
JET

where Pys is the unitary costs, 7 is the set of checkpoints composing the itinerary, m; are the minutes of delay
at section j, r; is the percentage of responsibility for section j, Cr is coefficient relative to the type of the
train T', C'yy is the coefficient relative to the type of railway network IV, and Cp is a coefficient which depends
on the average and maximum delay registered for the train. The parameters m; and C'p are estimated with
the Train Delay predictor. The parameters r; are estimated with the Responsibility predictor. More details
about Eq. (1) can be found in the PIR.
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2.4.6 Experimental Evaluation

In this section we test the proposed HM, presented in Section 2.4.5, against the actual RFlI EBM, presented
in Section 2.4.4.1, and DDM, presented in Section 2.4.4.2.

All the experiments have been conducted on a virtual machine in the Google Cloud Platform? (GCP). The
machine is the n1-standard-8 characterized by 8 core and 30GB of RAM and 500GB of SSD disk space. Each
experiment has been repeated 30 times in order to ensure the statistical robustness of the results.

2.4.6.1 Available Data

The experiments have been conducted exploiting the real data provided by RFI:

¢ data about train movements which contains the following information: Date, Train ID, Checkpoint ID,
Actual Arrival Time, Arrival Delay, Actual Departure Time, Departure Delay and Event Type. The Event
Type field can assume different values: Origin (O), Destination (D), Stop (F), Transit (T);

¢ data about the delay responsibilities: for every delay the percentage of RFl responsibility is available;

¢ timetables, including planning of exceptional train, cancellations, and Gaining Time of each section.

For the purpose of this work, RFI provided the access to the data of 12 months (the whole 2016 solar year) of
train movements of one big Italian Region (Liguria). The data are relative to more than 2.500 trains and 146
checkpoints. The dataset contains 4.127.380 train passages.

From the PIR, freely available on the RFI website!, we retrieved all the information needed to compute the
Penalty Costs as described in Section 2.4.5.2.4.

We also exploit, as exogenous information, the weather conditions from the weather stations in the area.
For each checkpoint we consider the closest weather station to the railway station/line. We collect the data
relative to the solar radiation and precipitations for the same time span of the train passages from Italian
national weather service databases, which are publicly accessible for the Liguria Italian Region at [68]. From
this data it is possible to extract both the actual and the forecasted weather conditions (Sunny, Rain, Heavy
Rain, and Snow).

2.4.6.2 Key Performance Indicators

In the experiments, we exploit the following Key Performance Indicators (KPls) for measuring the quality of
the different models (in parenthesis we report the prediction problem where they have been applied). These
KPIs have been designed together with RFI based also on the lesson learned during the exploitation of the
DDM [63]:

e AASk (Running Time prediction): the Average Accuracy for a particular Section k. AASk is computed as
the averaged absolute value of the difference between the predicted and the actual Running Times in
minutes;

e AAS (Running Time prediction): is the average over the different sections k£ of AASk;

e AACk (Dwell Time prediction): the Average Accuracy for a particular Checkpoint k. AACk is computed
as the averaged absolute value of the difference between the predicted and the actual Dwell Times in
minutes;

e AAC (Dwell Time prediction): is the average over the different checkpoints k£ of AACk;

e AAICTk (Train Delay prediction): the Average Accuracy at the i—th subsequent Checkpoint for Train k.
For a particular Train k, the absolute value of the difference between the predicted delay and its actual
Train Delay is averaged, at the i—th subsequent checkpoint with respect to the actual checkpoint in
minutes;

2Google Compute https://cloud.google. com/products/
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Table 6: Comparison between HM and Table 7: Comparison between HM and
EBM for Running Time prediction. (n) is EBM for Dwell Time prediction. (n) is the
the number of train passages in the sec- number of train passages in the check-
tion. point.
AASK AACK
k n EBM | HM k n EBM | HM
1 7344 11 | 0.9 1 49134 17 | 07
2 10672 17 | 08 2 61888 01 | 03
3 | 22082 12 | 0.9 3 22210 14 | 12
4 1013 14 | 04 4 23629 24 | 18
5 | 25228 05 | 0.4 5 29652 2 1.6
6 18090 0.8 | 05 6 29271 13 1
7 398 32 | 29 7 33350 12 | 09
8 12671 12 | 0.6 8 22508 05 | 0.2
9 | 29357 14 | 0.9 9 33418 0.8 1
10 | 5614 2.7 | 15 10 | 24307 05 | 09
AAS Regional 13 0.8 AAC Regional 1.1 1.1
AAS High Speed 0.8 0.6 AAC High Speed 0.5 0.7
AAS Freight 19 | 12 AAC Freight 25 | 15
[ AAS [ 13 J 09| [ AAC [11 ] 1]

e AAIC (Train Delay prediction): is the average over the different trains j of AAIC;
e AAP (Penalty Costs prediction): is the Average Accuracy over the different trains between the predicted
and actual Penalty Costs in Euros.

2.4.6.3 Results

In this section we compare the proposed HM for predicting Running Times, Dwell Times, Train Delays, and
Penalty Costs against the EBM and DDM, by using the data described in Section 2.4.6.1 and the KPIs described
in Section 2.4.6.2

2.4.6.3.1 Running Time Prediction

In this first set of experiment we compare the HM with the EBM on the Running Time prediction problem.
We could not compare them also with the DDM since it does not provide a solution for this problem [63].
Table 6 reports the AASk for a subset of the railway sections and the AAS also considering the different train
types3. From the results it is possible to observe that:

e HM clearly outperforms the EBM,;
¢ the improvement is more evident for Freight and Regional trains, instead for High Speed trains the two
approaches provide similar results.

In order to show the ability of the proposed solutions to handle changes in the timetable, Figure 32 reports
the value of AAS during the 2016. From Figure 32 it is possible to observe that:

e HM is constantly better with respect to the EBM during the whole year;

e HM needs really little time to learn a good model, for example in January after 10 days of data it reaches
almost its optimal accuracy;

e HM and EBM exhibit an increase in the error in June (days from 180 to 210), this is motivated by a
change in the timetable happened the 12th of June.

3Because of confidentiality issues we cannot report the results and the ids for all the sections and all the checkpoints available.
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Table 8: Comparison between HM, EBM, and DDM for Train Delay prediction. (n) means the number of
days that the train transit according to our dataset. (—) means not available since data is not enough to
build the model.

AAICTK EBM [ DDM [ HM ]| EBM [ DDM [ HM [ EBM | DDM | HM [ EBM | DDM | HM
A % n 1st 2st 3st 4st

1 349 1 06 [o5 ] 12 [ 07 1 17 [ 11 J15] 21 [ 1.4 [ 21

2 346 1 05 [04 |[ 12 [ 08 [09 |[ 15 1 13 [ 1.8 | 12 | 16

3 345 ][ 05 | 04 [03 [ 09 | 06 [04 [ 11 | 08 [06 || 12 1 07

4 308 [ 09 | 05 [05 |[ 15 1 12 [ 17 | 13 [ 14 |[ 1.9 | 14 [ 138

5 235 [ 09 [ 09 [07 [ 15 | 13 [ 13 2 15 [ 18 [ 25 | 18 [ 23

6 175 [[ 07 | 04 [ 05 [[ 11 | 07 I 14 [ 07 [13 ][ 18 1 17

7 169 || 07 | 04 [ 04 1 06 |09 || 13 [ 06 |12 || 16 | 08 | 16

8 29[| 24 | 34 |16 || 51 | 62 [39 | 78 9 [ea [ 99 [ 113 ] 82

9 14 14 - |11 21 - [17 ] 238 - [22][ 31 - [ 26

10 2 18 - |11 33 - |19 59 - 3 76 - 4

AAIC Regional 12 [ 08 Jo9 [ 21 [ 15 |17 3 22 [ 25 38 [ 28 [ 33

AAiCHighSpeed || 07 | 07 [ 05 |[ 1.2 | 11 1 16 | 1.4 | 14 2 17 [ 138

AAIC Freight 19 | 35 |16 || 36 | 52 |31 | 53 | 69 |47 | 65 | 82 | 6.1

AAIC [ 1 JT oo Jos[[ 18 ] 15 [16 [ 25 [ 1.8 [23 ] 32 [ 21 [29

Table 9: Comparison between HM and EBM for Penalty Costs prediction.

[ [ EBM | HM ]
AAP Regional 415 | 2.49
AAP High Speed 0.2 0.14
AAP Freight 0.11 0.1

[ AAP [ 444 ] 271 ]

Note that, even if the HM has a Data-Driven core, it is still robust and the EBM and much more dynamic of
any DDM.

2.4.6.3.2 Dwell Time Prediction

For what concerns the Dwell Time prediction problem, the approach, the results, and the comments are quite
similar to the one made for the Running Time prediction problem. Table 7, analogously to Table 6, reports
the AACK for a subset of the checkpoints and the and AAC also considering the different train types>. From
Table 7 it is possible to observe that:

¢ in this problem EBM and HM provide similar results, HM being slightly better;
e similarly to the result for the Running Time prediction problem the HM approach results to be partic-
ularly effective for the Freight trains.

We do not report the equivalent of Figure 32 since results are basically the same.

2.4.6.3.3 Train Delay Prediction

In this section we compare the HM with both the EBM and the DDM for the Train Delay prediction problem.
Table 8 reports the AAiICTk for a subset of the trains and subsequent checkpoints and the AAiC also considering
the different train types3. From the results it is possible to observe that:

¢ both the HM and DDM perform better with respect to the EBM approach;
e the HM better predicts the delays in the subsequent checkpoint (i = 1);
e the DDM better predicts the delays when the distance from the actual checkpoint is larger;
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Figure 32: AAS for the Running Time during the year.

e DDM is not able to perform the prediction for the trains for which we have too little information (i.e.
infrequent trains) while HM is always able to provide an answer;

e for what concern the Freight trains, DDM provides the largest error while HM improves of ~20% over
also the EBM.

2.4.6.3.4 Penalty Cost Prediction

In this section we compare the HM with the EBM on the Penalty Costs prediction problem. We could not
compare them also with the DDM since it does not provide a solution for this problem [63].
Table 9 reports the AAP considering the different train types3. From Table 9 it is possible to observe that:

e the HM is much more effective with respect to the EBM for all the train categories;
¢ the difference is much more evident for the Regional trains which are also the most expensive in terms
of Penalty Costs for RFI.

2.4.6.4 Computational Requirements

Finally, we compare the computational requirements of the different models. Figure 33 depicts both the
scalability varying the number of cores (left) and the trade-off between accuracy and computational require-
ments (right) for the Train Delay prediction case (AAIC with 7 = 1). The time reported on the axis is the time
needed for performing the analysis of all the 12 months of data provided by RFI.

From Figure 33 we can observe that:

e EBM and HM have a similar scalability, the computational time decreases smoothly when more cores
are added to the computation;

e DDM, when 8 cores are exploited, requires 100x the time with respect to EBM and HM (we did not
execute DDM with less than 8 cores because the computation required more than 10 hours);
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Figure 33: Computational Time Evaluation.

e EBM and HM have similar computational requirements, HM being just slightly slower with respect to
EBM;
e HM provides clearly the best trade-off between accuracy and computational requirements.

In conclusion, EBM is the fastest method but, with a small additional computational effort with respect to
EBM, HM is able to deliver a model which is extremely more accurate with respect to EBM and DDM.

2.4.7 Conclusions

In this work we dealt with the problem of understanding and predicting the train movements in Large-Scale
Railway Networks. In particular, our purpose was to predict the Running Time of a train between two stations,
the Dwell Time of a train in a station, the Train Delay, and the Penalty Costs, four important aspects which
fully characterize the train movements and that were never studied together before. For this purpose, we
proposed, for the first time, an hybrid approach which is able to merge together two approaches adopted in
literature: the one which develops models based on the knowledge of the network and the experience of the
operators and the one based on the analysis of the historical data about the network with advanced analytic
methods. The result is a dynamic, interpretable, and robust hybrid data analytics system able to handle non
recurrent events, changes in the behaviour of the network, and ability to consider complex and exogenous
information like weather information. Basically, the proposed approach is able to take the strengths of the
two original approaches and to limit their weaknesses. Results on real world data coming from the Italian
railway network shown that the proposed solution outperforms both state-of-the-art experience and Data-
Driven based systems.

2.5 Specific-Scenario 3: Restoration Time

2.5.1 Introduction

Every time an infrastructure asset is affected by a failure, it is clear that it will affect not only the single asset
functional behaviour, but also the normal execution of railway operations.

Modern railway networks have to guarantee that security systems, trains and assets -and consequently main-
tenance operations- are able to provide an effective and efficient service to their customers.

The general aim is to study and prove the application of advanced visual and rule-based data analytics in the
railway ecosystems.
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A fully data-driven approach is here proposed for the solution of two similar problems in the scope of rail-
way transportation system: predicting time to restoration for future maintenance actions (RFl scenario) and
detecting the underlying functional dependencies and useful relationships between the function restoration
time of an asset and various features describing its initial conditions (SR scenario).

The information outputted by the models can be very useful because it could be used by the traffic manage-
ment system to reroute trains through safer paths, minimizing the risks of any problem.

2.5.1.1 Problem description

The general objective of this work is to study, design and develop data and visual analytics solutions for
knowledge extraction from railway asset data. The two scenarios that will be presented cover the same
aspect of the railway system -the time to restoration- and exploit similar data, but they differ in terms of
aims:

¢ In the first scenario, a set of predictive models for forecasting purposes have been developed, based
on both data provided by RFI about maintenance/repair actions and weather data;

¢ In the second scenario, different diagnostic models have been designed to capture, understand and
visualize the knowledge enclosed into maintenance reports (provided by SR) and historical weather
conditions, without predictive aims.

2.5.1.2 State of the art

Nowadays, vast amounts of data are being generated in many fields, including the railway one; data analytics
and machine learning are tools able to collect, clean, process, analyze, and gain useful insights from them.
The task of data analytics comes in as there is a need to extract concise and possibly actionable insights from
the available data for application-specific goals: the raw data may be arbitrary, unstructured, or even in a
format that is not immediately suitable to be processed by an automated computer program; to address
this issue, data analysts use different processing techniques to collect, clean and transform raw data into
standardized formats.

Applications of data analytics are often closely connected to supervised learning problems. The concept of
machine learning was born in the Nineties. It can be seen as a union of Artificial Intelligence, Computational
Intelligence and Statistics [83]. In this field a lot of algorithms for supervised and unsupervised learning were
born, e.g. Support Vector Machine, Neural Networks, Decision Trees and Statistical Pattern Recognition.
The learning process can be viewed as the process of generating automatically new knowledge from past
experience/data [56]. In this context, the term “supervised” indicates the presence of the outcome variable
to guide the learning process. Typically, the development of a machine learning algorithm follows two or
three fundamental phases: training, validation (when the learner is parametric) and testing. These phases
correspond, in their more basic applications, to so-called data “sets”, i.e. subsections of the original data:
training set, validation set and test set. A typical example of supervised learning is the regression case: an
outcome measurement is provided and the objective is to predict it based on a set of known features; the
learner observes the outcome and the feature measurements for a set of objects in the historical data (train-
ing) and, using this “experience”, a model is built to predict the outcome for new unseen objects (in the test
set).

Learners can be black-box -i.e. they hide the algorithm’s details from the user and just allow parameter ad-
justment, so that “the algorithm learns whatever it learns” [5]- or white-box -the algorithm’s structure is
revealed. A good white-box learner can be defined as the one that can accurately predict the outcome based
on the problem specific metrics and can be easily interpreted.

In recent times, as public agencies responsible for areas such as criminal justice, health and welfare are in-
creasingly using algorithms and software to steer or make decisions on life-changing events, research insti-
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tutes are focusing more and more on the social implications of artificial intelligence; the debate around how
these systems can be “opaque” seems to be of greater importance than ever. In some cases, algorithms are
now capable of accomplishing almost incredible tasks and handling an unfathomably complex world better
than a human can, but, exactly because they can, the way they work risks to become unfathomable too. For
these reasons, the employment of white box algorithms is also assuming ethical connotations [1].

In the scope of railway systems, machine learning is often synonymous with Condition Based Maintenance
(CBM) and Predictive Maintenance (PM), other than Traffic Management System (TMS). Thanks to the rapidly
expanding scale of manufacturing and asset maintenance industries, they are now adapting to the wider
applications of advanced algorithms on consumer generated big data [3].

In fact, according to [90], maintenance of railway assets is not regarded anymore as something that needs to
be done, but more and more as a professional business delivering very important products for rail operations:

¢ Availability: the time that the infrastructure is available for operations per calendar period. A part
of the time the infrastructure is out of service due to planned preventive maintenance actions. An-
other part of the time the infrastructure can be unavailable due to infrastructure failures (corrective
maintenance), possession over-runs or external factors, such as vandalism and bad weather;

¢ Reliability: the time that the infrastructure is available for operations during the periods agreed. In
other words, with regard to the reliability, only the unplanned maintenance and repair are consid-
ered. The reliability depends on e.g. the asset quality and maintainability, the amount of preventive
maintenance, and the failure restoration times.

Various data analytics applications have been developed to guide maintenance planning: data-driven decision
support models have been built either to study maintenance performance [60] and to achieve the availability
target in both the scheduled and the condition based maintenance regimes [65].

Maintenance issues are also strictly connected with speed of line-haul movement between terminals: among
many determinants of overall network velocity, a key driver is service interruption, including lowered oper-
ating speed due to track conditions [50].

Using huge volumes of historical detector data, in combination with failure data, maintenance action data,
train type data and weather data, several analytical approaches have been explored, including correlation
analysis, causal analysis, time series analysis and machine learning techniques to automatically learn rules
and build failure prediction models.

Additionally, the analytics and models can also be used with diagnostic intent -as in the second scenario of
this work- detecting the root cause of several failure modes, which can be proactively used by maintenance
organizations to optimize trade-offs related to maintenance schedule, costs and shop capacity.

Arjen Zoeteman, researcher in Life Cycle Costing for Rail Infrastructures at TU Delft, in 2001 pointed out
that available data about failures in rail systems were of low quality [90]. Failure types were missing, failure
frequencies, restore times and speed restrictions were not consistent. However, his efforts in improving the
performance of railway systems using data led to the recognition of the importance of the subject and helped
in opening a dialogue between the construction and maintenance staff.

Interest in predicting time to restoration resulted in a need for actionable and tidy data about repair actions
-not only in railway scope- so that in the last decade a literature about maintenance and repair times for
components in technological facilities was born [16].

Indeed, information about restoration time is crucial not just regarding infrastructures. For instance, greater
accuracy in predicting the time needed to repair software defects would be useful for devising better test-
ing plans, schedules, and for allocation of testing resources, helping in keeping projects on time and within
budget [36].
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2.5.1.3 Proposed approach

As the objective of the previously mentioned EU funded projects is the development of tools and method-
ologies aiming at extracting knowledge from data analytics algorithms and at the same time making them
interpretable in an easier way, white-box (and grey-box) learning algorithms are the best choice for this work.
In particular, two algorithms have been employed: Decision Trees and Random Forests.

2.5.1.3.1 Decision Trees

Decision trees are often the best way to understand the main functional dependencies between the variables
in the first instance.

Decision trees are trees where each node represents a feature (or attribute), each link (or branch) represents
a decision (or rule) and each leaf represents an outcome.

Other than being white-box and nonparametric, they tend to mimic the human thinking so they make it quite
simple to understand the data and produce some good visual interpretations -especially useful in SR scenario.
Tree models where the target variable can take a discrete and limited set of values are called classification
trees; in these tree structures, leaves represent class labels. Decision trees where the target variable can take
continuous values (typically real numbers) are called regression trees.

Building a decision tree is especially a matter of choosing which attribute to test at each node.

In classification trees, a measure of information gain can be defined for this purpose, using Entropy or Gini
Impurity.

Given a binary categorization, C, and a set of examples, S, for which the proportion of examples labelled 0
by C'is py and the proportion of examples categorized as 1 by C'is p1, then the entropy of S is:

Entropy(S) = —pologa(po) — p1loga(p1) (2)

Therefore, given an arbitrary categorization C' into categories cy, ..., ¢,, and a set of examples, S, for which
the proportion of examples in ¢; is p;, then the entropy of S is:

n
Entropy(S) = > —piloga(p) (3)
i=1

In simple words, entropy characterizes the (im)purity of an arbitrary collection of examples. [56] Please note
that, when p gets close to zero (i.e., the category has only a few examples in it), then the logs (p) becomes a big
negative number, but the p part dominates the calculation, so entropy is nearly zero. As entropy calculates the
disorder in the data, this low score is good and it reflects the intent to reward categories with few examples
in. Similarly, if p gets close to 1 (i.e., the category has most of the examples in), then the log2(p) part gets very
close to zero and so the overall value. Hence we see that both when the category is nearly (or completely)
empty, or when the category nearly (or completely) contains all the examples, the score for the category gets
close to zero.
Intuitively, the Gini Impurity can be understood as a criterion to minimize the probability of misclassification:

GiniImpurity(S) = sz‘(l — i) (4)
i=1

Similar to the Entropy, the Gini Impurity is maximal if the classes are perfectly mixed. In practice, Gini Impurity
and Entropy typically produce very similar results.

The information gain of an attribute A can be seen as the expected reduction in impurity caused by knowing
the value of the attribute. Given a collection of examples, .S, information gain is calculated as:
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Gain(S,A) = Entropy(S) — Z |‘?|Entropy(51,) (5)
veValues(A) | |
or
Gain(S, A) = Ginilmpurity(S) — Z “%}“Ginﬂmpurity(&) (6)
veValues(A)

So, defined these measures, the algorithm goes as follows: it chooses the root node to be the attribute, A,
which scores the highest for information gain relative to S; for each value v that A can possibly take, it draws
a branch from the node; for each branch from A corresponding to value v, calculates S,. Then, if S, contains
only examples from a category ¢, then the algorithm puts c as the leaf node category which ends that branch.
Otherwise, it puts a new node in the decision tree, where the new attribute being tested in the node is the
one which scores highest for information gain relative to .S,,. The algorithm terminates either when all the
attributes have been exhausted, or the decision tree perfectly classifies the examples.

Regression trees work in a similar way: the basic idea is again measuring impurity and reducing it. While
Entropy does not suit regression problems, Gini Impurity is the most common splitting criteria for regression
trees -and the one used in this work.

Different measures of disorder could be used in quantitative cases, e.g. M SE (mean squared error). Given
a quantitative (response) variable Y':

J RN
MSE = =) (Y; = Y;)? (7)

2 2=
M SFE is one of the measures used in this work to evaluate models.
Decision trees suffer from overfitting, because they are trained to stop when they have perfectly classified all
the training data, i.e., each branch is extended far enough to correctly categorize each example. To avoid this
problem, the most popular approach is post-pruning some of the branches from the complete tree. There-
fore, it is clear that pruning raises the issue of determining the correct tree size. On the other hand, decision
tree learning is robust to errors in the data: it will function well in the light of errors in the classification
instances provided or missing values for certain attributes for certain examples.
Given the characteristics of the two scenarios in this work, decision trees are a good method for these learning
tasks. In both RFl and SR cases, the outcome -repair time- is a quantitative variable, so the kind of tree used
is the regression one.

2.5.1.3.2 Random Forests

The natural next step after Decision Trees is Random Forest, an ensemble algorithm which, in simple words,
builds multiple Decision Trees and merges them together to get a more accurate and stable prediction.

The general idea behind ensemble algorithms is that a combination of learning models increases the overall
result. In fact, Random Forests overcome the limitations of single trees, first of all the problem of overfitting.
Inrandom forests, tree predictors are combined such that each tree depends on the values of a random vector
sampled independently and with the same distribution for all trees in the forest. Thanks to these properties,
error for forests converges to a limit as the number of trees in the forest becomes large [14].

To inject randomness into the ensemble algorithm, different techniques can be used. An example is bag-
ging [13], where to grow each tree a random selection (without replacement) is made from the examples in
the training set. Another example is random split selection [21] where at each node the split is selected at
random from among the K best splits.
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In classification cases, each tree casts a unit vote for the most popular class, which represents the output;
in regression problems, numeric results are calculated by each tree and the output value is either the mean,
the median or the mode of them, depending on the algorithm.

In many applications random forests produce very satisfying results and have important advantages over
other techniques in terms of ability to handle highly non-linear data and robustness to noise; furthermore,
one of the most interesting points boil down to the interpretability of random forests in the eyes of variable
importance measures.

Random Forest -as implemented in the R package used in this work- provides two different importance mea-
sures, mean decrease accuracy (MDA) and mean decrease Gini (MDG), that can be used for ranking variables
and for variable selection. MDA quantifies the importance of a variable by measuring the change in predic-
tion accuracy when the values of the variable are randomly permuted compared to the original observations.
MDG is the sum of all decreases in Gini impurity due to a given variable (when this variable is used to form a
split in the random forest).

For this reasons, in RFl scenario (the predictive one) Random Forests were particularly useful, though they
can’t be considered completely white box.

2.5.1.3.3 Error Estimation

In this work, both K-Fold Cross Validation and Out-Of-Bag techniques have been used to estimate error.

In K-Fold Cross-Validation, the original sample is randomly partitioned into k£ equal sized subsamples. Of the
k subsamples, a single one is retained as validation data for testing the model, and the remaining £ — 1
subsamples are used as training data. The cross-validation process is then repeated k times, with each of
the k subsamples used exactly once as validation data. The £ results can then be averaged to produce a
single estimation. The advantage of this method over repeated random sub-sampling is that all observations
are used for both training and validation, and each observation is used for validation exactly once. 10-fold
cross-validation is commonly used [55], but in general k remains an unfixed parameter.

In random forest algorithms, when using bagging, each tree is grown on a new training set, which is drawn,
with replacement, from the original training set. Bagging, other than enhancing accuracy, can be used to
give ongoing estimates of the error of the combined ensemble of trees. These estimates are done out-of-bag
(OO0B): each observation z; is used to test only the aggregations of trees which were built on training sets not
containing x;. The study of error estimates for bagged classifiers gives empirical evidence to show that the
out-of-bag estimate is as accurate as using a test set of the same size as the training set [14].

2.5.2 RFI - Rete Ferroviaria Italiana

The main objective of this scenario is to estimate the time to restoration for future planned and urgent main-
tenance operations, based on historical data about repair actions in Liguria -provided by RFIl- and weather
data -provided by Regione Liguria.

The predictive models that will be designed will be able to exploit the knowledge enclosed into maintenance
reports so to predict the time needed to complete an action over an asset in order to restore its functional sta-
tus. Moreover, historical weather conditions data will be included in the analyses in order to take into account
the atmospheric factors affecting railway maintenance and repair operations (e.g. temperature, rainfall, solar
radiation, wind intensity).
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] Name Data Type
Type Factor
‘P’= Planned Maintenance
‘S’= Extraordinary Maintenance
Condition Factor
‘C'= Allowed

‘NC’= Not Allowed
‘Rn’= Renounced
‘R’= Requested

Beginning Station

Factor: 69 levels

Included/Excluded

Factor
‘"= Included
‘E’= Excluded

End Station

Factor: 66 levels

Included/Excluded

Factor
‘I’= Included
‘E’= Excluded

Track

Factor

‘D’= Left

‘P’= Right

‘’= Entire Line

Planned Beginning Time

Chron (planned works only)

Planned End Time

Chron (planned works only)

Planned Repair Time

Chron (planned works only)

Actual Beginning Time

Chron

Actual End Time

Chron

Actual Repair Time

Chron

Table 10: Structure of the initial dataset

2.5.2.1 Data description and basic statistics

2.5.2.1.1 Historical data

Contract No. 777596

The analysis will consider reports of maintenance works from 01-06-2017 to 31-01-2018. There are 4945
observations and 13 variables. This initial structure of the dataset can be seen in Table 10.

From now on “Repair time” will indicate the numeric response variable -unit of measurement: minute-, de-
rived from the already existing “Actual repair time”. As shown in the statistics and in the figure below (Fig-
ure 34 and Table 11), there are few big outliers in the distribution of the variable. For this reason, obser-
vations with a value greater than 540 minutes (the highest datum still within 1.5 interquartile range of the
upper quartile) have not been considered (129 observations out of 4945).

Min. 1st Qu. Median Mean 3rd Qu.

1 33 82

247.5 201

Table 11: Summary of Repair time
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Figure 35: Barplots of cathegorical variables Type, Track and Condition
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Figure 36: Repair Time in different levels of the variables Type and Track

Briefly looking at the most relevant categorical variables, in Figure 35 it can be seen that Track and Type have
quite an even distribution; almost every maintenance work, instead, is labelled as Allowed.

The distribution of Repair Time in the levels of Type and Track (Figure 36) shows that the response variable is
not statistically independent from both the factors: planned works seem to have longer duration on average
than the extraordinary ones, and, as would be expected, when maintenance involves a single track it is usually
shorter than on the entire line. Not surprisingly, the distinction between right and left track doesn’t seem to
be effective on repair time.

Eventually, about the variable Planned repair time, it is interesting to note that the correlation with the actual
one is 0.91, so it can be considered very predictive.

2.5.2.1.2 Extraction of other relevant features
It is possible to extract some new features from the original ones; it will be considered, especially:

¢ The day of the week of the beginning date;
e The hour of the day of the beginning date;
e The province of the beginning station.

While, at a first glance, the day of the week seems relevant just concerning the distinction between Sunday
and other days (first graph in Figure 37), Hour of the day and Province appear to be quite influential in the
variations of the response variable (Figure 37 and 38).

Please note that, as partially mentioned, most of the stations are in Liguria (Genova, Savona, Imperia) and
the few whose province is Alessandria (Piedmont) are actually very near to Liguria’s border.
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Figure 38: Repair Time in different levels of the variable Hour of the day.
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Figure 39: Distribution of weather variables

2.5.2.1.3 Weather data

Historical weather data have been retrieved from Regione Liguria - Meteorological Service website. For each
month, 4 datasets -one for each variable: rainfall, temperature, solar radiation and wind intensity- represent-
ing hourly weather measurements have been considered.

The datasets include information coming from different weather stations all over Liguria. As previously men-
tioned, the geographical locations of the railway stations have been divided into provinces; for every province,
a weather station has then been chosen, in order to associate historical maintenance data with corresponding
weather conditions.

All of the weather data collected by Regione Liguria is archived by the UTC time. So, to convert it into local
time, it has been shifted one hour forward (or two when DST is observed).

As can be seen in Figure 39, the distribution of Rainfall, Wind intensity and Solar radiation is concentrated
around lowest values -in the Solar radiation case, this is due to the fact that during the night this value is
always 0. Temperature, instead, shows a more homogeneous distribution.

The effect of these variables on repair time is not immediately visible from the data: for instance, the cor-
relation between Solar radiation and Repair time is about -0.35, while Rainfall and Temperature seem to be
almost uncorrelated with the response. Despite this fact, these features could still be influential in a non-
linear way, as can be partially seen in Figure 40.
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Figure 40: Distribution of Repair time in different subsets of the variable Temperature

2.5.2.1.4 The structure of the final dataset

Now the dataset has 23 variables and 4837 observations. The structure of the final dataset can be seen in
Table 12.

In the modeling phase all these variables will be used except Beginning and End Time (both Planned and
Actual) as well as Beginning and End station, whose amounts of levels are too large.

2.5.2.2 Regression trees

The first models considered are regression trees. Decision tree algorithms are white-box, nonparametric and,
therefore, make no assumptions regarding the distribution of input data, so they can be one of the easiest
ways to understand the problem in the first instance.

2.5.2.2.1 Planned maintenance

The table and figures below (Table 13 and Figures 41 to 43) show some interesting results about an ex-
ploratory regression tree trained with data referring to planned works (labelled as ‘P’ in the Type variable).
The dataset has been divided into a training set -75% of data- and a test set -25% of data.

The feature importance ranking can be seen in Table 13; it is calculated using mean decrease Gini (also called
mean decrease in node impurity). The most relevant variable is, as would be expected, Planned Repair Time.
It can also be seen from the pruned tree (Figure 42 and 43): the feature Planned Repair Time is used in a large
amount of splits, and branches with lower values of planned repair time always correspond to lower values of
actual repair time in the leaves. Other important features are Solar Radiation, Hour of the Day, Province, Track
and Temperature; these results point out the importance of a thorough extraction and addition of features
of interest.

Figure 41 shows how the cross-validated estimate of relative error -i.e., in this case, 1 — R?- changes due
to the changes of size of the tree. This plot suggested that the size could be reduced to about 15 leaves:
a good choice for pruning is often the leftmost value for which the mean lies below the horizontal dashed
line, which represents the highest cross-validated error minus the minimum cross-validated error, plus the
standard deviation of the error. On the lower axis, ‘cp’ stands for Complexity Parameter of the tree, a measure
of the amount by which further splitting would improve the relative error.

Pruning decision trees reduces the complexity of the final algorithm, hence improving predictive accuracy by
the reduction of overfitting.
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Name Data Type Source
Type Factor RFI

‘P’= Planned Maintenance

‘S’= Extraordinary Maintenance
Condition Factor RFI

‘C’= Allowed

‘NC’= Not Allowed

‘Rn’= Renounced

‘R’= Requested
Beginning Station Factor: 69 levels RFI
Included/Excluded Factor RFI

‘I'= Included

‘E’= Excluded
End Station Factor: 66 levels RFI
Included/Excluded Factor RFI
Track Factor RFI

‘D’= Left

‘P’= Right

‘’= Entire Line
Planned Beginning Time Chron (planned works only) RFI
Planned End Time Chron (planned works only) RFI
Planned Repair Time Chron (planned works only) RFI
Planned Repair Time - numeric Integer (planned works only) Derived
Actual Beginning Time Chron RFI
Day of the Week (beginning time) Factor: 7 levels Derived
Hour of the Day (beginning time) Integer: 1,2...23,24 Derived
Month of the Year (beginning time) | Factor: 8 levels Derived
Province (beginning station) Factor: ‘GE’'SV’,/'IM’Al’ Derived
Rainfall (beginning time) Numeric Regione Liguria
Temperature (beginning time) Numeric Regione Liguria
Solar Radiation (beginning time) Numeric Regione Liguria
Wind Intensity (beginning time) Numeric Regione Liguria
Actual End Time Chron RFI
Actual Repair Time Chron RFI
Actual Repair Time - numeric Integer Derived

Table 12: Structure of the final dataset

Variable Mean decrease in node impurity
Planned Repair Time - Numeric 44
Solar Radiation 19
Hour of the Day 14
Province 8
Track 5
Temperature 4
Actual Beginning Time 2
Month of the Year 1
Day of the week 1
Wind Intensity 1

Table 13: Variable Importance
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Figure 41: Cross-validation results

IN2D-T5.4-D-UKO-002-02 Page 71 19/11/2018



POREAMS G~ [

Contract No. 777596

Median of absolute percentage error: 149

Mean of absolute percentage error: 42%

Table 14: Mean and Median of Absolute Percentage Error

Please note that in this case R? -here estimated about 0.8- is a measure of how well the model fits the data
on which it is built -not of how well it would perform on an independent test set. In any statistical model,
including conventional regressions, R? is an overly optimistic prediction of model performance on previously
unseen data.

The scatter plot in Figure 44, instead, shows how the model performs on the test set (Figure 44). As the dots
show a clear uphill pattern moving from left to right and are concentrated around the diagonal red line, it is
possible to say that the model captures the existence of some information inside data.

As the probability of having a certain error decreases as the error increases, a similar conclusion can be drawn
by looking at Figure 45. In fact, the graph is a histogram showing the distribution of the absolute percentage
error, which is defined as the absolute difference between the true values and the predicted values as a
percentage of the true values. This measure expresses how close the estimates are to the real values. In
particular, the histogram includes the values of percentage error on the x-axis, and the frequency of that
particular value of percentage error on the y-axis.

For a better visualization the biggest outliers (30 out of 504 values of absolute percentage error are greater
than 100%) have not been reported in this graph.

Eventually, in Table 14 mean and median of absolute percentage error can be seen. Please note that median
is a more robust measure when big outliers are involved in calculation.

2.5.2.2.2 Extraordinary works

While the ideal size of the tree (Figure 46) is not really different from the one of the previous model, feature
importance and predictive accuracy vary substantially when works are not planned and the time to restoration
is not previously scheduled.

Table 15 suggests that the most influential features are Track and Hour of the Day, followed by Province, Wind
Intensity and other variables relative to the actual beginning time and the weather conditions. The role of
these features can be seen in detail in Figure 48 and 49.

Even if the histogram (Figure 47) utterly suggests that some information has been captured, both the scatter
plot (Figure 50) and the mean/median of absolute percentage error (Table 16) show that predictive accuracy
is not satisfying.

2.5.2.3 Random Forests

As previously mentioned, Random Forests are an ensemble learning method, that operate by constructing
a multitude of decision trees at training time and outputting -in the regression case- the mean prediction of
the individual trees. Random forests are usually more accurate than single trees and, furthermore, correct
for decision trees’ habit of overfitting.

In first instance, two random forest models have been built to predict repair time, one for planned and one
for extraordinary works. As for the previous modeling, both datasets have been divided into a training set
(75% of data) and a test set (25% of data).
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Planned.Repair[Time.Num=< 339

2407
Planned. Repair[Time. Num= 238 Planned.Repair [Time Num= 415
2202 34386
Planned Repair[Time Num=< 297 Province Bdginning=GE
186.7 2348 3233 407 4

Day .of Week Beginning={ri,Mon,Sat, Thu, Tue,Wed Actual.Beginning.Time=>=1.744e+04
2249 263.2 294 4 3548

2219 286.1 2452 2879

Figure 43: Detail of Pruned Tree for planned maintenance

Variable Mean decrease in node impurity
Track 23
Hour of the Day 23
Province 14
Wind Intensity 10
Month of the Year 7
Actual Beginning Time 6
Day of the weeek 6
Temperature 5
Solar Radiation 3
Rainfall 1
Wind Intensity 1

Table 15: Variable Importance
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Figure 44: Scatter plot of actual vs predicted values (test set)
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Figure 45: Histogram of absolute percentage error
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Figure 46: Cross-validation results
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Figure 47: Histogram of absolute percentage error
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Trackg D, P
139.3
Day.of \Week.Beginning=Fri,Mon,Sat, Thu, Tue, Wed Hour.Beginning==22.5
78.09 249.1
Province.Beg|nning=GE.IM Month.Beginning=1,6,7.8,9 Day.of \Week.Beginning=Fri,Sat, Thu,Tue
70.09 181.8 208.9 288.8
Wind.Intensity==2.3 Province.Beglnning=AL,GE  Month.Beginning=6,9,10,11
54.28 114.2 160.5 248.7 321.5

91.67 198.7 196.4 288.5 1141 296

Figure 49: Detail of Pruned Tree for extraordinary works

Median of absolute percentage error: 58

Mean of absolute percentage error: 132}

Table 16: Mean and Median of Absolute Percentage Error
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Figure 50: Scatter plot of actual vs predicted values (test set)
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Figure 51: Scatter plot of actual vs predicted values (test set)

The number of trees is set to 500, one of the most common options; the number of variables tried at each
splitis set to [+/r], given r the number of features.

2.5.2.3.1 Planned maintenance

Type of random forest: regression
Number of trees: 500

No.~of variables tried at each split: 4
Mean of squared residuals: 1122.874
Var explained: 88.83Y

Mean of Squared Residuals and Proportion of Variance Explained are calculated as out-of-bag (OOB) esti-
mates, hence they are the mean predictions of A/.SR and R? on each training sample x;, using only the trees
that did not have x; in their bootstrap sample.

As would be expected, R? is much higher in this model than in the single tree one. The scatter plot, instead,
shows how the model performs on the test set (Figure 51). As the dots are evidently concentrated around
the diagonal red line the model can be considered very satisfying. Furthermore, dots which deviate from the
bisector have quite an even distribution, which does not highlight any bias in the residuals.

The feature ranking is similar to the previous one, confirming the importance of Planned Repair Time (Table 17
and 18). The two rankings were built using mean decrease in impurity (as for the trees) and mean decrease
in accuracy; the results are similar but not identical, especially as regards Province and Solar Radiation, which
however can be considered relevant in both cases.
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Figure 52: Two graphs of percentage error (test set)

Variable Mean decrease in accuracy
Planned.Repair.Time.Num 70.6
Hour.Beginning 32.0
Province.Beginning 29.4
Track 25.8
Actual.Beginning.Time 23.2
Day.of Week.Beginning 23.0
Month.Beginning 22.0
Wind.Intensity 21.6
Temperature 19.4
Solar.Radiation 17.0
Incl..Escl 14.2
Rainfall 8.5
Condition 8.5
Incl..Escl.1 3.4

Table 17: Variable Importance (mean decrease in accuracy)
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] Variable Mean decrease in node impurity ‘
Planned.RepairTime.Num 7720030
Hour.Beginning 2490630
Solar.Radiation 1917280
Track 604470
Actual.Beginning.Time 509470
Temperature 495970
Day.of.Week.Beginning 394040
Month.Beginning 356630
Wind.Intensity 335740
Province.Beginning 322750
Condition 693560
Incl..Escl 67990
Rainfall 64440
Incl..Escl.1 12520

Table 18: Variable Importance (mean decrease in node impurity)

Median of absolute percentage error: 10%

Mean of absolute percentage error: 26Y%

Table 19: Mean and Median of Absolute Percentage Error

The histogram in Figure 52 is similar to the previous one (Figure 45) too; the second graph in the figure is a
boxplot of the (not absolute) percentage error, which shows in detail how often the model overestimates or
underestimates actual values, including the outliers not considered in the histogram (23 out of 504 values of
absolute percentage error are greater than 1 and have not been reported for a better visualization).

As can be seen both from the boxplot above and from the difference between mean and median, the dis-
tribution of the (absolute) error is completely uneven and its concentration is especially around the 0 value,
though there are some great negative outliers. This would suggest that overestimates are much more fre-
guent than underestimates, but this can be not completely true: model often overestimates little values, so
that the (negative) difference with the predicted values, expressed as a percentage of a little number, seems a
more relevant value than the errors calculated as a percentage of grater values, more often underestimated.
Eventually, it has been noticed that the observations with higher percentage error have values of Planned
Repair Time which differ from Actual Repair Time more than the average.

2.5.2.3.2 Extraordinary works

Type of random forest: regression
Number of trees: 500

No.~of variables tried at each split: 4
Mean of squared residuals: 3120.265

Var explained: 58.32Y%
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Histogram of Absolute Percentage Error in Extraordinary Works
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Figure 53: Scatter plot of actual vs predicted values (test set)
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Figure 54: Two graphs of percentage error (test set)
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The importance ranking of the variables (Tables 21 and 22) is similar to the single tree one: track, beginning
time and weather conditions become much more important as repair actions are not scheduled. The low
position of the variable Rainfall can be partially explained with the fact that Solar Radiation provides a similar
information -but more complete as marks the difference between night and daylight.

It is also interesting to note that the variables relative to inclusion or exclusion of the involved stations are
not in the very last positions in both the rankings.

As would be expected, the results with the extraordinary works are much worse than the results with planned
ones. MSE, R? and all the graphs and statistics suggest that the model, though more satisfying than the
single regression tree, has a predictive accuracy which cannot be compared with scheduled maintenance.
Explained variance is about 40% lower than the planned works one and the median of absolute percentage
error (26%) is almost three times the other one -but about half the error of the single tree. The scatter plot
shows a quite indefinite shape of dots, though an uphill trend is still roughly visible.

2.5.2.3.3 Extraordinary works divided into provinces

It has been observed that the beginning conditions (in terms of time, weather and space) are really influential
in the prediction of time to restoration in extraordinary works. For this reason, taking into account Beginning
Station and End Station could enhance significantly the performance of the predictors. While using these
two factors in the previous random forest models -which were trained on data relative to different provinces-
caused some issues due to the too large amount of levels, training new province-specific models could work.
Data are divided into four datasets, each containing observations from the same province, and then each
further divided in training and test set.

Province-specific random forests -when beginning and end stations are involved in models- show much better
performances than the generic ones in the prediction of extraordinary works (Tables 23 - 26).

In fact:

e Mean of squared residuals is lower in all the comparisons;

¢ In the models involving data from Savona and Imperia -which are the smallest datasets- the proportion
of variance explained is significantly higher, from 9 to 30 percentage points. As regards Genoa and
Alessandria, the proportions are quite similar, though a little decrease is still visible;

¢ While the two models on Alessandria’s data show similar performances, in the other cases the median
and mean of percentage error is not comparable: by taking into account beginning and end stations,
relative error is remarkably reduced.

Furthermore, the importance of the additional features is confirmed in the variable ranking (Figure 55). This
graph regards Genoa’s data, but almost identical results were obtained with other provinces.

However, it is interesting to observe that this kind of approach does not enhance the performance of the
predictor when trained (and tested) with planned maintenance data, neither in terms of accuracy or impor-
tance ranking. Other possible splits of the data have been tried, but, for the scheduled maintenance, the best
model found in this work is the one involving the entire dataset.

Median of absolute percentage error: 26

Mean of absolute percentage error: 73%

Table 20: Mean and Median of Absolute Percentage Error
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Variable Mean decrease in accuracy
Track 72.8
Hour.Beginning 48.1
Province.Beginning 44.2
Day.of. Week.Beginning 34.33
Month.Beginning 32.6
Wind.Intensity 31.6
Actual.Beginning.Time 27.7
Temperature 25.7
Solar.Radiation 244
Incl..Escl.1 8.1
Incl..Escl 6.4
Rainfall 5.7
Condition 1.4

Table 21: Variable Importance (mean decrease in accuracy)

Variable \ Mean decrease in node impurity ‘
Hour.Beginning 3184730
Track 2379270
Solar.Radiation 1525520
Actual.Beginning.Time 1503400
Wind.Intensity 1404040
Province.Beginning 1402581
Day.of.Week.Beginning 1381970
Temperature 1310180
Month.Beginning 1018650
Incl..Escl 118350
Incl..Escl.1 116250
Rainfall 108760
Condition 11030

Table 22: Variable Importance (mean decrease in node impurity)

Without Beginning and End Station \

With Beginning and End Station

Mean of squared residuals: 2749

Mean of squared residuals: 2727

% Var explained: 40.94

% Var explained: 41.42

Mean of abs. percentage error: 106%

Mean of abs. percentage error: 52%

Median of abs. percentage error: 64%

Median of abs. percentage error: 16%
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Without Beginning and End Station

With Beginning and End Station

Mean of squared residuals: 4702

Mean of squared residuals: 2427

% Var explained: 51.04
Mean of abs. percentage error: 283%

% Var explained: 81.22
Mean of abs. percentage error: 32%

Median of abs. percentage error: 41%

Median of abs. percentage error: 13%

Table 24: Results from Savona’s data

Without Beginning and End Station

With Beginning and End Station

Mean of squared residuals: 2628

Mean of squared residuals: 1935

% Var explained: 65.08

% Var explained: 74.41

Mean of abs. percentage error: 168%

Mean of abs. percentage error: 37%

Median of abs. percentage error: 44%

Median of abs. percentage error: 17%

Table 25: Results from Imperia’s data

Without Beginning and End Station

With Beginning and End Station

Mean of squared residuals: 3687

Mean of squared residuals: 3366

% Var explained: 66.37

% Var explained: 68.38

Mean of abs. percentage error: 87%

Mean of abs. percentage error: 83%

Median of abs. percentage error: 32%

Median of abs. percentage error: 29%

Table 26: Results from Alessandria’s data

End.Station
Beginning.Station
Hour.Beginning
Day.of.Week.Beginning
Track
Actual.Beginning.Time
Temperature
Solar.Radiation
Wind.Intensity
Month.Beginning
Incl..Escl

Incl..Escl.1

Rainfall

Condition

T T
0e+00 2e+05

T T T T
4e+05 6e+05 8e+05 1e+06

IncNodePurity

Figure 55: Variable importance ranking (Genoa)
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2.5.3 SR - Strukton Rail

This scenario was previously analyzed in [74].

Initially, a predictive approach had been proposed; it showed that it was possible to capture interesting func-
tional dependencies between input and output variables, though the average percentage error in prediction
was not satisfying in the perspective of an actual real-world application. The noise in data and the few exam-
ples of failures for some of the many different failure types affected the predictive accuracy, so a diagnostic
approach is here proposed instead.

Strukton Rail is one of the most qualified railroad contractor in Northern Europe for all rail systems and rail
works; in this scenario data from Netherlands are exploited.

2.5.3.1 Data description and basic statistics

The analysis will consider reports of maintenance works from 01-01-2010 to 31-12-2015. There are 17243 ob-
servations of 47 variables. Each observation identifies a single failure/repair action, for which a large amount
of information about time, place, mechanic’s characteristics and weather is provided.

At the very first step, Strukton receives a notification from the Infrastructure Manager that a failure on an
asset has been detected. The notification includes several information, such as a priority level, the ID and
location of the asset to be repaired, etc. After the notification has been received, mechanics are informed
that a failure on an asset has been reported; when mechanics arrive on the asset location, travelling from the
closest headquarter, they communicate that they reached the asset location and start inspecting the asset
for assessing its status. Based on this first inspection, the mechanics perform a “soft” forecast on the kind of
action and the time needed to complete the intervention. Then the timestamp in which the mechanics start
the repair intervention is recorded.

The function is restored when the mechanics have completed the intervention so that the line has been freed
and trains can travel again over it.

This structure of the dataset (Table 27) is the result of a process of feature extraction and selection.

In addition to the original variables (provided by Strukton Rail), in fact, weather data have been retrieved from
the Royal Netherlands Meteorological Institute (KNMI) and some other useful features have been derived.

2.5.3.1.1 SR variables
Considering the problem as a regression one, there are three response variables:

¢ Response time is the time needed by the mechanics to start operating on the asset from the moment
in which the failure notification has been received;

e Repair time is the time needed by the mechanics to perform the repair on the asset;

¢ Function restoration time is the time needed to complete the intervention and free the railway line.

The scatterplots (Figure 56) show different associations between the three variables: both Repair and Re-
sponse time seem to be positively correlated with Function Restoration time, while not with each other.
This could be expected -as Function Restoration time is influenced by both the other two variables- and is
confirmed by correlation coefficients: 0.74, 0.59 and 0.06 (respectively, looking at the graphs).

Itis interesting to note that, in both the first and the second plot, dots show two different patterns: ‘short’ re-
pair time distribution is almost independent from function restoration time, while as values grow the positive
linear association become clear.

Furthermore, these graphs highlight some anomalies, e.g. a few observations have values of repair time
grater than function restoration time, which is meaningless. This information, combined with that contained
in Table 28, can be used to detect and delete some outliers.
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Name Data Type Source
Geographic Code Factor: 139 levels SR
Failure Type Factor: 28 levels SR
Failure Type Dutch Factor: 143 levels SR
Object Type Factor: 10 levels SR
Object ID Factor: 6964 levels SR
Technical Department Factor: 14 levels SR
Part Code Factor: 187 levels SR
Action Carried Out Factor: 76 levels SR
Failure Main Group Factor: 4 levels SR
Failure Cause Factor: 60 levels SR
Longitude Numeric SR
Latitude Numeric SR
Mechanic ID Factor: 533 levels SR
Diagnosis Time Numeric SR
Year Factor: 6 levels Derived
Month Factor: 12 levels Derived
Day Numeric Derived
Hour Numeric Derived
Day of the Week Factor: 7 levels Derived
Zone Factor: 3 levels Derived
Year of Activity Integer Derived
Mechanic’s Past Actions (in the zone) Integer Derived
Past Actions - Normed (in the zone) Numeric Derived
Past Actions - Difference from mean (in the zone) Numeric Derived
Past Actions (same priority) Integer Derived
Past Actions - Normed (same priority) Numeric Derived
Past Actions - Difference from mean (same priority) | Numeric Derived
Past Actions (total) Integer Derived
Past Actions - Normed (total) Numeric Derived
Past Actions - Difference from mean (total) Numeric Derived
Past Failures in the Week Integer Derived
Past Failures in the Month Integer Derived
Past Failures in Six Months Integer Derived
Open Failures in the Zone Integer Derived
Wind Speed Numeric KNMI
Temperature Numeric KNMI
Dew Point Numeric KNMI
Global Radiation Numeric KNMI
Wind Direction Factor: 10 levels KNMI
Sunshine duration Numeric KNMI
Rainfall duration Numeric KNMI
Rainfall Numeric KNMI
Response Time Numeric SR
Repair Time Numeric SR
Function Restoration Time Numeric SR

IN2D-T5.4-D-UKO-002-02
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Figure 56: Scatterplots of response variables
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Min.~1st Qu.~Median Mean 3rd Qu.~Max.
0 27 42 47.2 57 1383

Min.~1st Qu.~Median Mean 3rd Qu.~Max.
0 2 11 31 37 1325

Min.~1st Qu.~Median Mean 3rd Qu.~Max.
2 45 70 88.6 106 1320

Table 28: Summary of Response, Repair and Function restoration time

2.5.3.1.2 Weather variables

As previously noted in RFI’s case, weather conditions can noticeably affect time to restoration, and therefore
taking them into account can enhance the performance of data-driven models.

Weather data consisted of 39 variables fro which 8 have been extracted by selecting or recombining the
original ones, in order to obtain the most relevant features and to avoid redundant ones. The entire data
refers to Netherlands, where Strukton is the responsible for asset maintenance.

The two datasets -SR data and weather data- have been linked by correlating the geographical locations of
the assets to the locations of the weather stations, so to find the closest one for which it is possible to extract
the most accurate weather information related to each asset.

2.5.3.1.3 Derived variables

It is possible to extract some new features relative to time and location from the original ones; it will be
considered, especially:

e The month, day and hour of the beginning date;
¢ The day of the week of the beginning date;
e The “Zone” of the beginning station.

The variable “Zone” -based on the latitude and longitude coordinates of the failure locations- identifies three
different areas. In fact, by looking at the map (Figure 57), a peculiar tripartite distribution is evident.

The three zones have similar size but some different characteristics, as can be seen in Figure 58 and 59.

In order to explain and predict the repair time, mechanic’s experience can be another useful piece of informa-
tion. It can be partially described by the number of past repair actions in which the mechanic was involved,
so 9 features of this kind have been computed. They can be divided into three subgroups: the first one re-
lates to the past actions in general; the second one refers to the past actions in the geographical area of the
asset failure under examination (zone); the third group is related to the past actions on failures with the same
priority.

Another group of features has been extracted from the failures that occurred before a certain notification is
received. These “Past Failures” features are computed for different time horizons -a week, a month and six
months before the notification under examination.

Eventually, the variable “Open Failures” has been derived by considering all the unresolved maintenance/repair
actions that still have to be completed at a certain time.
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Figure 57: Map of failure locations

2.5.3.1.4 Data preparation

As already shown in the statistics and in the figures above, there are few outliers in the distribution of the
response variables. For this reason, observations with a value greater than 360 minutes (400 for Function
Restoration time) and less than 2 minutes have not been considered (about 4000 observations out of 17243).

2.5.3.2 Regression trees

As already said, the objective of this scenario was to estimate the significance of the different parameters on
the time to restoration. Thanks to regression trees, it has been possible to realize an effective visualization of
the role of the variables. As models were built with a descriptive purpose more than a predictive one, some
overfitting has been tolerated. Furthermore, feature ranking methodology made it possible to estimate the
relevance of each single input parameter of the models with the real outputs.

Data are no more divided into test and train set: as the aim is not predictive, there is no need to measure
models’ performance on previously unseen data, so all data can be considered training data. Descriptive ac-
curacy of the developed algorithms is connected, instead, with their ability to manage the trade-off between
fidelity to data (overfitting) and generalizable significance of the detected dependencies.

Many different splits of the dataset have been tried in order to reach the right compromise between gain
and loss of information due to size -and therefore impurity- reduction. The best split has been found to be
-similarly to RFI’s case- a zone-specific one: for each response variable, three different models have been
built, one for every level of the variable Zone.
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2.5.3.2.1 Repair Time

In the aforementioned previous analyses [74], the Repair Time was the most difficult quantity to predict. In
all the simulations, the performance of the associated data-driven models were the less satisfactory.

Also in the diagnostic models here presented the performance relative to this quantity -intended as the ability
of the models to generalize other than describe available data- is the worst. This can be seen in Figure 60,
which shows how the error varies according to the size of the tree: the cross-validated error barely declines
under 100% error at the very first split, but it rises almost immediately, making overfitting utterly visible -
and reaching an error value of about 1.5. Results are similar in the three zones, so just one of the graphs is
reported.

size of tree

1 3 7 10 15 18 25 27 32 37 41

X-val Relative Error

08 10 12 14 16 1.8

N N A N O A A O A B B B B
Inf  0.03 0.02 0.011 0.0076 0.0061

cp

Figure 60: Cross-validated relative error and size of the tree (Zone 3)

Figures 61, 62 and 63 represent the trees describing the data of the three zones.

As the intent was to use these trees to visualize data and their connections, a part of the work was focused on
the research of correct visualization tools. The two objectives of the visualization were partially in contrast
with each other: while comprehension should be easy and direct, without too much complex or redundant
content interfering with it, the description of nodes and branches -and the subsets involved- should be accu-
rate and meticulous.

After different attempts, quite detailed and at the same time legible trees have been produced, also thanks
to specific packages.

The final leaves show the average repair time and the number of observations in the final branches. Colours
vary from green to red as the values of the response variable increase. It is interesting to note how the
different splits identify from left to right different subsets with increasing values of repair time. Furthermore,
please note that the size of the final leaves is quite unbalanced, with values varying approximately between
10 and 800. These differences can be analyzed with particular attention to the smaller sizes; in fact, trees and
forests are often used also to detect anomalies: the sooner a very small subset is isolated in a leaf, the most
anomalous the subset is [51].
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Figure 61: Tree of repair time, Zone 1

It is significant that the ‘Part Code’ node comes at the top of the tree in all the zones and that, in the impor-
tance ranking, this variable is always in one of the top three positions. In general, the other most important
features are Geographic Code, Failure Type Dutch (more specific than Failure Type), Mechanic ID, Failure
Cause and Action Carried Out. The influence of technical characteristics is not surprising, and seems coher-
ent with the fact that some features relative to mechanics’ experience are in high importance positions in
every ranking. Between the weather variables, temperature and rainfall (and wind in the third zone) are the
most influential.

Different pruning levels have been tried in order to reach more or less specific visualizations. Looking in more
detail (Figure 64, 65) interesting similarities and significant differences can be seen in the split of the part
codes and failure causes as the zone changes.

¢ As regards the partcode splits, it must be noted that different zones have some different partcodes, so
comparison cannot be completely accurate; however, it is evident that certain codes (e.g. 8001, 8002,
8003 and many others) correspond systematically to lower values of repair time and certain codes
(e.g. 8101, 8170, 9611 etc.) correspond to longer times. A few codes, anyway, appear in different
branches as the zone changes, less consistently;

¢ Failure Causes can be compared more easily and a quite systematic behaviour is evident, as the splits
in Figure 64 and 65 are almost identical.

2.5.3.2.2 Response Time

As can be seen in Figures 66 and 67, the performance associated with the variable Response Time -and also
with Function Restoration, as will be shown in the next pages- is not the same in different zones, and the
Zone 1 model outperforms the other two.
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Figure 62: Tree of repair time, Zone 2
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Figure 63: Tree of repair time, Zone 3
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Variable Mean decrease in node impurity
Part Code 5718453
Failure Type Dutch 5385223
Geographic Code 5299649
Mechanic ID 5096325
Action Carried Out 4458908
Failure Cause 2590437
Month 2380255
Rainfall 2006347
Object ID 1784495
Diagnosis Time 1587553
Past Actions - Normed (same priority) 1470584
Past Actions Difference from mean (same priority) 1469033
Object Type 1324140
Latitude 1321793
Past Actions - Difference from mean 1289806
Past Actions - Normed 1086578
Rainfall Duration 1081368
Past Actions (same priority) 1023389
Temperature 982643
Past Actions - Normed (Zone) 903564
Dew Point 854316
Day 814062
Sunshine Duration 801657
Past Actions (Zone) 780481
Day of the Week 752652
Failure Type 709722
Longitude 700064
Wind Speed 520322
Past Failures in the Week 318597
Failure Main Group 297220
Wind Direction 283841
12046106 Past Actions - Difference from mean (Zone) 239033
Hour 223792
Past Failures in the Month 181707
Technical Department 110354
Year of Activity 87987
Global Radiation 84206
Past Actions 76956
Year 65719
Past Failures in Six Months 36525

Table 29: Variable importance - Zone 1
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Variable Mean decrease in node impurity
Geographic Code 2861331
Failure Type Dutch 2371546
Part Code 2273050
Mechanic ID 2106038
Failure Cause 1099114
Action Carried Out 995704
Failure Type 787991
Rainfall 622828
Object ID 562957
Past Actions - Normed (Zone) 542999
Rainfall Duration 509819
Temperature 475314
Global Radiation 387264
Day of the Week 351604
Wind Direction 347064
Longitude 307345
Wind Speed 303705
Sunshine Duration 282612
Month 262589
Object Type 247650
Pat Actions (same priority) 230569
Dew Point 224770
Past Actions - Normed 204405
Past Actions - Difference from mean (same priority) 167567
Diagnosis Time 146541
Past Actions Difference from mean (Zone) 145010
Past Actions (same priority) 123313
Latitude 110500
Year of Activity 86645
Failure Main Group 84460
Year 82124
Past Actions (Zone) 57979
Past Failures in the Week 47779
Technical Department 46594
Past Actions - Difference from mean 45710
Day 37865
Hour 28086
Past Actions 8374
Past Failures in the Month 604

Table 30: Variable importance - Zone 2
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Variable Mean decrease in node impurity
Geographic Code 4400421
Part Code 3764296
Failure Type Dutch 3450569
Mechanic ID 3235184
Action Carried Out 2217742
Diagnosis Time 1761837
Failure Cause 1522351
Wind Speed 1192196
Rainfall 1191593
Failure Type 986948
Past Actions (Zone) 952128
Temperature 901352
Dew Point 781256
Longitude 779063
Day 614681
Year 583459
Object ID 570371
Latitude 553063
Month 538195
Past Actions Difference from mean (Zone) 467017
Wind Direction 466126
Year of Activity 444903
Past Actions - Normed (same priority) 421977
Object Type 417610
Past Actions - Difference from mean (same priority) 414417
Past Actions - Normed (Zone) 402325
Day of the Week 320400
Hour 311559
Global Radiation 270036
Past Actions - Difference from mean 265273
Sunshine Duration 89366
Past Failures in the Month 85373
Technical Department 79960
Past Actions - Normed 60507
Past Failures in Six Months 59484
Past Failures in the Week 48638
Past Actions 33473
Rainfall Duration 16936

Table 31: Variable importance - Zone 3
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PartCode

bbbk

783 784 8001 8002 8003 8004 8005
8006 8007 8012 8013 8020 8021 8022
8023 8030 8031 8032 8036 8041 8042

8052 8059 806 809 8100 8102 8103
8104 8109 8110 8117 8118 8154 8156

8157 8161 8175 8176 8177 819 930 935

939 943 9444 9445 945 9496 9498 9500

9504 9505 9508 9509 951 959 960 9614 405 8101 8114 8119 8160 8170 9501

9617 9626 9629 963 9645 965 969 9998 9610 9611 9612 9615 9619 9620 9622
9999 9623 9624 9625 9628 9641

FailureCause GeoCode
133 143 145 146 148 187 203 204 213
218 221 223 225 226 227 230 241 298

2456911121316 200 201 203
204 305 502 550 552 600 602 603 653
654 751 803 913 926 937

132 135 140 142 147 149 150 151 152
153 154 181 182 183 184 186 188 201
207 208 215 222 228

21
1546

Figure 64: Tree of repair time, Zone 2 (detail)
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Figure 65: Tree of repair time, Zone 3 (detail)
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Figure 66: Cross-validated relative error and size of the tree (Zone 1)

In fact, in Figure 66 a great decrease in the cross-validated relative error can be seen, and overfitting starts
affecting the model only when the size exceeds the amount of 12 leaves. In Figure 67, relative to Zone 3 -but
really similar to Zone 2 results- relative error is instead continuously increasing.

The feature ranking is similar in the three zones: the Geographic Code is one of the most important variables
and the weather features are very relevant in all the areas. Furthermore, Failure Type Dutch is in the top
positions in both Zone 2 and 3, while not in the first zone.

These results differ from the Repair Time ones: Response Time is significantly affected by weather conditions
more than by technical details. Actually, it can be quite intuitive that the time needed by the mechanics to
start operating on the asset from the moment in which the failure notification has been received depends
much more from external agents than from the characteristics of the asset.

The ranking of the weather features, however, is not identical in the three zones; as for Repair Time, Zone 1
seems to be more affected from the rain and less from the wind, which plays a more important role in Zone
2 and Zone 3. Temperature, instead, appears fundamental in all the areas.

In Figure 71, a detail of the Zone 1 model shows how the variable Open Failures affects the average response
time, demonstrating the usefulness of this extracted feature.

It is interesting to note that the Open Failures split involves a subset of data where the average value of
response time is higher than in the other branch of the first split; furthermore, the final leaves generated
by this split have utterly unbalanced sizes, about 1 to 30 ratio. This facts could suggest that unresolved
maintenance actions -and therefore the line congestion derived from them- tend to affect the response time
especially when it is already longer than the average and to make the difference in a particular way when the
level of congestion is anomalous.
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Figure 67: Cross-validated relative error and size of the
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Figure 68: Tree of response time, Zone 1
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Figure 69: Tree of response time, Zone 2
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Figure 70: Tree of response time, Zone 3
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Variable Mean decrease in node impurity
Rainfall Duration 5400471
Temperature 4825519
Geographic Code 3715352
Dew Point 3608482
Rainfall 3443582
Day of the Week 3108017
Open Failures (Zone) 2990304
Wind Speed 2778887
Day 1463593
Failure Type Dutch 1317006
Wind Direction 1190420
Global Radiation 1168304
Latitude 1010350
Hour 818811
Object ID 785418
Longitude 745151
Sunshine Duration 630309
Failure Type 437907
Month 435034
Technical Department 361136
Object Type 267819
Year 33198

Table 32: Variable importance - Zone 1

Variable Mean decrease in node impurity
Geographic Code 1630080
Wind Direction 1449348
Failure Type Dutch 545608
Wind Speed 533079
Temperature 366622
Sunshine Duration 292439
Object ID 272044
Failure Type 232208
Month 207238
Dew Point 186096
Hour 179779
Latitude 147337
Open Failures (Zone) 144468
Longitude 128134
Rainfall 114565
Day of the Week 111562
Object Type 96752
Rainfall Duration 87814
Global Radiation 84012
Technical Department 68608
Day 32498
Year 23479

Table 33: Variable importance - Zone 2
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Variable Mean decrease in node impurity
Geographic Code 1469241
Temperature 1214444
Failure Type Dutch 1186063
Wind Speed 664149
Rainfall 590212
Longitude 409382
Sunshine Duration 357500
Failure Type 296746
Rainfall Duration 266996
Hour 260897
Object ID 258066
Wind Direction 250876
Global Radiation 240097
Dew Point 212850
Object Type 211317
Latitude 202691
Day 195588
Day of the Week 137054
Month 121850
Open Failures (Zone) 121564
Technical Department 59600
Year 9791

Table 34: Variable importance - Zone 3

GeoCode
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621 664 822 917 927
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sgg spo spr vidb vrz vrv
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ovg rnic r/r rdg sgl slz sin tobs
tor tng tsna vdO vds vvib wsss wssl
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Figure 71: Tree of response time, Zone 1 (detail)
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2.5.3.2.3 Function Restoration Time

The total time needed to complete the maintenance or repair intervention, as previously mentioned, is con-
nected with both response and repair time. So, as would be expected, results relative to this variable present
various similarities with the previous ones.

While Zone 1 and Zone 3 have a similar distribution of the cross-validated error (Figure 72), which decreases
substantially until the size of the tree remains under about 10 leaves, in Zone 2 error presents a lower vari-
ability (Figure 73).

Unlike the previous models, the three trees referred to the function restoration time have different variables
in the node at the top.

However, the pruned trees in Figure 77, 78 and 79 show how the first splits involve the same variables though
they have a different disposition: Part Code, Mechanic’s ID and Action Carried Out.

According to the mean decrease in node impurity, the features Mechanic’s ID and Diagnosis Time are really
relevant in all the three models, along with the features mentioned in 2.5.3.2.1. In fact, technical details of
both the asset and the kind of intervention become again more relevant than collateral conditions, such as
the weather ones, when the global duration of the repair action is considered.

Some common characteristics underpin all the models here illustrated:

¢ Weather importance seems to vary according with the zone considered: rainfall is the most significant
condition in Zone 1, while wind plays a more relevant role in Zone 3. Temperature, instead, is almost
equally important in all the areas;

e Models relative to Zone 1 generally outperform the other ones in terms of cross-validated error;

¢ The size of the final leaves is highly unbalanced in most cases, and the trees often tend to detect and
isolate some small groups of observations with peculiar characteristics and, usually, extreme values of
the response variable.

The use of regression trees in this chapter made it possible to explore the data in a thorough and deep
way, highlighting specific dependencies and peculiarities without losing an overall view. This would not have
been so easy with the only use of the classical statistical methods, especially as regards the visualization’s
aspect. The role of weather conditions, mechanic’s experience and single failure causes or part codes have
been described both in a graphic way and in a quantitative one; other than the points made in the previous
paragraphs, meticulous analyses can be made also by laypeople on single branches in order to determine
exactly which characteristics of the assets or of the failures are decisive in restoration time variations. These
analyses could be exploited to plan and manage line possessions in an informed way.

2.5.4 Conclusions and future perspectives

In this work, various models were built based on real-world data.
In both studies the analyses demonstrate the reliability of the achieved results.
Therefore, it is possible to draw the following considerations:

¢ The predictive models developed in the first scenario can be considered satisfying. Random Forests
resulted a good choice and the general results achieved are very interesting; the trained algorithms
perform quite accurate predictions of time to restoration on previously unseen data, both for planned
and extraordinary maintenance actions;

e Concerning the second scenario, the diagnostic models proposed are easy to interpret and immedi-
ately actionable. The cross-validated estimates of the error confirm that the diagnostic aim was more
appropriate than the predictive one, based on the available data.
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Figure 72: Cross-validated relative error and size of the tree (Zone 1)
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Figure 73: Cross-validated relative error and size of the tree (Zone 2)
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Figure 74: Tree of restoration time, Zone 1
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Figure 75: Tree of restoration time, Zone 2
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Variable Mean decrease in node impurity
Mechanic ID 14440222
Part Code 11223125
Geographic Code 9468236
Diagnosis Time 8713387
Failure Type Dutch 7457569
Action Carried Out 5958067
Failure Cause 4867516
Rainfall Duration 3951659
Dew Point 2872431
Wind Direction 2711325
Longitude 2587335
Object ID 2518884
Temperature 2504470
Failure Type 2464687
Latitude 2361075
Past Actions - Normed (same priority) 1690633
Global Radiation 1617133
Rainfall 1599123
Past Actions (Zone) 1555454
Month 1542107
Past Actions - Normed (Zone) 1449671
Day of the Week 1417079
Past Actions (same priority) 1411358
Past Actions - Difference from mean (same priority) 1333806
Past Actions - Difference from mean (Zone) 1182355
Wind Speed 1123994
Past Failures in the Week 1097194
Past Failures in the Month 1089590
Open Failures (Zone) 1056858
Past Failures in Six Months 1030395
Object Type 1024729
Day 977824
Hour 782953
Failure Main Group 608065
Sunshine Radiation 589260
Year of Activity 329971
Past Actions - Normed 308707
Past Actions 197615
Year 90303
Technical Department 87602
Past Actions - Difference from mean 10449

Table 35: Variable importance - Zone 1
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Variable Mean decrease in node impurity
Mechanic ID 5389728
Diagnosis Time 5037524
Geographic Code 4164375
Part Code 3891730
Failure Cause 2156727
Failure Type Dutch 1881605
Action Carried Out 1790935
Wind Speed 1606117
Dew Point 1429770
Sunshine Duration 1183283
Rainfall Duration 1125203
Past Actions - Normed 614242
Month 575149
Past Actions - Difference from mean (Zone) 425690
Object ID 398168
Past Actions - Normed (Zone) 391617
Past Actions - Normed (same priority) 368056
Past Actions - Difference from mean 362070
Wind Direction 361528
Failure Type 348569
Failure Main Group 309445
Hour 278130
Object Type 235522
Longitude 221823
Past Actions - Difference from mean (same priority) 194701
Rainfall 193141
Latitude 182003
Past Failures in the Week 167836
Year 165492
Year of Activity 165492
Temperature 161978
Global Radiation 144593
Past Actions (same priority) 137592
Past Failures in the Month 99623
Day of the Week 91957
Day 85032
Open Failures (Zone) 76867
Technical Department 73086
Past Actions 71976
Past Failures in Six Months 60626
Past Actions (Zone) 49624

Table 36: Variable importance - Zone 2
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Variable Mean decrease in node impurity
PartCode 7674926
Mechanic ID 6726293
Diagnosis Time 6361600
Failure Type Dutch 5207802
Geographic Code 4959113
Action Carried Out 4356728
Failure Cause 3675377
Failure Type 1555942
Object Type 1401239
Longitude 1390062
Latitude 1326941
Object ID 1289646
Wind Direction 1150418
Temperature 1132747
Wind Speed 1101381
Past Actions - Difference from mean (same priority) 1098718
Past Actions (Zone) 1049506
Dew Point 1016944
Hour 872887
Failure Main Group 788397
Past Actions - Difference from mean (Zone) 752338
Month 649657
Past Actions - Difference from mean 638289
Past Actions - Normed (Zone) 619202
Sunshine Duration 504639
Past Actions (same priority) 361134
Year of Activity 359088
Global Radiation 286013
Year 281467
Rainfall 266128
Technical Department 241479
Day of the Week 225496
Rainfall Duration 222142
Open Failures (Zone) 199855
Past Actions - Normed (same priority) 151241
Past Actions - Normed 122891
Past Failures in the Week 30024
Past Failures in Six Months 27471
Past Actions 14325
Day 10387

Table 37: Variable importance - Zone 3
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Figure 76: Tree of restoration time, Zone 3

Itis interesting to note that -maybe not so surprisingly- in both cases the most effective split of the dataset was
an area-specific one, despite the fact that Liguria and Netherlands obviously differ in dimensions, structure
etc.

In both the scenarios, the quality of the models could be significantly enhanced by the availability of better
data. In RFI’s case, the dataset was quite tidy, but limited in number: both the amounts of observations and
features were relatively small. SR data, instead, were complex and numerous, but quite noisy and, for some
of the many different failure types, few examples were provided.

2.6 Specific-Scenario 4: Switches

Because of time and resource constraints, we decided to not to develop further the Specific-Scenario 4.

2.7 Specific-Scenario 5: Train Energy Consumption

The predictive models of this scenario will be developed in WP6 and their quality will be assessed by WP5 in
D5.2.

IN2D-T5.4-D-UKO-002-02 Page 112 19/11/2018



INZDREAMS

405 411 413 783 8001 8003 8004 8005
8020 8022 8023 8032 8035 804 8052
8059 8063 8069 809 8114 8115 8120
8121 8148 8152 8157 8158 8160 8176
819 930 934 935 939 9443 945 9496
9498 9500 9504 9505 9508 959 9612

9616 9617 9620 9647 965 969 9998
9999

o Shift Rail

Contract No. 777596

MechaniclD

6 60135 60357 6036 60375 60377 6038
60433 60527 60673 6069 60721 60723
60743 6078 60811 60815 61333 6171
6173 61751 6176 6177 621 622 6243
6246 626 6278 6310 6321 635 6369
6460 6473 6480 6489 649 6608 661
6638 664 665 666 6673 6701 6709 6710
6715 672 673 677 679 6856 686 68747
68761 68763 6879 6883 6886 6895 960
99001 99002 99003 99006

n=1164

IN2D-T5.4-D-UKO-002-02

PartCode
414 784 8008 8031 8100 8101 8102
8103 8104 8105 8106 8107 8109 8110
81118117 8118 8119 813 8140 8145
8146 8153 8154 8156 8161 8170 8173
8175 8177 9433 9434 9444 9445 9501
9509 951 960 9610 9611 9614 9615
9619 9629 963 9641 9645
ActionCarriedOut
68917 20 22 23 25 26 31 32 35 36
47 51 53 56 60 64 65 67 68 74 77 78
828384
21015192127 28 29 42 43 45 46
| 5459 62 70 73 79 81 85 86
6001 6004 6011 60131 60173 60175
6020 6028 6033 60359 6041 6042 60435
6048 60491 60499 60501 60507 6051
60525 60531 60533 6057 6062 6066
60671 60745 60747 6075 60765 60769
6079 6080 60817 6084 6132 61335 6134
615 61693 61695 61753 6270 629 6313
6314 6324 633 6361 63711 63717 639
6410 6411 642 6474 6482 6603 6607
6630 6631 6634 6679 669 6719 674 676
6781 6783 6789 680 681 68223 68225
6840 6842 6859 6870 68745 6893 690
6910 6917 990051 990056 990057
990059
80 90
n=2443 n=1610

Figure 77: Tree of restoration time, Zone 1 (detail)
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Figure 78: Tree of restoration time, Zone 2 (detail)

MechaniclD

= = 7T

6162 61645 6171 6172 6185 61907 6197
61981 61983 61993 61997 62001 62003
62013 62017 6202 62041 62043 62053
62055 62063 6360 6364 638 6417 647
6601 6607 661 662 6700 6709 6769 960

990
6163 61643 6179 6184 6187 6189 61903
6191 6194 6195 61985 61995 62061
62065 621 627 629 632 633 635 6366
63745 63749 6394 6397 6411 642 643
645 646 648 649 6600 664 6703 6728
6729 6732 6734 6735 6736 6763 677
681 682 686 689
ActionCarriedOut PartCode
891723326064678384 7836 7838 8001 8002 8003 8004 8006
8007 8008 8012 8013 8020 8021 8022
610 14 15 19 21 22 25 26 27 28 31 8023 8031 8032 8036 8040 8041 8052
3536 42 43 46 47 51 53 56 59 62 63 8059 8060 8062 8069 809 8109 8114
65 68 70 73 77 78 79 81 82 85 86 8154 8160 8176 819 939 9433 9434
9444 9445 9496 9498 9500 9504 9505
9508 959 9610 9612 9614 9617 9619
9622 9645 9647 965 969 9998 9999 784 8005 8030 8033 8042 8063 8100
8101 8102 8103 8105 8107 8110 8111
81158117 8118 8152 8153 8156 8161
8170 8177 935 9443 945 9501 9509 960
9611 9615 9616 9626 9628 9629 963
9641
44 69 79 115
n=763 n=1224 n=2091 65

Figure 79: Tree of restoration time, Zone 3 (detail)
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3 Conclusions

The general objective of WP5 is to study, design and develop data and visual analytics solutions for knowledge
extraction from railway asset data. This deliverable reports to solutions and work-in-progress-solutions on
relevant railway assets whose malfunction and maintenance policies have an impact on the KPIs targeted by
the SHIFT2RAIL program. This deliverable presents the solutions and reports on the executed work in the
scenarios that were defined in D5.1. The work reported in CS1 focuses on the visualizations used at RFl and
optimizes and enhances them. Cross-Scenario 2 is discontinued because of the absence of the Marketplace
of Data. Specific solutions and data-driven-models are developed in Specific-Scenario 1, 2, and 3. The carried
out work prepares the final demonstrator (D5.4) which will combine the developments of CS1, SS3 and the
blockchain-technologies developed in WP4. Cooperation with IN2DREAMS WS1 WP6 is assured by partner
EVOLUTION ENERGIE and the coordination with other SHIFT2RAIL recipients is assured by the collaboration
with IN2SMART and IN2RAIL.
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