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Abstract

Data-informed decision-making processes play a fundamental role across disciplines.
To support these processes, knowledge needs to be extracted from high-dimensional
(HD) and complex datasets. Visualizations play hereby a key role in identifying and
understanding patterns within the data. However, the choice of visual mapping
heavily influences the effectiveness of the visualization. While one design choice is
useful for a particular task, the very same design can make another analysis task
more difficult, or even impossible. This doctoral thesis advances the quality and
pattern-driven optimization of visualizations in two core areas by addressing the
research question: “How can we effectively design visualizations to highlight patterns —
using automatic and user-driven approaches?”

The first part of the thesis deals with the question “how can we automatically
measure the quality of a particular design to optimize the layout?” We summarize
the state-of-the-art in quality-metrics research, describe the underlying concepts,
optimization goals, constraints, and discuss the requirements of the algorithms.
While numerous quality metrics exist for all major HD visualizations, research
lacks empirical studies to choose a particular technique for a given analysis task.
In particular for parallel coordinates (PCP) and star glyphs, two frequently used
techniques for high-dimensional data, no study exists which evaluates the impact of
different axes orderings. Therefore, this thesis contributes an empirical study and
a novel quality metric for both techniques. Based on our findings in the PCP study,
we also contribute a formalization of how standard parallel coordinates distort the
perception of patterns, in particular clusters. To minimize the effect, we propose an
automatic rendering technique.

The second part of the thesis is user-centered and addresses the question “how
can analysts support the design of visualization to highlight particular patterns?”
We contribute two techniques: The v-plot designer is a chart authoring tool to
design custom hybrid charts for the comparative analysis of data distributions. It
automatically recommends basic charts (e.g., box plots, violin-typed visualizations,
and bar charts) and optimizes a custom hybrid chart called v-plot based on a set
of analysis tasks. SMARTexplore uses a table metaphor and combines easy-to-apply
interaction with pattern-driven layouts of rows and columns and an automatically
computed reliability analysis based on statistical measures.

In summary, this thesis contributes quality-metrics and user-driven approaches
to advance the quality- and pattern-driven optimization of high-dimensional data
visualizations. The quality metrics and the grounding of the user-centered techniques
are derived from empirical user studies while the effectiveness of the implemented
tools is shown by domain expert evaluations.






Zusammenfassung

Dateninformierte Entscheidungsprozesse spielen eine grundlegende Rolle in ver-
schiedensten Disziplinen. Um diese Prozesse zu unterstiitzen, muss Wissen aus
hochdimensionalen (HD) und komplexen Daten extrahiert werden. Visualisierun-
gen spielen dabei eine Schliisselrolle beim Erkennen und Verstehen von Mustern
innerhalb der Daten. Die Wahl des visuellen Mappings beeinflusst jedoch stark die
Effektivitat der Visualisierung. Wéhrend ein Design fiir eine bestimmte Aufgabe niit-
zlich ist, kann dasselbe Design eine andere Analyseaufgabe erschweren oder sogar
unmoglich machen. Diese Doktorarbeit bringt die Qualitdt und mustergetriebene
Optimierung von Visualisierungen in zwei Kernbereichen voran - und befasst sich
dabei mit der Forschungsfrag: “Wie kénnen wir Visualisierungen automatisch und
benutgergesteuert so gestalten, dass sie Muster hervorheben?”

Der erste Teil der Dissertation befasst sich mit der Frage: “Wie kénnen wir die Qual-
itdt eines bestimmten Designs automatisch messen, um das Layout zu optimieren?” Wir
fassen den aktuellen Stand der Forschung im Bereich der Qualitdtsmessung zusam-
men, beschreiben die zugrunde liegenden Konzepte, Optimierungsziele und Randbe-
dingungen und diskutieren die Anforderungen an die Algorithmen. Wahrend fiir
alle wichtigen HD-Visualisierungen zahlreiche Qualitdtsmetriken existieren, fehlen
der Forschung empirische Studien zur Auswahl einer bestimmten Technik fiir eine
bestimmte Analyseaufgabe. Insbesondere fiir Parallel Coordinates (PCP) und Star
Glyphs, zwei haufig verwendete Techniken fiir hochdimensionale Daten, gibt es
keine Studie, die die Auswirkungen verschiedener Achsenanordnungen bewertet.
Deshalb tréagt diese Arbeit je eine empirische Studie und eine neue Qualitatsmetrik
fiir beide Techniken bei. Auf der Grundlage der Ergebnisse der Studie tragen wir
auch eine Formalisierung bei, wie Standard PCPs die Wahrnehmung von Mustern,
insbesondere von Clustern, verzerren. Um den Effekt zu minimieren, schlagen wir
eine automatische Renderingtechnik vor.

Der zweite Teil der Arbeit ist benutzerzentriert und befasst sich mit der Frage, “wie
kénnen Analysten den Designprozess von Visualisierung unterstiitzen, um bestimmte
Muster hervorzuheben?” Wir steuern zwei Techniken bei: Der v-plot-designer ist ein
Tool zur Erstellung von Diagrammen. Dieses Tool erlaubt es, benutzerdefinierte
Hybridcharts fiir die vergleichende Analyse von Datenverteilungen zu entwerfen.
Der v-plot designer empfiehlt automatisch grundlegende Diagramme (z.B. Box-Plots,
violin-chart typische Visualisierungen und Balkendiagramme) und optimiert ein
benutzerdefiniertes Hybridchart mit dem Namen v-plot auf der Grundlage einer
Auswahl von Analyseaufgaben. SMARTexplore verwendet eine Tabellenmetapher
und kombiniert einfach anzuwendende Interaktion mit mustergesteuerten Layouts
von Zeilen und Spalten und einer automatisch berechneten Zuverléssigkeitsanalyse
auf der Grundlage statistischer Mal3e.



Zusammenfassend lasst sich sagen, dass diese Arbeit einen Beitrag zur Qualitdtsmes-
sung und zu nutzergesteuerten Ansitzen leistet, um die qualitits- und musterges-
teuerte Optimierung von hochdimensionalen Datenvisualisierungen voranzutreiben.
Die Qualitdtsmetriken und die Grundlagen der nutzerzentrierten Techniken werden
aus empirischen Benutzerstudien abgeleitet, wihrend die Wirksamkeit der imple-
mentierten Tools durch Expertenevaluierungen aufgezeigt wird.
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Introduction

Knowledge derived from data is the foundation for data-informed decision-making
across research and economic disciplines. These disciplines and their applications
range from insurance companies, health care systems, and emergency response
teams to logistics analysis, weather forecasting as well as psychology applications
where large-scale human studies lead to insights that can help improve our life.

Due to the increasing awareness that data collection is the new fuel for smart
decisions of huge economic value, more data than ever is measured, recorded, and
generated on a daily basis. Data management becomes complex due to a huge
number of data records (=observations) and dimensions (=attributes). Such data,
often of dynamic nature, comes from heterogeneous data sources and contains
anomalies, contradicting information, and missing values. The availability of cheap
storage hardware leads to massive data being stored for potential usage in the future
without any prior filtering or refinement. Analytic tools emerge as a solution to
extract highly valuable information from those blindfold data lakes.

One of the key methods to successfully analyze such complex datasets are static
and interactive visualizations. Abstract data and information are mapped to visual
elements. Humans are visual creatures, and visualizations “augment human ca-
pacity by allowing us to surpass the limitations of our own internal cognition and
memory” [Munl4, p.1]. Thereby, humans can make sense of large and abstract
data [CMS99], for example, estimating the correlation from a sequence of numbers,
or identifying the similarity of attributes.

Exploratory data analysis (EDA) [Tuk77] has been proven to be effective in getting
an overview of an unknown dataset, or for ill-defined analysis problems. Analysts
start without a concrete hypothesis and follow an explorative, interactive, and often
undirected search for structures and trends in the data.

Fig. 1.1. Part of John Snows’s cholera map [Sno55]. Cholera cases are marked in black,
revealing a high number of cases around a water pump at Broad Street.
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Fig. 1.2. Anscombe’s quartet showing same summary statistics, but huge differences in their
distribution. Charts recreated with original data from [Ans73].

The Cholera map from 1854 [Sno55] (see Figure 1.1) is a prominent example
how visualizations can help to explore patterns in data. John Snow (1813-1858)
investigated the Broad Street cholera outbreak in London. By talking to residents,
Snow marked each death’s location with a small black rectangle on a map. With
the help of the visualization he identified the primary source of cholera as a public
water pump.

Automatic data mining, machine learning algorithms, and statistical methods can
also be used to extract knowledge from data. Their main advantage is that they
are typically faster than manual exploration. However, automatic algorithms are
often considered a black box, hiding potentially relevant data characteristics. A
popular example is shown in Figure 1.2. Anscombe’s quartet [Ans73] represents
four different datasets with almost identical summary statistics (i.e., mean, variance,
correlation, and regression), but significant differences in their actual distribution.
If an analyst “relies only on the hard numbers”, wrong hypotheses may lead to bad
(business) decisions. Visualizations are the “interfaces” for human analysts. Hence,
they can be effectively combined with automatic approaches for result analysis and
verification, and parameter tuning of automatic algorithms.

In summary, visualizations play an essential role when knowledge is derived from
large and complex datasets. They can be used as a primary analysis method, or
support the understanding of automatic analysis methods. The question is, however,
how to design a visualization such that it is most effective?

1.1 Design Challenges of Visualizations

The design space of visualizations is huge, making it hard to ultimately come up with
a design that fits a particular analysis task and corresponds to the characteristics
of the data. Further design challenges are the limitations of computers, displays,
and the human analyst. Hence, many designed visualizations are, therefore, full of
trade-offs and often not effective for a particular task [Mun14].

To create a visualization, there is a complex iterative process involved as described
by Card et al. [CMS99] (see Figure 1.3). During that process, the data analyst is
overwhelmed with numerous choices, such as selecting the data transformation and
visual mapping to be applied, and deciding for a view transformation. To ensure that
the final visualization will be indeed effective, the steps of “visual mapping selection”
and “view transformation” require expert visualization design skills.

Chapter 1 Introduction
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Fig. 1.3. Visualization reference model by Card et al. [CMS99]. Original figure is extended
by a quality- and pattern-driven automation, supporting to design good views.

Non-visualization experts are particularly affected by the complex design process.
Grammel et al. [GTS10] shows that information visualization novices face three
barriers when designing effective charts: selecting data attributes, designing visual
mappings, and interpreting the visualizations. A poor selection of attributes and
visual mappings can hinder the data analysis workflow often results in misleading
conclusions [Hee+08].

From a general perspective, there are two categories of design choices which have to
be made: First, an analyst needs to select a visualization type for a given dataset and
analysis question. Second, the properties of the respective visualization need to be
adjusted. Regarding the visualization type, Saket et al. [SED19] recently investigated
the performance of five common visualization techniques (Table, Line Chart, Bar
Chart, Scatterplot, and Pie Chart) for ten different analysis tasks and conclude “that
the effectiveness of [...] visualization types often significantly varies across tasks.”
Earlier studies for other visualizations types and analysis tasks (e.g., [CG14; Har+14;
SL91; Kos19]) also found significant performance differences. Hence, as a first step,
it is crucial to choose an appropriate visualization type for an analysis scenario.

Once a particular visualization is being chosen, the properties of visualization need
to be selected. For example, mapping dimensions to visual variables, choosing
colors and colormaps, arranging dimensions, and scaling distributions. Many user
studies exist which measure the performance of particular visual designs for different
analysis tasks. For example, Harrower & Brewer [HB03] investigate the usage of
different colormaps, Johansson & Johansson [JJ09] discuss that the order of axes in
parallel coordinates influence how analysts perceive patterns in the data, Kosara &
Skau [KS16] judge errors in different pie chart variations, and Skau et al. [SHK15]
analyze the impact of embellishments in bar charts. These and other studies highlight
that it is essential to choose particular design variations carefully.

1.1 Design Challenges of Visualizations



1.2 Support for Visualization Design and Open
Research Questions

The goal of this thesis is to support users in the design of visualizations to extract
patterns of interest. In the following, we summarize the state-of-the-art to support
the design of effective visualizations. Based on the results, we highlight three open
research challenges tackled in this doctoral thesis.

To be of broad usage, this thesis focuses on multi- and high-dimensional (HD
datasets as commonly given in many applications. Optimizing visualizations for
high-dimensional data are particularly challenging due to the high number of data
records and dimensions.

(1) Limited Visualization Studies on Design Variations

In many cases, selecting a visualization type and finalizing the design choices are
common sense and well-studied. For example, using a line chart instead of a
bar chart to represent a value that is changing over time. However, many design
choices are not obvious, difficult to select, and dependent on the analysis task and
characteristics of the data. As a fundamental step, empirical studies are necessary to
understand and justify design choices in various settings. Such studies can then be
provided as general guidelines, or be encoded as rules and suggestions into chart
authoring tools.

Many user studies have already been conducted for various design variations. Most
of these studies are linked to particular applications or analysis tasks. Hence, there
are clear guidelines for a large number of techniques and design variations. However,
there are still many empirical studies for important visualizations missing. For
example, parallel coordinates and star glyphs are, among others, the most commonly
used visualizations for high-dimensional data. Many authors claim that the ordering
of axes in both techniques plays an important role when designing the visualization
and can either highlight or hide interesting patterns. For parallel coordinates more
than 30, and for star glyphs, more than ten ordering algorithms have been proposed.
However, none of the techniques have been evaluated in an empirical study.

As a result, we, as a research community, do not know which design variation is best
for a particular task and a specific data characteristic. Therefore, we cannot provide
justified guidelines to practitioners. It is essential to identify the design choices which
have not been evaluated yet, compare the approaches, and conduct corresponding
user studies. This thesis contributes empirical studies for axes orderings for parallel
coordinates and star glyphs.

(2) Lack of Chart Authoring Tools for Concurrent Tasks

When visualization designers want to create useful charts, they are faced with
one of the following two choices: Either rely on their expertise, read information

Chapter 1 Introduction



visualization books (e.g., [Spel4; War20; Mun14; TS20]), and keep studying the
most recent results of user studies in which design alternatives are compared based
on some study constraints. Then use one of the many tools and user interfaces to
build the final visualization. Or, rely on automatic chart recommendation engines
that encode the knowledge of the literature into re-usable information. The first
option is very time-consuming; it is also not feasible for a general audience to keep
up with the latest research in different fields. Hence, there is a need for automatic
support in the design process of visualizations.

The general idea of such automatic support is shown on top of the visualization
reference model in Figure 1.3. Quality-driven automation helps with the entire
design process of visualization while allowing users to encode their own decisions
to choose, for example, domain-specific requirements. These (semi-)automatic chart
authoring tools typically use a combination of established rules, design guidelines
(e.g., Bertin’s work on visual variables [Ber83], Cleveland & McGill work [CM84],
or the GestaltLaws by Wertheimer [Wer23]), the results of empirical user studies,
and metrics which measures properties of a visualization.

However, the usefulness of a particular visualization design depends on the user’s
selection of tasks. While a design can be useful for a particular task, the very
same design can make another task more difficult, or even impossible. There is
often a trade-off if multiple tasks are relevant at the same time. Take, for example,
the comparative analysis of data distributions. One of the most commonly used
charts that you find in the literature are box plots. These charts easily support the
identification or comparison of the median values and the general spread of the
data. However, box plots are not a good design choice if the frequency of individual
data records is of interest (for example, in discrete distributions), or if the shape
of the distribution needs to be described. In many application scenarios, it is not
possible to select one chart which supports many tasks at the same time - and all
with the same focus and quality.

Most chart recommendation engines focus on proposing a visualization type for a
given task. While this may be sufficient for some basic tasks, there is still a lack of
automating the design of a particular visualization. This is especially true when
multiple tasks are relevant at the same time. More work needs to be done to develop
such chart recommendation engines, particularly for a large set of concurrent tasks.
This may also involve to extend or combine existing visualizations which are then
capable of supporting a multi-task analysis.

(3) Lack of Tools Combining User & Pattern-driven Designs

Many patterns in complex data can only be detected and characterized during an
exploratory analysis. The user needs to tell the system how interesting patterns for
a particular application (may) look like. Then the system can help to find these
patterns in the data and propose similar patterns that are potentially interesting
as well. Guidance can go in two directions: the system provides recommendations
for views and to optimize the design choices, while the user provides input to the
system, tailoring the analysis in a particular direction [CGM19].

1.2 Support for Visualization Design and Open Research Questions
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Many tools have been developed to navigate high-dimensional datasets and support
a user-guided exploration. To name a few, recently, LDSScanner [Xia+18], Sub-
space Voyager [WM18], Dimension Projection Matrix/Tree [Yua+13] and a quality-
metric guided framework for exploratory dimensionality reduction by Fernstad et
al. [FSJ13] have been presented. However, these tools are designed for expert users
due to its complexity. Furthermore, most approaches miss real support to identify
patterns and are based on a dimensionality reduction technique, which hides the
actual data records and values.

Instead, there is a need for tools with interaction possibilities and visual representa-
tions that are easy to understand or shallow learning curves to be useful for a broad
audience ranging from novice users to InfoVis experts.

1.3 Contributions and Structure of the Thesis

To tackle these limitations, this thesis addresses the following research question:
“How can we effectively design visualizations to highlight patterns — using automatic
and user-driven approaches?” The thesis thereby advances the quality and pattern-
driven design and optimization of visualizations in two core areas, which structure
the two parts of this thesis.

Part I: Quality Metric-Driven Design for Pattern Analysis

Part I focuses on quality metrics and addresses the question “how can we automati-
cally measure the quality of a particular design to optimize the layout?”. A large body
of research has been done to develop quality metrics for different visualizations and
design variations. Many of these metrics follow similar concepts (also across visual-
ization types) but differ in their vocabulary, or in their understanding of what quality
means. Chapter 2 contributes a survey of quality metrics research for visualiza-
tions for high-dimensional data. In this survey, we unify the vocabulary, enumer-
ate on the different metrics, and highlight research gaps - in particular with respect
to (empirical) user evaluation. In particular, we focus on the following visualiza-
tion techniques: scatter plots, scatter plot matrices, parallel coordinates, pixel-based
techniques, radial visualizations, and glyph representations.

Based on this survey, we identified that for two of the most common visualizations
for high-dimensional data, parallel coordinates, and star glyphs, necessary user
studies are missing. Many axes orderings have been proposed in the literature, but
no empirical validation has been conducted yet. Therefore, in this thesis, we push
axes reordering for the two visualization approaches towards empirical guidance by
conducting a user study for parallel coordinates (Chapter 4) and star glyphs
(Chapter 3) for cluster identification tasks. We choose cluster analysis as the
primary focus as the majority of strategies are design for this task. Our main findings
are that ordering dimensions based on dissimilarity (place dimensions with a high

Chapter 1 Introduction



dissimilarity next to each other) outperform the often proposed similarity-based
arrangement in different settings.

While experimenting with different axes orderings in parallel coordinates, we found
out that standard parallel coordinates distort the perception of patterns, in particular
clusters. This problem is inherent to the technique itself: diagonal line segments are
rendered longer (=need more pixels) and closer to each other (=less background
color), compared to horizontal lines. As a consequence, clusters are distorted, and
ghost clusters (fake clusters, not existing in the data) can emerge. In Chapter 5, we
contribute a formalization of this problem an provide and automatic method
to adjust the rendering of the polylines based on their slope to reduce these
effects.

Part Il: User- and Task-Driven Design for Pattern Analysis

Part II of this thesis provides user- and task-driven approaches to (semi-)automatically
optimize visualizations. This second part addresses the question “how can analysts
support the design of visualization to highlight particular patterns?” In many applica-
tions, the design of visualizations and the selection of visual elements depends on
the underlying analysis tasks and may even need a highly iterative approach to de-
scribe and identify the patterns of interest. The second part of this thesis, therefore,
contributes two analysis techniques that advance the automatic design of visualiza-
tions from a user-centered research perspective.

The v-plot designer (Chapter 6) is build for the comparative analysis of data distribu-
tions. Based on the selection of one or multiple analysis tasks, the v-plot designer
proposes an automatic recommendation of basic charts (e.g., box plots, violin-
typed visualizations, and bar charts), along with a customized hybrid chart
which is called a v-plot. v-plots are automatically optimized to support all selected
analysis tasks, and highlight required distribution properties. The automatic recom-
mendations and the system design are grounded in a user study of 20 InfoVis and
statistic practitioners, providing a solid foundation for the automation of the v-plot
designer.

The second technique, SMARTexplore (Chapter 7), uses a table-based representation
to simplify the analysis of a high-dimensional dataset for both novice and expert
users, alike. Rows of a table can be aggregated manually, or with the help of clus-
tering algorithms. Dimensions can be grouped into semantically meaningful sub-
spaces, or automatically into groups of similar dimension patterns. SMARTexplore
combines easy-to-apply interaction concepts with the automatic and pattern-
driven layout of rows and columns of the table. The reliability of the perceived
patterns can be verified by an automatic performed statistical analysis, which is en-
coded as possible overly in the visualization.

In summary, this thesis contributes quality metrics and user-driven approaches to
advance the pattern-driven design of high-dimensional data visualizations. The
quality metrics and the majority of the support for the user-centered approaches
are derived from empirical user studies. The effectiveness of the user-centered

1.3 Contributions and Structure of the Thesis
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approaches is shown by domain expert evaluations, typically conducted in pair-
analytic sessions.

Based on the different techniques, this thesis has a strong InfoVis focus. However,
there are core contributions in other computer science fields. To give an overview,
these contributions are summarized in the following table:

Tab. 1.1. Relative importance of thesis chapters’ contributions for computer science sub-
fields. Rating schema: some relevance cos, largely relevant cee, highly relevant eee.

Computer Science Fields Ch.2 | Ch.3 | Ch.4 | Ch.5 | Ch.6 | Ch.7
Information Visualization cee oo oo oo oo coe
Visual Analytics cee oce ooe ooe cee oo
Evaluation ooe ooe ooo ooe cee coe
Applications ooe oce ooe oce cee oo

1.4 Citation Rules and Contribution Clarification

As it is the accepted scientific practice and guidelines of the research community
in computer science, all major contributions of this thesis have been previously
published in journals and conference proceedings. I retain the copyright of my
publications that are the basis for this thesis. Parts of thesis chapters, which appear
verbatim in my publications, were either written by myself or were rephrased by
myself during the paper or thesis writing process.

To avoid any suspicion about plagiarism and self-plagiarism, I try to be as transparent
as possible concerning the origin of all chapters of my thesis. In Section 1.5, I list
all publications that I authored or co-authored. I specify the contribution and work
distribution among all authors for each paper.

At the beginning of each chapter, I state the publication from which texts and figures
are taken or adapted. For these integrated publications, I use the following rules:

* Quoted paragraphs are not written by myself and contain contributions of
other authors.

* Chapters “taken from” my publications are copied and differ only in slight
wording changes. These chapters contain my own contributions, and I did all
writing myself or rephrased the chapters during the paper writing process.

* Chapters “based on” a publication are mostly rephrased, and the content
has been modified. These chapters contain my own contributions but were
changed to fit nicely into this thesis.

This resulting thesis is a trade-off between a nicely readable dissertation (rewriting
of all my peer-reviewed articles) and a thesis following the strictest citation rules
(quoting all sections being related to a publication). I decided to focus on the
content, contributions, and the reader, as I believe these to be most important.
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1.5 Publications

During my time as a doctoral researcher, I published several publications in high-
level journals and conferences. These publications are foundation of this thesis:

[Beh+18]

[Mil+19]

Michael Behrisch, Michael Blumenschein, Nam Wook Kim, Lin Shao,
Mennatallah El-Assady, Johannes Fuchs, Daniel Seebacher, Alexan-
dra Diehl, Ulrik Brandes, Hanspeter Pfister, Tobias Schreck, Daniel
Weiskopf, and Daniel A. Keim. “Quality Metrics for Information Visual-
ization”. In: Computer Graphics Forum 37.3 (2018), pp. 625-662.

Contribution clarification. This paper is a collaborative effort be-
tween many authors, in particular, Michael Behrisch and myself. M.
Behrisch and I contributed equally to the paper. I initiated the project
and designed the overall content and structure of the different chap-
ters. During the writing process, M. Behrisch took over the lead to fi-
nalize the paper due to other obligations on my part. Ulrik Brandes,
Hanspeter Pfister, Tobias Schreck, Daniel Weiskopf, and Daniel A. Keim
supervised the project and regularly provided feedback on paper drafts.
Nam Wook Kim, Lin Shao, Mennatallah El-Assady, Johannes Fuchs,
Daniel Seebacher, and Alexandra Diehl provided references and mate-
rial for the different visualization techniques and their quality metrics.
In particular, for the visualizations for high-dimensional data, material
and drafts for parallel coordinates were written by myself, scatter plot
and scatter plot matrix was provided by L. Shao, for radial and pixel-
based visualizations by D. Seebacher, and glyphs by Johannes Fuchs. I
was responsible for unifying the content of all HD visualizations and
writing large parts of the introduction, background, methodology, and
discussions. M. Behrisch was responsible for finalizing the visualiza-
tions of the other data types, i.e., visualizations for relational data, geo-
spatial data, sequential, temporal, and text data. All sections used in
this thesis were either written by myself or revised by myself several
times during the writing process. Hence, I use the material without
any citation marks in Chapter 2 and Chapter 8.

Matthias Miller, Xuan Zhang, Johannes Fuchs, and Michael Blumen-
schein. “Evaluating Ordering Strategies of Star Glyph Axes”. In: IEEE
Visualization Conference (VIS). 2019, pp. 91-95.

Contribution clarification. This paper is a close collaboration between
Xuan Zhang and myself (I supervised her BA thesis). I had the idea to
compare and analyze different axes ordering strategies of star glyphs
in an empirical user study. I also defined the research question and con-
tribution. Daniel A. Keim and Johannes Fuchs provided feedback on
the general idea, the study design, and regularly commented on paper
drafts. X. Zhang implemented the tool and conducted the user study
based on my input. The statistical analysis was done by myself. I was
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[Blu+20b]

[Pom+19]

responsible for the writing of the paper. Matthias Miller provided ini-
tial drafts of the abstract, introduction, related work, and the figures. I
revised these paragraphs several times during the writing process. The
other parts of the paper were written entirely by myself. Hence, I use
the text without citation marks in Chapter 3.

Michael Blumenschein, Xuan Zhang, David Pomerenke, Daniel A.
Keim, and Johannes Fuchs. “Evaluating Reordering Strategies for Cluster
Identification in Parallel Coordinates”. In: Computer Graphics Forum
39.3 (2020), pp. 537-549.

Contribution clarification. This paper is also a close collaboration be-
tween Xuan Zhang and myself (I supervised her BA thesis). Based on
the result of X. Zhang’s thesis, we designed the user study conducted
in this paper. Johannes Fuchs supervised this paper project, and Daniel
A. Keim provided feedback on the general idea and commented on
paper drafts. I had the idea to summarize and categorize different re-
ordering approaches for parallel coordinates, and to conduct a user
study to evaluate two particular reordering approaches. I also defined
the research question and contribution. The user study design and hy-
pothesis were a result of regular discussions among J. Fuchs, X. Zhang,
and myself. X. Zhang implemented the reordering techniques and an
initial version of the interface for the user study. Based on my input,
David Pomerenke also contributed to the study implementation and
supported the analysis of the study results. X. Zhang and D. Pomerenke
helped to finalize the supplementary material. All writing was done by
myself, or I revised paragraphs several times during the writing pro-
cess. Thus, I use the text without citation marks in Chapter 4.

David Pomerenke, Frederik L. Dennig, Daniel A. Keim, Johannes Fuchs,
and Michael Blumenschein. “Slope-Dependent Rendering of Parallel
Coordinates to Reduce Density Distortion and Ghost Clusters”. In: IEEE
Visualization Conference (VIS). 2019, pp. 86-90.

Contribution clarification. During the design of the benchmark dataset
in our parallel coordinates study [Blu+20b] (see above), I identified
the problem that parallel coordinates may distort the perception of
clusters. David Pomerenke had the idea to draw the line segments of
the parallel coordinates plot with a different width to overcome the
problem. He also implemented different versions of the adjustment
algorithm based on the suggestions by myself. The final rendering for-
mula is a collaborative effort of D. Pomerenke, F. Dennig, and myself. I
was responsible for the writing of the paper and identified the research
question and contribution. D. Pomerenke and F. Dennig supported
the structure of the paper with fruitful discussions and provided initial
drafts for the related work and the description of the rendering algo-
rithm. Daniel A. Keim and Johannes Fuchs provided feedback on the
general idea and commented on paper drafts. All sections of the pa-
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[Blu+20a]

[Blu+18]

per were written by myself, or I revised them several times during the
writing process. Thus, I use the text without citation marks in Chap-
ter 5. In this thesis, I extended the content of this chapter by a more
detailed description of the rendering formula. This text is based on the
supplementary material of the corresponding paper [Pom+19] (avail-
able at https://osf.io/sy3dv) and also authored / revised by myself.
Hence, I also use this material without citation marks.

Michael Blumenschein, Luka J. Debbeler, Nadine C. Lages, Britta Ren-
ner, Daniel A. Keim, and Mennatallah El-Assady. “v-plots: Designing
Hybrid Charts for the Comparative Analysis of Data Distributions”. In:
Computer Graphics Forum 39.3 (2020), pp. 565-577.

Contribution clarification. The general idea of the v-plot’s design was
done by myself in a previous paper [Deb+18]. Based on these initial
ideas, we extended the manual design of a v-plot into a chart authoring
tool, which recommends basic charts and automatically adjusts v-plots
based on their selected analysis tasks. The contribution and research
question was a collaborative effort between Mennatallah El-Assady and
myself. I designed the structured overview of the analysis tasks and
visualization techniques for comparative analysis of data distributions.
Furthermore, I conducted the design study, was responsible for the im-
plementation, the design of the recommendation engine, and the v-plot
matrix. Luka J. Debbeler contributed concrete examples for the classifi-
cation of analysis tasks and provided domain-specific examples for the
use case. Nadine C. Lages conducted the expert user study and provided
an initial draft of the corresponding text. L. Debbeler and N. Lages were
also involved in many discussions shaping the overall structure of the
paper. M. El-Assady supervised the project and provided textual drafts
for different paragraphs during the writing. Britta Renner and Daniel A.
Keim provided feedback on the general idea and paper drafts. All writ-
ing was done by myself, or I revised paragraphs several times during the
writing process. Thus I use the text without citation marks in Chapter 6.

Michael Blumenschein, Michael Behrisch, Stefanie Schmid, Simon
Butscher, Deborah R. Wahl, Karoline Villinger, Britta Renner, Har-
ald Reiterer, and Daniel A. Keim. “SMARTexplore: Simplifying High-
Dimensional Data Analysis through a Table-Based Visual Analytics Ap-
proach”. In: IEEE Conference on Visual Analytics Science and Technol-
ogy. 2018, pp. 36-47.

Contribution clarification. This paper is the result of a close collabo-
ration between Stefanie Schmid and myself (I supervised her BA thesis,
and this paper builds on top of her thesis). I came up with the research
question and contribution of the paper. Furthermore, I contributed the
requirement analysis, the visual design, the user-guided analysis, the
automatic pattern detection, and the actual implementation of the tech-
nique. I also conducted the user study. M. Behrisch helped to shape the
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structure of the paper and provided drafts of several sections. Simon
Butscher helped with discussions on user interaction. Deborah R. Wahl
and Karoline Villinger provided concrete application examples for the
evaluation and examples throughout the paper. Furthermore, they were
very much involved during the design process of the SMARTexplore
technique and provided data, analysis questions, and feedback from a
user-centered perspective. Britta Renner, Harald Reiterer, and Daniel A.
Keim supervised the project and commented on paper drafts. All writ-
ing was done by myself, or I revised paragraphs several times during the
writing process. Thus I use the text without citation marks in Chapter 7.

Additionally, I authored and contributed to 19 publications which inspired the needs
and contributions of this thesis, but are not included therein. These publications are
listed in the following:

[Wah+20]

[Sch+19]

[Ben+18]

[Deb+18]

[Jac+17]

[Sch+17]

Deborah R. Wahl, Karoline Villinger, Michael Blumenschein, Laura
M. Konig, Katrin Ziesemer, Gudrun Sproesser, Harald T. Schupp, and
Britta Renner. “Why We Eat What We Eat: Assessing Dispositional and In-
the-Moment Eating Motives by Using Ecological Momentary Assessment”.
In: JMIR mHealth and uHealth 8.1 (2020), pp. e13191.

Christin Schétzle, Frederik L. Dennig, Michael Blumenschein, Daniel
A. Keim, and Miriam Butt. “Visualizing Linguistic Change as Dimension
Interactions”. In: Proceedings of the 1st International Workshop on
Computational Approaches to Historical Language Change. Florence,
Italy: Association for Computational Linguistics, 2019, pp. 272-278.

Houssem Ben Lahmar, Melanie Herschel, Michael Blumenschein, and
Daniel A. Keim. “Provenance-Based Visual Data Exploration with EVLIN”.
In: Proceed- ings of the 21th International Conference on Extending
Database Technology, EDBT 2018, Vienna, Austria, March 26-29, 2018.
2018, pp. 686-689.

Luka J. Debbeler, Martina Gamp, Michael Blumenschein, Daniel A.
Keim, and Britta Renner. “Polarized but illusory beliefs about tap and
bottled water: A product- and consumer-oriented survey and blind tasting
experiment”. In: Science of The Total Environment 643 (2018), pp.
1400-1410

Dominik Jackle, Michael Hund, Michael Behrisch, Daniel A. Keim, and
Tobias Schreck. “Pattern Trails: Visual Analysis of Pattern Transitions
in Subspaces”. In: IEEE Conference on Visual Analytics Science and
Technology. 2017, pp. 1-12.

Christin Schéatzle, Michael Hund, Frederik L. Dennig, Miriam Butt, and
Daniel A. Keim. “HistoBankVis: Detecting Language Change via Data
Visualization”. In: Proceedings of the NoDaLiDa 2017 Workshop on
Processing Historical Language. Linkoping University Electronic Press,
2017, pp. 32-39.
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[Mer+17]

[Hun+16b]

[Zha+16]

[Hun+16a]

[Beh+16a]

[Sch+16]

[Hun+15b]

[Hun+15a]

[May+14]

Leonel Merino, Johannes Fuchs, Michael Blumenschein, Craig Anslow,
Mohammad Ghafari, Oscar Nierstrasz, Michael Behrisch, and Daniel A.
Keim. “On the Impact of the Medium in the Effectiveness of 3D Software
Visualizations”. In: VISSOFT’17: Proceedings of the 5th IEEE Working
Conference on Software Visualization. 2017, pp. 11-21.

Michael Hund, Ines Farber, Michael Behrisch, Andrada Tatu, Tobias
Schreck, Daniel A. Keim, and Thomas Seidl. “Visual Quality Assessment
of Subspace Clusterings”. In: KDD Workshop on Interactive Data Explo-
ration and Analytics (IDEA16). 2016.

Leishi Zhang, Chris Rooney, Lev Nachmanson, William Wong, Bum
Chul Kwon, Florian Stoffel, Michael Hund, Nadeem Qazi, Uchit Singh,
and Daniel A. Keim. “Spherical Similarity Explorer for Comparative Case
Analysis”. In: IS&T Electronic Imaging Conference on Visualization and
Data Analysis. 2016, pp. 1-10.

Michael Hund, Dominic Bohm, Werner Sturm, Michael Sedlmair, To-
bias Schreck, Torsten Ullrich, Daniel A. Keim, Ljiljana Majnaric, and An-
dreas Holzinger. “Visual Analytics for Concept Exploration in Subspaces
of Patient Groups”. In: Brain Informatics 3.4 (2016), pp. 233-247.

Michael Behrisch, Benjamin Bach, Michael Hund, Laura von Riiden,
Michael Delz, Jean-Daniel Fekete, and Schreck, Tobias. “Magnostics:
Image-based Search of Interesting Matrix Views for Guided Network
Exploration”. In: IEEE Transactions on Visualization and Computer
Graphics 23.1 (2016), pp. 31-40.

Christoph Schulz, Arlind Nocaj, Mennatallah El-Assady, Steffen Frey,
Marcel Hlawatsch, Michael Hund, Grzegorz Karch, Rudolf Netzel,
Christin Schéitzle, Miriam Butt, Daniel A. Keim, Thomas Ertl, Ulrik
Brandes, and Daniel Weiskopf. “Generative Data Models for Validation
and Evaluation of Visualization Techniques”. In: Beyond Time And
Errors: Novel Evaluation Methods For Visualization. 2016, pp. 112-
124.

Michael Hund, Werner Sturm, Tobias Schreck, Torsten Ullrich, Daniel
A. Keim, Ljiljana Majnaric, Andreas Holzinger. “Analysis of Patient
Groups and Immunization Results Based on Subspace Clustering”. In:
Brain Informatics and Health. Vol. 9250. Lecture Notes in Computer
Science. Springer International Publishing, 2015, pp. 358-368.

Michael Hund, Michael Behrisch, Ines Farber, Michael Sedlmair, Tobias
Schreck, Thomas Seidl, and Daniel A. Keim. “Subspace Nearest Neighbor
Search - Problem Statement, Approaches, and Discussion”. In: Similarity
Search and Applications. Vol. 9371. Lecture Notes in Computer
Science. Springer International Publishing, 2015, pp. 307-313.

Thomas Mayer, Bernhard Walchli, Michael Hund, and Christian Rohr-
dantz. “From the Extraction of Continuous Features in Parallel Texts
to Visual Analytics of Heterogeneous Areal-typological Datasets”. In:
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[Hao+13]

[EIA+13]

[Roh+12]

[Krs+12]

Language Processing and Grammars. The Role of Functionally oriented
Computational Models (2014), pp. 13-38.

Ming C. Hao, Manish Marwah, Sebastian Mittelstadt, Halld6r Janetzko,
Daniel A. Keim, Umeshwar Dayal, Cullen Bash, Carlos J. Felix, Chan-
drakant D. Patel, Meichun Hsu, Yuan Chen, Michael Hund. “Visual An-
alytics of Cyber Physical Data Streams using Spatio-temporal Radial Pixel
Visualization”. In: In Proceedings of Visualization and Data Analysis
(2013), pp. 865404-86541.

Mennatallah El-Assady, Daniel Hafner, Michael Hund, Alexander Jager,
Wolfgang Jentner, Christian Rohrdantz, Fabian Fischer, Svenja Simon,
Tobias Schreck, and Daniel A. Keim. “Visual Analytics for the Prediction
of Movie Rating and Box Office Performance”. In: VAST Challenge 2013 -
Award for Effective Analytics. 2013.

Christian Rohrdantz, Michael Hund, Thomas Mayer, Bernhard Wélchli,
and Daniel A. Keim. “The World’s Languages Explorer: Visual Analysis of
Language Features in Genealogical and Areal Contexts”. In: Computer
Graphics Forum 31.3 (2012), pp. 935-944.

Milos Krstajic, Christian Rohrdantz, Michael Hund, and Andreas Weiler.
“Getting There First: Real-Time Detection of Real-World Incidents on
Twitter”. In: IEEE Workshop on Interactive Visual Text Analytics. 2012.
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Quality Metrics
for High-Dimensional Data

Summary

The visualization community has developed to date many intuitions and understand-
ings of how to judge the quality of views in visualizing high-dimensional data. The
computation of a visualization’s quality and usefulness ranges from measuring clut-
ter and overlap, up to the existence and perception of specific (visual) patterns. This
chapter attempts to report, categorize and unify the diverse understandings, and
aims to establish a common vocabulary that will enable a wide audience to under-
stand their differences and subtleties. For this purpose, we present a commonly
applicable quality metric formalization that should detail and relate all constituting
parts of a quality metric. We organize our corpus of reviewed research papers along
the most commonly used visualization techniques for multi- and high-dimensioanl
data. For each technique, we survey the quality metrics, report their findings, reason
on the underlying concepts, describe goals and outline the constraints and require-
ments. One central goal of this chapter is to provide guidance on future research
opportunities for the field and motivate the visualization community to compare
computed measures to the perception of humans.

This chapter is based on the following publication. Please refer to Sections 1.4 and
1.5 for the contribution clarification and general citation rules.

[Beh+18] Michael Behrisch, Michael Blumenschein, Nam Wook Kim, Lin Shao,
Mennatallah El-Assady, Johannes Fuchs, Daniel Seebacher, Alexan-
dra Diehl, Ulrik Brandes, Hanspeter Pfister, Tobias Schreck, Daniel
Weiskopf, and Daniel A. Keim. “Quality Metrics for Information Visual-
ization”. In: Computer Graphics Forum 37.3 (2018), pp. 625-662.

2.1 Introduction

The idea of measuring the quality of a visualization is as old as the information
visualization community itself. Early work in the field can be traced back to the work
of Bertin [Ber81], although the notion and importance of quality were developed far
earlier in cartography. Undoubtedly, Tufte was the first research pioneer formalizing
the quality metric idea to a simple, thus understandable quality metric: the data-to-
ink ratio [TG83]; a metric to convey the core principles of an effective and efficient,
crisp design.

17



18

Quality-Metrics-Driven Automation

! ! ! f

View
Source Data Transformed Visual Visual Transformation Views
Data Transformation Data Mapping Structures Rendering User

Fig. 2.1. Quality Metrics-driven Visual Analytics pipeline. The pipeline adds an additional
layer named Quality Metrics-driven Automation on top of the traditional informa-
tion visualization pipeline [CMS99]. The layer could obtain information about
the several stages of the pipeline (the boxes) and influences the processes of the
pipeline through the quality metrics it calculates. The user is always in control.
Image and text adapted from [BTK11].

Generally, effective and efficient visualizations follow a simple mantra: They show
the most information in the simplest possible form. However, the current data
to be visualized puts more and more challenges on visualization designers: high-
dimensional spaces, complex relationships, or the sheer amount of data to be
visualized demand a careful choice of the visual variables for a faithful representation
of the underlying dataset.

Following the accepted information visualization pipeline of Card et al.[CMS99] —as
one possible example- a visualization designer will inevitably be confronted with
the dilemma of choosing from a multitude of data processing possibilities and an
even greater choice of potential visualization options. To give a practical example: If
a user wishes to visualize a 20-dimensional dataset, not only data-specific questions,
such as normalization and outlier removal, play a critical role, but also which data
characteristic should be highlighted first. In case that a visualization designer decides
for a scatter plot, which fixes most of the choices of the visual variables, n x (n—1)/2
potentially meaningful dimension combinations can be depicted. Each of these
190 views needs to be evaluated independently for its usefulness by analyzing its
effectiveness concerning other visual encodings, such as color mapping, visual marks,
and axis ranges.

In the general case, the number of visual mappings for an arbitrary data type grows
exponentially with the number of mapping options, thus making information visual-
ization design to a trial-and-error process. More importantly, however, is that only
those visualizations can be considered effective that support the building of men-
tal models for the underlying dataset [Nor06]. Hence, the essence of effectiveness
resides in the identification of interpretable visual patterns that contribute to the
overarching analysis goal.

The research field of Quality Metrics (QMs) has devoted its efforts to develop quanti-
tative measures for detecting visualizations that contain one or multiple interpretable
visual patterns. Applied to exploration and navigation contexts, quality metrics can
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help to guide the user to views of interest or can help to mitigate the cognitive over-
load by filtering cluttered or uninteresting views. In general, quality metrics stand
as an umbrella term for quantifying the (visual) quality and such the effectiveness
and interestingness of a visualization. These approaches find broad applications in
the visualization of high-dimensional, relational, or geospatial data. Over the last 30
years, a myriad of approaches, techniques, and concepts have been developed to
help the user find a suitable data transformation and visual mapping by iterating
and evaluating every possible visualization design combination.

Our motivation for this report is two-fold. First, we recognize that by now the most
recent quality metrics surveys date back several years [BTK11; EDO7]. In the mean-
time, the field was undergoing an important development from quality metrics that
heuristically quantify the amount of clutter toward a pattern- and analysis task-
driven exploration. Therefore, we aim to provide an update by adding more recent
publications to the body of work presented in these earlier surveys. Second, we no-
ticed that, although a wide range of approaches was presented under the headline
of quality metrics, only little effort has been devoted to describing the methodologi-
cal and conceptual background of these approaches. Consequently, this work aims
to bring depth into the discussion, by consistently enumerating, describing, and re-
lating the underlying concepts with the same vocabulary. As the third motivation
point, we claim that most approaches have not yet been evaluated for their percep-
tual relationships. However, novel and innovative evaluation approaches, such as
crowdsourcing and hardware developments (eye trackers in a sub 100$ range) are
opening new potentials for this research field.

In summary, the contribution of this chapter is to give a comprehensive overview
of existing quality metrics for different multi- and high-dimensional information
visualizations techniques, particularly scatter plots (Section 2.6.1) and scatter plot
matrices (Section 2.6.2), parallel coordinates (Section 2.6.3), pixel-based techniques
(Section 2.6.4), radial visualizations (Section 2.6.5), and glyphs (Section 2.6.6). Our
selection is targeted towards visualizations in which QMs are in focus of the research,
but we also outline a potential usefulness of QMs for other visualization techniques.
As a guiding theme, we not only concentrate on a pure enumeration of techniques
but focus more on a detailed description of the underlying concepts and models and
their variety of different implementation possibilities. We also survey how QMs are
evaluated and whether results are compared to the human perceptiveness.

2.2 Background and Conceptualization

This section introduces definitions and concepts that we rely upon to describe
quality metrics approaches. We discuss common concepts and methodologies across
different visualization domains. As one of the core motivations of this survey, we
plan to unify the vocabulary and understanding of quality metrics. To achieve this
bold goal we gradually increase the level of formalism in the following section. To
ease the readability we decided to begin with a purely informal description of our
quality metric vision. Then we present our attempt to formalize the problem and
describe thoroughly constituents and facets influencing the understanding of QMs.

2.2 Background and Conceptualization
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2.2.1 Quality Metric Vision

The grand and sketchy vision behind the visual quality metrics research is the
following: Imagine a visual analysis would be based on a black-box that that is fed
with your current analysis task(s), user preferences, and the dataset at hand. This
black-box would “auto-magically” derive a recommendation of the best possible
visualization type and visualization instantiation; would derive the most effective
visual variable settings (e.g., color map, shape, texture) and all necessary data
preprocessing steps depending on multitude of soft and hard influencing factors;
and would finally present the most interesting view on the data that reveals most
information.

However, while this vision sounds overarchingly promising, parts of the questions
can already be tackled with current technologies: More or less sophisticated “Show
Me” buttons (e.g., [MHSO07]) decide for the user which visualization is appropriate
based on data types. Other approaches even add considerations about the underlying
data distribution into their recommendations of a visualization type and visual
mapping [Won+16; Won+17].

Other approaches start from the constraint that the visualization type is fixed, e.g.,
scatter plots for projections of high-dimensional data and tackle the question which
views can be discarded due to the high overlap or visual clutter [BS04; Tat+10].
Again other approaches, such as the so-called *-gnostics [WAG05; SSK06; DK10;
Leh+15; Beh+16a], focus on the quantification of visual patterns for their specific
visualization type, following the core idea of promoting only views containing
interpretable visual patterns and thus helping build mental models about the dataset
and task relationships.

But, while we are seeing more and more advanced research for supporting the user
in the exploration process, the current research is struggling with the definition,
categorization, and labeling of the current exploration task in place. Partially this
problem arises because exploration tasks are not necessarily separable in terms
of their temporal characteristics and oftentimes even nested in nature. To make
matters worse, most users do not follow a structured exploration path but conduct
several exploration tasks in parallel with a more or less prominent specificity. While
basic research has been presented in this field, such as various task taxonomies
with different levels-of-details [BM13; Kei+08; Lee+06; Shn96], only a few works
focused on automatically quantifying the current exploration task at hand. Sacha
et al. [Sac+17] list a range of works following this research stream. Additionally,
quality measures should approximate the users’ perception and cognition. Yet, only
a few approaches have been evaluated with user studies and only a few evaluations
compare the usefulness of multiple different metrics.

The aforementioned consideration sketches outline a far-reaching and extensive
research field with multi-faceted foci and research potential for at least the next
decade. Consequently, we will not be able to report on all developments. Rather, we
decided to put emphasis on what we denote as Mid-level Perceptual Quality Metrics.
This emerging field focuses on perceptually-inspired quality metrics that try to mimic
parts of the human perception/cognition in order to ease the exploration process.
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These approaches not only reduce the cognitive overload by separating the “wheat
from the chaff”, i.e., by removing noise, but also facilitate building task-related
mental models by mimicking the humans’ ability to recognize and differentiate
between visual patterns.

2.2.2 Definitions

We use the following definitions. Formally, measuring the quality of a visualization
V' consists of computing one visualization definition ¢ € ® from a universe ® of
potential instantiations that maximizes or minimizes a specified quality criterion
q(D,U,T), such that:

— Quality Metrif: —
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Fig. 2.2. Quality Metrics (QM) formalization. QMs are composed of an algorithmic part
and a quality criterion. A potential multi-objective optimization algorithm tries to
find efficiently a valid visualization configuration (¢) that optimizes the designed
quality criterion ¢(¢ | D, U, T'). The quality criterion tries to heuristically capture
how an effective visualization instance might look like. This intuition is bound and
influenced by the task T at hand (defines the to-be-expected visual appearance),
the dataset characteristics D (defines if a visual pattern is producible), and the
user preferences U. Consequently, a QM arg min/max ¢(¢ | D, U, T) determines a
perceptually preferable visualization configuration ¢ for a given quality criterion
q(...) given the influencing factors D, U, T.

To illustrate our formalism let us imagine the following scenario: We describe our
user U as a statistically knowledgeable person with average attention potential whose
task T is to understand data/dimension (dis-)similarities in a high-dimensional
dataset D. Our Quality Metric-driven recommendation system could decide that a
scatter plot display is a suitable choice to show (dis-)similarities for this kind of user.

2.2 Background and Conceptualization
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The quality criterion (... ) could then compute the sum of pairwise distances over
all displayed points in D with respect to a chosen distance function while taking
the data specifics into consideration (i.e., needs outlier cleaning). The Equation in
Figure 2.2 would find for a specific task t; € T, a ¢; € ® that minimizes this sum
relating to a locally dense scatter plot or could find ¢, € ® that maximizes the sum
to find globally cluttered plots for another task t, € 7.

Mid-Level Perceptual Quality Metrics

The area of Mid-level Perceptual Quality Metrics leaves out all considerations about
the user U; assessing his/her skill set or cognitive/physiological capabilities and does
not (yet) deal with an explicit formulation of tasks 7" during the exploration process.
The field of Mid-level Perceptual Quality Metrics is rather concerned with presenting
heuristics and algorithms to statistically quantify the extent of an anti-pattern —e.g.,
how a cluttered view looks like— or which specific visual pattern is apparent —e.g.,
locally dense scatter plots can be used to reason about data similarity.

In the following, we will outline the components contributing the definition of a
Mid-level Perceptual Quality Metric.

* A Quality Metric (QM) combines an optimization algorithm and quality crite-
rion with the overarching goal to mimic parts of the human perception. QMs
are developed with a specific goal in mind, such as finding clutter-free visual-
izations or visualizations with a specific interpretable visual pattern.

* Visualization Definition ¢ is an instantiation of the parameter space ® defin-
ing the appearance of a specific visualization type. Following the information
visualization of Card et al. [CMS99], as depicted in Figure 2.1, we will have to
distinguish between data-dependent and visualization-dependent parameters.
For a scatter plot, ¢ would define the necessary data transformations, such as
which outliers will distract the view “too much” and the view-space parame-
ters describing the visual appearance of data item (e.g., shape, color, texture,
position) and the corresponding axis definition and appearance (e.g., offset,
normalization type, aspect ratio).

* Quality Criterion ¢(...) is an (heuristic) algorithm or function for quantify-
ing the effectiveness of one visualization instantiation/view. In other words,
a quality criterion evaluates heuristically whether or not a view follows es-
tablished perceptual guidelines. In the most cases, the goal is to quantify the
visual appearance of (anti-)patterns. We consider visual patterns as the tar-
get elements of the exploration process, while visual anti-patterns, such as
noise, will distract the user without adding to his/her understanding about the
dataset and task at hand.

* Optimization Algorithm makes use of a quality criterion and -concept to de-
rive, e.g., a ranked or filtered list of visualization instantiations (or views). To
achieve this goal an optimizer takes a quality criterion and improves the mea-
sure over the visualization method parameters ¢. Most prominently, filtering
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concepts are applied to discard cluttered views, while pattern-exploration sys-
tems categorize views in terms of the visual patterns they contain.

Note that metric has a precise meaning in mathematics, but is used more loosely
in the present context. The characteristics of a metric, i.e., non-negativity, identity
of indiscernibles, symmetry, and the triangle inequality, need not necessarily hold
in all cases. As an example, many QM approaches are based on non-deterministic
computations to retrieve (good) local optima in the visualization parameter space.
Hence, the term quality metric should be rather understood as an artifact that
developed over time from a mathematical understanding toward a more vague
and indistinguishable field of more or less mathematically backed up research
approaches.

2.2.3 Common Calculation Approaches

In our literature review, we identified three different concepts to compute quality
metrics: a primarily image space dependent computation, a purely data space de-
pendent computation, and hybrid approaches that efficiently combine both concepts.
Moreover, we found that QMs are either used implicitly during the construction of
visualizations or as a separate evaluation component complementing the construc-
tion and use of visualizations.

Image Space QMs assess the quality of a visualization solely based on the rendered
image. Often, sophisticated feature descriptors are extracted from the image and
used to measure clutter or perceivable patterns. For example, Tatu et al. [Tat+09]
encode the visual quality of parallel coordinates by means of a Hough Space feature
descriptor. With this approach, it is possible to distinguish visually noisy and strongly
clustered axis combinations. In a quality metric driven analysis, we aim to mimic
the perception of a human to identify patterns. The main advantage of an image-
based quality assessment is therefore that we use the same visual information (i.e.,
image) that is also assessed by humans in an evaluation setting.

Data Space QMs measure the quality of a visualization before the rendering pro-
cess starts. The approaches are based either on raw or transformed input data, or
estimate how visual structures will most probably look like. As an example, Johans-
son and Johansson [JJ09] propose an interactive approach to weight multiple data
spaces based quality metrics to reorder axes of parallel coordinates. Their metrics
comprise a user-defined weighting of correlation dimensions (by a Pearson correla-
tion coefficient), outlier analysis (by a grid and density based approach), and cluster
detection (by applying a subspace clustering algorithm). The main advantage of
data-based QMs is that many measures (such as cluster algorithms) exist and can be
computed usually quite efficiently.

2.2 Background and Conceptualization
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Fig. 2.3. A wide range of quality metric understandings exist in the literature. The left
side shows a broad categorization of the field sorted according to the cognitive
complexity these approaches try to reflect. The right side shows that the task focus
of Mid-level Perceptual Quality Metrics comprises different granularity levels: (1)
Overview: distinguish between noise/clutter and any kind of pattern, (2) quantify
the quality of a visualization based on a specific pattern (depends on the task).

Coghnitive Process / Complexity

Hybrid QMs combine the advantages of image and data space approaches. For
example, Bertini and Santucci [BSO4] determine a good sampling rate in scatter
plots by comparing the visible data density in image space with the relative data
density in data space. The number of visible points at one specific location in the
visualization is either 0 or 1 in the image space, while the data space can also count
more than one points at one location. Combining these measures support most
useful sampling strategies.

Implicit vs. Explicit Quality Metrics. Many approaches make use of implicit quality
criteria as part of an optimization problem. Typically, these approaches do not
explicitly externalize numeric scores for the quality of a visualization, but decide
during the view construction which representations is more useful.

A practical example in the field of dimension reduction is presented by Wang et al.
in [Wan+18a]. For labeled datasets, typically depicted by color-coded scatter plots,
algorithms start with a (pseudo-)random placement of items in 2D. This placement
is incrementally improved with respect to one or multiple visual class separation
QMs by choosing the one perturbation of the current solution that improves the
QMs. Integrated into a simulated annealing optimization, this approach helps to
traverse the exploration space and find a locally optimal solution for the chosen
class separation QMs.

An explicit quality criterion for parallel coordinates would quantify to which extent
specific visual patterns (e.g., clusters) are present in the arrangement of axes,
described by its applied reordering algorithm. But, explicit QMs can also be used to
choose between various visualization types and configurations. For example, in “Line
Graph or Scatter Plot? Automatic Selection of Methods for Visualizing Trends in Time
Series” [Wan+ 18b] the authors quantify the visual consistency between the data set’s
trend curve and the trend described by a scatter plot or a line graph. Based on the
numeric comparison of both QM scores, the better visual approximation is chosen.
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2.2.4 Analysis Scenarios Supported by Quality Metrics

We can distinguish between QMs designed for clutter reduction and pattern-driven
analysis, as depicted in Figure 2.3. Clutter reduction techniques reveal the contained
set of visual structures by “only” filtering out noisy views. Therefore, they are most
useful to obtain an overview of large and unknown datasets, as they keep all views
with potentially interesting visual patterns. Hence, these QMs mitigate the cognitive
overload problem. However, users typically have specific exploration or analysis
foci in mind to understand the data structure and topology. Searching for visual
patterns with particular properties is significantly more challenging and requires
a quantification and distinguishing of visual structures. But, perceptually-inspired
QMs have the benefit to support the user directly by contributing to their mental
model and understanding of the data.

Overview of Analysis Tasks

Quality metrics identifying a particular pattern are typically related to one or more
analysis tasks. We refer to these metrics as task-specific quality metrics. For all QM
that we report in this chapter, we try to elaborate on the (potentially) underlying
task(s). We do not stick to any of the established task taxonomies, since they are too
specific compared to the analysis tasks supported by QMs. In contrast, we present a
high-level overview of exploration tasks supported by the majority of metrics:

Clutter reduction. Users are interested in filtering out noisy views without a specific
visual pattern in mind. This task is a typical used to get an overview of unknown
datasets.

Preservation task. QMs for preservation tasks identify views that preserve the
original data properties in the mapping process. The preserved aspects can be, for
example, individual data points or topological structures.

Search for data groups and partitions (clusters). QMs aim to identify views in
which a (useful) partition and/or dense groups of data records are visible.

Search for outliers. The goal is to identify views that highlight data points differing
from the majority of other points.

Search for dimension relations. This task depict combinations of dimensions
showing relationships between the data points (e.g., correlations).

Data and visualization specific tasks. For one data type, different visualization
techniques exist; each with (dis-) advantages to reveal essential aspects. Some anal-
ysis tasks are specific to data or visualization types (e.g., readability of typographic
visualizations) and cannot be generalized.

One example of a task-specific QM is shown in Figure 2.4. Imagine an analysis task
in which users need to find data groupings (clusters) in scatter plots: While the
first scatter plot contains only noise, the last plot reveals several clusters, detected
by a quality metric. Although the second plot also shows an interpretable pattern

2.2 Background and Conceptualization
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Fig. 2.4. Example of a task-specific quality metric for scatter plots. Task: finding data
groupings or clusters.

(correlation of the data), it is not relevant to the current task. A task-specific
quality metric needs to classify the plot as non-interesting due to the non-relevant
visible pattern. One existing quality metric that can distinguish between a variety
of patterns in scatter plots is Scagnostics [WAGO5]. It captures the presence of the
following nine visual features: outlying, skewed, clumpy, convex, skinny, striated,
stringy, straight, and monotonic. In the example we would search for scatter plots
with low monotonic and high clumpy features.

In second example, an analyst wants to measure how much information is preserved
by projecting a high-dimensional dataset with class labels into a 2D representation.
The analyst decides to use the RadViz technique and represent color with the class
information. As shown by Figure 2.5, a task-dependent quality metric can help
to optimize the ordering of dimensions such that the provided classes are well
separated. A quality metric that facilitates this concept is presented by Albuquerque
et al. [Alb+10]. Their approach is to measure the density of all classes in every 2D
representation.

During our literature review, we recognized that a some tasks are well-supported
by QMs, while others are not. We discuss well-adopted tasks in their respective
visualization section and point to open research gaps for visualization technique.

1 5 5
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7 l:,'-l::.;,.. 3 8 108 - ‘:&;‘; 7
.; . El{i ..‘
6 4 1 . 4
5 3 3

Fig. 2.5. Different dimension orderings in RadViz preserve and emphasize, respectively
mask, given groupings in high-dimensional data. Groupings become increasingly
visible from left to right. Figure adapted from [Alb+10].
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2.3 Related Concepts

As mentioned earlier, this work surveys the recent advances and state-of-the-art
for mid-level perceptual QMs. However, this subfield is embedded into an overall
quality metric landscape, depicted in Figure 2.3. For the sake of completeness and
delineation, we will enumerate the main concepts and relationships in this section.

The topic of quality metrics is not described in technical terms, but rather incorpo-
rates a wide range of understandings. Since one of the core contributions of this
chapter is to establish a common vocabulary, we are categorizing QM related con-
cepts along the axis of cognitive complexity.

2.3.1 Low-Level Perceptual Quality Metrics

Low-level perceptual quality metrics leverage the low-level processing of visual
stimuli in human perception system such as preattentive processing [War20; HE12].
They are concerned with how basic visual encoding variables, such as position,
length, area, shape, and color, and the interaction of the variables (e.g., integrable
or separable) influence the efficiency of low-level perceptual tasks such as visual
search, change detection, and magnitude estimation.

A great deal of prior visualization research has been devoted to understanding the
effectiveness of different visual variables for encoding quantitative and qualitative
data. For example, Cleveland & McGill [CM84] ran a series of graphical perception
experiments to measure accuracy in comparing values and to derive the rankings of
encoding variables. Similar experimental methods have been frequently employed
to compare different chart types as well. The results of such experiments have
also played a vital role in the automatic construction of visualizations [Mac86;
MHSO07].

2.3.2 High-Level Perceptual Quality Metrics

High-level perceptual quality metrics refer to cognitive measures such as memo-
rability, aesthetics, and engagement [SES16]. While they are often considered as
subjective dimensions of visualization design, recent studies attempt to quantify
these measures based on experiments with human subjects. For example, Borkin
et al. [Bor+16] showed that visualization memorability is consistent across people,
suggesting that some visualizations are more memorable than others independent
of subjects’ context and biases.

Various factors can contribute to high-level perceptual quality metrics such as visual
density and human recognizable objects for memorability [Bor+16], colorfulness
and visual complexity for aesthetics [HRC15], and amount of interactions for en-
gagement [SES16]. While mid-level and low-level perceptual quality metrics tend to
focus on optimizing performance measures for data exploration and analysis tasks,

2.3 Related Concepts
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high-level perceptual quality metrics put more emphasis on enhancing the communi-
cation aspect of visualization (e.g. whether a visualization can attract the attention
of an audience and get the message across).

2.3.3 Design Recommendations

We consistently recognize two “end products” for quality metric design in all quality
metric subfields:

Desigh Recommendations. In some visualization subfields, QM results are commu-
nicated via Design Recommendations; textual guidelines and arguments summarizing
the findings about visualization design mostly derived from user-studies. Design
recommendations have the great advantage that they represent reproducible evalua-
tions of how a human perceives a view. They can summarize complex perceptual
circumstances. Their biggest disadvantage is that these textual guidelines are often
derived from simplified task- and context settings that often cannot be generalized
to real-world environments and problem settings.

Heuristic Approaches. In other visualization subfields, purely Heuristic Approaches
prevail. These algorithms model some form of understanding of how a visualization
should look like in order to be effective/useful. The biggest advantage of heuristics
is their reproducibility, thus allowing user- and context-independent, quantitative
visualization comparisons. Their biggest negative point is that visualizations are
often judged for their perceptual quality with quantitative scores that have never
been proven to correspond to the humans’ judgment.

We claim that both approaches are valid but should eventually be backed up with
the other approach. Heuristics should be evaluated for their perceptual aspects
and proven to be perceptual; design recommendations should be developed into
quantifiable heuristics to allow for fair and quantitative evaluation schemes.

2.4 Related Work

Quality Metrics have been developed for different information visualization tech-
niques. From a historical perspective, we are inspired by a range of survey works
with a more or less specific notion of quality metrics. For example, Brath [Bra97]
described several image space quality metrics, such as occlusion percentage or per-
centage of identifiable points, to assess the quality of business visualizations. Miller
et al. [Mil+97] expressed the need for new metrics to compare visualizations. Simi-
larly, Diaz et al. [DPS02] advocated the use of implicit and explicit quality metrics
for assessing the quality of vertex ordering approaches. In this context, the term of
aesthetics is used as same as it is traditionally used in the graph drawing community
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and refers to a set of measures to reduce the cognitive load for graph exploration
tasks [Di +94; War+02].

A first survey focusing primarily on quality metrics for scatter plots and parallel
coordinates was presented by Bertini et al. [BTK11]. Similar to our approach, their
survey presents a systematic analysis focusing on the guiding questions: (1) What
was measured? (2) Where was it measured (data/image space)? (3) What is the
purpose of the QM? And, (4) does the QM allow to be interactively adapted? In
total, 20 papers are surveyed in this work.

The evaluation of quality metrics has gained increasing importance in the recent
years. For example, Lehmann et al.[LHT15] and Pandey et al. [Pan+16] study inde-
pendently the questions about the connection of human perception and (heuristic)
quality metrics and present both crowdsourcing studies to prove evidence that this
connection exists. Sedlmair and Aupetit [SA15] even present a data-driven frame-
work for quality measure evaluation. Their approach tries to mitigate the impact of
(relative) human judgments by relying entirely on ground-truth data. However, this
in turn also indirectly implies some sort of user involvement.

An information theoretic approach for assessing the effectiveness of information
visualization has been mainly pursued by Chen et al [CJ10]. They built on the
initial work by Yang-Pelaez et al [YFOO] and proposed a number of entropy-based
measures, including visual-mapping ratio, information loss ratio, and display space
utilization; these measures are akin to the data-ink ratio [TG83]. Chen et al also
discussed visual multiplexing [Che+14] in relation to the information theoretic
measures. They describe various mechanisms for overlaying multivariate data and
discuss how to overcome perceptual difficulties such as occlusion and cluttering that
arise from the interference among spatially overlapping visual channels. We consider
that these measures concern low-level quality metrics and thus are not discussed in
this chapter.

Saliency-based measures for evaluating the visualization quality have gained recent
interest. They assess how well visually salient regions in a visualization can help users
accomplish their goals and tasks. For instance, Chen and Janicke [JC10] proposed a
method for computing a saliency-based metric to measure the mismatches between
visual salience and data characteristics (e.g., features detected by algorithms).
Matzel at el [Mat+18] recently developed a saliency model to predict where people
would look for a given visualization. Unlike models designed for images of natural
scenes, their model attempts to incorporate top-down visual features (e.g., texts)
that are crucial for visualization tasks. Tailoring the models for different visual
analysis tasks is largely unexplored, however [Pol+18]. We believe that saliency-
based measures touch on both low-level and high-level quality dimensions and thus
not addressed in this chapter.

Although the field of quality metrics for color mapping can be safely categorized
into low-level perceptual quality metrics research and is thus not in the focus of
this survey, we decided to stress some shared argumentation paths by selectively
summarizing some more recent works. Quality metrics for color mapping have been
investigated amongst others in the work of Bernard et al. [Ber+15], Mittelstadt et
al. [Mit+15; MK15], or recently by Gramazio [GLS17]. Szafir and Gleicher [SG16]
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argue for choosing colors based on a given context rather than in isolation. They
identified three categories of design constraints and make design recommendations
for effective color choices based on aesthetic constraints, perceptual constraints, and
functional constraints. Eisemann et al. [EAM11] present an orthogonal approach.
Based on a range of data analysis and transformation steps, a user-independent,
data-driven color mapping approach is postulated.

While many approaches are targeted toward clutter removal [EDO7], only very
few are targeted toward describing the perceived appearance with respect to visual
patterns. Our survey aims at describing quality metric approaches in a unified
manner to better understand their differences and subtleties.

2.5 Methodology and Structure

We gathered an initial set of papers from an informal user study with domain
experts (doctoral researchers and postdoctoral researchers with between 2-7 years
of experience in respective visualization subdomains). Our paper selection was
used to condense a set of high-level questions and evaluation criteria that guided in
the following the expansion of the reference list by searching through the relevant
visualization venues. Consequently, our survey should be seen as an educated
selection of the concepts of quality metrics and does not claim comprehensiveness.

For each visualization technique we base our analysis and the organization of each
content section on a structured questionnaire, which incorporates the following
aspects:

* Visualization Description outlines the basic concept of a specific visualization
type, its primary purpose, its inherent constraints and requirements.

* Why do we need QMs? motivates the use of QMs in this context, describing
the perceptual/analytical benefits, sketches (computational) challenges, and
refers back to the visualization definition part influenced most by the QMs.

» Typical Analysis Tasks outlines analysis scenarios for the respective visualiza-
tion and mentions how QMs can improve efficiency and effectiveness.

* Summary of Approaches presents an overview of the influential QM work in
the literature.

* Evaluations Methods shines a light on the evaluation approaches for QM-
enhanced visualizations.

* Open Research Questions summarize the future challenges with respect to
the visualization design and states how QMs could be applied to overcome
these problems.

Chapter 2 Quality Metrics for High-Dimensional Data



In order to come up with a structured and valid abstraction of the field, we reported
all of our findings in a table format (encoding phase), which can also be found online
at http://visualquality.dbvis.de/summary. We iterated on the table results for
consistency and developed iteratively a more and more refined view of the landscape.
The core findings of these iterations are reflected and abstracted in the background
sections, while specifics are highlighted in the respective subsections.

In total, we collected for this survey 64 papers from the various information visual-
ization subfields. While our coverage is not exhaustive and biased toward impactful
publications illustrating the fundamental concepts of this field, our goal is to pro-
vide a central document where concepts for multiple visualization types are defined
and related, algorithms grouped into broader categories and discussed in contrast to
each other, and, finally, we give an overview, of how quality metrics are systemati-
cally evaluated.

2.6 Survey of Quality Metrics
for Multi- and High-dimensional Data

Multi- and high-dimensional data is typically provided in a table-like format in
which rows correspond to data records/objects, and columns to their dimensions,
attributes, features, or descriptors. For example, consider a collection of cars (data
objects) that are described by, e.g., their color, brand, and horsepower (dimensions).
Often, these datasets comprise combinations of numerical, categorical, and complex
types such as geo-locations, images, and texts. In the following, we restrict ourselves
to quality measures for (combinations of) numerical and categorical dimensions.

Visualizations for multi- and high-dimensional data face two major challenges
that also influence the computation of quality metrics: (1) datasets with a mix of
numerical and categorical dimensions make it difficult to compute relations between
objects (e.g., similarity) which is one of the fundamental concepts in many metrics.
(2) The outstanding characteristic of datasets with a large number of dimensions
is the curse of dimensionality [Bel61]. A huge number of dimensions increase
the possible visual mappings and the arrangement of dimensions. Non-relevant,
redundant, and conflicting dimensions may hide interesting patterns in a sea of noise.
And, the number of dimensions highly influence the interpretability of similarity
measures [Bey+99; HAK0O0].

In the remainder of this Section, we will use synonymously the term high-dimensional
for multi-dimensional, and multivariate data. We will describe and categorize qual-
ity metrics for scatter plots (Section 2.6.1) and scatter plot matrices (Section 2.6.2),
parallel coordinates (Section 2.6.3), pixel-based techniques (Section 2.6.4), radial
visualizations (Section 2.6.5), and glyphs (Section 2.6.6). For each of the techniques,
we describe the challenges and necessity of quality metrics, what they intend to mea-
sure, and outline the analysis tasks for the respective visualization. Afterward, we
summarize the approaches and show their typical evaluation procedure, and outline
open research questions.

2.6 Survey of Quality Metrics for Multi- and High-dimensional Data
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2.6.1 Scatter Plots

A popular and intuitive way to visualize high-dimensional data is to use scatter
plots or scatter plot matrices. A scatter plot represents each data point in a two-
dimensional Cartesian coordinate view. The first dimension is typically denoted
as x and the second dimension as y. Scatter plots support the analysis of single
data instances, as well as data patterns and entire distributions. Figure 2.4 shows
three different examples of distributions that are visualized by scatter plots. It is
easy for analysts to see if the two variables correlate, contain groups or clusters,
or more sophisticated patterns. For datasets with more than two dimensions, all
pairwise combinations of dimensions are visualized using a scatter plot matrix
(see: Section 2.6.2).
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Fig. 2.6. Scatter plots — optimization goals, tasks & visual patterns

Why Do We Need Quality Metrics for Scatter Plots?

Using scatter plots to visualize large and high-dimensional datasets face several
challenges. For example, dimensions may have different units that need to be
scaled. However, an appropriate scaling of variables needs to be chosen carefully
for reliable representations. Another well-known problem of scatter plots is visual
clutter due to a high number of data instances that are plotted on top of each other.
Such visual clutter may hide patterns in the data and make it hard for analysts
to identify relationships among variables. Quality metrics are a means to reduce
the number of displayed scatter plots to only the combinations of variables with
interesting patterns. Recent quality metrics apply, for example, sampling, filtering,
clustering, and distortion techniques, and then measure the remaining patterns in
the data. Ultimately, quality metrics and taxonomy help determine the best reduction
technique and settings for given data characteristics or analysis tasks.

Typical Analysis Tasks for Scatter Plots

A scatter plot is used to investigate the relation between two different variables. It is
useful to get a quick overview and helps indicate problems, unique properties, or
anything interesting about the data. Interesting insights are, for instance, correlating
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variables, outliers, or meaningful patterns (e.g., regression models, trends, well-
separated clusters). Sarikaya and Gleicher [SG18] presented a taxonomy of twelve
low-level analysis tasks that support the analysis in scatter plot views. The defined
analysis tasks are: identify objects, locate objects, verify objects, search for known
motifs, browse data, identify outliers, characterize distribution, identify a correlation,
explore neighborhood, numerosity comparison, object comparison, and understand
distances.

In more advanced analysis scenarios, dimension reduction techniques are often used
to map high-dimensional features into 2D projection views [Wan+18a]. For instance,
principal component analysis is a projection technique that uses traditional scatter
plots to map high-dimensional data into a lower-dimensional space [WEG87].

Summary of Approaches

Our ability to perceive patterns and trends in Scatter Plots is highly influenced by the
aspect ratio. Cleveland [Cle93] invented the principle called banking to 45°, which
uses a midangle of 45°to enhance slope judgment for bivariate graphs. Applied
to scatter plots, an improved aspect ratio selection, such as with the banking to
45°quality criterion, can be applied to emphasize trends in the dataset [Cle93].
This relationship between task (trend detection) and quality criterion (aspect ratio)
was also examined and validated by Fink et al. in [Fin+13]. In addition, Fink et
al. [Fin+13] uses Delaunay triangulation to generate scatter plot projections and
measure the quality by calculating a small total edge length or large minimum angle
of the triangles.

By assuming that the aspect ratio is chosen well, there still remains the question if
the visual representation is appropriate for the data or not. A taxonomy of different
visual factors to separate clusters in scatter plot well was given by Sedlmair et
al. [Sed+12]. The presented taxonomy is based on classified data and considers
within-class and between-class factors to guide design and evaluations of cluster
separation measures. Furthermore, clutter must be considered to present point
distributions clearly. An overview of different clutter reduction techniques including
benefits and losses for scatter plot visualizations is given by Ellis and Dix [EDO07].
Regarding quality metrics for clutter reduction, Bertini and Santucci [BS04; BSO5]
proposed a feature preservation approach to improving visual perception of 2D
Scatter Plots. Their metric includes an automatic sampling strategy based on a
perceptual user study to find an appropriate sampling ratio.

Evaluation Methods for Scatter Plot Quality Metrics

To assess improvements in visual perception, user studies were often conducted
[LHT15; Pan+16]. Micallef et al. [Mic+17] implemented several models and metrics
of human perception in a cost function to improve the visual low-level perception of
a scatter plot. Based on input data and task, an optimizer automatically enhances
design parameters such as marker size and opacity, aspect ratio. Various scatter
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plot design choices were investigated in [SG18] based on data characteristics and
analysis tasks.

Open Research Questions

The traditional scatter plot is a well-known visualization technique and has been
further developed over the last decades. Today, various kinds of visual optimizations
and data preprocessing techniques exist to improve the final representation. For
instance, there are density based modifications or combined representations to
increase the information content on the visualization. However, what is missing in
the literature are state-of-the-art reports about scatter plot related techniques and
optimizations.

2.6.2 Scatter Plot Matrices

A scatter plot is only suited to visualize the relationship between two variables. To
analyze the entire dataset with multiple dimensions, a scatter plot matrix (SPLOM)
can be used. It shows all pair-wise combinations of variables in a matrix. For n
variables, a SPLOM visualized n? cells. Each cell reflects a particular combination of
two data dimensions. For example, analysts can inspect changes of an independent
variable according to all dependent variables by scanning rows or columns of the
matrix. Figure 2.7 shows an example SPLOM, together with different patterns.

Scatter Plot e Tl
Matrix
Groupmg . Correlation ‘,s‘
Dim1 .'..':'. ...':'. ’ DIM2 | ogorpme sgj' Dim2 -&g:.
° * Dim2 e
L. o H Dim3 r‘;,'\ 3¢ Dim3
. .'.'. Dim?2 . .'.'. Dim1
DIm3 Ovutliers: Trend::;"‘_. ﬁ

Dim2 s Dim2
2 o tae.

Dim3 i = Dim3

Fig. 2.7. Scatter plot matrix — optimization goals, tasks & visual patterns

Why Do We Need Quality Metrics for Scatter Plot Matrices?

Identifying interesting patterns in large scatter plot matrices is challenging. The
number of views grows quadratically with the number of given variables. Further-
more, the goal of an exploratory data analysis is often based on a given analysis task.
Therefore, not all scatter plot views are relevant. While a manual inspection of all
combinations is often not feasible, quality metrics can help to show only the most
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interesting combinations. Popular quality metrics measure the quality of a visual
pattern and then help to filter or sort SPLOMs accordingly.

Typical Analysis Tasks for Scatter Plot Matrices

A SPLOM is often used to get an overview of all bivariate correlations (via scatter
plots) in a higher dimensional data space. This is particularly helpful to identify
specific variables that might have similar patterns across various dimensions, e.g.,
correlation, classification, clusters, or trends.

Due to the orthogonal pairwise projections of dimensions in a SPLOM, a horizontal or
vertical exploration enables the investigation of data transformations by exchanging
one dimension. For example, a column-wise exploration allows the user to discover
transformations by exchanging the independent variable and a row-wise exploration
by exchanging the dependent variable. Shao et al. [Sha+16] used color coding in
combination with a motif-based dictionary to highlight column-wise and row-wise
coherence of segmented patterns in s SPLOM. This work also encourages to take
the investigation of local patterns into the analysis process and focus on interest
measures derived from local motifs in the data.

Furthermore, SPLOM-like representations are suitable for subspace analysis tasks,
such as finding clusters or interesting subspaces. Yuan et al. [Yua+13] used a dimen-
sion projection matrix in which rows and columns represent multiple dimensions
and the scatter plots are based on dimension projection.

Basically, all low-level perception task for single scatter plots (mentioned in Sec-
tion 2.6.1) can be applied to a larger projection space. For the analysis in SPLOMs,
these tasks are usually extended to a comparison task among multiple scatter plots
(mid-level perception task). Sarikaya and Gleicher [SG18] derived twelve basic anal-
ysis tasks that are supported in scatter Plot and SPLOMs respectively (c.f., Typical
Analysis Tasks for scatter plots in Section 2.6.1).

Summary of Approaches

In data analysis, methods for mapping multivariate data into lower dimensional
space have been used for many decades[KW78; WEG87]. However, one of the
major problems of these mappings is that the resulting outcome is often difficult to
interpret. One influential approach by Friedman and Tukey [FT74] that tackles this
issue is called Projection Pursuit. Projection Pursuit is a linear mapping algorithm
that uses interpoint distances and the variance of point swarm to pursue optimum
projections. Later, Tukey and Tukey [TT85] invented an exploratory visualization
method for SPLOMs (Scagnostics). Wilkinson et al. [WAGO5] followed up on their
research and introduced graph-theoretic measures for computing scagnostic for large
datasets. The method is based on proximity graphs and extracts nine characteristics
that describe the point distributions of the scatter plot space. It has been shown that
Scagnostics can serve for many applications and help to detect anomalies in time
series, find specific patterns, or sort SPLOMs [WWO08; NAW13; DW14; NW14].
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Another common approach to index the interestingness of scatter plots is to consider
the class consistency information of labeled points. For instance, Sips et al. [Sip+09]
propose two quantitative measure of class consistency, one based on the distance
to the class’s center of gravity (distance consistency), and another based on the
entropies of the spatial distributions of classes (distribution consistency). Tatu
et al. [Tat+09] used similar ranking measures based on the image space of the
scatter plot visualization to identify potentially relevant structures. For unclassified
data, they used a rotating variance measure (RVM) to find linear and non-linear
correlations in the data. For classified data, they measure the overlap between the
different classes and rank scatter plots that show well-separated classes the best
(class density measure). Later, Tatu et al. [Tat+11] extended their class density
measure and introduced class separating measure to control the balance between the
property of separation and dense clustering. A recent work of Matute et al. [MTL18]
showed that a skeleton-based metric including shape and orientation information
outperforms RVM and Scagnostics in perceptually-based similarity.

Albuquerque et al. [Alb+09] utilized the aforementioned quality measures for
a quality-aware sorting of SPLOMs, the so-called class-based scatter plot matrix
(C-SPLOM). Lehmann et al. [Leh+12] introduced another visualization scheme
including detail-on-demand interactions that produces an abstract and interpretable
SPLOM (A-SPLOM) by using known quality measures.

A current approach by Shao et al. [Sha+16] measures the interestingness by taking
frequency properties of similar local patterns into account. The approach applies a
Bag-of-Visual-Words concept that considers local motifs as visual word and ranks the
interestingness based on the number of interesting motifs in a plot. Moreover, an
extensive survey of quality metrics for scatter plot and other visualization techniques
were carried out by Bertini et al. [BTK11]

Evaluation Methods for Scatter Plot Matrix Quality Metrics

The evaluation of quality metrics has gained increasing importance in the recent
years. These works either focus on evaluating the connection between human
perception and quality metrics (effectiveness) or demonstrating the usefulness of
quality metrics base on various use case scenarios (efficiency).

For example, Projection Pursuit is demonstrated by various experiments on artificial
and research data. Wilkinson et al. [WAG05; WWO08; NAW13; DW14; NW14]
evaluated the performance and usefulness of their Scagnostics tools by showing use
cases and experimental results on different datasets. Actually, most approaches are
evaluated by use cases and demonstrate the benefits by various scenarios [Tat+09;
Alb+09; Tat+11; Sha+16]. For instance, the class consistency measures by Sips
et al. [Sip+09] were applied to synthetic data and various well-known data sets
from the UCI repository [DK17]. Classified data are ranked according to how
consistently the high-dimensional classes are embedded in the 2D projection space.
For unclassified data, a clustering algorithm is applied to generate high-dimensional
class structures.
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More recent work by Lehmann et al. [LHT15] and Pandey et al. [Pan+16] have
investigated the human perception on scatter plot patterns and present both crowd-
sourcing studies to prove evidence that this connection exists. Sedlmair and Au-
petit [SA15] even present a data-driven framework for quality measure evaluation.
Their approach tries to mitigate the impact of (relative) human judgments by rely-
ing entirely on ground-truth data. However, this in turn also indirectly implies some
sort of user involvement. By using this framework, Aupetit and Sedlmair [AS16]
evaluated a large number of visual separation measures for pre-classified data. They
systematically generated 2002 visual separation measures by combining neighbor-
hood graphs and class purity function with different parameterizations. As a result,
they identified measures that outperforms the distance consistency measure. Sher et
al. [She+17] conducted a study about the human perception of correlations in scat-
ter plots. Their study reveals that humans perceive correlations differently compared
to the statistical measure of Pearson’s product-moment correlation coefficient.

Bertini et al. [BTK11] pointed out that all quality metrics that work in the image
space try to simulate the human pattern recognition machinery and therefore, it is
needed to validate and tune the metrics in a way that the parameters take models
of human perception into account. Together with other colleagues [Tat+10], they
presented a user study about human perception and quality metrics, where they
compared the outcome of quality metrics with human rankings. The usefulness of
Lehmann’s A-SPLOM [Leh+12] was evaluated by a controlled experiment including
12 participants. The task of the study was to select relevant plots from different
SPLOM configurations (A-SPLOM, unsorted A-SPLOM, sorted SPLOM, unsorted
SPLOM). Finally, they compared mean and variance values of the number of selected
plots to the values of the quality measures.

Open Research Questions

Even though a lot has been done in the field of quality metrics for scatter plot
visualization, there are still some directions that can be further investigated. One
possible direction could be the integration of human sensing technologies, e.g., eye
tracking or motion tracking, to investigate the behavior of users during an analysis
task. For instance, prior research of Shao et al. [Sha+17] has shown that eye
tracking devices can be used to track already explored patterns, and thus support the
exploration of varying patterns in large scatter plot spaces. Furthermore, eye tracking
has also been used the evaluation of scatter plots and parallel coordinates. By using
an area-of-interest (AOI) approach, Netzel et al. [Net+17] showed how participants
act during analysis tasks and identified different reading strategies. Consequently,
these sensing measurements could be integrated into the quality metrics-driven
visual analytics pipeline and enrich the quality criterion inputs (user U, task T).

2.6.3 Parallel Coordinates

Parallel coordinates [Ins09b] are one of the most popular visualizations for multi-
and high-dimensional data. Introduced to the information visualization community
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by Inselberg [Ins85], the technique gained popularity by enabling analysts to explore
patterns across a large set of dimensions. Equally-spaced vertical axis represent the
dimensions of the dataset; the top of the axis corresponds to the highest, the bottom
to the lowest value in each dimension. Data points are mapped to polylines across
the axis, such that the intersection between an axis and a polyline marks the data
value. This visual mapping allows analysts to spot high-level patterns, as well as
single data points of interest.
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Fig. 2.8. Parallel coordinates — optimization goals, tasks & visual patterns

Why Do We Need Quality Metrics for Parallel Coordinates?

parallel coordinates face three major challenges: (1) With an increasing number of
data records, the patterns start to disappear due to overplotted lines [ED07]. (2) A
perceived pattern in parallel coordinates depends primarily on the ordering of the
dimension axis [JJ09]. A proper ordering (for a specific task) can reveal unknown
patterns while a non-useful ordering may hide them. Consider the example in
Figure 2.9. Two different ordering strategies are applied to reveal clusters and
correlations. (3) A large number of dimensions decreases the available screen space
between two axes and results in cluttered plots; in particular when many data
records are shown [DK10]. (4) The perception of positive and negative correlation is
not symmetric: negative correlations are visible more clearly [Hei+12a; LMW10].

Quality metrics need to tackle these challenges by measuring the quality of a per-
ceived pattern and the amount of clutter/overplotting in order to be able to guide
ordering and sampling strategies. However, there are n! possible dimension per-
mutations (based on the assumption that we plot every dimension exactly once).
Having a quality criterion that measures the quality of one particular permutation,
Ankerst et al. [ABK98] prove that finding the optimal ordering can be reduced to
the traveling salesman problem and is therefore A'P-complete. As a consequence,
not only quality criteria but also efficient optimization algorithms are necessary.

Typical Analysis Tasks for Parallel Coordinates

Countless applications from various (research) domains have been tackled with paral-
lel coordinates. In a recent state-of-the-art report by Heinrich and Weiskopf [HW13],
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Task: Cluster Analysis Task: Correlation Analysis

Fig. 2.9. Two partially different subsets of dimensions with axis ordering strategies opti-
mized for cluster analysis (left) and correlation analysis (right). Figure adapted
from [JJO9].

the tasks of these applications are categorized according to the established KDD tax-
onomy by Fayyad et al. [FPS96]: classification, regression, clustering, summarization,
dependency-modeling, and change and deviation detection. In analogy, we show in
Figure 2.8 four of the main visual patterns for that help to accomplish these tasks:
grouping, correlation, outlier, and trend. Quality metrics should be able to re-order
and de-clutter parallel coordinates such that these patterns are visible to the analyst
(based on the current analysis task).

Summary of Approaches

A multitude of quality metrics has been presented for parallel coordinate plots.
The approaches can be separated into quality criteria measuring the quality of one
visualization definition and optimization algorithms that optimize the adjustable
parameters. In the following, we will first describe and discuss the variety of quality
criteria, followed by the applied optimization algorithms.

The first criterion described in the literature has been developed by Ankerst et
al. [ABK98] with the argumentation that a similarity-based ordering will reduce vi-
sual clutter. In their data space approach, the authors propose finding a perceptually
“good” ordering by measuring the Euclidean distance between two dimensions on a
global level, or by partial similarity based on a defined threshold. The quality cri-
terion measures the sum of distances between all neighboring dimensions, which
needs to be minimized by the optimization algorithm. Yang et al. [Yan+03] extend
the idea by applying a clustering on the dimensions first. Due to the resulting hierar-
chy, the search space of permutations can be reduced by considering only dimen-
sions within one cluster.

Another similarity-based method is proposed by Peng et al. [PWR04]. The authors
claim that the source of clutter can be caused by distortions of the data distribution,
e.g. due to outliers. Peng et al. define an outlier based on the nearest neighbor
algorithm and propose a quality criterion based on the proportion of outliers between
two neighboring dimensions. Similar to the previous approaches, clutter is only
measured between two neighboring dimensions in the visualization.
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A quality criterion for supporting nearest neighbor searches is proposed by Peltonen
and Lin [PL17b]. In their approach, the similarity between axes is computed using
the Kullback-Leibler divergence of probabilistic neighborhood distributions.

Ellis and Dix [EDO6a; ED06b] propose three methods to estimate the occlusion
of lines in parallel coordinates: (1) overplotted% (percentage of pixels with more
than one plotted point), (2) overcrowded% (percentage of pixels with more than
one existing point), and (3) hidden% (percentage of plotted points hidden due to
overplotting). Ellis and Dix propose several data space algorithms to count the
number of pixels or points respectively. All criteria can be applied globally or in
areas of interest, e.g., by a sampling lens [EBDO5].

Several methods quantify the difference in the data distribution between the original
space and a subset of data records or dimensions. Cui et al. [Cui+06] measure
the difference of data density for all dimensions using a histogram approach. The
quality criterion retrieves the difference between the histogram of the data sample
and the histogram of the original data. In the same paper, the authors extend the
idea by quantifying the similarity of each record in the original space with its nearest
neighbor in the sample. An image space method by Johansson and Cooper [JC08]
transforms the visualization into a so-called distance map [RP66] in which each
pixel describes the distance to its closest object. The quality criterion measures the
similarity between the distance maps of the original and the sampled data.

Several approaches argue that the first dimension attracts the most attention of
the user. Therefore, it should be considered in the ordering. Lu et al. [LHZ16] use
Singular Value Decomposition to measure the contribution of each dimension to the
data space. Highly contributing dimensions are sorted up front. Yang et al. [Yan+03]
consider the importance of a dimension (e.g., by variance) in their similarity-based
ordering. A different method is proposed by Ferdosi and Roerdink [FR11] to promote
grouping patterns. They do not only consider a pair-wise combination of dimensions,
but rather search for high(er)-dimensional structures by using a subspace clustering
algorithm. The quality of a subspace is measured by the density distribution [FR11]
and an implicit algorithm sorts the dimensions based on the quality of each individual
subspaces.

Tatu et al. [Tat+09] introduce three image-based quality criteria to measure the
quality of perceived clusters. The assumption of all methods is that clusters are
usually represented by clustered lines with a similar position and direction. The
image of the visualization is transformed by a Hough transformation [VC62] into
a new image, such that lines with a similar slope and interception are at a close
location. The quality criterion measures the clusteredness between two dimensions
within the Hough space. For datasets with given cluster labels, Tatu et al. adapt
their measure and focus on (1) the intra-class similarity, and (2) cluster overlap by
measuring the difference between the Hough space images per cluster.

One of the most central image-based QM approach is proposed by Dasgupta and
Kosara [DK10]. Pargnostics, following idea of Scagnostics [WAGO5] for Scatter Plots,
are a set of seven quality criteria for parallel coordinates: number of line crossings,
angles of crossing, parallelism, mutual information (dependency between variables),
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convergence and divergence, overplotting, and pixel-based entropy (randomness = un-
certainty). The proposed measures are computed from 1D statistics and 1D/2D dis-
tance histograms, which allow for a rapid computation. The optimization algorithm
can make use of a weighted combination of features.

Finally, Johansson and Johansson [JJ09] provide an interactive analysis of the whole
high-dimensional dataset based on different quality metrics that can be selected and
weighted by the user. The authors describe three criteria to measure the quality of a
plot: (1) Correlation analysis by the Pearson correlation coefficient [LN88] between
neighboring dimensions. The quality scores between neighboring dimensions are
aggregated for the entire plot. (2) Outlier detection based on a grid-based density
computation. The quality criterion combines the number of dimensions and the
distance to the nearest neighbor across multiple dimensions. (3) Cluster detection by
a subspace clustering approach (e.g., Mafia algorithm [NGCO01]). For each subspace
cluster, a quality score is computed representing density, dimensionality, and the
fraction of the covered dataset.

So far, we have discussed quality criteria for combinations of two or more dimen-
sions. In order to find an optimal ordering for the entire parallel coordinates plot,
optimization algorithms are necessary. As shown by Ankerst et al. [ABK98], the
reordering task in parallel coordinates is N'P-complete. The literature does not pro-
vide any novel algorithmic solutions, but rather applies existing approaches. To
name a few: heuristic algorithms are used in [JJ09], a genetic approach is presented
in [ABK98], and graph-based algorithm is applied in [Tat+09; DK10; HO10].

Evaluation Methods for Parallel Coordinates Quality Metrics

New quality metrics are mostly evaluated by showing examples based on synthetic or
real-world datasets. Often, the performance of optimization algorithms is depicted
in terms of efficiency. Only a few approaches compare multiple quality criteria:
Ellis and Dix [EDO6b] and Cui et al. [Cui+06] empirically compared their own
approaches with each other. Ferdosi and Roerdink [FR11] systematically compared
their subspace clustering approach with the similarity clustering method of Ankerst
et al. [ABK98], the clutter-based method of Peng et al. [PWR04], the Hough space
method by Tatu et al. [Tat+09], and the hierarchical dimension clustering method
by Yang et al. [Yan+03].

The number of user-centered evaluations, investigating the perceptual aspects of
QMs, is limited, as also discussed by a recent survey of Johansson and Forsell [JF16].
Few studies exist to measure the influence of clutter: Holten and van Wijk [HW10],
Heinrich et al. [Hei+12a] and Palmas et al. [Pal+14] quantitatively analyze the
reduction of clutter through edge bundling techniques or different variations of
parallel coordinates extensions. Rosenbaum et al. [RZH12] evaluates the readability
of parallel coordinates under different densities of data points, but focuses on
progressive analytics argumentations. A qualitative and quantitative evaluation
scheme considering the ordering of dimensions is discussed in Claessen and van
Wijk [CV11] and Walker et al. [Wal+13]. Further studies exist to compare axis
arrangements in 2D vs. 3D parallel coordinates: Forsell and Johansson [FJO7],
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Johansson et al. [JFC14; Joh+08], Lind et al. [LJC09]. A recent eye-tracking study
of Netzel et al. [Net+17] revealed that participants pay more attention towards the
center of parallel Coordinates Plots. This finding stands in contrast to the dimension
contribution-based approaches, for example, by Lu et al. [LHZ16].

Open Research Questions

Promising future work is summarized by the survey of Johansson and Forsell [JF16].
The community has developed many quality metrics for parallel coordinates. The
concepts of useful orderings and clutter reduction approaches for the underlying
method differ significantly. However, there are no user studies that compare the
different metrics for different tasks and different data characteristics. Based on such
findings, the community could further develop task-dependent quality metrics that
support the perception of humans.

2.6.4 Pixel-based Techniques

Pixel-based techniques create a separate view (called subwindow) for every dimen-
sion of a dataset. Within each subwindow, every data record is mapped to exactly
one pixel, colored according to the value in the respective dimension [Kei0O0]. Pixel-
oriented visualizations do not face overplotting issues, and they are designed to
display large amounts of data without aggregation. The number of data points to be
visualized is only limited by the available screen space.

Pixel-based and Tasks

Techniques
Grouping Correlation

Outlier Trend

Fig. 2.10. Pixel-based visualizations — optimization goals, tasks & visual patterns

The most important aspect is the layout of pixels within each subwindow. For each
window, the same layout is applied in order to make the dimensions comparable.
Generally, the data points require an ordering, such as a natural order (e.g., by
time or size), or the result of a function (e.g., order of nearest neighbors to a
query object). Design recommendations by Keim [Kei00] and Wattenberg [Wat05]
propose that data points need to be layouted such that the given ordering of the
data is approximated in the subwindows. This means, data points that are nearby
in the ordering, should end up nearby in the visualization. For rectangular-shaped
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subwindows, space-filling curves are proposed to optimize these recommendations,
for example Hilbert Curves [Hil91] or H-Curves [NRS97].

Why Do We Need Quality Metrics for Pixel-based Techniques?

Pixel-based visualizations are designed to display large amounts of data, but only
for individual attributes. With high-dimensional data with thousands of attributes
being more and more common, it is practically impossible to manually inspect the
visualization for each individual attribute for interesting patterns. Hence there is
a need for quality metrics for pixel-based visualization techniques. These metrics
help users to analyze high-dimensional data sets by calculating a quality for each
attribute. These quality metrics can be used to identify interesting attributes or
reordering attributes or data instances accordingly. According to Keim [KeiOO],
there are four properties that have to be considered when designing pixel-oriented
visualizations. The color mapping, the arrangement of pixels, the shape of the
subwindows, and the ordering of the dimensions. For each of these properties,
Keim [KeiOO] presents design recommendations. For instance, the usage of space-
filling curves like the Morton curve [Mor66] for the arrangement of pixels. The
problem is that the methods proposed by Keim such as the ordering of dimensions,
the shape of the subimages, and arrangement of pixels require solving complex
optimization problems. Some of which are proven to be N'P-hard [ABK98].

Typical Analysis Tasks for Pixel-based Techniques

Pixel-based visualization techniques are useful for solving four different tasks on
large high-dimensional data, as depicted in Figure 2.10. When analyzing a single
dimension, pixel-based visualizations can be used to identify clusters and outliers.
Clusters, such as visible in Figure 2.11, can be identified by finding local regions of
similar color. Outliers, in contrast, are depicted as points with outstanding colors
in comparison to their surrounding region. Trends are depicted by consistently
reoccurring occurrences of similar color spread out over the pixel plot. When
considering multiple dimensions, pixel-oriented visualizations can be used to identify
correlations between different dimensions. If a cluster occurs in multiple dimensions,
this can be an indication for a positive correlation, if they share a color, or negative
correlation, if they consistently depict a different color. However, finding these visual
patterns is only possible if the ordering between and within dimensions is done
appropriately.

Summary of Approaches

The existing approaches for pixel-based visualizations can be divided into data
space, image space and hybrid approaches. Keim [Kei00], in addition to his general
optimization algorithms for pixel-based visualizations, presents such data space
quality criteria for geospatially-related data. The presented quality criteria focus on
the layout and positioning of the pixels in the resulting visualization and measure,
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Fig. 2.11. Jigsaw maps and quality metric scores of the Ozone datasets created by Albu-
querque et al. [Alb+10]. Depicted are six Jigsaw maps along with their calcu-
lated Noise Dissimilariy Measure. The top row shows the worst three plots and
the bottom row the best three plots with clearly visible patterns.

for instance, the position-preservation of the layout algorithms, the relative position-
preservation or the relative distance-preservation.

In addition to these data space approaches, also two image space approaches,
Pixnostics [SSK06] and the Noise Dissimilarity Measure (NDM) [Alb+10] were
presented for pixel-based displays. Pixnostics calculates the information content of a
pixel-based visualization by calculating either the entropy or the standard deviation
on the distribution of gray-level histograms in different grid cells. If the calculated
score for a gray-level histogram of a cell is between two user-defined thresholds,
it is considered to be interesting. However, this requires a manual setting of the
interestingness thresholds. NDM uses the dissimilarity between a visualization and a
noise image generated by a random permutation of the original visualization. Since
the characteristic of the noise image is supposed to be the total absence of structure,
visualizations with a large Noise Dissimilarity Measure are considered to have a
higher potential relevance, as shown in Figure 2.11.

Evaluation Methods for Pixel-based Quality Metrics

In the presented works, there is no standard evaluation technique for pixel-based
visualization techniques apparent. Keim [KeiOO] provides a quantitative evaluation
for geospatially-related data by measuring and comparing the position and distance
preservation of different layout algorithms. Schneidewind et al. [SSKO6] and
Albuquerque et al. [Alb+10] both show the effectiveness of their quality metrics
in a use case study, by showing the potential to find interesting visualization. Both
start with a set of pixel-based visualization. Schneidewind et al. create their test set
by randomly permuting the pixels of a Jigsaw map and Albuquerque et al. create
multiple visualizations for the Ozone dataset, as shown in Figure 2.11. Both use their
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respective quality metric to calculate a score for each visualization in their test set and
show that visualizations with a high QM score contain interesting visual patterns.

Open Research Questions

The quality metrics for geospatially-related data proposed by Keim [KeiOO] focus
on the , e.g. by calculating the position-preservation of the resulting visualization,
while the quality metrics proposed by Schneidewind et al. [SSK06] and Albuquerque
et al. [Alb+10] focus on the image space. Both of these image space approaches are
particularly useful for identifying groupings. However, for other analysis tasks the
pixel-visualization suitable quality metrics are missing. A beneficial line of research
could seek to adapt e.g., TreeMap QM to this domain. Furthermore, a comparative
and user-agnostic evaluation of the existing approaches could help to identify a
baseline for further research directions.

2.6.5 Radial Visualizations

Radial visualizations for high-dimensional data arrange the data in a circular or
elliptical fashion. Draper et al. [DLR09] presents a general survey on the topic refer-
encing 88 works. Prominent techniques for high-dimensional data include, but are
not limited to: the MoireGraph [JMO03], the TimeWheel and MultiComb visualization
both proposed by Tominski et al. in [TASO4] and the projection-based techniques,
such as RadViz [Hof+97] and Star Coordinates [Kan0O]. Note that visualizations,
such as Pie Charts, Sunburst, or Radar Charts, albeit being radial visualization are
explicitly excluded here, since their optimization focuses on storytelling and seman-
tic aspects, c.f., high-level quality metrics in Section 2.3.2. The development of per-
ceptual quality metrics was mainly driven by high-dimensional (projection-based)
radial visualizations and thus will be the focus of this Section.

Radial and Tasks
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Fig. 2.12. Projection-based radial visualizations — optimization goals, analysis Tasks & visual
Patterns

Projection-based radial visualizations are two-dimensional projections of high-
dimensional data into a circle. For RadViz, the dimensions of a dataset X are repre-
sented as points that are evenly spread around the circumference of a circle. Each
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instance of the dataset x; € X is also represented as a point inside the circle. The
positioning of each instance z; can be determined by connecting it with springs to
each of the dimension representatives on the circumference of the circle. The fi-
nal position of a point x; is determined by thenpoint p; where the sum of all spring

forces is zero and can be computed as p; = iilici;]j, with d; denoting the vector
pointing from the center to the position of the ;e;pective dimension on the circum-
ference [Alb+10]. Star coordinates apply a nearly identical mapping of points into
a circle, but without the nonlinear normalization, for which the denominator of the
previous equation is responsible. As a result of this, RadViz is especially advanta-
geous for sparse data, but its nonlinearity may hamper several other exploratory
analysis tasks [Rub+16]. Rubio et al. point out, that due to their similarity, many
algorithms, such as the quality metrics developed by Albuquerque et al. for RadViz,
can be directly applied to Star Coordinates and vice versa.

Why Do We Need Quality Metrics for Radial Visualizations?

Similar to Parallel Coordinates Plots (see: Section 2.6.3), radial visualizations are
highly dependent on the ordering of dimensions, which is in turn dependent on the
user’s task. For example, if one data instance has high values in two neighboring
dimensions, it is plotted more closely to the circumference, in addition, another data
instance with high values in two opposite dimensions is plotted more closely to the
center of the circle. Given an ordering of the dimensions, quality metrics can help
to identify if the resulting visualization has interesting patterns for a specific user
task. However, finding a suitable ordering is one of the key problems, which Ankerst
et al. [ABK98] proved to be N'P-complete. Hence, QMs for radial visualizations
are not only necessary but also efficient techniques to explore the search space of
possible dimension orderings.

Typical Analysis Tasks for Radial Visualizations

RadViz was first proposed by Hoffman et al. [Hof+97] to help with the classification
of DNA sequences. In their work they compare visualizations of multi-dimensional
DNA sequence data. They compare, on the one hand, visualization techniques which
are able to display all dimensions, i.e., RadViz and Parallel Coordinates, to techniques
which use dimension reduction techniques to produce 2-dimensional visualization,
such as Sammon Plots, on the other hand. They conclude that, although that some
patterns can still be seen in the dimension-reduction techniques, the exact symmetry
is lost, which is an inherent problem of such techniques due to the difficulty of
choosing the important dimensions. RadViz can also be used to tackle various
different tasks, as shown in Figure 2.12. Novékové and Stépankova show how radial
visualizations can be used to detect trends in time-series data [NS11]. Mrarmor
et al. [Mra+07] use radial visualizations for outlier detection in lung cancer data
based on gene expressions of six genes. Finally, Bertini et al. [BDS05] show how an
extension of RadViz can help to detect correlations in data. Kandogan advertises star
coordinates as a means for cluster, trend and outlier detection likewise [Kan00].
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Summary of Approaches

Albuquerque et al. [Alb+10] show that due to the scatter properties of RadViz, most
quality measures for Scatter Plots (see: Section 2.6.1), may be applied to RadViz
as well, such as the Class Density Measure [Tat+09] for labeled datasets. They
also introduce the Cluster Density Measure (C;DM) as a new quality metric to rank
visualizations based on how well-defined the clusters of the resulting projection
are. This image-space based technique first applies an image clustering algorithm
and then calculates the quality metric score based on the found cluster properties.
They follow the following computational steps; calculate a density image based
on the local neighborhood in the original visualization; smooth the density image
by applying a Gaussian filter; identify clusters with the help of Laplace filters; and
calculate the C; DM measure, defined as:

C,DM = —
K= 50 men

where K is the number of detected clusters, dj,; the Euclidean distance between the
cluster centers ¢; and ¢; and with r as the average radius of a cluster. Thus projection
clusters with a small intra-cluster and large inter-cluster distance are assigned high
values.

Another approach to calculating quality metrics for radial visualizations is presented
by Di Caro et al. [CFF10]. They determine the visual usefulness of a projection by
using the Davies-Bouldin (DB) index [DB79]. The DB index is known to be one
of the best methods to measure the inter- and intra-cluster separation. A smaller
DB index represents more compact and separated clusters. However, if a high-
dimensional dataset d has a high DB index, it may become difficult for the projected
data p to offer a high-quality visualization. Thus, the DB index is not directly used as
a quality metric, but rather the ratio R between the index of the high-dimensional
data DBy and the projected data DB, is taken, with a high R corresponding to a
higher visualization quality.

Evaluation Methods for Radial Visualization Quality Metrics

Both quality metrics presented in the last section are used to evaluate new dimension-
ordering techniques for RadViz. Di Caro et al. [CFF10] provide an independent and
a RadViz-dependent formalization of the dimension arrangement problem, which
was formalized by Ankerst et al. [ABK98] in a generic context. They provide an ex-
haustive evaluation of both of these dimension arrangement techniques, partly eval-
uating the visual quality of the resulting arrangements. Moreover, Albuquerque et
al. [Alb+10] propose a greedy RadViz generation algorithm in which they start with
a two-dimensional RadViz and iteratively add the remaining dimensions by checking
which dimension they have to add for optimizing a quality metric. Additionally, they
provide three comparisons of the resulting visualizations, using the original RadViz
algorithm, the t-statistics algorithm of Sharko et al. [SGMO08], and their algorithm,
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concluding that using their algorithm, the resulting projections show a better cluster
separation.

Open Research Questions

So far two algorithms were proposed to measure the visual quality of visualizations
generated by RadViz. One data space and one image space technique. Both ap-
proaches have shown, that their quality metric can be used to determine the visual
quality of a resulting projection and they can even be applied during the construc-
tion of RadViz visualizations. However, the shortcomings are that both of these
techniques focus on only one aspect, the intra- and inter-cluster separation. As pre-
viously shown, there are various possible applications of RadViz, with grouping only
being one of these applications. In future work, quality metric for these different
tasks, such as outlier or trend detection, or, if possible, a general quality metric us-
able for various tasks should be developed. Additionally, as Rubio et al. pointed in
their comparative study of RadViz and Star Coordinates [Rub+16], algorithms de-
signed for one technique, may be applied to the other. Therefore, when developing
techniques for one technique, they recommend considering whether they would be
appropriate for the other technique as well.

2.6.6 Glyphs

In the 1960s, the term glyph was used as a synonym for the metroglyph [And57].
However, over the years different glyph designs emerged and the initial definition
was adapted to also describe new representations. As a result, the term glyph is used
ambiguously in the visualization literature [Mun14]. Recent surveys tried to tackle
this problem by identifying similarities across definitions and combining them in a
more general statement [Fuc+17] or by categorizing already existing definitions
into more specific or general interpretations [Bor+13].

In summary, all glyph designs are graphical representations of data points, which
can be positioned independently from each other. This flexibility in the layout is
the biggest advantage of glyphs. They can be easily combined with other estab-
lished visualizations opening space for various application areas. Geo-spatial vi-
sualizations [AAO4], graph visualizations [US09], tree-maps [FFM12], or scatter
plots [WG11] are just a few examples where glyph designs can enrich other visual-
ization techniques with additional information about the data.

Although the design space of data glyphs is nearly endless [Mun14], some designs
have received more research attention than others. Chernoff faces [Che73], star
glyphs [Sie+72], or profiles [DSS86] are prominent examples. However, in com-
parison to faces, star-like glyph designs and profiles are more often used in practice.
Therefore, we want to focus on star-like glyphs and profiles to outline a very differ-
ent approach to quality assessment and evaluation: design recommendations. For a
better readability and didactic reasons, we enumerate recent and influential works
on the evaluation aspect of design recommendations in the unified subsection Sum-
mary of Evaluation approaches.
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Fig. 2.13. Glyphs - optimization goals, tasks & visual patterns

Why Do We Need Quality Metrics for Glyphs?

In general, star or profile glyphs are closely related to parallel coordinate plots. They
use a similar visual encoding to show dimensions and data values. Data lines are
radiating from a center point to represent attribute dimensions. The length of each
line is dependent on the underlying dimension value. The higher the data value, the
longer the respective line. The endpoints of the data lines are connected to create a
star-like shape. In comparison to parallel coordinates, the major differences are the
reduced size, the circular layout of the axes and the presence of just a single data
line in the plot.

As in parallel coordinates, the order of axis has a strong influence on the visual
appearance of the individual stars and, therefore, need to be considered in the design
process. Additionally, star glyphs can also be represented without the surrounding
contour line [PG88], since this visual feature does not carry any information about
the data. Adding color to the plot or highlighting certain visual features might also
help to better solve the analysis task.

Profile glyphs are a more abstract term for small bar charts or line charts (i.e.,
sparklines [TufO6]). They are easy to read and understand since they built upon
a common mental model. Like in bar charts, the width of the bars, as well as
their ordering, can be varied or single bars can be connected to show some trend
information.

Although these two designs seem to be well-established, they still allow for some
design variations. To come up with an optimal design is difficult, since the design
of a glyph is a creative process with only limited guidance and nearly numberless
design possibilities.

Typical Analysis Tasks for Glyphs

Data glyphs are used in various settings and for different analysis tasks. Based on
Andrienko and Andrienko’s task taxonomy [AA06], lookup tasks for single data
values and similarity search are the most common analysis tasks followed by visual
search and trend detection [Fuc+17]. Therefore, the optimal glyph design strongly
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depends on the task at hand. Is it important to perceive the entire shape as a whole
(like in synoptic tasks) or is the focus on reading individual visual features (like in
elementary tasks).

Summary of Evaluation approaches

Glyph designs are a good example of visualization techniques, that strongly profit
from design considerations based on results from quantitative user evaluation.
Star glyphs profit from the following recommendations that can be used to guide
the design process. The surrounding contour line should be removed from the
design. Studies have shown that participants are more accurate when comparing
the similarity between data points using stars without a contour line [Fuc+14].
There are also guidelines for ordering the axes of stars. Results from experiments
suggest avoiding salient shapes [KHWO09]. This design consideration coincides with
the clutter reduction quality metric proposed by Peng et al. [PWR04]. Additionally;
the axes should be colored to reduce the negative influence from single spikes for
visual classifications tasks [Kli+09].

To further improve the comparison between multiple stars, clustering results or
statistical information should be added to the designs. Based on study results,
researchers suggest adding the first and second principal component as additional
axes to improve similarity comparisons [BS92]. Yang et al. [Yan+03] also proposed
a quality metric to vary the angles between dimensions based on a hierarchical
cluster analysis of the respective dimensions. Since no study has been conducted,
this metric must be considered with caution.

However, the general public has to be careful about those recommendations, since
all guidelines result from controlled experiments which are constructed to reflect
specific conditions (e.g., analysis task, number of dimensions, layout). It is, therefore,
difficult to generalize those findings [Fuc+17].

Open Research Questions

It would be interesting to transfer quality metrics from other visualization techniques
to the data glyph domain. A good starting point can be parallel coordinates. Since
star glyphs and parallel coordinates share many visual features, approaches for
ordering dimensions could be adapted. Are star glyph specific orderings better
compared to approaches used in parallel coordinate plots? Research has already
made a first step in this direction by applying similar approaches to both visualization
techniques [PWR04; Yan+03; HO10]. However, there is still much space for further
research since the design space of data glyphs is huge.
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2.7 Discussion

While this chart describes existing approaches for the quality assessment of visual-
izations, there are still many opportunities to improve and extend existing metrics.
In this Section, we report general findings and highlight promising future research
directions.

2.7.1 General Findings and Discussion

In the following, we discuss common aspects of quality metrics that span across
most visualization techniques.

Which QM favors which visual pattern? One of the central questions for QM design
is how an effective instance of a particular visualization type should look like. This
understanding is implicitly modeled into a heuristic algorithm trying to capture if
the subjective QM designer’s expectation of the visual structure is met. However, in
exploratory analysis settings, it is unclear which QM to apply. Some QMs favor one
visual pattern, others another. But, it remains to the user to guess which data or
visual pattern is in the dataset. What is even worse is that a majority of QMs is
presented or published for the purpose of quantitative algorithm evaluations without
describing which visual pattern they prefer.

What are the extreme cases that a QM can deal with? And what happens if the
specifications are not met? Only a few of our surveyed approaches have been
systematically investigated for their noise (in-) variances and robustness toward
skewed data distributions. However, it is important that quality metrics can be
applied independently of the quality of the data or the existence of patterns. A user
should assume that no patterns exist in a dataset in case a quality metric does not
provide a useful representation.

Is QM research transferable among visualization types? We found that some visu-
alization subdomains share similar quality criterion. For example scatter plots and
parallel coordinate Plots (see: Section 2.6.1 and Section 2.6.3) where the same clut-
ter reduction techniques have been adapted for the respectively other visualization
field (c.f., [EDO6a; EDO6b]). Another example are parallel coordinates and star
glyphs where similar ordering strategies for the arrangement of axes are applied.
Further work should explore if research efforts can be transferred between visualiza-
tion techniques and subdomains.

2.7 Discussion
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Are QMs equally descriptive? In the case that QMs for different visualization tech-
niques are able to assess equally well the same visual patterns, then QMs could be
used as visualization type recommenders. This, in turn, presumes that a standard
set of base patterns has been accepted and established in the respective visualization
subfield. This itself is a challenging question, since not only the type of dataset (e.g.,
hierarchical, high-dimensional, relational) influences the to-be-expected patterns
but also the domain.

Evaluation of Quality Metrics. Notably, many works cited in this survey acknowl-
edge and explicitly mention the fact that the evaluation of QMs is not backed up
with perception-focused user studies. This statement holds explicitly for quantitative
quality metrics. As mentioned in Section 2.3.3, design recommendations are mostly
derived from qualitative and quantitative user studies.

We claim that both approaches are valid but eventually should be backed up with
the respectively other approach. Heuristics should be evaluated for their perceptual
aspects and proven to correspond to the humans’ perceptual properties. This can be
only done in structured large-scale user studies. Especially, crowdsourcing studies,
such as in [HB10], allow for more and more (statistically) sound statements to be
made. Design recommendations, in contrast, should be translated eventually into
algorithms for deriving quantifiable heuristics. This step allows one to make design
recommendations generally usable, comparable, and unambiguous.

Another important aspect for the evaluation of quality metrics is the availability of
perceptually-inspired benchmark datasets. To address the limitation for such datasets,
Schulz et al. [Sch+16] propose generative data models for the validation, evaluation,
and benchmark generation. In their paper, they survey various approaches that have
been suggested to overcome the problem of the availability benchmark datasets for
different types of data. They argue for the use of generative gold-standard data for
a standardized evaluation of visualization approaches, in particular, with respect to
perceptual quality.

2.7.2 Limitations of this Survey

This work surveys mid-level perceptual quality metrics for multi- and high-dimensional
data by motivating the needs and benefits of quality metrics in the respective visual-
ization subfield, summarizing the challenges and outlining analysis tasks supported
by quality metrics in the literature. Our goal is to provide a central document where
concepts from multiple visualization subdomains are enumerated and related, and
their overarching concepts are discussed in contrast to each other.

While we discussed at length several alternatives to our present taxonomy, we finally
opted to guide the reader through a structured questionnaire in each visualization
section. We believe that the (missing) understanding of the visualization design
challenges is a fundamental barrier to the effective use of visualizations in practice
today. By providing a straightforward description of the problems and possible
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solutions in simple terms, we hope to help a wide audience better understand these
algorithms and integrate them in future systems and libraries.

While we are trying to educate the user in the selection of QMs for a respective
visualization type, a systematic answer to the question “Which QM is the best one for
my circumstances?” remains extremely challenging. We decided against attempting to
describe this matching formally. In particular, we do not think this is possible without
considering domain-dependent, data-dependent, and user-dependent aspects.

2.8 Conclusion

This survey presents quality metric approaches for multi- and high-dimensional
information visualizations. We summarize the efforts from six distinct visualization
techniques.

We found that the major research developments in the field are increasingly aban-
doning the idea of pure clutter reduction approaches and focus on visual pattern
retrieval. This in turn has significant implications for visualization techniques and
visual analytics in the exploration process. Within an integrated QM-driven automa-
tion, as depicted in Figure 2.1), the user will be guided to the primary (visual) pat-
terns within the data and will be presented with a birds-eye perspective allowing to
assess the dataset-inherent importance of each pattern. Thus, not only clustering-,
but also outlier-, correlation-, and trend analysis tasks can be accomplished more
effective and more efficient.

One of our core contributions of this work is that we formalize, unify, and exemplify
the major QM vocabulary. In future, we can expect that such a unified understanding
will enable a more structured work on this problem.

By gathering the knowledge in a central document, we hope to inspire more research
to develop novel quality metric measurement strategies, more externalized and
quantifiable criteria proven to mimic the analysts perceptual system, as well as novel
exploration approaches to harness the power of QMs.

2.8 Conclusion
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Evaluating Ordering
Strategies of Star Glyph Axes

Summary

Star glyphs are a well-researched visualization technique to represent multi-dimen-
sional data. They are often used in small multiple settings for a visual comparison of
many data points. However, their overall visual appearance is strongly influenced
by the ordering of dimensions. To this end, two orthogonal categories of layout
strategies are proposed in the literature: order dimensions by similarity to get homo-
geneously shaped glyphs vs. order by dissimilarity to emphasize spikes and salient
shapes. While there is evidence that salient shapes support clustering tasks, eval-
uation, and direct comparison of data-driven ordering strategies has not received
much research attention. This chapter contributes an empirical user study to evalu-
ate the efficiency, effectiveness, and user confidence in visual clustering tasks using
star glyphs. In comparison to similarity-based ordering, our results indicate that
dissimilarity-based star glyph layouts support users better in clustering tasks, espe-
cially when clutter is present.

This chapter is taken from the following publication. Please refer to Sections 1.4 and
1.5 for the contribution clarification and general citation rules.

[Mil+19] Matthias Miller, Xuan Zhang, Johannes Fuchs, and Michael Blumen-
schein. “Evaluating Ordering Strategies of Star Glyph Axes”. In: IEEE
Visualization Conference (VIS). 2019, pp. 91-95.

3.1 Introduction

Data glyphs are compact visual representations of multi-dimensional data points.
Due to their small graphical appearance, they can be used in various settings like
within node-link diagrams [Erb02], treemaps [FFM12], tables [KFM11], or geo-
graphic maps [Fuc+14]. For instance, star glyphs are employed in the medical
domain [RP08] and can be used to show the spatial distribution of food produc-
tion [Opa+18].

Due to their use of visual variables, star glyphs [Sie+72] are an adequate choice to
encode single data points comprising numerical data. The glyph’s axes represent
the data dimensions, and their lengths encode numeric values. Since glyphs are
versatile, different design variations of star glyphs emerged in literature. Many have
already been extensively analyzed by the community (e.g., [Fuc+14], see [Fuc+17]
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for a full enumeration). However, there is not much empirical research about the
effect of axes ordering strategy on visual comparison tasks.

The ordering influences the shape of a star glyph and affects its readability and
similarity judgment [KHWO09; Kli+09]. Therefore, we need (task-based) guidelines
to arrange the dimensions in star glyphs [War08].

Numerous ordering strategies for star glyphs have been proposed [ABK98; AOLO6;
PWRO04; War08; FK03; Yan+03; KHW09; Kli+09; KW09] which can be grouped into
similarity-based (short: SIM), favoring homogeneous shapes, and dissimilarity-based
orderings (short: DIS), emphasizing spikes and salient shapes. Some approaches
also discuss symmetry, monotonicity, convexity and concavity, feature saliency, and
user-driven relationships among neighboring dimensions. The ordering strategies
typically analyze the relationship among all pair-wise dimensions and then adjust
the axes of every star glyph simultaneously according to a metric (e.g., SIM or DIS).
However, this also means that not all glyphs will result in the desired shape. In
particular, outliers may be encoded by shapes which the reordering algorithm is
trying to avoid.

We address the research question: “Which ordering strategy is most useful for
similarity search and data grouping tasks (clustering) using star glyphs?”. According
to the task taxonomy by Andrienko and Andrienko [AAO06], similarity search, and
grouping are among the most common analysis tasks for glyphs [Fuc+14]. While
different strategies have been proposed, they are not yet evaluated by empirical
studies. Klippel et al. [KHWO09; Kli+09] evaluated the influence of a star glyph’s
shape in grouping tasks. Although they found out that salient shapes, e.g., having
spikes, can support grouping tasks, they did not apply a dimension ordering strategy
that considers these salient properties.

Sorting the dimensions by dissimilarity favors the spikey-design, which Klippel et
al. states to be promising for grouping. We compare this ordering strategy with
the similarity-based design which is often proposed in the literature [War08; FKO03;
BS92; ABK98]. We conducted an empirical user study with 15 participants to
evaluate the efficiency, data clustering quality, noise identification quality, and user
confidence between the two different strategies (first independent variable). Our
results show that star glyphs, ordered by a dissimilarity-based layout, support users
better in a clustering task.

Real-world data often contains non-relevant dimensions with clutter and noise that
may distort interesting patterns [GLH15]. Additionally, clusters do often not span
across all dimensions but exist only in subspaces [KKZ09]. Therefore, we investigate
impact of clutter on cluster identification and reordering strategies as a second
independent variable. We use the term clutter dimensions to describe attributes that
do not discriminate clusters but hinder the comprehension of feature relationships in
the data [PWRO04]. Therefore, we also investigate the influence of clutter separately,
and in combination with the ordering strategies. For replicability and reproducibility,
the material of the study (benchmark data, study results, analysis scripts, and code)
is publicly available at https://osf.io/bje89.
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3.2 Related Work

Finding an optimal star glyph axes ordering has proven to be NP-complete [ABK98]
and more research is required [War08; Rzel3]. It is related to the ordering of axes
in parallel coordinates [ID90; ZMM12; ABK98; DK10; Tat+11], RadViz [Hof+97;
CXM17; Alb+10; CFF10], ArcViz [Lon18], and other axes-based radial visualiza-
tions as summarized by Behrisch et al. [Beh+18]. Ordering algorithms typically
define an objective function, modeling a good dimension order (according to their
interpretation) and apply a heuristic to find an axes order which maximizes the ob-
jective function [War08].

3.2.1 Dimension Ordering Strategies

Different visual characteristics can be subject to shape optimization when applying
specific ordering strategies of the star glyph axes. Ward [War08] summarizes
four major strategies which have been extended by others: user- and data-driven,
correlation- and similarity-driven, spikes and salient shapes, and symmetry-driven.

User-driven dimension orderings enable experts to adjust the shape of a star glyph
based on their domain knowledge [Sac+14]. Users can select a data point to sort
the data dimensions with ascending or descending order (data-driven) to reveal
patterns between records [War08].

Correlation- and similarity-driven strategies improve star glyphs by adjacent place-
ment of similar axes to support understanding of clusters, outliers, and relation-
ships [Bor+13]. Ankerst et al. propose heuristic algorithms based on

similarity for star glyphs to improve the overall perception [ABK98].

Similarly, Artero et al. use similarity heuristics of attributes to apply .
dimension-ordering and take perceptional aspects as Gestalt Laws into

account by applying dimension reduction [AOLO6]. Yang et al. com-

bine similarity-based ordering with a hierarchical structure of the di-

mension to enable interactive exploration of high-dimensional subspaces [Yan+03].
Friendly and Kwan argue that using correlation-based ordering in star glyphs sup-

ports the identification of shape irregularities [FKO3]. The authors did not conduct
a survey to underpin their statement.

Spikes and salient shapes such as “has-one-spike” are helpful in visual grouping
tasks of data points according to Klippel et al [Kli+09].
They argue, that concavity is more suitable for compa-
rability than convexity, which is especially true for the
“star" glyph, due to the large variations between adjacent
dimensions. The salience of dissimilar neighboring axes
shall enhance the comparison speed and help to detect

3.2 Related Work
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changes. Klippel et al. showed that the star glyph shape with eight dimensions influ-
ences classification tasks [KHWO09]. Especially, in contrast to earlier work that state
that similarity-driven orderings improve high-dimensional visualizations, dissimi-
larity between neighboring axes contribute salient properties that are perceptually
more noticeable.

Symmetry-driven reordering methods help to reduce the visual complexity of star
glyphs and, therefore, support comparison tasks by improving memorability [KWO09].
By providing some examples, Peng et al. argue that or-
derings with simple and symmetric as well as monotonic
shapes of the star glyphs facilitate the identification of
value differences between multiple dimensions [PWRO04].
They emphasize that symmetry and similarity are primary
factors to identify patterns. For this, Gestalt Laws are a

solid foundation for perception design [War20]. Peng et
al. state that star glyphs can be optimized by aligning
the symmetry on the vertical or horizontal axis [PWR04].
An additional rotation optimization step can be included

in the pipeline to find the best global rotation for all star
glyphs of a dataset. Rotation can be applied on top of other ordering approaches.

3.2.2 Empirical Studies and Research Gap

While many ordering strategies, algorithms, and heuristics have been proposed star
glyph dimension ordering, empirical evaluation is missing. Previous approaches
mainly argue by showing examples or providing arguments w.r.t. to e.g., Gestalt laws.
While this is useful to find differences between strategies, we also need empirical
evidence to directly compare strategies respecting scalability, performance, analysis
tasks, data characteristics, and user perception [War08].

We are only aware of two studies conducted by Klippel et al. [KHW09; Kli+09].
Their results indicate that spikes and salient shapes have a positive effect on visual
grouping tasks and colored axes positively affect the processing speed and reduce
the negative influence of shape saliency on rotated data glyphs. However, Klippel et
al. did not directly compare different ordering strategies or evaluated them against
a benchmark. Instead, they designed different star glyph shapes and analyzed how
participants grouped them by their understanding of similarity during an exploratory
analysis task. In our study, we aim to close this research gap by comparing two
proposed reordering strategies using a controlled, empirical user experiment.

3.3 Empirical User Study

We evaluate whether a similarity- (homogeneous shape, short: SIM) or dissimilarity-
based layout (spike and salient shape, short: DIS) is more efficient and effective for a
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Fig. 3.1. Comparison of similarity (SIM) and dissimilarity (DIS) based ordering using
the same data records.

DIS

visual clustering task. We designed our study based on Klippel et al.’s work [KHWQ9;
Kli+09]. We adopted the task, user interface, glyph design (including colored axes),
and datasets’ dimensionality (eight dimensions). However, in contrast, we applied
two different reordering algorithms (SIM and DIS) and different clutter levels as
independent factors, and evaluate the results using a benchmark dataset.

3.3.1 Experimental Design and Hypotheses

The participants had to manually assign star glyphs into reasonable clusters and
identify noise, i.e., items not belonging to any cluster. In the study, we used the term
group instead of cluster. To assess the performance, we use four dependent variables
as quality measures: (i) task completion time, (ii) quality of groups, (iii) quality of
identified noise, and (iv) the confidence of the participants.

Participants. We recruited 15 participants from the local student population (seven
female, two bachelor, twelve master, one PhD student). The age ranged from 20 -
27 years with a median of 23. The participants had a different background in data
analysis and visualization: ten had general knowledge in data analysis, four had
data visualization experience, and one has used star glyphs before. All participants
received a compensation of 10 EUR.

Glyph Design and Implementation. The glyphs are designed analog to Klippel et
al.’s work [KHWO09; Kli+09] using a contour, gray background, and colored axes.
We used ColorBrewer [HB03] to select diverging colors and applied
the ordering algorithm by Ankerst et al. [ABK98]. The Euclidean
distance is used to measure the (dis)similarity between dimensions.
We ran an exhaustive search to find the permutation with the highest
(SIM) and lowest (DIS) similarity. An example of star glyphs with
the two orderings is depicted in Figure 3.1. Orientation (rotation)

3.3 Empirical User Study
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of the star glyphs is not considered and chosen randomly. All orderings are pre-
computed not to influence the run time during the study. We provide the study and
the ordering strategy implementation on our websites!.

Hypotheses

We address the following two hypotheses:

H1. Clutter negatively influences visual comparison. With increasing clutter, the
performance of grouping tasks drops, independent of the axes ordering. In particular,
we expect users to be (a) slower, (b) less accurate in grouping accuracy, (c) less
accurate in noise identification, and (d) less confident of their grouping.

H2. Klippel et al. [KHWO09; Kli+09] argue that spikes and salient shapes support
users in similarity estimation and grouping tasks. Therefore, the performance
of users should increase with a dissimilarity-based ordering. Furthermore, we
hypothesize that the salient shapes should support users even more if the data
contains clutter since sharp edges are more perceptually apparent. In particular,
we expect users to be (a) faster, (b) more accurate in grouping accuracy, (¢) more
accurate in noise identification, and (d) more confident of their grouping when
dimensions are ordered by dissimilarity.

3.3.2 Benchmark Datasets

We manually created 18 different datasets using the PCDC tool [Bre+12]. Every
dataset contains 50 records of which 2-7 data points are selected as noise (randomly
distributed across all dimensions). The remaining data points are grouped into 2,
3, or 4 clusters with similar cluster sizes. Besides, we introduced clutter dimensions
which do not discriminate any cluster, since we uniformly distributed all data points
across the clutter dimensions. 6 datasets contain no clutter (0C), 6 one- (1C), and 6
two clutter dimensions (2C). For instance, in condition 2C a dataset consists of six
dimensions discriminating the cluster, while the remaining two introduce clutter.
Thus, we generated the datasets to keep the number of dimensions consistent. To
verify the manually created clusters, we run a DBSCAN [Est+96] (parameters:
minPts = 3, e = 0.5) on all datasets.

3.3.3 Tasks, Procedure, and Data Analysis
Tasks and Procedure

Each study took an hour on average. Participants filled out a consent form, demo-
graphics, and report on previous knowledge in data analysis, information visualiza-
tion, and star glyphs. Afterward, we described how to read the visual encoding of a
star glyph using an artificial car dataset as an example. Specifically, we clarified that

http://subspace.dbvis.de/sg-study and http://subspace.dbvis.de/sg-ordering.
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star glyphs with similar shapes on different axes are not similar (rotation invariance).
The participants performed three training trials before the study was recorded.

To conduct the study, we used a 27-inch screen with 2560x1440 resolution and a
mouse to execute given tasks. Every participant had to perform 18 trials, leading to
15 participants x 18 trials = 270 trials for the entire study. In between two
trials, we showed a blank screen with the term ‘break’ to motivate the participants
to have regular breaks. Each trial consisted of manually grouping all 50 star glyphs
of one dataset into distinct groups and noise. Then, the participants stated the
confidence level about their selection on a 7-point Likert-scale. We did not provide
the number of clusters per dataset and explicitly told the participants that there
might be glyphs which do not belong to any group (noise).

Figure 3.2 shows our interface. Participants were able to add new or delete groups.
Glyphs can be interactively assigned to groups by drag&drop. If a glyph was
considered to be noise, then it remained in the left panel. Participants were able
to undo or change a grouping also using drag&drop. In the study, we did not
constrain the task completion time. We ended the study with an interview about
the participants’ strategy and preferences regarding the SIM and DIS ordering by
showing examples. Questions and answers were recorded.

Randomization

Each participant performed 18 trials, i.e., the grouping task on all benchmark
datasets was equally distributed between SIM and DIS. We randomized the order
of the trials as follows: First, we grouped the datasets into their level of difficulty
based on the amount of clutter (0C, 1C, 2C). Then, participants performed the trials
with increasing difficulty, i.e., 6 X 0C, then 6 X 1C, and finally 6 X 2C. For every
clutter condition, we randomized the dataset order and randomly assigned 3 X SIM
and 3 X DIS. We attached the randomization algorithm and our configuration in the
supplementary material. A summary of our trials:

3 levels of difficulty (clutter: 0C, 1C, 2C) X
ordering strategies (SIM, DIS) X
3 trials (2, 3, 4 clusters) X

15 participants
270 trials in total

Data Collection and Analysis of Results

In each trial, we recorded the grouping task completion time, the selected groups
and noise, and the participants’ confidence. Some participants created groups with
only one or two glyphs. Thus, in a post-processing step, we converted such small
groups into noise to execute a more coherent analysis. We measured the quality of

3.3 Empirical User Study
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Fig. 3.2. Study prototype. Users can group visually similar star glyphs using drag&drop.
Noise points remain in the left panel.

the identified noise by computing the Jaccard index between noise and ground truth
noise.

The grouping quality is also based on the Jaccard index between the grouping and
ground truth. However, since participants could have also selected too few or too
many groups, we structured our quality computation as a two-step process: First, we
computed the average Jaccard index of each group to its best match in the ground
truth. Second, we computed the average Jaccard index of every ground truth cluster
to its best match in the selection. Using this method, we considered too few, too
many groups, as well as too few and too many records per group. The final clustering
quality is the average score of both steps.

3.3.4 Results and Statistical Analysis

We executed a statistical analysis to summarize the study results. We report all
statistically significant findings (p < .05) and some interesting trends visible in the
data. We check for normal distribution using a one-sample Kolmogorov-Smirnov test.
For a better comparison, we always report the median (z) and, additionally, the
mean (u) for normally distributed samples. Analysis scripts and detailed results can
be found in the supplementary material.

Statistical Tests used for Analysis

Confidence is measured as Likert-scale. Therefore, a Pearson’s Chi-squared test is used
for the analysis. Given the non-normal nature of the measures time, cluster quality,
and noise identification quality w.r.t. 0C, 1C, and 2C, we used a non-parametric
Friedman’s test and a Wilcoxon signed rank test with Bonferroni correction (Post-hoc).
The same measures do also not follow a normal distribution w.r.t. the strategies
SIM and DIS. Hence we used a Wilcoxon signed rank test with continuity correction.
Considering SIM and DIS within 1C and 2C reveal normal distributed samples for the
measures time, quality of clustering, and quality of noise identification. Hence, we
use a paired t-test for the statistical analysis.
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Fig. 3.3. Cluster quality analysis. Difference between clutter dimensions 0C, 1C, and 2C
as well as DIS and SIM ordering.

Task Completion Time

H1la. Task completion time increased with clutter levels, but not significantly: 0C
(x = 162.5s), 1C (179.5s), and 2C (184.0s).

H2a. Using the ordering DIS (176.0s) users completed the grouping task slightly
faster than SIM (178.0s), but only for datasets with clutter dimensions. 0C: DIS
(168.0s) vs. SIM (158.0s), 1C: 180.0s / 179.0s, and 2C: 180.0s / 190.0s. Differences
are not significant.

Cluster Quality

An overview of the cluster quality is depicted in Figure 3.3.

H1b. There were significant effects of clutter level on cluster quality (x*>(2, N =
270) = 109.92, p < .001). Post-hoc tests showed a higher participants’ accuracy with
0C (z = 0.85) compared to 1C (.67, p < .001) and 2C (.55, p < .001), and between
1C and 2C (p < .001).

H2b. When comparing ordering strategies, participants were more accurate with
DIS (z = .69) compared to SIM (z = .67, p < .05), which is also true within clutter
levels 1C and 2C, but not 0C. 0C: DIS (& = .85, u = .81) vs. SIM (Z = .85, u = .82),
1C: DIS (Z = .68, ju = .66) vs. SIM (& = .66, p = .63), 2C: DIS (& = .58, pu = .57) Vs.
SIM (z = .52, u = .50, p < .001).

3.3 Empirical User Study
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Noise Identification Quality

H1c. There was a significant effect of clutter level on noise identification (x*(2, N =
270) = 80.02, p < .001). Post-hoc tests revealed that participants were more accurate
with 0C (z = .8) compared to 1C (z = .5, p < .001) and 2C (z = .33, p < .001).
In addition, there was a significant effect between clutter conditions 1C and 2C
(p < .001).

H2c. In general, there is no difference between SIM and DIS w.r.t. noise identification
quality (both z = .5) There are no differences for 0C (both u = .77, DIS z = .88,
SIM z = .8) and 1C (both z = .5, ;1 = .52). But for the 2C clutter condition, there
was also a significant effect of ordering strategy on noise identification (t(44) = 2.18,
p = .05). Participants working with DIS were more accurate (¥ = .4, p = .39) in
comparison to SIM (z = .33, u = .32, p < .05).

Confidence

H1d. There was a significant effect of clutter level on confidence (x*(2, N = 270) =
28.816,p < .005). Post-hoc tests revealed a higher confidence with 0C (z = 2)
compared to 2C (1, p < .001).

H2d. There is no significant effect between SIM (1) and DIS (1). While there is also
no effect within the different clutter levels (0C: 2/2, 1C: 1/1, and 2C: 1/1), there
seems to be a tendency that participants are more confident with SIM without clutter
dimensions and more confident with DIS with increasing clutter.

3.3.5 Quantitative User Feedback

Ordering Preferences. 11 out of 15 participants reported that they could see the
clusters more clearly with dissimilarity reordering because they could use the orien-
tation of the spikes as a determining factor. Some participants reported that they
generally found the grouping tasks challenging, and they were not quite sure about
the results. Interestingly, most of them said to have personal preferences towards
the patterns with more smooth and convex shapes, namely the patterns produced by
similarity reordering.

Similarity Estimation Strategies. The strategies reported by the participants can be
grouped into three categories: (1) the majority of participants focused primarily on
the spikes’ orientation; (2) participants reported that they tried to find the center of
a star glyph, and observe at which position of the glyph the center lies and how the
gray area around the center is shaped; (3) a few participants searched for unique
shape-parts and matched it with others.
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3.4 Discussion

In summary, our study revealed two major findings.

Clutter Analysis. Clutter negatively influences the visual comparison of star glyphs.
There is a significant drop in cluster quality, noise identification quality, and confi-
dence with an increasing number of clutter dimensions. Also, task completion time
changed considerably, although not statistically significant. Therefore, we can par-
tially confirm our hypotheses Hla — H1d.

We expected these results as more clutter hampers similarity estimation in clustering
tasks. As a result, cluster performance drops. While this is a general problem in
information visualization [GLH15], it particularly affects star glyphs as clutter may
change their shape considerably. Glyph designers should, therefore, think of using
automatic algorithms to remove clutter dimensions, if possible.

Ordering Analysis. There are differences between the two evaluated ordering
strategies. Generally, the quality of the clustering was significantly more accurate
with DIS, in particular for datasets containing clutter (1C, 2C). Participants also
performed the task slightly faster using DIS. However, they were on average 10
seconds faster with SIM in non-cluttered datasets. We can see that DIS significantly
supports noise identification for a cluttered dataset (2C), but we cannot see a
difference for the other clutter conditions. While many participants reported that
they prefer a dissimilarity-based layout, we cannot see a significant result from
the study. However, analyzing the Likert-scale distributions reveal a tendency that
participants are more confident with SIM for clutter-free datasets (0C) and with DIS
for cluttered datasets (2C). Across all trials, we can confirm the hypotheses H2b and
H2c, but completion time (H2a) and confidence (H2d) depend on the properties of
the dataset.

These results are in line with Klippel et al. [KHWO09; Kli+09]. We found it interesting
that the difference between SIM and DIS is even more striking in cluttered datasets.
The spikes seem to help users in identifying clutter dimension and improving the
overall clusters. However, we could also see that, without clutter, participants were
faster and more confident using a similarity-based ordering. The remaining question
is whether it would be possible to combine SIM and DIS into a combined ordering
strategy. Our study did not reveal whether participants need as many spikes as
possible or whether a few important spikes are enough to improve the cluster quality.
Further research needs to be done in this area. Another relevant question is also
how the rotation of entire glyphs influences grouping quality in clustering tasks and
further investigation in this direction is advisable as, for example, already started by
Fuchs et al. [Fuc+14].

3.4 Discussion
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Design Considerations

Based on the study results, we derive the following design considerations:

(1) As the performance of users drop considerably when clutter dimensions are
present, glyph designers should try to avoid clutter by applying a feature selection
method first, if possible.

(2) Since, for datasets with clutter, salient shapes and spikes support grouping tasks,
we recommend using DIS strategies.

(3) For datasets without clutter, we did not find a clear difference between SIM and
DIS. As SIM seem to be slightly faster and less error prone to rotation [KHWO09;
Kli+09]. We recommend to use this strategy.

Limitations

We identified two main threats to our results’ validity.

(1) The number of trials (270) is rather small, in particular, for the effectiveness
and efficiency analysis of a specific clutter level. This affects not only the statistical
analysis, but outliers may also distort the results. The number of trials per participant
cannot be increased with the current study design; otherwise, the study would
take much longer than one hour. Therefore, we suggest repeating the study with
more participants to increase the number of trials. (2) While we designed our
datasets with different cluster structures and distributions, we limited them by eight
dimensions as Klippel et al. [KHWO09]. There might be differences for datasets with
less, more, or an odd number of dimensions.

3.5 Conclusion

We conducted an empirical user study to evaluate the impact of clutter and axes
ordering to clustering performance with star glyphs. Our results show that users per-
form better when the glyphs represent salient shapes and spikes, which is achieved
by a dissimilarity-based ordering of the dimensions. Furthermore, we elicited that
there is a significant impact of clutter on the clustering performance in general.

As future work, we plan to extend and re-run the study based on our discussed
limitations and include other reordering strategies, as well. Extending to that, we
want to investigate whether there is an influence of the data characteristics and
rotation (e.g., favor symmetrical glyph shapes) to the ordering strategy. If so, we
are interested in developing techniques to select the most useful ordering strategy
based on the given data and task. Finally, automatic ordering strategies should be
compared to user-driven axes arrangements, which are determined by experts based
on their domain knowledge.
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Evaluating Ordering
Strategies

for Cluster Identification
in Parallel Coordinates

Summary

The ability to perceive patterns in parallel coordinates plots (PCPs) is heavily influ-
enced by the ordering of the dimensions. While the community has proposed over
30 automatic ordering strategies, we still lack empirical guidance for choosing an
appropriate strategy for a given task. In this chapter, we first propose a classification
of tasks and patterns and analyze which PCP reordering strategies help in detecting
them. Based on our classification, we then conduct an empirical user study with
31 participants to evaluate reordering strategies for cluster identification tasks. We
particularly measure time, identification quality, and the users’ confidence for two
different strategies using both synthetic and real-world datasets. Our results show
that, somewhat unexpectedly, participants tend to focus on dissimilar rather than
similar dimension pairs when detecting clusters, and are more confident in their
answers. This is especially true when increasing the amount of clutter in the data.
As a result of these findings, we propose a new reordering strategy based on the
dissimilarity of neighboring dimension pairs.

This chapter is taken from the following publication. Please refer to Sections 1.4 and
1.5 for the contribution clarification and general citation rules.

[Blu+20b] Michael Blumenschein, Xuan Zhang, David Pomerenke, Daniel A.
Keim, and Johannes Fuchs. “Evaluating Reordering Strategies for Cluster
Identification in Parallel Coordinates”. In: Computer Graphics Forum
39.3 (2020), pp. 537-549.

4.1 Introduction

Parallel coordinates plots (PCPs) [Ins85; InsO9b] are a popular and well-researched
technique to visualize multi-dimensional data. Dimensions are represented by
vertical, equally spaced axes. Data records are encoded by polylines, connecting
the respective values on each axis. PCPs have been applied to practical applications
of various domains [JF16], such as finance [AZZ10], traffic safety [FWR99], and
network analysis [Sto+05]. As discussed by Andrienko and Andrienko [AA01], PCPs
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are suited for a multitude of analysis tasks, such as cluster, correlation, and outlier
analysis.

Compared to other visualizations for multi-dimensional data (e.g., RadVis [Hof+97],
MDS and PCA projections, scatter plots, and scatter plot matrices), PCPs have
the advantage to trace data records and patterns across a large set of dimensions.
Empirical studies have shown that PCPs outperform scatter plots in clustering
tasks, outlier, and change detection [KAC15], but are less suited for correlation
analysis [LMW10; Har+14] and value retrieval [Kua+12].

A major challenge of visualizations is visual clutter, which influences the perception of
visible patterns [Sun+15]. This problem is particularly given in PCPs, as line crossing
and overplotting distort salient structures. Therefore, the community has proposed
a multitude of enhancements, such as sampling [ED06a], edge bundling [MMO08],
interactive highlighting [MW95], and the usage of transparency [Joh+05] to reduce
the impact of visual clutter.

The ordering of axes plays a fundamental role in the design of a PCP and has a
strong effect on the overall pattern structure [JJ09]. In contrast to data preprocess-
ing, sampling, dimension filtering, and other enhancements, reordering does not
remove data from the PCP [PWRO04; PL17a], but changes the visual structure among
neighboring axes. Depending on the user’s analysis goal, some patterns are more in-
teresting than others [DK10]. As a result, more than 30 different ordering strategies
have been developed by the community to support a multitude of tasks. Some of
these strategies group similar dimension pairs [ABK98], try to avoid line crossings
[DK10], or put the most important dimensions first [Yan+03]. However, our com-
munity lacks empirical guidance and recommendations for choosing an appropriate
strategy for a given task [Beh+18]. In this chapter, we address this limitation by
summarizing the state-of-the-art in axes reordering strategies, as well as presenting
a first empirical user study that measures the performance of two ordering meth-
ods for cluster identification in PCPs. Our study focuses on cluster analysis as the
majority of ordering strategies are designed for this task.

We claim two main contributions. First, we provide guidance in selecting reorder-
ing strategies based on their intended patterns. Many existing algorithms follow
similar concepts but differ in their implementation. To support users, we introduce
a classification of the existing layout algorithms, group them according to their
inner workings, and summarize their intended patterns and meta-characteristics.
For more practical support, we implemented a set of 14 strategies in JavaScript
and made them along with the source code available on our website for test-
ing: http://subspace.dbvis.de/pcp.

Second, we measure the performance of two reordering strategies for cluster identi-
fication tasks by an empirical user study with 31 participants. We realized that the
often proposed similarity-based axes arrangement (e.g., [ABK98; Yan+03; AOL06])
is not always the most effective solution to identify clusters. As shown in Figure 4.1,
arranging axes with a high dissimilarity next to each other produces more salient
clusters, in particular in cluttered and noisy datasets. A reason for this effect is that
lines with strong slopes are moving closer together, making clusters visually more
prominent [Pom+19]. To find out whether this arrangement is more useful than a

Chapter 4 Evaluating Ordering Strategies for Cluster Identification in Parallel
Coordinates


http://subspace.dbvis.de/pcp

(c) Medium clutter, dissimilarity-based layout (d) High clutter, dissimilarity-based layout

Fig. 4.1. A dataset with three clusters and two different clutter levels is sorted by similarity
(a-b) and dissimilarity (c—d) of neighboring axes pairs. Clusters are more salient
when arranging dissimilar dimensions next to each other. We show that in cluttered
datasets, participants are more accurate and more confident when performing
cluster identification tasks on such a layout. Figure adapted from [Blu+20b].

similarity-based layout, we conducted a user study and measured performance with
respect to cluster quality, completion time, and users’ confidence using synthetic and
real-world datasets. Our results show that participants tend to focus on dissimilar
axes pairs when selecting clusters and are more accurate and confident when doing
SO.

As a secondary contribution, we provide a benchmark dataset with 82 synthetic
and real-world datasets for clustering analysis. For reproducibility, we make all
our material and results, statistical analysis, and source code publicly available at
https://osf.io/zwm69.

The remainder of this chapter is structured as follows: In the next section, we sum-
marize important related work. Then, in Section 4.3, we survey existing reordering
strategies for PCPs and classify them based on their intended patterns and inner
workings (first contribution). Afterwards, in Section 4.4, we describe our user study
design and report the statistical analysis results in Section 4.5 (second contribution).
Finally, we discuss our findings and derive design considerations for axes orderings
in cluster identification tasks.

4.1 Introduction
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4.2 Background and Related Work

In the following, we summarize the challenges of axes reordering, the results of
existing user studies, and the relation of automatic ordering to interactive and semi-
automatic analysis support.

4.2.1 Challenges of Axes Reordering of Parallel Coordinates

Linear ordering of an n—dimensional dataset in PCPs faces two main challenges.
First, computing and evaluating all dimension permutations is computationally
expensive. Ankerst et al. [ABK98] show that the ordering of axes according to
some useful objective function is NP-complete. Therefore, the exhaustive search
for a useful ordering is tedious, even for a modest number of dimensions [PWR04].
Second, the usefulness of a particular ordering highly depends on the analysis task
of the user [DK10; PL17a], and is influenced by the complexity of the data [Tat+11].
More importantly, optimizing the axes ordering to highlight a particular pattern may
even obstruct other patterns [JJ09], which are of relevance in a different scenario.
Therefore, it is vital to carefully choose an appropriate strategy to arrange the axes
in parallel coordinates.

More than 30 reordering strategies have been developed (see Section 4.3), many
of which follow similar concepts but differ in their implementation affecting, for
example, the runtime and quality of the results. Quality metrics and layout algo-
rithms for PCPs have been summarized before: Heinrich and Weiskopf [HW13] give
a comprehensive overview of the state-of-the-art for PCP research, including man-
ual and automatic reordering approaches. Bertini et al. [BTK11] and Behrisch et
al. [Beh+18] summarize quality metrics to optimize the visual representation. El-
lis and Dix [EDO7] discuss reordering from a clutter perspective. While Behrisch
et al. [Beh+18] group the quality metrics by their analysis task, the literature still
misses a summary of the different PCP patterns and a discussion on which reordering
algorithms favor or avoid particular patterns [Tat+11]. We close this gap by intro-
ducing a classification along with a characterization of the reordering algorithms.

4.2.2 Evaluation of Axes Reorderings and Empirical Studies

There is a lack of empirical studies to measure the performance of specific axes
orderings for different analysis tasks [JF16]. Most strategies are “evaluated” using
examples of synthetic or real-world data (see Table 4.1) instead of comparing it to
previous approaches. Exceptions are the works by Ferdosi & Roerdink [FR11] and
Tatu et al. [Tat+11], which compare the resulting orders with competing approaches.
However, no feedback from real users is provided.

Many reorderings claim to be useful for cluster analysis, but we do not know
yet which patterns are most effective in identifying clusters. There is no user
study that compares different reorderings for cluster identification in particular or
different analysis tasks in general. Therefore, we want to push PCP reordering
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towards an empirically-driven research field by evaluating two axes reordering
techniques for cluster identification. The works most closely related to ours are
the empirical studies by Holten & van Wijk [HW10] (measuring response time and
cluster identification correctness for nine PCP variations), Kanjanabose et al. [KAC15]
(measuring response time and clustering accuracy in PCP, scatter plots, and classical
tables), and the study by Johansson et al. [Joh+08] evaluating clutter threshold for
the identification of patterns. However, none of these studies consider different axes
orderings as an independent variable.

4.2.3 Relation to Interactive and Semi-Automatic Analysis

Besides axes reordering, countless enhancements have been developed to support
the understanding of patterns in parallel coordinates. A comprehensive overview is
out of the scope of this thesis but can be found in the surveys by Ellis & Dix [ED07],
Bertini et al. [BTK11], Heinrich & Weiskopf [HW13], and Behrisch et al. [Beh+18].
Many techniques involve users within an interactive exploration workflow or com-
bine the representation with automatic algorithms for pattern detection. Examples
are the usage of clustering algorithms [FWR99; Joh+05; Mou1l1], automatic sam-
pling techniques [EDO6a], and interactive highlighting [MW95]. Inselberg [Ins09a],
and Hurley & Oldford [HO10] propose to clone and arrange dimensions such that
all pairwise permutations are visible, similar to a scatter plot matrix. Based on this
initial view, the user can then start the exploration.

While the usefulness of such interactive and visual analytics approaches have been
shown in many user studies, they are facing two challenges: First, most algorithms
rely on sensitive parameters which influence the quality of the result. For example,
k-means clustering [HKP11] requires the number of clusters as user input, which
is typically unknown for a new dataset. Second, interactive exploration and high-
lighting are difficult if users do not know what they are searching for, and the initial
configuration of a PCP does not show (parts of) interesting patterns. Often, this re-
sults in trial-and-error interactions, in which patterns are only detected ‘by accident’.
This is particularly true if the dataset contains a large number of dimensions, and
relevant patterns only exist in smaller subspaces.

Therefore, we need methods to give analysts good starting conditions for their
(interactive) analysis. Hereby, an important aspect is the arrangement of axes, as
it significantly changes the visual patterns among neighboring axes [JJ09]. In this
chapter, we provide a categorization of reordering algorithms and their intended
patterns, which helps analysts to make an educated selection.

4.3 Classification of Ordering Strategies

This section addresses two questions: Which patterns are emphasized by which re-
ordering strategy? And which algorithms have been implemented to solve the reorder-

4.3 Classification of Ordering Strategies
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Fig. 4.2. Comparison of visual patterns in parallel coordinates and their scatter plot repre-
sentation. Figure adapted from [Blu+20b].

ing problem? Before answering these questions, we provide an overview of impor-
tant patterns.

4.3.1 Visual Patterns

Figure 4.2 shows five groups of the most common patterns in parallel coordinates
and their representation in scatter plots:

Clusters & Neighbors (A)-(E). Typical cluster structures show one or more groups
of dense lines in a similar direction. While (&) & B) seem similar in scatter plots,
the visible structure in PCP differs significantly. (C) shows clusters that change their
density (cluster compactness) and (D), a cluster that splits up into sub-clusters.

Structures, preserving neighborhood information, are a special case of clusters. A
(small) set of data records similar (close) to each other in one dimension are also
similar in the neighboring dimension, which results in groups of parallel lines (E).

Correlations (F) - (H). Positive and negative correlations look similar in a scatter
plot. However, the PCP patterns differ: lines are parallel for positive (F), and in a
star-like pattern for negative correlations (G). Variations of non-linear correlations
may look different in both scatter plots and PCPs. (H) shows only an example as the
pattern depends on the type and degree of change in both dimensions.
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Outliers (D. Outliers squeeze the majority of PCP lines together, resulting in a
cluster-like pattern, hiding the underlying structure.

Dimension Properties (J)- (& show patterns of dimensions, ordered by variance
and skewness. The lines’ slope indicates whether patterns stay consistent (parallel)
or change across axes.

Clutter & Noise.  Randomly distributed data without a clear pattern is considered
noise or clutter in the data. The lines in the PCP cross without any particular
structure @ The fan pattern (L) describes a cluster transitioning into clutter, a
special case of density change (C).

Our selection of patterns is based on the work by Dasgupta & Kosara [DK10],
Wegman [Weg90], Heinrich & Weiskopf [HW13; HW15], and Zhou et al. [Zho+08].
The cluster variations (i.e., patterns (A) — @) are inspired by Pattern Trails [Jac+17],
which introduces a taxonomy of pattern transitions between multi-dimensional
subspaces. These patterns can be adapted to PCP, as two neighboring axes show
a transition between one-dimensional subspaces. Finally, we add variance (J) and
skewness (K), which is produced by the algorithms described in [LHZ16; Sch+18;
Yan+03]. We limit our patterns to 2D PCPs and ignore patterns in 3D PCPs (e.g.,
discussed in [PL17a; Ach+13]. We also consider only patterns among the two
axes. Multi-dimensional patterns can be achieved by concatenating multiple two-
dimensional patterns.

4.3.2 Ordering Strategies

To find ordering strategies, we took the 502 references of recent state-of-the-art
reports [HW13; JF16; Beh+18] and combined it with 497 papers resulting from
a search on the ACM, IEEE Xplore, EG, and DBLP digital library (see keywords
and details in the supplementary material). We recursively scanned references and
excluded papers that (1) did not propose an automatic axes ordering strategy (e.g.,
purely interactive approaches), (2) “just” apply a reordering method which has
been proposed before, or (3) approaches which do not focus on “standard” parallel
coordinates (e.g., 3D PCPs). Using this approach, we collected 18 papers with 32
different strategies.

Table 4.1 summarizes all reordering strategies, grouped by their ordering concept:
strategies transforming the reordering into an optimization problem (Section 4.3.3),
implementing efficient or sophisticated algorithms (Section 4.3.4), and approaches
focusing on properties of single dimensions (Section 4.3.5). For each approach, we
indicate the favored patterns, the involved axes, and the performed evaluation to
show the usefulness (see caption of Table 4.1 for details).
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Tab. 4.1. Reordering Classification summarizing the inner workings of reordering strate-
gies for parallel coordinates. For each technique, we mark if it favors or avoids
a particular pattern, if present in the data. Empty cells mean that the technique
is not designed for this pattern and produces/avoids it primarily by change. We
indicate the number of dimensions that are taken into account and mark the eval-
uation type used in the respective paper. Table adapted from [Blu+20b].

Patterns: favor @, avoid ® pattern, or depending on the algorithm’s parameters ©.
Axes considered for ordering: each dimension separately (| ), two neighboring dimen-
sions (|| ), or the majority of dimensions (]{|]).
Evaluation: case study or example @, comparison of techniques 4=, or empirical study .
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4.3.3 Optimization Problem and Objective Functions

The largest group of reordering strategies transforms the axes arrangement into
an optimization problem. These approaches measure the quality of a particular
ordering by an objective function, which is then either minimized or maximized by
an optimization algorithm.

Objective Functions Measuring Cluster Structures

Tatu et al. [Tat+09; Tat+11] argue that clusters consist of lines with a similar
position and direction (patterns @A), B), and (D)). The authors take a rendered image
of a PCP and apply a Hough space transformation [Hou62]. Each PCP line segment
is mapped into one point within the Hough space. The point’s location represents
the position and slope of the line segment. The objective function measures dense
areas (clusters) of points in the Hough space. Long [Van15] first computes a
centroid for all given clusters. Then for each data record, the nearest centroid is
identified (using the area between the lines as similarity function), and the objective
function measures the ratio of correctly classified records. Cluster patterns (A) and
are highlighted, while a cluster split (D) is avoided. Zhou et al. [Zho+18] aim at
clusters that can be followed across neighboring axes (&) and ®)). They compute a
hierarchical clustering on every dimension and use the cluster similarity as quality.
Dasgupta & Kosara [DK10] introduce seven different metrics, known as pargnostics.
A metric aiming for clusters like (A) and (B) is overplotting. It measures the number of
pixels that are not visible due to overlapping lines. When maximizing this measure,
there is a high information loss, but a high-density of lines, i.e., clusters. Finally,
Xiang et al. [Xia+12] try to avoid intersecting clusters (B) by measuring the crossing
of clusters among axes. This results in horizontal cluster structures (A).

Peltonen & Lin [PL17a] aim to preserve the neighborhood distribution of records
(pattern (E)). The objective function measures the similarity of nearest neighbors for
all data records across two dimensions. Clusters like (A) and (B) are a special case of
neighborhood relationships and are therefore considered as well.

Similarity-based Metrics for Clusters and Correlation

The main idea of the following approaches is to arrange similar dimensions next
to each other. This results in cluster- and correlation patterns. The definition of
similarity differs across the techniques. Ankerst et al. [ABK98] use a Euclidean
distance and Pearson correlation for the similarity computation. The approach by
Yang et al. [Yan+03] follows the same idea. However, they structure the dimensions
into a hierarchy using a hierarchical clustering algorithm to highlight also clusters
in subspaces of the dataset. The hierarchical structure also helps to speed up the
computation time, as each subtree can be sorted independently. Depending on the
similarity function, and whether the objective function is minimized or maximized,
these approaches aim for the patterns @A), ®), ®), and (G).
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Other metrics try to order axes such that lines are most parallel or diverging a lot.
These patterns can help to identify correlations, but may also favor clusters to some
extent. Artero et al. [AOL06] propose the total length of poly-lines as metric for
pattern (F). Similarly, there are four pargnostic [DK10] measures: (1) Maximize
the number of line crossings to identify inverse relationships (G) in the data. (2)
Maximizing (G) the angle of crossings. (3) Maximizing parallelism, resulting in less
cluttered PCPs, which highlight positive correlations (). (4) Maximizing the mutual
information, which measures the dependency between variables, i.e., optimizing for
positive (B), negative (G), and non-linear correlations (H).

Objective Functions for Clutter and Outliers

The pargnostic metric maximizing divergence results in fan pattern (L), which helps
to identify cluster-to-noise relationships. Maximizing the entropy of neighboring
axes corresponds to a high information density, highlighting many line crossings
and inverse relationships. The metric does not favor specific patterns, but results
in busy, but very readable charts, according to the authors [DK10]. The metric by
Makwana et al. [MTJ12] differs from previous metrics. The authors propose to order
dimensions such that neighboring axes contain lines with different slopes, resulting
in cluttered (M) PCPs.

Peng et al. [PWRO04] interpret outliers as data points that do not belong to a
cluster. They measure the ratio of outliers against the number of data points. When
maximized, outliers are highlighted (pattern (D), when minimized, outliers will not
be highlighted.

Optimization Algorithms for Objective Functions

Except for [AOLO6], all approaches measure the quality between neighboring axes
|| and use the average as the objective function. To minimize or maximize this func-
tion, various heuristics are applied: Random swapping (particularly useful for very
large datasets) [Yan+03; PWRO04], Ant-optimization [ABK98], A*Search [Tat+09;
Tat+11], Nearest-neighbor-based [PWR04], Branch and bound optimization [DK10;
MTJ12], Non-linear optimization algorithm [PL17a], and Backtracking [Zho+18].

4.3.4 Reordering by Algorithms

The second class of strategies arranges dimensions based on layout algorithms.
Compared to optimization procedures, this has two advantages: (1) Algorithms
which approximate the understanding of an objective function, lead to more efficient
but potentially less accurate results (e.g., [LHH12; AOL0O6; JJ09]). (2) Objective
functions are typically defined only between neighboring axes. Using more advanced
algorithms (e.g., based on subspace clustering) lead to PCP, which aims for higher-
dimensional patterns [FR11].

Chapter 4 Evaluating Ordering Strategies for Cluster Identification in Parallel
Coordinates



Algorithms for Efficient Reordering

Artero et al. [AOL06] and Johansson & Johansson [JJ09] speed up the similarity and
correlation-based axes arrangement, originally presented by Ankerst et al. [ABK98].
Both algorithms are identical, except for the similarity function. Artero et al. use a
Euclidean distance, Johansson & Johansson, a Pearson correlation coefficient. The
algorithm starts with the most similar dimension pair in the center of the PCP. Itera-
tively, the next most similar dimension is appended to the left or right side. While
this approach is efficient, it also has the advantage that the most salient structure
(the most similar dimensions) typically ends up close to the center of the PCP, which
users are most attracted to [Net+17]. Lu et al.’s approach [LHH12] orders dimen-
sions based on correlation. They use the nonlinear correlation coefficient (NCC),
which is sensitive to any relationship )<H) (not only linear ones) and can be used
for partial similarity matching as well [ABK98]. The proposed algorithm combines
the ordering by (non-linear) correlations together with an importance driven ar-
rangement. The first (left) axis in the PCP is chosen based on the highest singular
value after a singular value decomposition (SVD, highest contribution of the dataset).
Afterwards, all dimensions are arranged from left to right according to their simi-
larity of the NCC. The approach by Huang et al. [HHJ11] maximizes the uniform
line crossings of clusters. Their approach is based on Rough Set Theory [Paw12],
and the algorithm sorts the dimensions based on alternating sizes of high and low
cardinality of the equivalence classes, leading to cluster patterns (A)—C).

Subspace Algorithms for Higher-dimensional Structures

Ferdosi & Roerdink [FR11] use a subspace search algorithm [Fer+10] to identify
higher-dimensional clusters with patterns A)~D). The quality of one subspace is
based on a density distribution. Subspaces containing multiple clusters that are
clearly separated are considered of high quality. First, the algorithm computes all
one-dimensional subspaces and arranges the one with the highest quality on the very
left of the PCP. Afterwards, all two-dimensional subspaces, which contain the first
subspace, are computed, and the highest rank is attached as the second axis. The
algorithm continues until all dimensions are part of the PCP, or no more subspace can
be computed. Johansson & Johansson [JJ09] apply the MAFIA algorithm [NGCO01],
resulting in a set of subspaces, along with cluster structures and quality measures.
The ordering algorithm then finds the longest sequence of connected variables shared
by all detected subspace clusters. It starts with all dimensions of the first subspace
(no specific ordering). Further subspaces are iteratively added based on their quality,
but only if they share a substantial set of dimensions with the current PCP. The
authors use the same algorithm to identify patterns with (multi-dimensional) outliers
(pattern (D).
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4.3.5 Reordering by Dimension-wise Quality Metrics

The third group of reordering techniques computes a quality for each dimension
separately (| ) and sort the axes accordingly. Assuming the quality can be computed
efficiently, reordering can be done in linear time. The techniques can also be
extended by dimension filtering (e.g., considering only dimensions with a quality
above a threshold). Relations between dimensions are not considered. Therefore,
patterns may be scattered in different parts of the PCP [PL17a].

Lu et al. [LHZ16] sort the axes based on each of their contributions to the dataset.
They compute an SVD and sort the dimensions according to their singular values.
Yang et al. [Yan+03] propose a similar approach but sort the dimensions by variance.
Both reorderings result in similar patterns ((J) — ). However, Lu et al.’s approach
takes the distribution of the entire dataset into account.

Schloerke et al. [Sch+18] propose three different dimension metrics: (1) They use
skewness for reordering, resulting in a (K) pattern. (2) The dimensions are sorted by
one of the Scagnostics [WAG05] measures. In particular, the Outlying measure is
useful to highlight outliers in the data (pattern (). (3) Finally, the authors order the
dimensions such that existing clusters or classes are separated as well as possible.
They compute an ANOVA on every dimension based on a given set of class labels
and order the dimensions based on the F-statistic. Intuitively, the dimensions are
ordered according to how well the given clusters are separated (patterns &) — (C)).

4.3.6 Summary

In Table 4.1, we provide an overview of 32 different reordering approaches to
arrange the axes of parallel coordinates. During our analysis, we made a few
observations: (1) Many reordering algorithms follow similar concepts, but differ in
their implementation and the applied metric. The main reason for this is that axes
reordering is computationally complex, and more efficient approaches are necessary
for interactive applications. (2) There seems to be a different understanding of the
most important area in a PCP. While some reordering approaches try to put the most
important dimensions upfront, others try to arrange them in the center. This is in
line with the study by Netzel et al. [Net+17], who found out that people pay the
most attention to the center part of a PCP. (3) The evaluation of novel reordering
algorithms is primarily achieved by use cases and example applications. We are not
aware of empirical user studies that compare different orderings for a particular
analysis task. We want to close this gap and provide the first empirical study to
evaluate ordering approaches for a particular analysis task.

4.4 User Study for Cluster |dentification

Our reordering classification in Table 4.1 reveals that the majority of strategies are
designed to support cluster analysis. Therefore, we select this task as the focus of our
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user study. In particular, we want to assess the performance of cluster identification,
as this is the foundation for more sophisticated clustering analyses.

For cluster analysis, similarity-based layouts are proposed most often. Clusters, if
present, can be followed across many axes, as algorithms try to minimize their
variance. However, this strategy does not necessarily highlight clusters. This is
especially true if the dataset contains noise or clutter, as shown in Figure 4.1a.
While we can identify the clusters, they are visually less salient. We define the
term clutter as data records that do not contribute to a particular pattern (e.g.,
randomly distributed), often also called noise. Cluttered datasets often end up in
visual cluttered PCP due to many line crossings and overplotting.

Due to experiments with our implemented reordering algorithms, we realized
that polylines and clusters with strong slopes are visually more prominent than
horizontal ones. There are two reasons, as discussed by Pomerenke et al. [Pom+19]:
(1) With an increasing slope, the distance between polylines decreases, and less
whitespace (background) is visible. Hence, neighboring lines have higher contrast.
(2) Compared to horizontal lines, diagonal lines need more pixels to encode a
single data point, resulting in a low data-to-ink-ratio [Tuf01]. Both geometric
effects make sure that neighboring lines are more easily perceived as a group or
cluster. Interestingly, strong slopes are produced when dimensions are ordered by
dissimilarity. An example can be found in Figure 4.1c. It shows the same data as in
4.1a, but with strong slopes due to reordering. Often this results in a zig-zag-like
pattern, which makes the visual representation more complex but also ends up in
more salient cluster structures.

4.4.1 Hypotheses

We address the question, ‘whether there is a difference between a similarity-based
(SIM) and dissimilarity-based (DIS) axes ordering for a cluster identification task’. If
yes, ‘Which ordering should be used, and why?’ As the majority of real-world datasets
contain noise and clutter, we also want to investigate its influence generally, and in
combination with the axes ordering. Hence, we analyze two independent variables:
ordering method and clutter level.

To measure the performance, we use three dependent variables: (i) time to identify
clusters, (ii) quality of manually selected clusters based on similarity to ground
truth clusters, and (iii) the confidence of the users after the cluster identification.
Additionally, we analyze axes-pairs which help to identify the clusters. In particular,
we investigate whether users select clusters in similar or dissimilar axes pairs. For
our study, we formulate the following three hypotheses:

H1. With an increasing amount of clutter, the cluster identification performance
drops (independent of the ordering) as cluster structures are less salient in the PCP
plot. We expect users to be (a) slower, (b) less accurate, and (c) less confident.

H2. Without clutter, users perform better in a cluster identification task when the
axes are ordered by SIM instead of DIS as clusters can be followed more easily.
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In particular, we expect users to be (a) faster, (b) more accurate, and (c¢) more
confident with SIM.

H3. With clutter, users perform better in a cluster identification task when the
axes are ordered by DIS instead of SIM as clusters are visually more prominent.
In particular, we expect users to be (a) faster, (b) more accurate, and (c¢) more
confident with DIS.

4.4.2 Benchmark Dataset and Ground Truth

To evaluate our hypotheses, benchmark datasets with ground truth information and
increasing clutter levels are needed. We are not aware of such datasets for a cluster
identification task. Therefore, we developed our own benchmark, consisting of ten
popular real-world, and 72 synthetically created datasets along with the ground
truth information. We make our dataset available in order to overcome the limitation
of publicly available benchmark datasets [Sch+16] and to support the evaluation
of PCP enhancements and reordering techniques in the future. For comparison, we
show a PCP with each dataset and ordering strategy in the supplementary material.

Synthetic datasets

We limit the dimensionality of all synthetic datasets to eight. This allows us to
create complex cluster structures while keeping the expected time for the study in
a reasonable time frame. We alternated the number of clusters between one and
four and varied the structures of the clusters — ranging from linear clusters towards
a high variance on all scales of the different axes.

Using the PCDC tool [Bre+12], we created 24 base datasets ({1,2,3,4} clusters X
6 variations) which fulfill the following properties: (i) clusters are clearly visible
and separated from each other, (ii) there is only one clustering result per dataset, (iii)
each cluster is present in all eight dimensions, and (iv) no outliers are added as they
would distort the existing patterns [AAO1]. In up to two dimensions, we merged two
or more clusters such that participants need to investigate all dimensions to identify
a cluster. To make the clusters comparable across datasets, we kept the cluster size
constant with small randomization in the range of 45 — 50 data points and vary the
diameter of every cluster in each dimension randomly in the range 0.15 — 0.30. All
dimensions are normalized in 0.0 — 1.0.

Next, we designed different clutter levels. Pomerenke et al. [Pom+19] show that
random clutter (randomly and equally distributed records in all axes) produces
visible patterns in PCPs which look similar to clusters (Ghost clusters). In order
to not accidentally include ‘fake patterns’ in our dataset, but also be fair w.r.t.
random clutter, we use a mixture of 30% random and 70% linear clutter (for every
record: uniform and random distribution in one dimension + 0 — 0.15 in all other
dimensions). Using several pilot experiments, this setting seemed to be complex
enough, but also without any undesired patterns. For each base dataset, we created
two copies with different clutter levels, one with 150 (150N), one with 300 data
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points (300N). We used the same clutter datasets for all base datasets to make them
comparable and ensure we do not encode additional patterns in some of the datasets.
After finalizing all 72 datasets (24 base datasets x{ON, 150N, 300N}), we randomized
the order of the records to remove potential effects in the drawing process.

Real-world datasets

We added ten frequently used datasets to see the performance in real settings. We
selected the datasets based on common usage in PCP reordering (i.e., by choosing
datasets used in the techniques described in Table 4.1). Hence, the number of
dimensions and records differ compared to synthetic datasets. Dimensions range
between 4 — 13, and the number of records between 32 — 515. Examples are the
wine, mt-cars, and ecoli dataset. If present, we removed categorical dimensions
and outliers. We used Ward’s method [War63] to retrieve a hierarchical clustering
and a visual inspection to determine the clusters in the data.

4.4.3 Implementation

To compare the ‘optimal’ SIM and DIS layout, we used Ankerst et al.’s reordering
algorithm [ABK98] with an exhaustive search to find the axes ordering. For the SIM
layout, we used the Euclidean distance and minimized the sum of distances. For
DIS, we used the same algorithm but maximized the distances. We pre-computed
the orderings for all datasets in advance. To run the study, we developed a web
application that is available at http://subspace.dbvis.de/pcp-study. The parallel
coordinates plots have a size of 960 x 500 pixels and use color for the polylines to
separate them from the axes which are colored in black. We did not add any design
variations to the chart (i.e., transparency, or edge bundling) to avoid confounding
factors.

4.4.4 Tasks and Data Randomization

Our study consisted of 21 trials per participant, which are grouped into three tasks
that build on top of each other. The tasks were executed in increasing difficulty: Tasks
1, 2, and 3. Between two trials of a task, we showed a white screen with the term
‘break time’, and participants had to click a button to continue with the next trial.

Task 1 (Similarity of Axes-Pairs)

We wanted to find out which visual structures support users in a cluster identification
task. In particular, we were interested whether users find neighboring axes with a
high similarity or dissimilarity more useful. In each trial, we showed the participants
a PCP in which the number of clusters had to be counted. Users selected the number

which they identified using four radio buttons (i.e., 1, 2, 3, 4) and a can't tell option.
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Fig. 4.3. User study interface for Task 1 (left) and Task 2 (right).

After the selection was confirmed, we showed a single radio button between each
neighboring axes (see Figure 4.3 left) and asked the participants to select the pair
which supported them best. Only one pair could be selected.

Randomization. We randomly picked three synthetic datasets with a different
number of clusters. In the first trial, we showed ON clutter, in the second 150N, and
finally 300N (increasing difficulty). As we are interested in whether participants
prefer (dis-)similar neighboring axes, we arranged dimensions such that the PCP
contains both similar and dissimilar axes pairs. To do so, we computed the similarity
of neighboring axes using the Euclidean distance and used the maximal variance
of similarities (MaxVar) as an objective function (see example in Figure 4.4). In
summary:

3 levels of clutter (ON, 150N, 300N) X
31 participants =
93 trials in total

Post-processing. We collected the time to identify the number of clusters along
with the similarity value of the selected axes pair. For comparison across datasets,
we applied a linear min-max normalization to the similarity values of all neighboring
axes pairs within each dataset. Pairs with the highest similarity are represented with
0.0, while high-dissimilarity pairs are represented by a value close to 1.0.

Task 2 (Cluster Identification and Selection)

We wanted to find out if participants are better and more confident using a particular
ordering strategy. In each trial, we presented the participant one PCP, which was
sorted by either SIM or DIS. The participant had to mark all clusters by choosing a
pair of neighboring axes and marking every cluster in both axes using a brush feature
(Figure 4.3 right). Brushing is applied by pressing the mouse button and marking the
cluster along the axis. The selection can be moved, resized, or deleted. We do not
highlight any data lines during or after brushing. After confirming their selections,
participants rated their confidence in a correct clustering on a 5-point Likert scale.
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(a) no clutter (ON) (b) 150 clutter points (150N)

Fig. 4.4. Dimensions are ordered by MAXVAR (maximizing the variance of similarities
among neighboring axes). The result combines similar and dissimilar dimension
pairs in one PCP.

Randomization. We selected 12 synthetic base datasets, three for each number of
clusters, and randomized the order. Then, we distributed the datasets into three
equal-sized groups: ON, 150N, and 300N. Finally, we added four randomly selected
real-world datasets in a new group RW. Within each group, we randomly applied
twice a SIM and twice a DIS ordering. Participants worked on each group in order of
increasing difficulty (i.e., clutter level). In summary:

4 levels of clutter (ON, 150N, 300N, RW) X
2 repetitions X
2 ordering strategies (SIM, DIS) X

31 participants
496 trials in total

Post-processing. We collected the time to mark the clusters and divided this by
the number of clusters to be comparable across datasets. We also collected the
selections and confidence levels.

We ignored clutter for the quality computation. We checked whether participants
selected clusters in two neighboring dimensions and whether the number of clusters
is therein consistent. In 132 trials, this was not the case, and we removed them from
the data. The results are, however, still trustworthy as the removed trials are not
skewed towards a particular reordering (66 trials each) or a clutter level (32, 28,
28, and 44 trials). For all correct trials, we then mapped the clusters between the
selected axes together. First, we compute the Overlap coefficient [Szy34] between all
cluster combinations and then merge the clusters with the highest overlap together.
For each cluster combination, we keep the intersected set of data records as cluster
members. The Overlap coefficient measures the overlap of members of the two
clusters C; and le overlap(Ci, CJ) = |Cl N C]|/mm(|Cl|, |CJ|)

The quality of an entire clustering is based on the Jaccard index [Jac01] between
each selected cluster C; and the corresponding ground truth cluster G;. The Jaccard
index measures the similarity between the clusters (record sets) C; and G; on a data
record level: jaccard(C;, G;) = |C; N G;|/|C; U G;|. As participants can also select
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too few or too many clusters, our quality computation is a two-step process: First,
we compute the average Jaccard index of each cluster to their best match in the
ground truth. Second, we compute the average Jaccard index of every ground truth
cluster to their best match of our selection. Our final clustering quality is then the
average score of both steps.

Task 3 (Ordering Strategy Preferences)

We wanted to find out if participants have preferences for a particular reordering and
why this is the case. We presented them two PCPs with the same dataset next to each
other — one with SIVM, one with DIS ordering. Using two radio buttons, participants
had to select the preferred plot and then explain their choice in a free-text field.

Randomization. We randomly picked two synthetic datasets with a different num-
ber of clusters. In the first trial, we did not show any clutter (ON); in the second, we
used either 150N or 300N (equally balanced across the participants). In the first trial,
we used SIM ordering in the left, and DIS ordering in the right plot. In the second
trial, we swapped the positions. In summary:

2 levels of clutter (ON, (150N V 300N)) X
31 participants =
62 trials in total

Post-processing. We stored the preferred ordering and the text for each trial. Four
participants reported not to see any preference between the options in one of the
trials. We removed these participants from the statistical analysis, but report their
choices in Section 4.5.3.

4.4.5 Participants and Procedure

Prior to the study, we conducted several pilot runs in order to determine appropriate
clutter levels and the number of trials for each task.

Participants. To have participants with basic knowledge in information visualiza-
tion and parallel coordinates, we conducted our user study during two lectures at
the University of Konstanz, Germany. Both courses teach foundations in information
visualization, one course for undergraduates, the other for graduates. The courses
were taught by the same lecturer (not the authors), who also introduced and dis-
cussed the PCP technique two weeks prior to the study. We recruited 31 participants
(17 male, 13 female, 1 NA). Their ages ranged from 19-31 years (median age 23).
Each participant had finished high school, and 17 held a Bachelor’s degree. The aca-
demic background was in the area of data analysis with 24 computer science, and 7
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social and economic data analysis students. All participants reported having normal
or corrected to normal vision.

Training and Procedure. All participants had to fill out a data privacy form in
which we describe the data collected during the study. The participants sat scattered
across the room and were not able to talk to each other. One of the authors started
the study with a 30-minute recap on PCPs and comparing its visual patterns with
scatter plots, discussing the advantages and disadvantages of the two techniques,
and arguing about the effects of clutter, noise, and outliers. During the training,
we did not provide strategies on how to identify clusters (or any other pattern) in
PCP. Instead, we showed patterns in scatter plots and let all participants draw the
respective patterns in a PCP (see training material). After this recap, we started the
training. All participants opened their laptops and used a browser of their choice
to access our online study. We provided a training platform, including all three
tasks, but only two trials per task. We explained to the participants how to interact
with the tool, and let the participants play around with the different trials. After
answering the remaining questions, we made sure that all participants activated the
full-screen mode within their browser and checked that the entire study could be
conducted without scrolling for the different tasks. Participants needed between
20-30 minutes to complete the study.

4.5 User Study Results

We now report the summary statistics and highlight significant results (p < .05) in
the data. For all tests, we checked the necessary preconditions, which can be found
in the supplementary material along with the R scripts to reproduce the results. We
used a one-sample Kolmogorov-Smirnov test to check if the data follows a normal
distribution and Mauchly’s test to check for sphericity.

4.5.1 Task 1 (Similarity of Axes-Pairs)

We used a repeated-measures ANOVA for the analysis of completion time. The post
hoc analysis was done with a Bonferroni corrected t-test for dependent samples. As
the similarity of axes-pairs was not normally distributed, a non-parametric Friedman’s
test was used.

Efficiency to Identify the Number of Clusters

There was a significant effect of clutter on completion time (F'(2,60) = 6.07, p < .01,
n? = .10). Post hoc comparisons revealed that completion time was significantly lower
for the clutter condition ON (u = 9.44s) compared to 150N (p < .01, u = 16.67s),
and 300N (p < .01, u = 17.47s), but not between 150N and 300N (p = 1.0).
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Fig. 4.5. Similarity of preferred neighboring dimensions (Task 1). With clutter, axes
pairs with dissimilarity are preferred. Without clutter (ON), the preferences are
almost equally balanced.

Similarity of Selected Axes-Pair

No significant results can be reported (x?(2) = 4.77, p = .09). As shown in Figure 4.5,
the mean of the distances for the different clutter conditions were ON (u = .53), 150N
(.71), and 300N (.75).

4.5.2 Task 2 (Cluster Identification and Selection)

For the comparison between clutter levels (independent of the ordering), we used a
Kruskal-Wallis test, and a Bonferroni corrected Wilcoxon signed-rank test for post
hoc analysis. For the confidence, we applied a Pearson’s Chi-square test. To analyze
the differences between the ordering strategies within each clutter level, we used a
Wilcoxon signed-rank test for the analysis of completion time, cluster quality, and
confidence. Data were split according to levels of clutter to compare the differences
between SIM and DIS.

Efficiency to Identify and Mark Clusters

Between clutter levels, the medians of completion time for ON, 150N, 300N, and RW
were 10.79, 9.53, 10.26, and 15.02, respectively. A Kruskal-Wallis test showed a
significant effect on clutter level (x?(3) = 23.31, p < .001). A post hoc test using
Wilcoxon signed-rank tests showed only significant differences between RW and ON,
150N, and 300N (all p < .01).

As shown in Figure 4.6, the medians of the completion time for the ON clutter
condition, for SIM and DIS were 8.9s and 12.35s, respectively. A Wilcoxon signed-
rank test showed that there was a significant effect of ordering strategy (W = 1,
7 = —2.46, p < .05, r = .25). For the other clutter conditions, no significant results
can be reported. For the 150N clutter condition, the medians of completion time
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Fig. 4.7. Quality of selected clusters (Task 2).

for SIM and DIS were 10.67s and 8.58s, respectively (p = .05), for the 300N clutter
condition, the medians of completion time for SIM and DIS were 11.12s and 9.62s,
respectively (p = .05), and for the RW condition, the medians of completion time for
SIM and DIS were 15.07s and 14.79s, respectively (p = .82).

Quality of Identified and Marked Clusters

Between clutter levels, the medians of quality for ON, 150N, 300N, and RW were .98,
.91, .85 and .37, respectively. A Kruskal-Wallis test showed a significant effect on
clutter level (x?(3) = 181.56, p < .001). A post hoc test using Wilcoxon Sign-rank
tests showed the significant differences between ON and 150N (p < .001), 300N
(p < .001), and RW (p < .001). Also, there were significant effects between 150N
and 300N (p < .05), and RW (p < .001). Finally, 300N and RW were also significantly
different (p < .001).

The results of the cluster quality are summarized in Figure 4.7. For the 150N clutter
condition, the medians of quality for SIM and DIS were .87 and .94, respectively. A

4.5 User Study Results
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Fig. 4.8. Confidence of marked clusters (Task 2). Participants have higher confidence
in their cluster selection using dissimilarity ordering. Figure adapted from
[Blu+20b].

Wilcoxon signed-rank test showed a significant effect of ordering strategy (W =1, Z
= —2.62, p < .001, r = .27). For the 300N clutter condition, the medians of quality
for SIM and DIS were .79 and .90, respectively. A Wilcoxon signed-rank test showed
a significant effect of ordering strategy (W =1, Z = —3.36, p < .001, r = .34). The
other levels of clutter did not show a significant difference. The medians of the
quality score in the ON clutter condition were .99 for SIM and .97 for DIS (p = .33),
and in the RW condition .37 for both SIM and DIS (p = .25).

Confidence of Marked Clusters

An overview of the participants’ confidence is shown in Figure 4.8. Between clutter
levels, the medians of confidence for ON, 150N, 300N, and RW were 2, 1, 1, and 0,
respectively. A Pearson Chi-square test showed a significant effect of clutter level
on confidence (x?(12) = 120.97, p < .001). Post hoc analysis revealed significant
differences between ON and 150N (p < .001), 300N (p < .001), and RW (p < .001);
between 150N and 300N (p < .05), and RW (p < .001); and between 300N and RW
(p < .005).

For the 150N clutter condition, the medians of confidence for SIM and DIS were
both 1. A Wilcoxon signed-rank test showed a significant effect of ordering strategy
W =1,7Z=-2.52,p < .05, r = .26). For the 300N clutter condition, the medians
of confidence for SIM and DIS were 0 and 1, respectively. A Wilcoxon signed-rank
test showed a significant effect of ordering strategy (W =1, Z = —3.75, p < .001,

= .38). The remaining levels of clutter did not show a significant difference
between ordering strategies with the same medians for SIM and DIS (ON = 2, p = .25;
RW = 0, p = .48).

Chapter 4 Evaluating Ordering Strategies for Cluster Identification in Parallel
Coordinates



-
w

number of trials
[y
o

vl

Similarity (SIM)
20
Dissimilarity (DIS) Il

no clutter clutter 150 clutter 300 clutter

o

Fig. 4.9. Preference of reordering strategy (Task 3). No preference for datasets without
clutter. Participants strongly preferred a dissimilarity-based layout with an increas-
ing amount of clutter. The figure shows both clutter levels combined (‘clutter’)
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4.5.3 Task 3 (Understanding Preferences)

The distribution of preferences is shown in Figure 4.9. Two participants selected
SIM, ten participants DIS for both clutter conditions. Twelve participants preferred
SIM without clutter and changed their preference to DIS for the second trial, which
included clutter. Vice versa, three participants changed from DIS to SIM. A binomial
test showed a significant difference (p < .05) in the proportion of preference
(x%(1, N = 27) = 12). The probability of success was 8.

Three out of four of the removed participants (see Section 4.4.4) did not have a
preference for ON, but preferred DIS for cluttered datasets. One participant preferred
SIM for clutter-free datasets and had no preference for the dataset with clutter.

4.6 Discussion

We discuss the participants’ performance according to our hypotheses and highlight
findings from the qualitative feedback of task 3.

Influence of Clutter (H1)

Increasing the amount of clutter has a negative effect on the quality of the cluster

identification and confidence of participants. These findings confirm H1 (b) and (c).

While we see an increasing completion time for higher clutter levels in task 1, we
cannot verify this finding in the second task. Hence, we cannot make a final judgment

on H1 (a). As expected, clutter negatively influences the cluster identification.

Patterns may vanish due to overlapping data lines, making the identification more
difficult. Therefore, visualization experts need to carefully design PCPs and reduce
the amount of clutter if possible (e.g., sampling).

4.6 Discussion
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Reordering for Clutter-free Datasets (H2)

Similarity-based ordering strategies are a good choice for datasets without clutter.
Our results show that participants perform the identification of clusters more effi-
ciently when working with a SIM layout, which confirms H2 (a). It seems as if par-
ticipants are faster in combining straight data lines into clusters in contrast to data
lines with strong slopes. A possible explanation could be the Gestalt law [Wer23;
War20] of continuation, which could help participants in tracking data lines across
dimensions. Kellman and Shipley [KS91] support this argument: the angular pa-
rameters, determining the grouping of lines to clusters, may support the ability to
find clusters across multiple sets of axes. The qualitative feedback also confirms our
findings. Participants reported, for example, that “The structure of clusters is clearer”,
“[clusters] don’t cross very often”, or they prefer SIM “[...] since they do not intersect
with each other in the majority of areas between each two dimensions [...]”. We can-
not support hypotheses H2 (b) and (c). There are no significant differences in the
cluster identification quality or the confidence of the participants (see also Figure 4.7
and 4.8). Also, participants did not have a subjective preference for a particular
reordering strategy, as shown in Figure 4.9.

Reordering for Cluttered Datasets (H3)

For datasets with clutter, there is strong evidence that DIS layout strategies are more
suitable. The quality of marked clusters is significantly better when participants
used a DIS ordering strategy, confirming H3 (b). This finding coincides with the
reported confidence of participants (see Figure 4.8), who are also significantly more
confident when working with DIS in clutter conditions. Even if both options are
available (SIM and DIS), there is statistical proof that participants will choose a
DIS ordering in clutter conditions providing evidence for H3 (c). The Gestalt law
of grouping by orientation similarly [Wer23; War20] might be a reason for this
preference. The orientation of the lines is more salient in the DIS ordering, which
facilitates a stronger grouping compared to a SIM ordering.

We cannot see significant differences in the similarity values of the selected axes
pairs in task 1. However, Figure 4.5 illustrates the distribution of similarity values,
providing evidence that participants believe that DIS axes pairs support them better
in a cluster identification task. These findings are also in line with the qualitative
feedback. The majority stated a preference for DIS over a SIM layout (see Figure 4.9).
The participants said, for example, “the spikes make the clusters more obvious”,
“clearer [in A] because the zig-zag makes it easier to see among the noise.”, or “The lines
are closer together”.

As shown in Figure 4.6, participants performed the cluster identification task faster
with a DIS layout compared to a SIM layout in cluttered datasets. However, the
differences in the completion time are not significant (p = 0.05). Therefore, we
cannot confirm H3 (a).

Chapter 4 Evaluating Ordering Strategies for Cluster Identification in Parallel
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4.6.1 Design Considerations

With the results gained from our study, we derive the following design considerations
for using PCPs in a cluster identification task.

Whenever possible, clutter should be removed in a pre-processing step. Results
from tasks 1 and 2 indicate that participants working with PCPs need more time,
are less accurate, and are less confident in identifying clusters with an increasing
amount of clutter.

For datasets without any clutter, a SIM layout should be preferred over a DIS
layout. Participants working with a SIM ordering strategy were faster in identifying
and marking clusters compared to a DIS layout, as results indicate in task 2. There
is, however, no difference in the quality of the clustering or confidence.

When clutter is an issue, a DIS ordering strategy should be preferred over a
SIM layout. As we can see in the results from tasks 2 and 3, participants performed
more accurately and were more confident in their selection when working with a
DIS layout.

Although we used two clutter conditions in our study, it is challenging to derive
specific guidelines when a dataset is considered as cluttered. It depends on many
properties, such as the number of records, the general density of data and patterns,
and the size of the PCP. Therefore, this needs to be analyzed in follow-up studies.

4.6.2 Limitations and Future Work

In our study, we focused on cluster identification. Therefore, the proposed design
considerations need to be considered with caution for other tasks like correlation
analysis. There might be changes in performance due to different patterns of interest.
The same is true for the cluster structures. Our synthetic benchmark consists of a
strong cluster structure throughout all dimensions. The results of our study might
not be representative if cluster structures are less compact or not present across all
dimensions. The results of our study already show that real-world datasets perform
significantly worse than the synthetic benchmark data, although we selected datasets,
commonly used in PCP research. The reasons for this effect might be that (1) all
records of the real-world data belong to a cluster (no clutter was present), (2) the
clusters in the real-world dataset were less compact than in the synthetic datasets,
and (3) the real-world trials were done right after the 300N trials. Participants
selected only a subset to be part of a cluster and interpreting the remaining points
as clutter. To generalize the results, follow-up studies should be conducted.

Further limitations of the study are (1) The number of dimensions and records:
while we believe that results are independent of the number of dimensions, we
restricted ourselves to eight dimensions to keep the trials throughout the study
comparable. With an increasing number of dimensions, the computation of ordering
algorithms will take longer; however, this was out of the scope for our study to
investigate. (2) The population of participants: The study was conducted during

4.6 Discussion
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two InfoVis lectures at our university. Therefore, participants were recruited from
an InfoVis-trained, local student population, limiting the generalizability. (3) Study
setup: Participants used their own laptops with different screen space and resolution.
Although we manually checked that the study was displayed correctly on each laptop,
the experience might change due to different screen settings and browsers.

4.7 Conclusion

This chapter advances the field of axes reordering in parallel coordinates plots (PCPs).
First, we classified existing reordering techniques based on their inner workings,
preferred patterns, and meta characteristics. Using this classification, we provide
guidance in selecting an appropriate approach for a given task. Second, we pushed
the evaluation of axes reordering techniques towards empirical justification. We
conducted the first controlled user study to assess the performance of PCPs with
two different ordering strategies. Specifically, we investigated whether the often
proposed similarity-based axes arrangement (SIM) is better to identify clusters than
a dissimilarity-based layout (DIS), which produces more salient cluster patterns. Our
results show that, depending on the clutter level, participants performed differently
based on the used ordering strategy. When no clutter was present, a SIM layout was
more efficient, whereas, for cluttered datasets, a DIS layout led to better results.
The subjective preference of participants supported these findings. Thus, our study
shows that the performance of participants can be increased by choosing the correct
layout strategy based on the underlying task.

Chapter 4 Evaluating Ordering Strategies for Cluster Identification in Parallel
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Reducing Density Distortion
in Parallel Coordinates Plots

Summary

Parallel coordinates face a significant problem influencing the perception and in-
terpretation of patterns. The distance between two parallel line segments differs
based on their slope. Vertical lines are rendered longer and closer to each other than
horizontal lines. This problem is inherent in the technique and has two main conse-
quences: (1) clusters which have a steep slope between two axes are visually more
prominent than horizontal clusters. (2) Noise and clutter can be perceived as clus-
ters, as a few parallel vertical lines visually emerge as a ghost cluster. This chapter
makes two contributions: First, we formalize the problem and show its impact. Sec-
ond, we present a novel technique to reduce the effects by rendering the polylines
of the parallel coordinates based on their slope: horizontal lines are rendered with
the default width, lines with a steep slope with a thinner line. Our technique avoids
density distortions of clusters, can be computed in linear time, and can be added on
top of most parallel coordinate variations. To demonstrate the usefulness, we show
examples and compare them to the classical rendering.

This chapter is based on the following publication. Please refer to Sections 1.4 and
1.5 for the contribution clarification and general citation rules.

[Pom+19] David Pomerenke, Frederik L. Dennig, Daniel A. Keim, Johannes Fuchs,
and Michael Blumenschein. “Slope-Dependent Rendering of Parallel
Coordinates to Reduce Density Distortion and Ghost Clusters”. In: IEEE
Visualization Conference (VIS). 2019, pp. 86-90.

5.1 Introduction

Cluster identification is, among others, one of the most common tasks for parallel
coordinates [AAO1]. Every record of a dataset is represented by a single polyline,
spanning across the different axes/dimensions of the dataset. Polylines running close
together are considered a cluster as they have similar values across the dimensions.
In Figure 5.1 (a), we can see three clusters spanning across the dataset. Between
dimensions 1-3, the clusters are horizontal, meaning that the data values are
approximately the same within all dimensions. Across dimensions 3-5, the clusters
are diagonal, changing their values and cluster center, and have a steep slope. We
can easily see a general problem of the PCP technique: diagonal changes of clusters
are visually more prominent than horizontal trends.
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(a) Regular (b) Slope-dependent  (c) Regular (d) Slope-dependent
rendering rendering rendering rendering

Fig. 5.1. Comparison of regular parallel coordinates with our slope-dependent poly-
line rendering. Parallel coordinates face two problems, which are inherent of tech-
nique: (a) depicts three clusters of the same diameter and size across all dimen-
sions. Diagonal changes of the clusters are visually more prominent, as diagonal lines
are rendered more closely. (c) shows 200 data points of uniform random noise in
all dimensions. Zig-zag clusters are visible as diagonal lines are perceived as clus-
ters, although there are no such clusters in the data (ghost clusters). We propose to
render each line segment based on its slope between two axes. As a result, clusters
are not distorted by their shape (b), and the ghost clusters effect is reduced (d).

Assuming all polylines have the same line thickness, there are two reasons for this
effect: Diagonal lines need more area (=more pixels), and the background space
between parallel lines is smaller for diagonal clusters compared to horizontal ones.
As a consequence, there is a density distortion of clusters based on the slope or
angle of the cluster. A second effect, also based on these rendering artifacts, are
so-called ghost clusters. Figure 5.1 (c) depicts a dataset with 200 points, randomly
and uniformly distributed across all dimensions. One can “see” two zig-zag patterns
indicating two clusters. However, the data does not contain any specific structure —
in particular, no clusters. This problem is not only relevant in pure clutter (or noise)
datasets but also influences the perception of clusters in datasets that contain a
limited amount of clutter and noise along with relevant patterns. Ghost clusters and
distorted cluster density are related to human bias, but the core problem is based on
the parallel coordinates technique itself. It can also occur in other variants of PCPs
(e.g., different colors and transparency for lines, or edge-bundling).

This chapter makes two contributions: (1) we formalize the problem and show its
impact. (2) we propose a novel approach that renders each line segment based on
the slope between two dimensions. Horizontal lines are rendered with the default
line thickness. Diagonal lines are rendered thinner. Two examples are depicted in
Figure 5.1 (b) and (d). The technique can be computed in linear time and applied
on top of most PCP variations. The approach by Zhou et al. [Zho+09] is closest to
our work. It blends polylines based on their local neighborhood, which reduces the
influence of noise but still suffers from the distortions caused by the over-emphasis
on diagonal lines.

All material of this chapter is available at https://osf.io/sy3dv.
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5.2 Related Work and Research Gap

A large number of approaches try to reduce clutter and highlight patterns in parallel
coordinates. However, a formalization of distorted patterns, based on the polyline’s
slope, is missing, and none of the existing approaches specifically target this lim-
itation. We describe the works most closely related to ours in the following, and
highlight the relation to our slope-dependent rendering.

5.2.1 Sampling and Filtering Techniques

One of the most commonly used approaches to overcome clutter and overplotting
issues is sampling and filtering techniques. With less data clutter decreases, while
the general structures, typically represented by many data records, remain in the
PCP [HW13]. The taxonomy by Ellis & Dix [EDO7] provides a categorization of
clutter reduction methods, including sampling, filtering, and clustering, as well as
visual techniques such as adjusting the point size or opacity. Sampling often removes
relevant data records or dimensions, reducing the truthfulness of the sampling
concerning the dataset. Our technique reduces clutter by counterbalancing the
distortion artifact inherent to PCPs. It can be applied on top of a sampled or filtered
subset of the data. Dependent on the data characteristics, our technique increases
the amount of data displayable in a given PCP by deemphasizing diagonal polyline
segments.

5.2.2 Axes Reordering and Dimension Reduction

Another approach to minimize clutter in PCPs is to reorder the dimension axes or
reduce the number of displayed dimensions. For example, Pargnostics by Dasgupta
and Kosara [DK10] describes a set of quality metrics for PCPs which can be mini-
mized or maximized (e.g., the number of line-crossings and parallelism). The au-
thors also suggest the flipping of axes to reduce the number of line-crossings or diag-
onal clusters. The survey by Behrisch et al. [Beh+ 18] discusses a large number of
quality metrics as objective functions for axes reordering. Axes reordering, dimen-
sion reduction, and axes flipping can reduce ghost clusters by favoring horizontal
structures. Depending on the data, however, it cannot be avoided entirely. Axes
reordering is highly dependent on the data and analysis task. It is an orthogonal
concept to our approach and can be combined with it.

5.2.3 Density- and Cluster-based Rendering

Clusters and other patterns can also be highlighted by density-distributed rendering.
The general idea is to render PCPs as density distributions rather than individual
polylines. Johansson et al. [Joh+05] measure the density based on the number of
overlapping polylines per pixel. This notion of density serves as input to a transfer

5.2 Related Work and Research Gap
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function that allows highlighting areas according to their local density. Heinrich
& Weiskopf [HWO09] apply the concept of continuous scatterplots [BW08] to PCPs
to derive a density model and thus interpolate the data. The resulting rendering
is specifically useful for cluster identification. The work by Palmas et al. [Pal+14]
provides a different approach, which bundles edges according to class membership.
The resulting bundles are rendered as polygonal strips. Density- and cluster-based
rendering may hide the underlying individual records and often require class labels
to achieve a useful coloring or edge-bundling. While these approaches reduce clutter,
they do not avoid the density distortion of clusters.

5.2.4 Polyline Modifications

A common technique is to modify the polylines of PCPs, specifically the overall line
width, opacity, color, and shape. One example is the edge-bundling approach by
Heinrich et al. [Hei+12b], which bundles polylines according to class membership
and thus reshapes the line. The work by Zhou et al. [Zho+09] called line splatting is
most closely to ours. Line splatting is iteratively adjusting the opacity of lines based
on the local neighborhood. Users can interactively change the degree of polyline and
segment splatting. In contrast to Zhou et al. [Zho+09], our work tries to mitigate
the visual distortions intrinsic to PCPs, such as the perceived density of clusters and
the effect of ghost clusters.

5.3 Problem Statement and Impact
on Parallel Coordinates Patterns

We now formalize the line geometry of parallel coordinates and describe their effects
on density distortions and ghost clusters.

5.3.1 Geometry of Classical Parallel Coordinates

In classical parallel coordinates, polyline segments are rendered as rectangles (see
Figure 5.2a). All lines have a constant line width (also called thickness or stroke
width) w € R*. AW denotes the space between the dimension axes and AH
indicates the difference of data values.

Polyline Length

The polylines differ in their length, depending on their slope or the angle o € [0, §).

A higher « results in longer lines. The length /(«) is defined as:

l(a) = lA(?;[Z, - AW = sec(a) - AW = cos H(a) - AW (5.1)
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(a) Rectangle-based rendering of one poly-
line segment. (b) Distance between two parallel polyline

segments P and Q.
Fig. 5.2. Geometry of a polyline segment. In regular PCPs, the stroke width w is constant

and length [, height h, area A, and line distance d  are dependent on «.

1
cos(a) "

Note that we define cos™!(a) = sec(a) =

Keeping line length and surface area A consistent, polyline segments can also be

rendered as parallelograms with sides h and [. For a constant line width w, the side

length A is, similar to /, also dependent on the slope or the angle « and defined as:
h(a)

h(a) = W= sec(a) - w = cos L(a) - w (5.2)

A higher « results in a higher value of h.

Line Surface Area

The surface area A (= number of pixels) for each line segment depends on the line
length as A = w-[ (rectangle rendering) and A = h- AW (polygon rendering). Com-
bined with the slope-dependent definitions of / (Equation 5.1) and & (Equation 5.2),
the line area is defined as:

A(a) = cos Ha) - AW - w (5.3)
This formula is true for both rectangle- and polygon rendering. As a result, the line
surface area increases when polyline segments change from horizontal to diagonal.

In other words, the stronger the slope of a line, the higher the surface area of a line
segment.

Distance between Polylines

The relation between the distance | Py, ; — Qqim ;| Of the data points P and @), and
the perceived orthogonal distance d; between the representing line segments, is

5.3 Problem Statement and Impact on Parallel Coordinates Patterns
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shown in Figure 5.2b. d («) is slope-dependent, and the lines are rendered closer
for larger « leading to smaller free space between the lines:

dy (@) = cos(a) - | Pgim i — Qdim il (5.4)

So far, the width w is neglected. If we add w to the formula, we get
w
di(a) = cos(@) - | Paim i — Qdim | — 2 - E) (5.5)

as the distance between the two lines. For large «, the distance d, («) may disappear
and two or more lines are perceived as a cluster.

Figure 5.3 summarizes the effects of the slope « on the rendered parallel coordinates.
Based on the formalized geometric dependencies, we now derive the two main
problems of perceived patterns in parallel coordinates.

5.3.2 Problem 1: Visual Distortion of Cluster Densities

The Gestalt law of proximity [Kof14; War20] indicates that the density of lines
translates to a perception of cohesiveness and thereby enables users to recognize
clusters in PCPs. Classical PCPs put undue emphasis on diagonal clusters, which
is facilitated by the increase of line lengths and decrease of line distances. This
contradicts the data-ink ratio coined by Tufte [Tuf01], which describes the proportion
of ink devoted to the actual data relative to the total amount of ink. Thus, it adds
unnecessary distortion: Diagonal clusters are emphasized more than horizontal
clusters. Classical PCPs, therefore, induce a systematically inaccurate perception of
clusters, when the observer would expect that the visualization is inherently neutral
in this respect. We can see the effect in Figure 5.1 (a), where diagonal and horizontal
clusters receive a significantly different emphasis.

Area and amount
of pixels differ.

Line distance differs.

Fig. 5.3. Effect of angle o on PCP lines. (1) Diagonal lines have a higher line surface area
(= more pixels) compared to horizontal lines. (2) Diagonal lines have a smaller
distance between lines.
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(a) n =100 (b) n =200 (c) n =400 (d) n =400

Fig. 5.4. Ghost clusters in uniformly distributed random data points. The number n of
polylines is increased from (a) to (c). (d) = (c) but the data points of a ghost
cluster are highlighted to demonstrate that they are indeed uniformly distributed
even though (c) indicates otherwise.

5.3.3 Problem 2: Ghost Clusters

The rendering effects caused by the different slopes of the polyline segments can
also produce artificial patterns in parallel coordinates plots. Figure 5.4 (a—c) show
three PCPs with uniformly distributed random data points, i.e., there is no structure
in the data. One can easily see that a zig-zag pattern, alternating between high and
low values is visually present. The corresponding polylines seem to be parallel and
close together, forming two clusters. With an increasing number of data points, the
“clusters” are perceptually stronger. In Figure 5.4 (d), we mark one apparent cluster
and highlight its polylines across the different dimensions. One can see that the data
is indeed randomly distributed and not forming a cluster across the dimensions. We
define these visible, but non-existing patterns as ghost clusters. Ghost clusters are
not only a problem of datasets with clutter or noise. Also, in structured datasets,
ghost clusters can be present and influence the interpretation of the data.

5.4 Slope-Dependent Rendering of Lines

To overcome the distortion of cluster densities and potential ghost clusters, we
propose to render the polyline segments based on their angle «. The general idea is
to render horizontal lines with the default width and diagonal lines with a thinner
line. As a result, we increase the space between vertical lines and decrease the
surface area, i.e., the number of pixels to draw a line. In the ideal case, all line
segments should end up with the same area and the same distance between the
segments. To achieve the same area for all line segments, the width w of the polyline
segments needs to be scaled based on their length /.

5.4.1 Area Preserved Rendering

With our adjustment method, we aim to create equal areas for all polyline segments.

We interpret all line segments as paralllelograms with an equal and constant area
A. We cannot modify the line length (which is dependent on « according to
Equation 5.1). Therefore, we conceptualize the rendering as change of the line
height h. To obtain equal areas, we fix h € R™ as a constant value for all line

5.4 Slope-Dependent Rendering of Lines
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segments. Hence, A = h - AW is now independent of « and therefore identical for
all line segments.

Renderers require a specification of the line width w instead of the line height h.
Therefore, we translate i to a new, slope-depndent line width w. This is achieved by
a simple permutation of Equation 5.2, and the replacement of w by w:

w(a) = cos(a) - h (5.6)

Rendering all lines with w(«) results in parallel coordinates with the same area for
all polyline segments.

5.4.2 Overadjusted Rendering to Compensate Line Distance

While Equation 5.6 reduces the effect of a slope-dependent distance between the
polylines, we cannot mitigate this effect entirely. Therefore, we compensate it by
strengthening the adjustment and applying an exponent P € R to the rendering of
the line width:

w(a) = cos(a)t - h (5.7)

P = 0 results in classical rendering, i.e., surface area and distance between polylines
depend on . P = 1 corresponds to the area-preserving rendering (Equation 5.6).
For P > 1, overadjusted rendering is applied.

5.4.3 Implementation and Computation of o

The angle a can be derived from tan(a) = ﬁ—g/, given an axes distance AW and

difference between values in neighboring dimensions AH = |Pyim; — Paimit1])-
Combined with Equation 5.7 we derive:

w(a) = h - cos <arctan <§I{I{/>>P (5.8)

As cos(arctan(z)) = (1 + xQ)*%, we can simplify Equation 5.8 to:

w(a)=h- (1 + (25/)35 (5.9

5.4.4 Choosing the Adjustment Strength

P = 0 corresponds to classical PCP rendering, where all lines have the same width.
P = 1 corresponds to rendering with equal line heights resulting in the same
surface area A for all polylines. However, it does not fully correct the decreased
line distances. Thus, we allow P > 1 as over-adjustment to further compensate
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Regular (P = 0) Adjusted (P =1) Over-Adjusted (P = 2)

Synthetic Data

Uniform Noise

Fig. 5.5. Effect of parameter P on pattern visualization in synthetic data with uni-
formly distributed background noise, and in uniformly distributed random
data only. Regular rendering (P = 0) significantly over-emphasizes diagonal clus-
ters and causes the occurrence of ghost clusters. For P = 1, all clusters are equally
emphasized, and the effect of ghost clusters is strongly mitigated. For P = 2 the
distortion is reverted, and horizontal clusters are over-emphasized. Simultane-
ously, ghost clusters are further reduced.

overplotting of lines with strong slopes. In particular, the parameter P can be
freely adapted to the degree of clutter, and the properties of the dataset. We want
to highlight that our slope-dependent rendering can fully overcome the problem
of different line surface area (P = 1), but the issue of varying distance between
polylines can only be reduced with P > 1. Based on these geometric properties, we
recommend P = 1 for truthful representation. However, many properties of a PCP
and dataset influence the quality of the rendering (see Section 5.4.5), therefore an
over-adjustment (P > 1) may be necessary. Our tests with various synthetic and
real-world datasets showed that P = 2 is an upper bound for most applications.

In Figure 5.5, we apply our technique to a synthetic dataset and uniform random
noise. We achieve a balanced emphasis of horizontal and diagonal clusters for P = 1
and an over-emphasis of horizontal lines for P = 2. Ghost clusters are also reduced
for P = 1 because their density is corrected. However, the effect of smaller line
distance cannot be avoided, and ghost clusters are still visible. We can compensate
for the line distance effect by over-adjusting the line area effect (e.g., P = 2),
nearly eliminating the ghost clusters, but introducing an over-emphasis of horizontal
lines.

5.4.5 Influence of PCP Properties and Parameters

The following parallel coordinates parameters influence the impact of ghost clusters
and the distortion of cluster densities and should be taken into account when
applying the slope-dependent rendering.

5.4 Slope-Dependent Rendering of Lines
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PCP Size, Axis Height and Spacing. The overall size of a PCP has a direct impact on
the axis height and spacing AW between the axes. Axis height and AW determine
the range of o: Long axes and tight spacing, caused by high-dimensionality, increase
the angles and distort cluster densities and increase the likelihood of ghost clusters.

Default Line Width. Manipulating the constant line-height / influences the detail
and the clarity of the PCP. Thick lines increase the problem of overplotting, in
particular for diagonal lines and clusters. Thin lines are more distinguishable and
therefore produce more salient visualizations. The result of the slope-dependent
rendering depends on the default line width, typically determined by the user.
The default width directly influences the area covered by each line segment. It
is advisable to consider a manual adaptation of the constant line-height i before
applying a slope-dependent rendering.

Data Volume. The number of data records influences the visual representation
a PCP and is strongly related to its size and the default line width. A high data
volume visualized with a small PCP and/or a thick line width increases the problem
of overplotting, but also the distortion of cluster densities and ghost clusters. For
example, Figure 5.4 shows how the dataset size increases the perception of ghost
clusters. Therefore, these properties should be optimized for a given dataset before
applying the slope-dependent rendering.

Line Color and Transparency. When no transparency is used, then the color of the
polylines does not affect PCPs and therefore also not our approach. Trans- -
parency can be used to avoid clutter and overplotting but introduces
another artifact, which negatively influences the perception of patterns.
Crossing lines introduce a darker color, which may be interpreted as a
cluster. Combined with the slope-dependent rendering, new ghost clusters
may occur, while other patterns may vanish: Adjusting the transparency
of lines based on their slopes, as opposed to the line width, is not useful.

5.5 Discussion

To test the effectiveness of our slope-dependent rendering, we implemented a tool
which is available on our website!. Users can upload their data, or try out various
synthetic and real-world datasets, comparing the results of classical and slope-based
rendering. During our testing with the implementation, we found out that our slope-
dependent line adjustment technique performs well on various datasets, reduces
ghost clusters, and counterbalances distortions. We also tested the impact of our
approach with other patterns, such as positive and negative correlations (Figure 5.5).
While positive correlations are not affected even with a large P value (P = 2), the
slope-dependent rendering influences the diagonal lines of negative correlation. We

1Tool and source code available at http://subspace.dbvis.de/pcp-adjustment.
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found that negative correlations also remain visible. However, the line representing
data points at the ends of the dimension ranges are drawn with a small line width,
making the visibility of this pattern susceptible to large P values (P = 2).

Our approach can be combined with other techniques, such as axes reordering and
dimension reduction, as they do not manipulate the polylines of a PCP. It can also
be combined with polyline modifications like edge-bundling. However, the line
width should then be calculated relative to the line length rather than the slope. As
described above, various PCP properties generally influence the visual distortion
and ghost clusters in PCPs. To achieve optimal results, these parameters should
be optimized before the slope-dependent rendering is applied, and focus on the
reduction of overplotting and the average angles of polylines.

A careful selection of the parameter P is necessary. The usefulness of a particular P
depends on many general PCP properties, as well as data characteristics such as the
number of data records and dimensions. Therefore, P cannot be determined fully
automatically based on a fixed parameter. However, we envision an algorithm which
measures the density distribution, overlapping, and distortion and automatically
selects an appropriate P to achieve a reliable representation of the data. We want to
address this algorithm as part of future work. Furthermore, we want to evaluate
the usefulness of our approach, in particular in comparison to other methods, by
conducting a quantitative user study.

5.6 Conclusion

We formalize two general problems of parallel coordinates: The density of clusters
are often distorted and non-existing ghost-clusters emerge. As a solution, we propose
a novel rendering technique for the polyline segments: The line width is adjusted
according to the angle of each line segment. Our method can be computed in linear
time, depends on a single parameter, and can be combined with many existing
parallel coordinates’ variations.

5.6 Conclusion
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Designing Hybrid Charts
for the Comparative Analysis
of Data Distributions

Summary

Comparing data distributions is a core focus in descriptive statistics, and part of most
data analysis processes across disciplines. In particular, comparing distributions
entails numerous tasks, ranging from identifying global distribution properties,
comparing aggregated statistics (e.g., mean values), to the local inspection of single
cases. While various specialized visualizations have been proposed (e.g., box plots,
histograms, or violin plots), they are not usually designed to support more than a
few tasks, unless they are combined. In this chapter, we present the v-plot designer;
a technique for authoring custom hybrid charts, combining mirrored bar charts,
difference encodings, and violin-style plots. v-plots are customizable and enable
the simultaneous comparison of data distributions on global, local, and aggregation
levels. Our system design is grounded in an expert survey that compares and
evaluates 20 common visualization techniques to derive guidelines for the task-
driven selection of appropriate visualizations. This knowledge externalization step
allowed us to develop a guiding wizard that can tailor v-plots to individual tasks
and particular distribution properties. Finally, we confirm the usefulness of our
system design and the user-guiding process by measuring the fitness for purpose
and applicability in a second study with four domain and statistic experts.

This chapter is taken from the following publication. Please refer to Sections 1.4 and
1.5 for the contribution clarification and general citation rules.

[Blu+20a] Michael Blumenschein, Luka J. Debbeler, Nadine C. Lages, Britta
Renner, Daniel A. Keim, and Mennatallah El-Assady. “v-plots: Designing
Hybrid Charts for the Comparative Analysis of Data Distributions”. In:
Computer Graphics Forum 39.3 (2020), pp. 565-577.

6.1 Introduction

Analyzing and exploring empirical data and its distribution is a core task in descrip-
tive statistics across various research disciplines, and often serves as a foundation
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Fig. 6.1. The v-plot designer enables the creation of custom hybrid charts (v-plots) for the
comparative analysis of data distributions. Given a set of analysis tasks, v-plots can
be tailored to highlight particular distribution properties (on a local, global, and ag-
gregated level) using a guiding wizard. All the charts above represent the same data,
showing the perceived risk of two groups for tap water consumption [Deb+18].

for in-depth analyses. Comparing data distributions is a multi-faceted process com-
prising a variety of different analysis tasks ranging from global aspects, such as iden-
tifying the type, shape, and skewness of a distribution, to local aspects, such as com-
paring value frequencies, or identifying differences on an instance level. Alongside
global and local tasks, users also want to analyze aggregated statistical properties
such as comparisons of mean and interquartile ranges. However, even with the abun-
dance of statistical techniques, the visual inspection of distributions is essential to
a successful analysis [Tuk77; FMF12] and can help to generate hypotheses, select
appropriate statistical methods, and support the understanding and communication
of analysis results.

Global, aggregated, and local analysis tasks focus on different properties of data
distributions, which has led to the development of a broad range of specialized charts
within the statistics and InfoVis communities. Some of the most prominent include
box plots [Tuk77], violin plots [HN98], and bar charts. Each has its own strengths
and weaknesses: for example, while box plots are useful for comparing medians
and quartiles, they do not show whether a distribution is bi-modal, or in which
value ranges two distributions differ most. Violin plots support these questions, but
they are less useful for local tasks where users are interested in the frequencies of
individual values (e.g., in discrete distributions). However, most analytical processes
combine a number of different tasks. Analysts wishing to derive effective designs
for a given dataset and a particular combination of tasks are faced with one of
two choices: either using multiple charts to communicate their analysis on the
different levels; or designing an expressive hybrid chart tailored to their analysis
needs. Although hybrid designs have shown to be more effective for targeted
analysis [Bor+13], most people do not have access to them and must use multiple
charts instead. In addition, analysts have to rely on experience and knowledge about
descriptive statistics when choosing appropriate charts, making this design space
troublesome for non-experts to navigate.

Chapter 6 Designing Hybrid Charts for the Comparative Analysis of Data Dis-
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To support the comparative analysis of data distributions for a wider audience, we
need to make the design of hybrid charts more accessible and make task-dependent
customization in the visualization of descriptive statistics less reliant to the user’s
expertise. Our chart authoring system, the v-plot designer, is developed to generate
custom, widely applicable hybrid charts (v-plots) that concurrently support combi-
nations of global, local, and aggregated tasks. v-plots consist of five ("v") layers,
which inspired its name. We strove to ground our system design in an expert sur-
vey that aimed to externalize the implicit knowledge and experience of domain ex-
perts into guidelines used to inform a guiding wizard component. In this chapter,
we reflect on the multistage research process of our system design that tackled
the following research question: How can we make hybrid charts for the visual com-
parison of data distributions (1) simultaneously support local, aggregation-based,
and global analysis tasks; and (2) accessible to analysts?

We provide a grounding for our visualization design by reviewing and categoriz-
ing existing tasks and charts for the comparative analysis of data distributions (Sec-
tion 6.3). This lays the foundation for our expert survey (Section 6.4), which induces
guidelines and an automatic chart recommendation for the selection of existing visu-
alization techniques for specific task combinations.

In addition to this design study, we also provide a rationale on our system design
and guidance. This is based on the review of the related work (Section 6.2), and
describes the reasoning behind v-plots as custom hybrid charts that are designed
to support a variety of concurrent tasks (Section 6.5). Based on the externalized
guidelines, a guiding wizard in the v-plot designer can automatically tailor the v-plot
through different visualization layers and transparency levels to highlight particular
distribution properties. The guidelines are interchangeable and can be extended by
new findings or the requirements of specific communities in the future. Single v-
plots can also be combined to a v-plot matrix that is sorted according to the similarity
of their visual structures and support the comparison of all pairwise distributions.

To summarize, the contribution of this chapter is two-fold. (1) We contribute guide-
lines based on a representative expert survey on the applicability and usefulness
of the 20 most commonly-used statistical charts to 20 analysis tasks for descriptive
statistics. For transparency and reproducibility, we make the survey and its results
available at osf.io/jk8rp. (2) To make the acquired knowledge accessible while sup-
porting the creation of custom hybrid charts, we contribute the v-plot designer (v-
plot.dbvis.de). This chart authoring approach relies on a guiding wizard to enable
users to adjust v-plots, which combine mirrored bar charts, direct difference encod-
ings, a distribution shape, labels, and axes with statistic values.

6.2 Related Work

In addition to the landscape of comparative distribution analysis (described in
Section 6.3), our work lies within the context of other chart authoring tools, as well
as guiding and chart comparisons.

6.2 Related Work
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6.2.1 Chart Authoring Tools

Designing visualizations to communicate patterns is one of the key tasks in data sci-
ence and descriptive statistics. However, implementing new visualizations for each
analysis is not feasible for analysts. Therefore, in contrast to the vast amount of vi-
sualization coding libraries (e.g., Lyra [SH14] or Vega [Sat+16]), chart authoring
systems have been developed to streamline design process and aid non-visualization-
experts. Most of these systems are commercial applications [Beh+19]. Most promi-
nently, Tableau [Tab18] has positioned itself as an easy-to-use, toolkit-based chart
authoring system for the masses. More recently, Charticulator [RLB19] has been
presented as a chart authoring tool for variable, user-defined layouts, enabling more
flexibility with chart designs. RAWGraphs [Mau+17] is an example of a authoring
system providing users with an open-access API. Lastly, approaches such as Voy-
ager [Won+16; Won+17] combine the flexibility of declarative user-defined visual-
ization designs with the ease of template-based authoring systems. While such tools
target the broad spectrum of data-driven visualization designs, none are specifically
focused on authoring visualizations for the comparative analysis of data distributions
for descriptive statistics. Additionally, these approaches do not encode knowledge
on choosing appropriate designs to provide useful constraints on the outputs of the
systems, which has proven to be effective for non-visualization-experts [Mor+19].

6.2.2 Guiding and Chart Comparisons

Earlier research has addressed the weaknesses of particular visualizations for distri-
bution analysis. For example, Silverman [Sil86], Tapia & Thompson [TT78], and
Scott [Sco92] discuss the problem of histograms for continuous data. In the InfoVis
community, many empirical user studies exist which compare charts or visual ele-
ments for distribution analysis. To name a few, Correll et al. [CG14] evaluate error
bars, box plot variations, gradient plots, and violin charts for judging mean and stan-
dard error. Ondov et al. [Ond+19] evaluate the comparison of frequencies in distri-
butions using different layouts such as mirrored and separate bar charts. Correll et
al. [Cor+19] investigate the identification of outlier-distributions using bar charts,
density plots, and density distributions. Gschwandtner et al. [Gsc+16] evaluate six
different visual encodings, including gradient and violin plots, to visualize temporal
uncertainty. Finally, Skau et al. [SHK15] evaluate the impact of embellishments in
bar charts. While some of the links between analysis tasks and visualizations have
been addressed, we still lack a set of guidelines for selecting appropriate charts for
comparative distribution analyses, particularly if we are faced with a combination of
tasks which should be combined in a single chart.

6.3 Landscape of Comparative Distribution Analysis

The goals of comparative distribution analysis are manifold. Exploratory data
analysis [Tuk77] aims to identify interesting patterns across multiple dimensions,
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while other applications need sanity checks [Cor+19] to identify missing values,
outliers, or skewed distributions that influence the analysis. Comparing distributions
is another important aspect of descriptive statistics [FMF12] which can support
data cleaning, choosing appropriate statistical models, and understanding potential
reasons for significance.

Examples such as Anscombe’s Quartet [Ans73] and the recent paper by Matejka &
Fitzmaurice [MF17] illustrate that summary statistics are not enough to analyze
distributions: visualizations are also needed to discover patterns, support analyses,
and communicate results [FMF12]. Nevertheless, established charts often only
support a limited number of tasks. Since a comprehensive statistical analysis typically
comprises a combination of different aspects, it is often necessary to create and
explore several different charts.

To guide analysts towards choosing an appropriate chart for a given application, we
first provide a summary of the design space by categorizing existing analysis tasks
(Section 6.3.1) and distribution charts (Section 6.3.2). Then, in Section 6.4, we
conduct an expert survey to link analysis tasks with charts and derive guidelines.

6.3.1 Analysis Tasks

Many statistical books (e.g., [FMF12]) enumerate a subset of analysis tasks. How-
ever, we are unaware of an overview of all tasks for comparative distribution analy-
sis. Often, tasks are not formally introduced, and different wordings are used for
the description. We therefore establish a common vocabulary and introduce a clas-
sification of tasks, which is shown in Table 6.1. We group all tasks by their scope
and type, classify them into four complexity levels, and discuss the involved distribu-
tions as elaborated below. In Table 6.1, we also provide examples from psychology
applications for all tasks.

Scope of Analysis Task

We group the analysis tasks into three different scopes, which comprise the general
analysis focus:

Local tasks concentrate on particular instances, for example reading the frequency
of one value (L1) or comparing them across two or more distributions (L4). Local
tasks are particularly interesting in discrete distributions (e.g., questionnaire results)
in which the characteristic of specific values is of high interest.

Global tasks take the majority of data values into account and analyze the entire
distribution. Typical questions are the identification of the distribution type (G1), or
the comparison of skewness and kurtosis in different distributions (G4).

Aggregation tasks can be seen as the link between global and local tasks. They
focus on aggregated statistical measures of a distribution, such as the identification
of mean (Al) or median (A2), or the comparison of quartiles (A8) and standard
errors (A10).

6.3 Landscape of Comparative Distribution Analysis
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Analysis Type and Involved Distributions

We classify tasks into two types and investigate their involved distributions.

Comparison tasks « analyze the relationships between distributions. Some tasks
compare the frequencies of one distribution (ee), e.g., when identifying the most
and least frequent values (L2). Others compare them across different distributions
(. Vs O) .

Identification tasks a focus on reading, measuring, and estimating the individual
properties of one distribution (e). Examples include extracting the frequency of one
value (L1), the identification of the distribution type (G1), and its skewness (G2).

Different analysis types are often interlinked and build on top of each other. For
example, to identify the value(s) with the largest and smallest distribution difference
(L5), one must first identify the frequency of each value (L1), then compare them
across distributions (L4), and finally find the highest difference.

Complexity

We categorized the analysis tasks into four different complexity levels. We define
complexity as the number of atomic, consecutive identification and comparison tasks
needed to reach an analysis goal. It is not defined as the difficulty of extracting the
relevant information from an (optimal) visual representation.

Complexity 1 @ooo comprises single identification tasks such as reading the fre-
quency of a value (L1) within one distribution (e).

Complexity 2 @@00 are tasks which compare frequencies within a distribution (e e).
Examples are the identification of the least frequent value (L2), or the distribution

type (G1).

Complexity 3 e@@0 summarizes tasks which compare and relate frequencies across
different distributions (ee), e.g., the comparison of the distribution shapes (G3).
Identifying aggregated statistics (A1-A5) is also considered as complexity 3.

Complexity 4 eeee quantifies the similarity and differences between two distribu-
tions (e ®) or aggregated statistical properties, e.g., identifying the value ranges
with the largest and smallest distribution differences (G5), or comparing standard
errors (A10).

6.3.2 Visualization Techniques

We summarize charts, particularly those designed for comparative distribution
analysis. We first discuss charts for two distributions, and then for three or more
distributions. We group charts into histogram, shape, and statistical property based
approaches, as well as hybrid methods. We structure them perpendicularly by the
taxonomy of Gleicher et al. [Gle+11]: Juxtaposition ® designs use a separate chart
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Tab. 6.1. Classification of analysis tasks for comparative distribution analysis. Tasks
are grouped by their scope (local, aggregation, and global) and ordered by com-
plexity (€000 — e@@@). We differentiate between identification (Q) and compari-
son tasks (), and highlight the involved distributions: lookup in one distribu-
tion (@), and comparison within (@vs®) and across distributions (evs®).

analysis task com- distri-
for descriptive statistics example | type plexity | pution

L1 Identify the frequency of one value. | [Wri+12] Q €000 °
Identify the most & least frequent .

L2 value(s) of one distribution. [Wri+12] ° 0600 o

= .
§ L3 g;ﬁgﬁ; ())‘;equenaes within one [Wri+12] - 0000 oo
Compare frequencies across .

L4 multiple distributions. [Pin-+16] g eee0 ove
Identify the value(s) with the .

L5 largest and smallest difference. [Pin+16] h ooee ove

Al Ic%engfy 'Fhe mean of one [Lin15] a 0060 o
distribution.

A2 Ic?engfy Fhe median of one [SPA11] a 0000 o
distribution.

A3 Ic%engfy 'Fhe quartiles of one [MWO7] a 0000 o
distribution.

Identify the standard deviation of [Lin15;

Q e0e0 °

o A4 one distribution. SPA11]
.% AS ?enFify ‘Fhe standard error of one [Lin15] a 0000 o
60 istribution.
= Compare the means of multiple [Lin15;
0 - (111 0@
2 A6 distributions. SPA11]

A7 Cgmparg the medians of multiple [Gor+11] | cooo oo
distributions.

A8 Cgmparg the quartiles of multiple [Veg+98] - 0000 oo
distributions.

A9 Compare the s'tanc'iard deviations of [FPHO9] - coo oo
multiple distributions.

AlOCompare the standard errors of [Linl5; - co00 oo

. . . . 'S
multiple distributions. DRC13]
Describe and identify the shape .
and type of one distribution. [Lin15] h oec0 ¢
G2 Describe apd 1dent1fy' thg skejwness [Lin15] a 0000 o
— and kurtosis of one distribution.
3 Compare the similarity, shape, and
'%o G3 type of multiple distributions. [Vil+11] b eoeo ove
Compare the skewness and kurtosis .

G4 of multiple distributions. [Ric+15] < eee0 ove
Identify the value ranges with the [Bir+05] a co0e oo
largest and smallest difference.
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for each distribution. Superposition © designs represent multiple distributions
within the same chart, supporting their comparison. Explicit Encoding ® computes
the similarity between distributions and directly encodes their difference.

Histogram-based Charts

Histogram-based charts represent the frequency as the height of bins. They are
particularly useful for discrete distributions, as every value can be depicted by one
bar. Binning is usually applied for continuous data. Figure 6.2 (top) depicts different
arrangements of the bins. Separate (a) bar charts ® place one chart per distribution
next to each other, while (b) grouped bar charts © place bins of different distributions
with the same value in one group. Similarly, (c) stacked bar charts © arrange these
groups on top of each other, while (d) mirrored bar charts © place bins of the same
value next to each other, mirrored by a horizontal axis. The charts can also be
rotated (e) for a horizontal layout. The center of each bin can be connected with a
(f) broken line graph ®. Sometimes the bins are hidden. In other variations, the (g)
lines can be arranged as a superposition ©, similar to a line-chart, which allows a
better comparison. Finally, (h) cumulative bar charts accumulate the frequencies of
values and can be arranged as separate ® or grouped bar charts ®.

Statistic-property based Charts

Statistic-property based charts directly depict summary statistics. Popular examples
are box plots [Tuk77] ® and error bars ® (Figure 6.1 (b), bottom right). Box plots
indicate the median and interquartile range (IQR) as a box, representing 75% of
the data. Additionally, the whiskers indicate 1.5x IQR and outliers are marked with
a dot. Variations have been proposed for the design, such as notched and variable
width box plots [MTL78], along with numerous approaches for coping with skewed
distributions [HVO8]. Error bars typically represent the mean as a histogram and
add the spread of standard error as an interval on top. Further designs comprise the
mean and standard deviation, confidence interval, or any other uncertainty measure.
A popular variation of the error bars shows only the uncertainty interval without the
histogram underneath.

Shape-based Charts

Shape-based charts estimate the distribution using a probability density function.
Most implementations use a kernel density estimation (KDE), which depends on the
kernel type and bandwidth parameter. Both need to be carefully selected to provide
reliable representations [Sil86]. As shown in Figure 6.2, simple density distributions
compute a KDE and place the distributions next to each other ® (i), on top of each
other © (j), or in a mirrored fashion © (k). Violin-type charts are inspired by the idea
of opening up the ‘black box’ of a box plot, illustrating the shape of the distribution.
Early work comprised the histplot ® and vaseplot ® [Ben88], and the development
of the violin plot (1) ® [HN98] and beanplot (m) [Kam08] ® was based on those
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Fig. 6.2. Overview of charts for comparative distribution analysis.

ideas. Both encode mean or median and the distribution of the data in the form of
a box plot or gradient plot. It can also be extended to an (n) split violin plot ® or
(0) asymmetric beanplot ©, similar to the mirrored bar chart. The shape can also be
used to encode the cumulative distribution (p) ©.

Hybrid Charts

Hybrid charts are used to visualize different aspects of distributions in a single plot.
Combinations of a histogram and a kernel density estimation, histogram and box
plot, or boxplot with jitter are often used. Potter et al. [Pot+10] introduce a so-called
Summary plot which combines a mirrored histogram with the majority of summary
statistics, such as mean, skewness, and quartiles. These hybrid visualizations have
proven to be effective in supporting multiple different analysis tasks at the same
time. However, as discussed in Section 6.2, they are typically difficult to generate,
particularly if the set of analysis tasks changes between applications.

Visualizations to Compare Multiple Distributions

Charts to compare multiple distributions are limited. Most approaches use Juxtaposi-
tion ® or Superpositon © and ‘just’ concatenate single charts together, e.g., multiple
box plots, error bars, stacked or grouped bar charts, line charts, and violin plots. We
are not aware of direct encodings @ of multiple distributions.

Related Visualization Techniques

Many other charts have been created which are often used to represent some aspects
of distributions and their properties. A comprehensive summary can be found in the
book by Wilkinson [Wil05]. Examples comprise stem-leaf diagrams, which follow
the idea of histograms but use consecutive numbers to encode bins. This helps to
understand the spread of aggregated values. Gradient plots use a transparent line

6.3 Landscape of Comparative Distribution Analysis
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(or point) for each data record. These plots explicitly use overplotting to help seeing
all data records, as well as the overall shape. Other, partly related charts are stacked
and jittered line plots [Cha+83], linear and nonlinear dotplots [SR96; RW18], and
flow charts.

6.4 Connecting Analysis Tasks
to Visual Representations

We now interlink the analysis tasks for descriptive statistics with the design space for
visualizations that support distribution comparisons. Our aim is to find out which
visualizations and visual elements support users for any given set of analysis task(s)
to provide guidelines for application experts. To address these questions, our survey
is based on the following methodology and survey design.

Methodology. Since we intend to investigate the usefulness of the most common
visualizations for descriptive statistics for different analysis tasks, we selected a set
of 20 representative charts covering histogram, shape, and statistical-property based
visualizations. Part of our selection is shown in Figure 6.1b, which is extended
by a rotated version of the mirrored bar chart and a commonly-used error bar
representation without the median bar. As tasks, we use all local (L1 - L5) and all
global tasks (G1 — G5). However, we selected only two representative examples
from the aggregated group (Al + A2). The reason is twofold: Firstly, the pilot study
showed that with 20 tasks x 20 charts it would take participants almost two hours
to complete the survey. And secondly, feedback from the pilot participants suggested
that one would need the direct encoding of the statistical properties to successfully
solve an aggregated task. This is true for all aggregated tasks and was also reflected
in the results of the pilot study. We also limited the survey to the comparative
analysis of two data distributions and included both InfoVis and statistic experts as
participants to make sure we covered both statistical and information visualization
expertise.

Survey design. For convenience, we designed the survey on paper. It comprises 16
pages and is divided into background material and five parts. Every analysis task
was described, and a concrete example given. The participants first indicated the
usefulness of every chart for a each analytical task using a Likert scale. Then, they
selected up to three techniques which they felt were most useful for the respective
task. At the end of the survey, we asked all the participants (a) whether any
important and commonly used visualizations were missing; (b) which three plots
they would be most likely to use in a paper when addressing most of the tasks, and
why; and (c) which plots are most common in the literature, regardless of their
usefulness. The survey and the results are available at osf.io/jk8rp.
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Participants. 20 participants (6 female) participated in the survey. 17 were PhD
students and 3 PostDocs. 13 participants reported their primary background in
computer science (CS), 4 in psychology, and 3 in both CS and psychology. Their ages
ranged from 25 — 52 with a mean of 29.8 and a standard deviation (std) of 6.3. Their
average experience (and std) was reported as 4.1 years (3.7) in statistics, and 4.0
years (3.0) in information visualization.

Survey procedure. We conducted several pilot runs and iteratively improved the
descriptions and tasks in the survey. Since every participant was able to complete the
survey at their own convenience we do not know whether the survey was completed
in one go, or whether they had any additional help. However, as we are primarily
interested in the participants’ assessments rather than evaluating their knowledge
about the different visualization techniques and supported analysis tasks, we do not
see this as a limitation.

Data collection and cleaning. We manually extracted the answers and removed two
participants from the results. Since the first had more than 50% missing values in
the assessment of the different charts, we did not consider them as ‘knowledgeable’
in the topic. The second had a lot of outliers in the assessments of local analysis
tasks, and most of the answers did not match the average of the other participants.
For example, he/she said that bar charts are not useful for identifying the value
with the highest frequency - which is obviously possible. As these outliers occurred
across all local analysis tasks, we believed that the participant misunderstood local
and global analysis tasks, and so he/she was removed. On average, all remaining
participants have 3.3% missing values (std = 4.9%) in the assessment of the different
visualization techniques.

6.4.1 Usefulness of Visualizations Across all Analysis Tasks

We report the results of the last tasks to provide general findings.

Most common charts. Based on the survey, bar charts (17 participants), box
plots (15), error bars (4), broken line graphs (4), and grouped bar charts (3) are
generally most common in the literature.

Visualizations most useful across all tasks. No single visualization technique was
considered most useful for all analysis tasks. Many participants reported that the
density distribution III is “good to compare shapes”, “great for global comparisons”,
and enables the “focus on difference analysis (difference is darker)”. Also, separate
bar charts have been reported as useful because they are seen as “simple”, “a faithful
representation of discrete data”, and “easy to understand at first glance”. Box plots
are considered useful as “everybody knows them”, and “you can see the median

and quartiles”. Mirrored bar charts are “easy to understand, have a clear baseline
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Fig. 6.3. Overview of expert survey results. Each chart represents a summary of a task
scope according to Table 6.1. Every participant indicated the usefulness of each
visualization for a particular task with (++) very useful, (+) useful, (-) not
useful, and (- -) not possible. The vertical black bar charts on the right side

represent the three visualizations, marked as most useful by the participants.

We can see a clear difference for the usefulness of local, aggregated, and global
analysis tasks. Generally, histogram representations are considered more useful
for local tasks, while shape representations, such as a density distribution or violin
plots are more useful for global tasks. Box plots and error bars, although often
seen for comparing distributions, are only considered useful for aggregated tasks
such as the identification and comparison of mean values and quartiles. The
results of all individual tasks can be found in the supplementary material.
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[compared to stacked bar charts], and good to compare distributions”. Finally, the
asymmetric bean plot comprises “comprehensive information in a single graph”, “looks
pretty and captures a lot of information”, and makes it “easy to compare distributions,
means, and non-aggregated values”.

6.4.2 Usefulness of Visualizations for Different Analysis Tasks

In the following, we analyze the results of the survey on both a task level and across
local, global, and aggregated analysis scopes.

Visual representation of (un)usefulness. We realized that the participants had dif-
ferent encoding strategies. While some marked almost all techniques that are useful
with (++), others applied mainly (+), and (++) only for the most useful technique
per analysis task. Therefore, we visualized the results of the survey (see Figure 6.3)
for its exploration. While we cannot rely on the exact proportion between (+) and
(++4), and (-) and (- -), Figure 6.3 can provide us with a clear tendency towards
(un)usefulness. In the following, we discuss the most important findings (F).

F1: Charts differ across local, aggregated, and global tasks. Considering the com-
bined results in Figure 6.3, we can see that there are significant differences in the
usefulness of the charts for local, aggregated, and global analysis tasks. In Fig-
ure 6.3b we can see that histogram-based charts are considered most useful for local
analysis tasks. While they are also considered useful for global tasks (Figure 6.3d),
the participants seemed to prefer shape-based visualizations such as density distribu-
tions and violin-type charts. For aggregated tasks, there was a clear preference for
charts that directly encode statistical properties, such as box plots and error bars.

Another interesting observation is that six visualizations were not seen as being useful
for most of the tasks. These were stacked and cumulative bar charts, cumulative
distributions, box plots, and variations of error bars, as shown in Figure 6.3a.
Surprisingly, while box plots and error bars are often used in the literature, they
seem to be of limited usage for considering task variations.

F2: Local analysis tasks. On average, most histogram-based charts are considered
useful for local analysis tasks, as shown by the green color in Figure 6.3b. As
expected, stack and cumulative bar charts were an exception, being generally
considered as not useful across all tasks, not only those with a local scope. We can
see some differences of the other histogram charts within the scope of local tasks:
For tasks considering a single distribution (L1 — L3), there is not much difference
between single bar charts (with or without a broken line graph) and mirrored bar
charts. They all support the identification of a value, as well as their comparison.
Grouped bar charts are considered marginally less useful for these tasks. There was
some disagreement on whether shape-based charts are useful for identifying the
most (in)frequent values (L2).

6.4 Connecting Analysis Tasks to Visual Representations
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Grouped bar charts, as well as density distribution III and broken line graph II, are
considered most useful for comparative tasks across distributions, as they directly
encode the similarity and difference between the distributions, making comparisons
easier.

F3: Global analysis tasks. While many participants considered histograms to be
useful for global tasks, the shape-based approaches outperformed them. In particular,
when investigating the individual tasks, we can see that they are more useful,
especially when comparing distribution shapes (G3), skewness (G4), and identifying
differences (G5). Density distribution III, split violin, and asymmetric beanplots
seem to be particularly useful for comparisons across distributions. Besides density
distribution III, grouped bar charts are also considered very useful for identifying
the value ranges with the largest and smallest differences (G5). Single and mirrored
bar charts seem to be as useful as density distributions for the identification of the
distribution type (G1), skewness, and kurtosis (G2), while grouped bar charts hinder
the comparison of frequencies within a distribution and are therefore less useful.

Across tasks, we do not see much difference between the simple density distributions
(I, I, and III), and the more complex violin and beanplot variants. Participants do
not agree on the usefulness of the broken line graph II and gradient plots.

F4: Aggregated analysis tasks. Figure 6.3c shows that only charts which directly
encode statistical measures are considered useful (i.e., all violin-typed charts, box
plots, and error bars). The box plot is favored, followed by the asymmetric bean
plot. While many participants rated error bars as one of their favorite charts for
aggregated tasks, quite a few noted that error bars are not useful for identifying
mean or median values. This is surprising, as the height of the error bars can directly
encode this value.

F5: Impact of rotating charts. There seems to be no impact on the rotation of
charts. Both versions of the mirrored bar charts are almost identical across all tasks.
The same is true for the split violin plot and the density distribution II, which are
the same except for the rotation (and an additional encoding of the mean value).

6.4.3 Summary

None of the presented charts support all tasks at the same time. Charts encoding
statistical measures are either simplified to these values (e.g., error bars) or part
of violin-typed charts, missing a histogram for local tasks. Vice versa, histograms
support tasks on single values, but often miss comparisons on a global level or of
statistical measures. Furthermore, charts that include a direct encoding of differences
(e.g., grouped bar chart or density distribution III) support the comparison of
multiple distributions, but they are more complex regarding the analysis of a single
distribution as the frequencies of each distribution cannot be followed easily.
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Based on our findings, we envision an ideal plot for comparative analysis of data
distributions combining (1) a histogram representation for local analysis tasks, (2) a
shape-representation for the global tasks, (3) a direct encoding of the differences
between two or more distributions, and (4) a representation of statistical measures.
Perpendicularly, such a chart should unify aspects of ® and @ in a single chart. While
superposition © layouts help to identify the properties of single distributions, explicit
encoding @ helps to compare distributions by highlighting their differences.

6.5 v-plots: Hybrid Distribution Chart Design

Based on the findings of our survey, we develop the v-plot designer; a chart author-
ing approach which facilitates the design of customizable hybrid charts, so-called
v-plots. In particular, these charts combine the advantages of several established
representations to support local, global, and aggregated tasks in a unified repre-
sentation. One v-plot compares two distributions, while a combination of different
distributions can be arranged in a v-plot matrix which can automatically be sorted
by similarity using a matrix reordering algorithm. In the following, we discuss the
design rationale of v-plots and introduce the guiding wizard of the v-plot designer,
which automatically tailors the style of a v-plot to a given set of analysis tasks to
highlight particular distribution properties.

6.5.1 Design Rationale

The fundamental design rationale of v-plots is a layered representation, similar to
the idea of the Summary plot [Pot+10]. Each layer supports different analysis tasks.
The total number of layers is five ("v"), which gives this hybrid plot its name. The
order of layers and their style can both be customized to focus on specific analysis
scenarios. All layers are based on well-established visualizations, which makes them
easy to use and interpret while still supporting a combination of complex analysis
tasks. By default the v-plots are configured to enable all five layers to be visible but
not highlighted. Users can adjust the layers and their highlighting by selecting certain
tasks, either manually or through the guiding wizard, as described in Section 6.5.2.

(i) Mirrored bar chart ©. The first layer is a mirrored bar chart which supports
local tasks on single distributions, such as the identification

of frequencies (L1) or their comparison (L3). In discrete dis-

tributions, every bin corresponds to one particular value. For

continuous distributions, an adjustable equal-width binning

is applied. Small values are at the bottom; high values are at

the top. The height of each bin corresponds to its relative fre-

quency in the distribution, which also allows the comparison

of distributions of different sizes.

6.5 v-plots: Hybrid Distribution Chart Design
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(i) Density distribution ©. The global properties of distributions, such as type (G1)
and skewness (G2), can be analyzed by a shape-based den-
sity distribution. This layer supports two implementations:
(1) the center of each bin is used as a control point for a
Catmull-Rom spline [CR74]; (2) a kernel-density estima-
tion (KDE) with selectable parameters for the bandwidth and
kernel type can be selected. The first option is the default,
as it has three advantages compared to the KDE: (1) it is
parameter-free, (2) it shows all peaks and valleys properly,
and (3) it is directly linked to the underlying mirrored bar
chart, linking global and local tasks together.

(iii) Direct difference encoding ®. We chose a vertical layout as the v-plots’ default
for supporting the comparisons between both distributions. The symmetrical ar-
rangement allows one to easily see if the two distributions align or not. We also en-
code the differences of the distributions

directly into the inner part of the mir- A

rored bar chart as a difference shape or I
difference histogram. This encoding rep- L

resents the absolute difference between i

the two relative frequencies and, for ex- I

ample, allows the highest difference be- l

tween bins (L5), or the value ranges I

with low differences (G5), to be identified. While the difference histogram supports
a direct comparison between bins, the difference shape supports the analysis of more
general patterns and is often used in the v-plot matrix as shown below.

(iv) Statistic measures ® + @. As a fourth layer, we support the encoding and
comparison of statistical measures. For each distribution on
the left and right side, the analyst can represent a value of
central tendency (i.e., mean or median) and the spread of
data (i.e., standard deviation, interquartile range, or standard
error). The properties can be connected and highlighted with
color for a comparative analysis.

(v) Labels. The final layer comprises various labels, such as

the chart title, name of the distributions, a grid, and labels of

the bins with the respective frequencies for a detail analysis. The size and position
of the labels can be interactively adjusted.
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6.5.2 Guiding Wizard for Task-Dependent v-plot
Customization

Based on our survey results, we can guide analysts towards an optimized v-plot
for specific analysis task combinations. After uploading their data, the user selects
all tasks (c.f. Table 6.1) that are relevant for the current analysis question. Using
different radio-buttons, the user can specify whether a task is irrelevant, relevant, or
if the visualization should particularly highlight the corresponding property.

Automatic v-plot Optimization

The guiding wizard is implemented as a rule-based system. While the complete set of
rules is documented in the supplementary material, we want to highlight the general
concepts in the following: If all local tasks are marked as irrelevant, then the mirrored
histogram layer is removed (the same holds for density distribution and statistical
properties regarding global and aggregated tasks). Tasks marked as relevant will
typically add elements to the v-plot. For example, if the user wants to identify the
frequency of one value (L1), a grid and labels with the bin height are added. If the
user wants to identify (A1) and compare the mean values (A6), the statistical layer is
added and the mean values are connected, as shown in Figure 6.4. Changing a task
from relevant to highlight usually results in a darker color and a higher level of the
visualization layer. For example, if the user wants to highlight the differences (L5,
G5), then the opacity of the difference histogram or difference shape is increased. We
also change the difference histogram to the difference shape if only G5 is selected.

Automatic Recommendation for Basic Charts

The v-plot designer also provides an automatic chart recommendation which pro-
poses basic charts which fit best for the given task combination. This allows for a
comparison with the optimized v-plot. Based on the selected tasks, the system au-
tomatically provides a ranking of all visualizations (Figure 6.4 bottom) based on
a score for each chart. This score is computed using a weighted linear combina-
tion of the Likert scale results in the survey, i.e. a chart considered very useful and
not possible are weighted higher than charts considered (not) useful: score,;s, =
w1 -ratiogy 4y +wa-ratioc ) —ws-ratio., —ws-ratio. .y. Here, ratio(, 4y corresponds
to the ratio of participants rating the visualization as very useful (++). w; ... wy
are the weights and by default are set to w; = w4 = 1.5 and wy = w3 = 1.0.

The ranked visualizations all show the distributions of the uploaded data so the user
can compare them easily. The system also provides two perpendicular views of the
ranked charts. First, we customize a usefulness chart based on the selected tasks and
show the usefulness of every visualization to this task combination (Figure 6.4 top
right). Second, we create a similar representation illustrating the usefulness of every
selected task to each chart (Figure 6.6 bottom). Since not all task combinations can
be covered with the existing charts, the user can then select one or multiple charts

6.5 v-plots: Hybrid Distribution Chart Design
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Fig. 6.4. Based on a set of analysis tasks, the v-plot designer automatically adjusts the v-
plot to highlight distribution properties. We show 20 alternative visualizations
using the same data, ranked by the perceived usefulness of the task combinations.
For each chart type, we also select the top-ranked visualization (see Figure 6.6).

that cover the underlying analysis question, based on the automatic recommendation
and the supportive charts.

While the findings in our survey are the grounding for the guiding wizard and
chart recommendation, we want to highlight that this basis is interchangeable.
New findings based on other quantitative user studies or the recommendation and
guidelines of specific communities can be exchanged by replacing CSV files in our
publicly available source code of the v-plot tool (see Section 6.5.4).

6.5.3 v-plot Matrix

v-plots are particularly designed to compare two distributions. For the comparative
analysis of many distribution pairs, we extend the v-plot designer to generate a v-
plot matrix, which arranges all pair-wise distributions in a matrix (see Figure 6.5).
This layout allows analysts to compare one distribution against all others (one row
or column), but also helps to find similarities and differences across all distribution
pairs. To improve the perception of similarities, we allow users to apply a matrix
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Fig. 6.5. A v-plot matrix comparing the risk perception of tap and bottled water consumers
w.r.t. their self-vulnerability and worry when consuming water from a tap, a glass,
or a plastic bottle. The upper triangle of the matrix shows a density distribution
for global analysis, the lower triangle a difference encoding for comparison.

reordering algorithm to sort rows and columns such that similar distributions or
similar difference patterns appear close together. However, rows and columns can
also be arranged by semantics, as we show in Figure 6.5.

Matrices are symmetric, i.e., the upper and lower triangles depict the same distribu-
tion pairs. Hence, we support different v-plot styles for both triangles. Each style
can be designed independently, either manually or with the help of the guiding wiz-
ard. In the example of Figure 6.5, we are interested in the general shape of the
distributions (G1) and the frequency of each value (L1) in the upper triangle, and
we want to know in which value ranges the distributions differ most (G5) in the
lower triangle. Our guiding wizard therefore proposes starting with a histogram +
shape representation, and a difference encoding. This layout has also generally proven
to be useful for providing an overview and initiating a detailed analysis.

6.5 v-plots: Hybrid Distribution Chart Design
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Fig. 6.6. Based on a set of analysis tasks, we select the top-ranked visualizations for each
chart type and show their fitness to all tasks. For a comparison, we select the same
tasks as in Figure 6.4.

6.5.4 Usability and Implementation Details

We implemented the v-plot designer using d3! and angular.js?. The tool is available
at v-plot.dbvis.de, along with the source code, which will allow researchers to adjust
the guiding wizard and the chart recommendation engine. Users can upload CSV files
and directly compare the corresponding v-plot with 20 alternative charts, all using
the same data for a useful comparison. All properties can be changed in an interactive
menu, which immediately updates them in the v-plot. As shown in the supplementary
video, users can, for example, change the size and aspect ratio, add a tile, modify the
grid granularity, and adjust the color and transparency of the histogram, distribution
shapes, and the statistical measures. Together with reordering the layers, users can
thereby tailor the v-plots to highlight specific distribution properties. The resulting
v-plot, as well as the customized style, can be downloaded.

6.6 Evaluation

To show the effectiveness and usability of the v-plot designer and guiding wizard,
we conducted a qualitative expert user study and show a use case with survey results

'https://d3js.org/
https://angularjs.org/
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from a psychology application. All designs and interactions in this use case are
inspired by the participants of our expert user study.

6.6.1 Use Case: Risk Perception in Drinking Water

Consider health psychologists investigating why many people buy water in (plastic)
bottles, despite the numerous advantages of tap water. The psychologists conducted
an experiment [Deb+18] in which tap and bottled water consumers reported their
perceived risk with respect to self-vulnerability and worry when consuming water
from the tap, glass, or plastic bottles. To investigate differences and similarities
between the two consumer groups on a general level, we need to compare the
distributions of 2 consumer groups (tap water and bottled water consumers) x 2
attributes (self-vulnerability and worry) x 3 drinking water categories (water from
the tap, a glass bottle, or a plastic bottle) = 12 x 12 = 144 combinations. To do so,
we create a v-plot matrix (see Figure 6.5) and manually sort rows and columns by
consumer groups and water types. By simultaneously analyzing the general shape
and differences of the groups we make three interesting observations, as highlighted
in Figure 6.5.

©® When analyzing tap water consumers and comparing worry of consuming bottled
water in glass vs. plastic, we can see that tap water consumers are more worried
about plastic packaging than glass. We can also see the same distribution difference
in worry of consuming water from plastic bottles (more worried) vs. water from the
tap. In summary, it seems that tap water consumers are generally more worried
about drinking water from plastic bottles, compared to glass bottles or water from
the tap.

® When comparing worry for tap and bottled water consumers, we see that both
consumer groups have very similar data distributions. This is also reflected in the
difference encoding (lower-left triangle). This means that both tap and bottled water
consumers have a similar risk perception about water from plastic bottles. Both
distributions are also skewed towards smaller values, indicating a general tendency
towards a low risk perception for both groups.

© When comparing both consumer groups w.r.t. self-vulnerability when drinking
water from the tap, we can see that the distribution of tap water consumers (blue
distribution) is visually more skewed towards smaller values while the distribution
of bottled water consumers is skewed towards higher risk perception values. This
may indicate that bottled water consumers see water from the tap as a higher risk
than consumers that generally drink tap water.

We investigate the last observation in more detail, focusing on the identification
and comparison of mean values (Al + A6), the frequencies across the distributions
(L1 + L4), comparisons of distribution shapes (G3), and, in particular, highlighting
distribution differences (L5 + G5). These tasks can be seen as an often-used
combination for a comprehensive comparison of two data distributions. We start
the guiding wizard, select the tasks above, and receive a v-plot tailored towards
the underlying tasks. Figure 6.4 shows the v-plot, along with a ranked list of basic
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visualizations. For each chart type, we also select the top-ranked visualization (see
Figure 6.6). Below each chart, we show its usefulness for each of the selected
tasks. We can clearly see that these basic charts only support a subset of the
tasks. For example, the density distribution support the global tasks to identify and
compare the shapes of the distribution, while box plots support the identification
and comparison of median values. The optimized v-plot from the same data, also
shown in Figure 6.1a, supports all analysis question in a single chart.

6.6.2 Qualitative Expert User Study

We conducted a pair analytics study [KF14] with four domain experts, DE1 — DE4, to
evaluate and get feedback on our v-plot designer. All participants were PhD students
in the field of psychology. Two were female, the age range was 25 to 33 years, and
the reported experience in statistics varied from 4 to 10 years. We explained our
aim of evaluating a chart authoring visualization to compare data distributions and
asked all participants to bring a dataset which they are currently exploring. Each
session took one hour and was structured as follows: The DE first explained the
dataset and the visualizations that s/he commonly uses. Then, the visualization
expert (VE) introduced v-plots with the different layers and parameter settings, and
the DE analyzed this own dataset. Thereafter, the VE introduced the guiding wizard
and the DE started tailoring the analysis toward specific task combinations. In a
second step, we provided a new dataset [Kon+17], not known to the DE before,
and let the DE create hypotheses and explore the data freely, allowing us to observe
the participant’s action and approach. As a last step, we introduced the v-plot matrix
and let the participants explore the pair-wise relationships. We ended the study
with questions about the general assessment of the usability of the v-plot designer
with the guiding wizard. Occasionally, the VE asked for feedback during the study
and guided the DE towards new tasks. The DE was encouraged to think aloud
during the study so that we were able to capture their thought process.

Findings

Due to privacy constraints of the participants’ own datasets, we will only summarize
general findings. All participants reported that they normally use histograms as a
first approach to get an overview of the data. DE2 said that his/her biggest challenge
is “to keep an overview over the data and not get lost in the jungle of variables”. DE2
also mentioned that s/he is satisfied with the visualizations s/he uses, but sometimes
they are difficult to generate. DE4 uses Tableau [Tab18] on a regular basis to create
more advanced visualizations to compare global vs. local aspects.

After introducing the v-plots, DE2 mentioned that having the distributions and
aggregated statistics combined in one graph is useful. DE2+3 liked that changes in
the menu are translated directly to the chart, making step-by-step adjustments easily
possible. DE2 said “the adjustment of the v-plot is very easy. Particularly compared
to R and SPSS, where you need 100 clicks to do 10 changes. Here you need 10 clicks
to do 10 changes.” DE3+4 raised some skepticism as the v-plots may show more
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than they actually need, which can make the analysis more complex. But they liked
that “there is lots of information that you usually only get by combining information
from two different graphs and one table”. All participants particularly endorsed the
difference encoding. Spotting differences was particularly easy with this feature,
and the participants agreed, that this is a core task in their common analyses that is
not supported well in the charts they typically use. All participants were able to find
new insights into their data. DE3 and DE4 felt that even if the mean values did not
differ between groups, there were interesting differences between the distributions
that they spotted with the help of the v-plots and did not know beforehand.

We then introduced the guiding wizard, along with our classification of analysis tasks.
By exploring different tasks and task combinations, the participants automatically
optimized the v-plots and compared them to the alternative visualizations. We
regularly asked for the visualization they liked most. DE1 said, “if I wanted to display
one attribute (i.e. standard error), I would choose the box. For displaying a single
task, I do not think the v-plots are necessarily better compared to other visualizations.
But if I want to display multiple tasks, I would choose the v-plots. They are very
good at displaying the combination of tasks.” DE4 agreed and added “[for multiple
tasks] I would definitely choose the v-plot, because the other charts only display single
attributes. The more complex the attributes get [...] the more I would tend towards
the v-plot.” DE2 preferred the bar charts for the global tasks, because they entailed
more information in the view. Adding an aggregated task to a global task, s/he
would manually add the mean level to the graph.

The wizard was generally liked by the participants. DE3+4 stated that the wizard
was particularly useful when getting started, because it suggests a quick and good
starting point based on what is important for the current analysis. The alternative
visualizations were positively emphasized by all participants. DE4 said that “the
wizard shows me which visualization I can normally use and how attributes are
displayed by the v-plot”. DE3 said that the recommendations of alternatives are
reasonable.

After introducing the v-plot matrix, DE3 and DE4 said that they initially found the
v-plot matrix overwhelming. But all participants agreed that if one worked through
the matrix and explored the different patterns, it’s a good way to get an overview
over the dataset and extract interesting attribute combinations. DE2 particularly
liked the matrix: “I do not have to create v-plots one by one, I get the combination of
all plots right away. I like it!”

We asked the participants for general feedback at the end of the study. All mentioned
that the v-plot designer was very intuitive, but one needs a few minutes to understand
all the v-plots’ layers. All participants agreed that they would use the tool for more
than just getting an overview over new datasets; they would also try to incorporate
the v-plots in a paper, poster or presentation as an eye-catcher and a dense source of
information, if enough time or space for explanations was given. DE1 said “I would
include a v-plot in my paper if displaying the combination of several attributes was
important to me”.

6.6 Evaluation
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6.7 Discussion

This section summarizes the main findings, lessons learned, and limitations by
reflecting on our multistage research process, in particular summarizing the results
of the qualitative expert study.

6.7.1 Summary and Lessons Learned

Our evaluation shows the advantages and usefulness of the v-plots and v-plot matrix
when simultaneously analyzing different analysis tasks. Based on feedback from the
participants and our own observations, we can summarize the following lessons
learned.

Understanding the visual elements. Even though v-plots are designed in an easy
way by combining existing charts into a unified representation, one still needs some
training to understand and interpret all visual elements. DE1 said that while s/he
would also like to use the v-plots in papers and conference talks they are not very
well-known, meaning extra time would be needed for explanations.

Usability and direct feedback. All participants in our study liked that changes in
the menu are directly reflected in the v-plots. This helps to understand the impact of
specific parameters and to adjust and tailor the v-plot design incrementally.

Difference encoding. All participants repeatedly highlighted that the difference
encoding of the v-plots (i.e., the difference histogram for local analysis and the
difference shape for global analysis tasks) is one of the most important visual
elements. Compared to other representations, this facilitates concentrating on the
differences (only) and so helps significantly when comparing distributions.

Single vs. combination of analysis tasks. Some participants reported that v-plots
might be too complex for single analysis tasks. For example, they would prefer
a box plot if the main goal is to compare the median and quartiles of different
distributions. However, our user case and the feedback of the participants also show
that existing visualizations often fall short when a combination of local, global, and
aggregated tasks is required. In this case, the layered concept of the v-plots supports
a comprehensive analysis.

Guided analysis and automatic chart recommendation. Comparing the v-plots with
alternative charts was well received by the participants. In particular, our system
automatically proposes the most useful charts, after which the participants could
make an educated decision on whether v-plots are the appropriate technique for a
specific task. Furthermore, they liked that the v-plots can be tailored to the analysis
by highlighting specific distribution properties.
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6.7.2 Limitations and Future Work

Our main focus is to design a guided authoring approach for hybrid charts, support-
ing comparative distribution analysis. To make such visualizations accessible and
useful for non-experts, a central part of the v-plot designer is the guidance compo-
nent that is grounded in a design study of analysis tasks and visualization techniques.
In this section, we discuss four limitations of the current state of our approach and
highlight potential for future research.

Coverage of visualization techniques. As presented in Section 6.3.2, there is a
wide range of visualizations available for the analysis of data distributions. In this
chapter, we deliberately focus on analyzing elements of some of the most-commonly-
used, basic charts. However, we plan to extend this work to include more charts and
visual elements. Most notably, we plan to include other visual representations such
as dotplots as a potential additional layer to the customizable hybrid plots. We also
intend to further investigate approaches for communicating uncertainty in the v-plot
design.

Guidelines limited to scope of expert survey. To establish a foundation for user
guidance, we relied on surveying the usage and analysis patterns of 20 practitioners.
In addition to the theoretical foundation provided by the related work, the design
guidelines were grounded in our survey. Further research and replication studies are
needed to avoid potential sample biases based on the number of survey participants
and their background. We provide all data from our survey at osf.io/jk8rp for
transparency and have implemented the recommendations of our guiding wizard to
be modular, i.e., subject to adaptation and renewal through the availability of new
findings.

Lack of quantitative evidence. Going beyond the qualitative analysis and evaluation
of our approach, there is a research opportunity to examine the cognitive effects of
combining chart elements. Our evaluation suggests that the correct interpretation of
the v-plot layers might be explained by the familiarity of the chart elements, as well
as learning effects through usage. However, more studies are needed to determine
the usefulness of individual components and their combinations. In particular, we
plan a quantitative user study to evaluate the performance of the v-plots and to
identify when it is beneficial to switch from a simple representation to the v-plots.
This can further improve our guiding wizard.

Complexity of the v-plot matrix. We also plan to further improve our v-plot matrix.
Some participants mentioned that presenting so many charts at the beginning of
the analysis might be overwhelming. We therefore plan to add interaction concepts
such as linking and brushing, highlighting, and attribute filtering directly to the
matrix. We further want to automatically highlight interesting v-plots, for example
with pattern matching and similarity search, as well as an automatically applied
statistical analysis which only extracts significantly different distribution pairs.

6.7 Discussion
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6.8 Conclusion

How can we make hybrid charts for the visual comparison of data distributions which
(1) simultaneously support local, aggregation-based, and global analysis tasks;
and are (2) accessible to analysts? The current chapter addresses this research
question by first classifying existing tasks for comparative distribution analysis and
exploring the design space of appropriate visualizations. Based on a representative
expert survey with 20 participants, we develop an automatic chart recommendation
which proposes appropriate charts for a given combination of analysis tasks. As a
second main contribution, we develop the v-plot designer as a chart authoring tool
for hybrid v-plots, allowing data distributions to be compared simultaneously on
global, local, and aggregated levels. Furthermore, we introduce a guiding wizard
which tailors the style of the v-plots towards given analysis tasks. Our evaluation
shows that this wizard helps to design effective v-plots through highlighting specific
distribution properties. Once a combination of analysis tasks is relevant, v-plots
outperform other techniques.
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Simplifying High-Dimensional
Data Analysis through a
Table-based Visual Analytics
Approach

Summary

We present SMARTEXPLORE, a novel visual analytics technique that simplifies the
identification and understanding of clusters, correlations, and complex patterns in
high-dimensional data. The analysis is integrated into an interactive table-based
visualization that maintains a consistent and familiar representation throughout
the analysis. The visualization is tightly coupled with pattern matching, subspace
analysis, reordering, and layout algorithms. To increase the analyst’s trust in the
revealed patterns, SMARTEXPLORE automatically selects and computes statistical
measures based on dimension and data properties. While existing approaches to
analyzing high-dimensional data (e.g., planar projections and Parallel coordinates)
have proven effective, they typically have steep learning curves for non-visualization
experts. Our evaluation, based on three expert case studies, confirms that non-
visualization experts successfully reveal patterns in high-dimensional data when
using SMARTEXPLORE.

This chapter is taken from the following publication. Please refer to Sections 1.4 and
1.5 for the contribution clarification and general citation rules.

[Blu+18] Michael Blumenschein, Michael Behrisch, Stefanie Schmid, Simon
Butscher, Deborah R. Wahl, Karoline Villinger, Britta Renner, Har-
ald Reiterer, and Daniel A. Keim. “SMARTexplore: Simplifying High-
Dimensional Data Analysis through a Table-Based Visual Analytics Ap-
proach”. In: IEEE Conference on Visual Analytics Science and Technol-
ogy. 2018, pp. 36-47.

7.1 Introduction

Users need to find and understand clusters, correlations, and complex patterns in
high-dimensional (HD) data for many applications. Consider, for example, diabetes
experts, seeking to understand the eating habits of individuals or groups of patients.
Factors to explore could include similarities in meal ingredients between patients
from different cultural backgrounds, whether location and environment influence
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Fig. 7.1. The visual representation of SMARTEXPLORE is a so-called SMARTABLE. Descrip-
tors like mean, variance, or deviation are computed, normalized per dimension
or subspace, and mapped to a bi-polar or linear colormap. Manual and (semi-
)automatic algorithms are executed through the visualization and support analysts
in identifying and understanding clusters, correlations, outliers, and application-
specific patterns in subspaces of the data. To increase trust in the patterns, statisti-
cal measures are computed on-the-fly and visualized along with missing values as
overlays. Details on demand and a stacked SMARTABLE support detail analysis.

the subjective enjoyment of a meal, or which combination of influences do (not)
correlate with age. Often, the datasets are not only high-dimensional but contain a
mixture of different data types, such as, numerical, categorical, and binary.

To analyze such patterns, the InfoVis community has acknowledged the need for vi-
sualizations and interactive tools to deal with the overwhelming complexity and the
large amount of data. A broad number of approaches have been developed. How-
ever, they usually transform the data into abstract representations. Popular exam-
ples are Scatter plots, Parallel coordinates [Ins85], and linear and non-linear pro-
jections, such as PCA [Jol86] and MDS [Tor52]. While these and other approaches
have proven to be effective for the analysis of HD data, they often require long train-
ing for non-visualization experts and influence the analyst’s trust in the revealed
patterns [Jen+18]. Even after applying the concept of an abstract visualization, in-
teracting with records and dimensions is seldom intuitive. Instead, it requires men-
tal effort to interrelate records, dimensions, and values in the original format with
the representation in the visualization and vice versa.

We present SMARTEXPLORE, an intuitive approach which injects visual analytics (VA)
concepts into a table-based visualization. Rows represent records or record groups
and columns, dimensions. A broad number of (statistical) measures, such as mean or
deviation, can be computed, normalized, and represented with different colormaps,
as shown in Figure 7.1. Pattern analysis algorithms, reordering techniques, and
interaction concepts support visualization experts and novice users, alike, to reveal
patterns in large HD data. Whenever possible, algorithms are automatically applied
to reduce the number of tedious or complex tasks. Our decision to develop an
enhanced analysis system around a table representation is backed by the fact that HD
data is usually given in a table format and that the majority of analysts are familiar
with spreadsheet tools, like Excel. Over a long period, they have been trained
to read such tables, modify, filter or reorder rows and columns; or compute new
derivative measures, such as mean or variance. While table representations naturally
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have the disadvantage of an inflexible layout, recent tabular-based visualizations
[Gra+13; Gra+14; CW16; Fur+19] have shown to be intuitive for a variety of user
groups, even for complex analysis tasks. However, none of the existing approaches
is designed to identify and understand patterns, such as clusters or correlations in
HD (sub-)spaces.

The primary contribution of this chapter is to simplify the identification and under-
standing of HD patterns through a table-based VA approach. First, we describe a set
of 13 requirements for table-based visualizations supporting the identification and
understanding of clusters, correlations, outliers, and complex patterns. Second, we
introduce SMARTEXPLORE with the following four contributions:

Automatic handling and aggregation of mixed data types. SMARTEXPLORE sup-
ports datasets with a combination of numerical, categorical, and binary dimensions
which are displayed in a consistent, unified representation. Hence, patterns across
mixed types can be analyzed easily. Appropriate similarity functions, statistical tests,
and algorithms are automatically selected and applied based on the dimension type
and its properties such as the distribution.

Simplification of complex data transformations. SMARTEXPLORE implements
complex data transformations such as (recursive) record grouping, pattern analysis,
and subspace detection with a similar interaction design as known from classical
table manipulations such as filtering and sorting.

Automation of pattern identification and highlighting. Based on visual template
matching and (semi-)automatic table reordering, SMARTEXPLORE supports analysts
to identify and understand patterns across a large set of dimensions and record
groups.

Trust-building through automatic reliability analysis. To increase trust, SMART-
EXPLORE automatically computes and visualizes uncertainty and statistical signifi-
cance. An appropriate test is selected based on the dimension type, sample size, and
distribution.

To guide the reader through the different visual mappings and various interaction
techniques, we introduce a guiding dataset called food. The dataset contains 2,571
meals consumed by 99 participants over a period of eight days [Vil+17; Wah+17].
Each meal (data record) contains a combination of numerical, categorical, and binary
dimensions: For example, the amount of kcal, sugar, vitamins (numerical), where
and with whom the meal was consumed (categorical), and a binary representation
of ingredients such as meat, fish, potato, and milk. Each participant occurs multiple
times in the data with all of his/her consumed meals. Potential analysis questions
for research include “How age and gender affect the eating behavior of people?” Due
to data privacy restrictions, we removed dimensions with sensitive information for
the examples in this chapter of the thesis. Although we use this dataset as a running
example, SMARTEXPLORE can be applied to any HD dataset with homogeneous and
mixed data types.

To evaluate the usefulness of our proposed technique, we implemented a prototype.
The source code and a running version, which allows data uploads, is available
on our website: http://smartexplore.dbvis.de. As a secondary system design
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contribution, SMARTEXPLORE stores the visualization properties and the applied
interactions in the URL parameters of the web application. This URL allows easy
sharing of findings and intermediate analysis results among researchers and fosters
academic discussions.

Next, we collect requirements for table-based visualizations and discuss them in
relation to related work in Section 7.3. In Section 7.4, we introduce the visual design
of SMARTEXPLORE and the interpretability of visual patterns, user-guided analysis
concepts (Section 7.5), and the fully automatic pattern matching and verification
provided by SMARTEXPLORE (Section 7.6). Afterward, we present the expert case
study evaluation and conclude the chapter with a discussion.

7.2 Requirement Analysis

SMARTEXPLORE has been developed in close collaboration with domain experts
from the psychology domain. Although this is not the only analysis domain with HD
datasets, psychologists are especially often confronted with large tabular datasets
from user studies. Based on their common analysis tasks, we collected an initial list of
requirements for tabular visualizations. To be of practical use to a broader number of
domains, we generalized the requirements by our own experience and requirements
by related table-based VA tools. We see our requirement analysis tailored towards the
vision of a pattern-driven analysis of HD data, in which finding and understanding
of clusters, correlations, and other patterns is of imminent importance. In contrast,
Gratzl et al. [Gra+13] propose a set of ten requirements to compare rankings of
data records, Perin et al. [PDF14] specify eight requirements to encode, modify,
and reorder raw data within a table, and the twelve requirements by Furmanova et
al. [Fur+19] support the dynamic and hierarchical aggregation of rows.

Among all of these requirement lists, there is some overlap. All approaches call for a
visual encoding of data values, manual or automatic rearranging and sorting of rows
and columns, an interactive and responsive analysis refinement strategy, and data
manipulation possibility. Most approaches require details-on-demand, applicability
to datasets with missing values, and applying operations only on subsets of the data
and/or dimensions.

However, while these and other requirements sound similar, their underlying purpose
and implementation differs significantly (e.g., reordering to compare rankings vs.
reordering to identify patterns like clusters). Therefore, we derived and generalized
our requirements specifically for a pattern-driven analysis in HD data.

General- and System Requirements

RO: Support for Data- and Dimension Analysis. A system should support finding
and understanding the following basic patterns in the data- and the feature space:
(a) clusters of data records according to the given feature space and a chosen
similarity notion; (b) clusters of dimensions for a given grouping/clustering of data
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records; (c) linear and non-linear correlations among two or more dimensions; and
(d) outliers in records, groups of records/clusters, and dimensions.

R1: Persistent Representation. To reflect the analysts’ mental model and to miti-
gate potential misinterpretations, the visual representation of the data and the anal-
ysis results should be kept consistent.

R2: Capabilities for Mixed Dimension Type Analysis. To find patterns across
multiple mixed dimensions, a system should be able to analyze numerical, categorical,
and binary dimensions in a single view. Separate views for different data types avoid
revealing relationships among those dimensions.

R3: Interactive Response. Interaction with a visualization should run smoothly.
Whenever possible, results of user interactions should be shown directly and with-
out large delays. For operations on records and dimensions (e.g., R9, R10) the user
should be able to interact directly with the visible data (elements) instead of becom-
ing lost in abstract or non-related handles.

Scalability on Data Record- and Dimension Level

R4: Grouping Data Records. Users should be able to group a set of records into
a group/cluster to reflect its similarity, and reduce the complexity of data. Besides
manual grouping, established procedures, such as grouping by a given category,
binning, and clustering of (a subset of) dimensions should be supported.

R5: Value Aggregation. All data records within groups/clusters should be mean-
ingfully aggregated to support group comparisons. For every combination of group
and dimension, multiple aggregated measures should be available. Users require
standard statistical aggregations, such as mean, median, min, max, variance, and
standard deviation for numerical dimensions. For all dimensions, users are typically
interested in distributions plots.

R6: (Visual) Encoding of Aggregated Values. Aggregated values and distributions
should be visually encoded, such that users can reliably assess their similarity and
quickly retrieve relationships. The encoding should not only support a two-way
comparison but also alleviate the challenging task of manifold comparisons (e.g.,
across multiple dimensions or clusters; see R8).

R7: Grouping Dimensions into Subspaces. A system should support users in find-
ing subspaces that are semantically meaningful or revealing dimension and pattern
relationships (ROb). Naturally, a dimension may be part of multiple subspaces. Thus,
users should be able to interactively adjust subspace memberships (see R10) to re-
flect their personal understandings of the data.

7.2 Requirement Analysis
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Comparative Analysis of Record- and Dimension Level

R8: Comparison of Records and Dimensions. The visual arrangement, as well as
the encoding (R6), should support users to compare records or record groups across
large sets of dimensions. Simultaneously, a dimension or a subspace should be
compared among multiple record (groups). The concurrent comparison of records
and dimensions supports the user in comprehending the visible patterns.

Data Handling- and Transformation

R9: Operations on Record Groups. Users should be able to operate intuitively
on record groups to find and understand patterns (RO), thereby facilitating the
comparison of records and dimensions (R8). The following group operations are
required: (a) select and highlight, (b) filter and remove, (c) change ordering
(manual) and automatic sorting based on similarity or by dimension/subspace,
(d) merge one or more groups, and (e) extend grouping by recursively grouping
records within a cluster.

R10: Operations on Subspaces. Users should be able to interact with dimensions
and subspaces to facilitate records and dimensions comparisons (R8). All operations
should be provided for each individual dimension and subspace: (a) select and
highlight, (b) remove, (c) change ordering of subspaces and dimensions within a
subspace and automatic sorting based on similarity, (d) add new subspaces, and
(e) copy and move, dimensions across subspaces.

Reliability and Trust

R11: Reliability of Perceived Patterns. Users require support to assess the reliabil-
ity of findings. In particular, users need visual/algorithmic support for assessing:
(a) missing data, (b) too small groups, or (c) statistically (non-)significant pat-
terns. A system should be able to remove record groups or dimensions, classified as
unreliable by the user (see R9 and R10).

R12: Provenance of Visualizations and Interactions. A system should support
storing intermediate analysis results and their associated visualizations, including all
applied operations. Hence, results can be shared among researchers and analysts can
reiterate previous results, or follow promising new analysis paths (see also R11).

7.3 Related Work

In the following, we delineate SMARTEXPLORE from other tabular-based and general
HD visualization approaches, and show similarities to existing works for mixed
datasets and trust-building in VA.
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7.3.1 Table-based Visualizations

The most commonly used representation for HD data is a spreadsheet, such as
Microsoft Excel [Mic18b] or Google Sheets [Goo18]. These tools typically allow
a wide range of row and column interactions, and let the user augment current
analysis results with basic visualizations, e.g., bar charts and scatter plots. More
interactive approaches support a larger set of visualizations, e.g., Tableau [Tab18],
Spotfire [Spo18], Power BI [Mic18a], and JMP [SAS18]. All these tools use tables for
their data representation and use more or less intuitive mappings into different visual
representations. Tableau and Spotfire focus on visual analysis, while JMP represents
the model-building and statistical analysis spectrum. However, the approaches miss
a tight integration between algorithmic support and visualization. Although the
sophisticated visualizations for parts of the analysis process are usually linked to
the table, they still require frequent mental model adoptions and changes. Table
lens [RC94] is one of the first approaches to overcome this problem. The data
stays in a table format, but the values in the rows and columns are approximated
by sparklines [TufO6]. An interactive focus+context approach enlarges rows and
columns of interest. FOCUS [SBB96] extends the idea through interactive queries
that focus on data areas of interest.

The three approaches most related to ours are Bertifier [PDF14], Taggle [Fur+19;
Fur+17], and IF, FL-Tables [CW16]. Bertifier implements the idea of Bertin’s
reorderable (glyph) matrix [Ber75] into an interactive tool. As in the original work,
row and column ordering is the primary interaction concept for identifying patterns.
Yet, it does not allow aggregating records or dimensions. Taggle features hierarchical
aggregation of records, but compared to SMARTEXPLORE, the analysis goal differs.
Taggle is used to compare aggregations on different granularity levels, rather than
finding patterns across a large set of dimensions. IF, Fl-Table uses two interlinked
tables to compare records across a large set of dimensions and vice versa.

The visual representation of SMARTEXPLORE is also inspired by recent work in matrix
visualization [Elm+08; AHO04; Twe+15; KZG10]. Most matrix visualizations are
static and cannot be interactively adjusted. In particularly, matrices mostly feature
algorithmic approaches that optimize the layout for one particular visual pattern.
However, as also stated in a recent survey [Beh+16b], these visual patterns do not
necessarily align with the user’s analysis question. As envisioned in [Beh+16b],
SMARTEXPLORE implements a more adaptive, user-guided process, which goes
further than just drag&drop approaches, such as presented in [SM05]. Many other
table-based visualizations exist. However, their core analysis tasks and contributions
differ from SMARTEXPLORE. LineUp [Gra+13] identifies multi-attribute rankings in
a table-like representation containing stacked bar-chart-like visualizations. Similarly,
Podium [Wal+18] lets the user adjust rankings update the weights of the underlying
ranking function. Taco [Nie+17] visualizes change over time within an aggregated
table. A popular technique to visualize the relation between sets is UpSet [Lex+ 14].
Domino [Gra+14] lets users interactively combine, arrange, and extract subsets of
data from different sources within a combined table-based view.

7.3 Related Work
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The last category of related table-based approaches are tools that let the user find
patterns using sophisticated sorting algorithms. Examples are SimulSort [HY09],
Matchmaker [Lex+10], and StratomeX [Lex+12].

In recent years, the InfoVis community presented a multitude of novel table-based
visualization and VA systems. Most of these systems show that a representation in a
table supports the users in the analysis process. However, the focus of the presented
techniques is different from SMARTEXPLORE, as it combines sophisticated aggre-
gation and grouping features, with pattern matching and an automatic reliability
analysis.

7.3.2 Visualizations for High-dimensional Data

The community has presented many approaches for the analysis and visualization of
HD data. Each approach has its advantages and disadvantages, and their discussions
fill entire surveys [Liu+17].

With respect to our work, most approaches present specific solutions and trade-offs
by focusing either on data vs. visual scalability, and complexity vs. understandability.
For example, the seminal work of Inselberg on Parallel coordinate (PC) [Ins85] ad-
vanced the field by focusing likewise on dimension and record scalability. Many im-
provements for PC have been proposed. For example, highlighting density [Zho+08;
MMO8] and quality metrics [Beh+ 18] which reduce visual clutter [EDO6b; PWR04],
or reveal specific patterns [DK10] by reordering the axis. Analogue to the idea of
Ankerst et al. [ABK98], the dimensions of SMARTEXPLORE can be reordered by vi-
sual similarity or particular visual patterns across multiple dimensions.

Orthogonal projections, such as in its bivariate form in Scatter plots, are also used
for HD analysis. Here, the dimension interpretability and scalability is sacrificed
for a better understandability of data record relations. Yet, a large set of possible
dimension combinations has to be assessed for its usefulness. Tatu et al. and
Albuquerque et al. present image and data-space quality metrics to quantify patterns
in large sets of Scatter plots [Tat+09; Alb+10]. Non-linear [MHO8; Tor52] and linear
projections [Jol86] are classic approaches for HD analysis and visualization. In the
context of dynamic graph analysis, van den Elzen et al. use a 2D projection (t-SNE)
of topologically similar graph snapshots for their argumentations [Elz+16]. Visual
complex glyph designs layouted with 2D projections are presented e.g., in [Keo+06;
Cao+11].

To improve the understandability of HD datasets, navigation and user-guided explo-
ration techniques have been presented recently with LDSScanner [Xia+ 18], in Sub-
space Voyager [WM18], and in Dimension Projection Matrix/Tree [Yua+13]. Fern-
stad et al. [FSJ13] propose a quality-metric guided framework for exploratory dimen-
sionality reduction. Based on a large set of quality metrics, users can interactively
rank and weight variables to reveal HD patterns. SMARTEXPLORE also supports
metrics to identify visual patterns in the aggregated table. However, the metrics are
computed in the image space which mimic the perception of analysts [Beh+18].
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Only few approaches tackle HD dataset with mixed data types. The reason for
this is the incompatibility of types w.r.t. distance functions and visual mappings.
Often, different representations for different types (e.g., [Fur+19]) are used. Ap-
proaches focusing on the relation between data records typically apply the Gower
distance [Gow71] and project the data using MDS [CCOO] into a Scatter plot. To
identify relations between dimensions, categories are transformed into compara-
ble numbers based on an application-dependent ordering or distribution [Grel7].
The transformation can be done automatically [Ros+04] or with the help of ana-
lysts [JJJO8]. SMARTEXPLORE also transforms the distribution of categories into a
numerical representation and visualizes it with the same encoding as numerical and
binary dimensions within the table. This allows an easy identification of outliers and
patterns in record groups across large sets of mixed dimensions.

Building trust in analysis results requires showing potential uncertainty along the
analysis process. SMARTEXPLORE presents an automatic reliability analysis, which
automatically determines and executes the correct statistical test from a set of
15 mathematical models. SMARTEXPLORE is influenced, by Correa et al.’s work
on reflecting uncertainty aspects with visual mappings [CCMO09]. Similarly to
Buchmiiller et al. [Buc+15], we use a semi-transparent random noise and colored
overlays to represent the uncertainty of the computed descriptors.

7.4 Visual Design in SMARTEXPLORE

We introduce the SMARTEXPLORE technique and show how it addresses the specified
requirements. In Section 7.5 and 7.6 we show how interaction and automatic algo-
rithms can support users when finding and exploring high-dimensional patterns.

7.4.1 Visual Design for Aggregated Features

We define the basic visual representation of SMARTEXPLORE as SMARTABLE: data
records can be grouped into clusters and dimensions to meaningful subspaces.
The values in every record group are aggregated to its distribution or (statistical)
measures such as mean or variance. We show an example of a SMARTABLE in
Figure 7.2 based on the food dataset. The analyst has grouped the meals by type.
The first row contains breakfast meals, then lunch, supper, meals consumed during
coffee breaks, and snacks. Only dimensions in the ingredient and nutrition subspace
are visible. The color gradient (white — red) describes the average number of meals
containing a particular ingredient. Analysts can clearly see that ingredients towards
the right dominate breakfast meals (except for the dimension bread), and ingredients
on the left are mostly consumed during lunch and supper. On the left side of the
table, users can compare the size of the record groups with the help of a histogram.
The distribution of values in every dimension is visualized as distribution plot on
top of each dimension. During the entire analysis, SMARTEXPLORE remains in this
representation (R1) to reflect the mental model of users. Different visual overlays
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breakfast (28.2%)
lunch (23.7%)
supper (26.2%)

coffeebreak (6.4%)

snack (15.5%)

ingredients nutrition

Fig. 7.2. Example of a SMARTABLE: meals are grouped by type (rows). A color gradient
(white — red) is used to describe how often a specific ingredient and nutrient
(dimension, column) is part of a meal.

help to visualize mixed dimensions in a homogeneous view (R2) and highlight the
results of automatic algorithms for pattern reliability analysis (R11).

We do not claim any superiority of our approach compared to established HD
visualizations. However, in this chapter, we show that a table contrasts well with
abstract visualizations when equipped with VA tools. The well-known structure of
rows and columns corresponding to records and dimensions respectively, appears
advantageous for visualization experts and non-experts alike. It supports analysts in
easily understanding the visual structures, and intuitively operate on record groups
(R4, R9) and dimensions (R7, R10). Although the layout of tables is restricted to a
grid, table cells can be arbitrarily complex. We show this aspect with our automatic
reliability glyph (R11), which descriptively summarizes statistical reliability tests.

Data Record Grouping

Record grouping and clustering (R4) are useful means for spotting global patterns in
the data and reducing the complexity. Additionally, analysts are often interested in
understanding the properties of a given natural grouping in the data, e.g., compare
different meal types as shown in Figure 7.2. SMARTEXPLORE supports different
record grouping strategies, useful for different applications and data types.

Existing groups. Categories naturally provide semantic groupings. All records with
the same category can be combined into one group.

Binning. To find groups in numerical dimensions, equal-width or equal-height
binning can be applied. In our implementation, we show an interactive preview in
which the user can freely experiment with the bin size and instantly see the binning
result in a histogram.

Clustering. An algorithmic solution for finding groups of data records is to apply
clustering. However, not all dimensions in a dataset may be relevant to determining
application dependent clusters. Therefore, a user can select a subspace of dimen-
sions to be considered. Finding a good parameter setting and a good number of
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clusters, in particular, is challenging. In SMARTEXPLORE, we compute a hierarchi-
cal clustering [HKP11] and let the user interactively adapt cluster numbers using a
threshold in a visualized dendrogram. For numerical subspaces, a Euclidean distance,
for subspaces with mixed data types (R2), the Gower metric [Gow71] is used.

Descriptors: Aggregated Values of Record Groups

Every record or record group is represented by one row in the SMARTABLE. Compar-
ing record groups across dimensions, and dimensions across record groups (R8) is a
central analysis task for SMARTEXPLORE. Consequently, all values within a group
need to be aggregated (R5) and visually encoded (R6) to foster comparability. We
define aggregated values synonymously as descriptors.

Descriptors for consistent dimension views. In our prototype, we decided to imple-
ment the following descriptors: For numerical dimensions, we support the mean,
median, min, max, variance, and standard deviation. The values in binary dimen-
sions are true = 1 and false = 0. As a descriptor, we compute the mean, which
corresponds to the percentage of records with the value ¢rue. This descriptor is also
used in the example in Figure 7.2 to show the frequency of ingredients for meal
types. In categorical dimensions, a user is oftentimes interested in the distribution
of categories. Here SMARTEXPLORE supports the visualization of the distribution as
an overlay.

Descriptors for mixed dimension views. The aim of SMARTEXPLORE is to visualize
all dimensions, independent of its type in a consistent representation (R2). There-
fore, the aggregated values of mixed dimensions need to be represented by a descrip-
tor that can be compared across data types. SMARTEXPLORE proclaims a so-called
deviation descriptor. It measures the deviation between the descriptor of a record
group and the same descriptor for the entire dimension. For example, for numerical
and binary dimensions, we compute the difference between the mean of a group and
the mean of the dimension. The deviation descriptor of categorical dimension is de-
fined as the Euclidean distance between the frequency histogram of a dimension and
within one group. While the deviation is computed differently for all data types, the
intuitive understanding is the same: the value or distribution differs (much) from
the overall dimensions. Hence, users can quickly spot dimensions or groups with
less/more deviation and then continue the analysis with different descriptors.

Visual Representation of Descriptors

To allow a fast comparison between record groups and dimensions, SMARTEXPLORE
encodes (R6) the computed descriptors by color (R8). Similar measures are rep-
resented by similar colors, thus helping analysts to spot patterns. In the literature,
there is a myriad of guidelines which help users to select an appropriate colormap
for a specific task (e.g., [Mit+15; ZH16; Buj+18]). During the development of
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DIFFERENT COLORMAP AND NORMALIZING STRATEGIES
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20-33years (31.6%)
34-52 years (30.7%)

53-66 years (22.7%)

Per dimension
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Linear Colormap Bi-Polar Colormap

20- 33 years (31.6%)
34-52years (30.7%)
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motive motive

Fig. 7.3. Comparison of linear (left) and bi-polar colormap (right) with normalizing per
dimension (top) and per subspace (bottom). Visualized descriptor: mean per record
group. All four examples represent the same data. The ordering is based on visual
similarity.

SMARTEXPLORE, as well as many discussions with potential and active users, we
found that there are two classes of colormaps that appear to be useful for analysis:
linear and bi-polar as depicted in Figure 7.3. We implement a linear colormap white
(low) — red (high), and a bi-polar colormap blue (low) — white — red (high value).
While linear colormaps enable users to directly compare two descriptors, bi-polar
colormap are a great tool for identifying descriptors with high and low values.

Normalizing Strategies for Descriptors

Normalizing is essential for promoting the visual prominence of patterns in SMART-
EXPLORE. Since we apply the concept of aggregations with respect to records and
dimensions, we need a flexible mechanism to normalize distributions. The intuition
of the two implemented strategies is given in Figure 7.3. Per default, descriptors are
normalized per dimension, considering the descriptors of all record groups within
one dimension. This strategy supports users to easily spot high, middle, or low values,
but sacrifice the descriptors’ comparability across dimensions. As a result, users can
find patterns across multiple dimensions - even of dimensions with a different scale.
Users can directly compare descriptors by normalizing across dimensions of a sub-
space (Figure 7.3 bottom). In this case, the min and max within an entire subspace
are used. This strategy only makes sense if all dimensions have semantic connections
and have the same dimension scale. However, if this strong requirement holds, we
allow users to derive conclusions from this fact, e.g., quantify descriptors across mul-
tiple dimensions. While scaling can be checked automatically, semantic interpretabil-
ity needs to be determined by the user. Descriptors can be normalized linearly or
logarithmically. Additionally, we allow users to inject domain knowledge by manu-
ally setting min and max; e.g., for a manual outlier correction or scale capping.
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Subspaces and Dimension Grouping

SMARTEXPLORE allows to group a subset of dimensions into a so-called subspace
(R7). Every subspace contains at least one dimension and has a label which can
be set by the user. A particular dimension can be part of more than one subspace.
The reason for grouping dimensions into subspaces is twofold: First, it reduces
the complexity of the visualization by introducing visual gaps between groups of
dimensions that are semantically meaningful. Second, all visualization properties,
such as normalizing strategy, colormap, sorting of dimensions etc., can be adjusted
per subspace. This means, a user can group dimensions that should be treated
similarly into a subspace, and select different properties for different subspaces.

7.4.2 Visual Design for Stacked Record Grouping

So far we have considered the elementary aggregations of the data records: A single
dimension or a clustering algorithm determines the grouping of the data records.
Every aggregated group is visualized as one row in the SMARTABLE. In many
applications, users are interested in details of the aggregated rows. Consider for
example Figure 7.1 (B). Records are grouped by age into four groups. Users may now
be interested in similarities/differences between male/female within each aggregation.
To support this analysis task, SMARTEXPLORE implements stacked aggregations
(R4b). Each age group is further aggregated into a second level by the dimension
sex. The distribution of both aggregation levels is shown by the histograms on the
left side. The descriptor (here: mean) of the first aggregation level is represented
by the upright rectangular and the descriptors for the stacked aggregation by the
smaller squares on the right side. The stacked aggregation help users to analyze
whether there is a difference in the descriptor when considering a more fine-grained
aggregation. In Figure 7.1 (B), we can see that the mean value of the dimension
vegetables for the age group 53-66 years (marked) is light red. Male participants
within this group have a much smaller mean value (dark blue) compared to female
participants (dark red).

Stacked aggregations can also be created for more than two groups in the second
level. For example, we can aggregate the records first by the attribute age into four
groups and then by the meal type into five groups in the second level.

7.4.3 Interpretation of Patterns in SMARTexplore

Every system with an elaborated visual design allows identifying and describing
how the occurring visual patterns need to be interpreted and how they support the
analysis process. An overview of SMARTEXPLORE’s most common visual patterns can
be found in Figure 7.4 and 7.5, along with a mapping of the analysis task (RO).
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Fig. 7.4. Most important patterns in SMARTABLE. Correlations, clusters, and outliers can
occur within and across dimensions.

Patterns Within and Across Dimensions

We have to distinguish between patterns existing within a single dimension and pat-
terns across multiple dimensions. Within dimensions refers to patterns within a single
dimension based on the current record grouping. For example, we see correlations,
clusters, and outliers for dimension B in Figure 7.4 (left). Patterns across dimensions
allow relating and comparing descriptors across multiple dimensions - typically all di-
mensions of a subspace. For example, we can see correlations, clusters, and outliers
for different record groups across the dimensions B, ..., K in Figure 7.4 (right).

Understanding Correlations

Analysts have to distinguish two notions of correlations (ROc):

Correlations between dimensions and record groups stand out as color gradients
within one dimension (e.g., dimension B). Assuming that aggregated rows are in
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ascending order, Figure 7.4 (a) shows dimensions with positive, negative, and non-
linear correlations. Dimension groups can be clustered into a subspace to foster
interpretability (e.g., dimensions C, D, and E).

Correlations across dimensions are independent of an ordering of the aggregated
rows; however, they require an ordering among the dimensions (e.g., dimensions
representing the values of a time series). Figure 7.4 (b) shows an example of
correlations across the dimensions B, ..., K.

Understanding Clusters

Three cluster types can be analyzed with SMARTEXPLORE:

Clusters of similar dimensions. Visually similar dimensions can be clustered
into a subspace (ROb). Hereby, the structure of the pattern does not matter. In
Figure 7.4 (a) and (e), dimensions with the same correlation and outlier pattern are
clustered (e.g., F', G, and H).

Clusters within a dimension. Data records or record groups with similar descriptors
can be perceived as a cluster (R0Oa). For example, the same value distribution
in dimension B is shared among the first two and last three record groups in
Figure 7.4 (c).

Clusters across dimensions. Figure 7.4 (d) depicts three clusters of record groups
which are described by all dimensions of the subspace.

Understanding Outliers

An outlier is defined as a computed descriptor which differs substantially from all
other descriptors. Based on the normalizing strategy, all descriptors of a dimension,
or the descriptors of all dimensions of a subspaces, need to be taken into considera-
tion when determining an outlier. Two types of outliers can be analyzed:

Outliers within a dimension. Figure 7.4 (e) depicts an outlier in the dimension B
in the third record group.

Outliers across multiple dimension can be found in Figure 7.4 (f). To find this
pattern, dimensions need to be normalized per subspace. All record groups of a
dimension can be considered outliers (dim. K), but also only as a subset of the
groups, as shown in dimension .J.

7.4 Visual Design in SMARTEXPLORE
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Fig. 7.5. Common patterns in stacked SMARTABLE. Most importantly is whether the base
and stacked descriptor are similar or not. If they are dissimilar, correlations,
outliers, and clusters can be present.

Understanding Patterns in Stacked Aggregations

Stacked aggregations help users retrieving commonalities and differences across
subcategories. Generally, there are two possibilities: stacked and base descriptors
have the same color, or have a different color, implying descriptor similarity or
dissimilarity, respectively. As shown in Figure 7.5, correlation, outlier, and cluster
patterns exist in stacked groupings. Of course, the pattern depends on the ordering
of the records in the stacked aggregation.

Application Specific Patterns

In our experiments with psychologists, we came across interesting patterns that
cannot universally be described by a topology, instead, they depend on the analysis.
For example, multi-modal distributions within dimensions, or ‘expected’ outliers in
clusters of records or dimensions. SMARTEXPLORE can also be used to find and
understand such application dependent patterns. However, analysts are necessary
for the pattern interpretation.

7.5 User-Guided Analysis in SMARTEXPLORE

SMARTEXPLORE provides easy to use interaction concepts to find interesting pat-
terns, analyze records across dimensions, and dimensions across records, which are
introduced in the following.

7.5.1 Interaction on Record Groups (R9)

As known from spreadsheet applications, users can select and highlight one or
more record groups to compare the descriptors across all dimensions. By means
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of drag&drop, the order of rows can manually be changed, e.g., to compare record
groups temporarily. Users can change the ordering of clusters to reflect semantic
relationships, such as the temporal order of meals (Figure 7.2). After the grouping,
analysts can also select a dimension and reorder the groups based on the dimension’s
descriptors. This ‘sorting operation’ helps identify potential correlations, clusters,
and outliers of the selected dimension.

Users can delete entire record groups to remove outliers, and to tailor the analysis
to a specific task. Record groups can be merged, the grouping granularity can be
customized, and non-uniform binning of records is supported. One application
scenario is shown in Figures 7.1 and 7.3, where participants were grouped into ten
bins, and then manually merged into four application-specific groups. During the
analysis, users can freely adapt the grouping and apply stacking.

7.5.2 Interaction on Dimensions and Subspaces (R10)

Grouping dimensions to subspaces provides a useful mechanism to reduce the
complexity of a HD dataset. While we still keep all dimensions for our analysis,
we introduce a visual gap that separates subspaces. Thus, we are subdividing
the SMARTABLE into small, semantically meaningful, and cognitively graspable
subsets.

Analog to record groups, both dimensions and subspaces can be selected, highlighted,
and rearranged for a better comparison. Assuming the user has built a mental
model of the underlying relationship, SMARTEXPLORE allows dragging&dropping
dimensions into interpretable subspaces, as shown in Figure 7.2.

The ordering of subspaces along the x-axis can be changed by drag&drop. This
enables the user to arrange subspaces close together, fosters comparability and
understandability, or to drag subspaces to prominent positions at the start or end
of the table. Subspace can be deleted (irrelevant for analysis) or cloned (show
in other context), and new subspaces with a customized name can be created
on-the-fly (further semantic relationship). Users can copy or move dimensions
from one subspace to another in order to reflect their interrelation in the current
analysis task. The properties of a dimension (e.g., colormap, computed descriptor,
normalizing strategy) can either be changed globally for all dimensions, or per
subspace. For example, a user can clone a subspace, and visualize its different
statistical facets, e.g., its mean and variance. Within a subspace users reorder
dimensions by dragging&dropping or removing them entirely.

A semi-automatic grouping of dimensions based on their similarity helps with deriv-
ing non-obvious subspaces. We apply a hierarchical clustering on all dimensions and
map similar dimensions to a subspace. As in record grouping, a slider allows inter-
actively changing the granularity of clusters. SMARTEXPLORE applies a Euclidean
distance between all descriptors of two dimensions. Intuitively, this means visually
similar dimensions will end up in a cluster. The Euclidean distance can be weighted
by statistical significance.

7.5 User-Guided Analysis in SMARTEXPLORE
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As one algorithmic contribution, SMARTEXPLORE supports semi-automatic pattern
highlighting and sorting. Users can select a dimension of interest and sort the
remaining dimensions based on similarity. Our pattern matching algorithm can also
highlights all dimensions similar to this selection. Finding similar dimensions can
help users to identify patterns across multiple dimensions. The similarity search
can be restricted to a subspace or can be applied on all dimensions of the dataset.
Similar to the hierarchical clustering of dimensions, a Euclidean distance, optionally
weighted by significance, is used to determine the similarity between two dimensions.
SMARTEXPLORE proposes the number of dimensions to be highlighted based on
the calculated distance distribution. The user can modify the expected highlighting
accuracy (precision vs. recall) with the help of a slider. Highlighted dimensions can
be copied or moved to a new or different subspace. This analytic guidance feature
allows users to define subspaces with specific visual patterns.

7.5.3 Interaction on Aggregated Descriptors

Semi-automatic pattern highlighting is also implemented for descriptors. In SMAR-
TABLE, users can select a cell of interest and highlight the k-nearest neighbors. Search-
ing for similar descriptors is most useful for stacked aggregations, as shown in Fig-
ure 7.1 (B). For the pattern highlighting of stacked descriptors, users can either con-
sider only the patterns in the stacking, and ignore the value of the base descriptor
(as applied in Figure 7.1 (B)), or choose a 50 : 50 weighting to incorporate the base
and the stacked descriptors. Both options have valid argumentations based on their
use case. Here also, a slider allows defining the degree of (dis-)similarity, which
should be considered in the analysis.

7.5.4 Details on Demand for Record-Level Analysis

A computed descriptor represents a data distribution in one aggregated value.
However, the entire distribution should often be taken into account to obtain a valid
pattern interpretation.

Distribution Overlay

The user can add a distribution overlay on top of each visualized descriptor. A kernel-
density estimation is used for numerical dimensions, a his-

togram for categorical and binary dimensions. The kernel-

density curve depends on the parameter bandwidth. We es-

timate a good selection of the method proposed by Silver-

man [Sil86]. Additionally, the user can change the kernel- RP
density curve with a histogram, and, for the categorical dimen-

sion, change the histogram into a glyph representation, which  Distribution Glyphs

is inspired by Star Glyphs [Sie+72]. The overall distribution
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of a dimension gives users a first impression of the data and can help interpreting
measures and removing outliers.

Table Lens and Tooltip

Often, a user is interested in seeing all distribution details for one record group
and/or one dimension. For this purpose, SMARTEXPLORE implements a tooltip for a
single cell and a table lens [RC94] for entire rows/columns. Hovering over a cell
depicts the data distribution for the overall dimension and the record group, along
with information about missing values, and results of statistical tests, such as the
p — value and the applied test (see Section 7.6.3 for details). Hovering over a record
group or dimension enlarges the visualized descriptors and add data distributions,
and values for descriptors, and/or statistical significance as shown in Figure 7.7.

7.6 Automatic Pattern Detection and Verification

SMARTEXPLORE has fully automatic exploration support, such as reliability analysis
or table ordering, to increase trust in the findings.

7.6.1 Pattern-based Layout

The perception of patterns in the SMARTABLE depends on the ordering of rows and
columns. Therefore, SMARTEXPLORE implements automatic sorting strategies to re-
veal these patterns. Since SMARTEXPLORE allows visualizing numerical, categorical,
and binary dimensions, our internal heuristics can automatically select the correct
distance functions for the involved data type (-combination). For all sorting strate-
gies, similar descriptors, record groups, and dimensions should be placed close to
each other. However, finding a good table reordering can be seen as an optimization
problem in which row- and column positions can be freely changed without affecting
underlying data interpretation [Beh+16b]. Yet, finding an ‘optimal’ solution is often
computationally impossible or reveals the problem that reordering algorithms are in-
herently designed to foster the visual appearance of one visual pattern [Beh+16b].

Automatic Sorting of Groups and Dimensions

In SMARTEXPLORE, we can luckily restrict our search for an appropriate reordering
algorithm to those approaches that are known to promote the visual patterns pre-
sented in Section 7.4.3. Hence, at least three options are possible: (a) the Barycen-
ter reordering [MS05], the Bond-Energy algorithm (BEA) [McC+69], or Correspon-
dence Analysis (CA) algorithms [Hil74]. Barycenter and CA are both fast algorithms
but are designed to only retrieve groupings around the diagonal. CA implements a
Singular Value Decomposition, which is not applicable if distances are less discrimi-
native (i.e., binary or categorical dimensions). We decided to implement the BEA
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algorithm as it is a more conservative approach. This algorithm internally optimizes
the ‘measure of effectiveness’, which fosters the visual appearance of groups inde-
pendent of their relative location to the main diagonal. Moreover, these groups do
not necessarily have to have a quadratic shape, but can also be rectangular.

Automatic Sorting of Dimensions

SMARTEXPLORE implements two strategies to automatically sort dimensions within
a subspace based on the given ordering of dimensions. Same as before, this ordering
is automatically applied until the user changed the ordering manually.

Sorting by average descriptor. The first approach sorts all dimensions of a subspace
ascendingly by the average descriptor per dimension. An example can be found in
Figure 7.1. While this sorting can be applied to both normalizing strategies, it is
most useful when the dimensions are normalized across the subspace. As a result,
users can quickly see which dimensions generally have higher/lower measures.

Sorting by visual similarity. The second strategy sorts the dimension by visual sim-
ilarity. First, SMARTEXPLORE computes a distance matrix by all pairs of dimen-
sions within a subspace. To do so, the previously introduced distance measures
based on the (weighted) Euclidean distance are used. Afterward, we compute a one-
dimensional multi-dimensional scaling projection of the distance matrix, similar to
proposed in [Jdc+16]. We ignore the actual position in the one-dimensional layout
but use the ordering of the projected dimensions. For stacked grouping, users can se-
lect which parts to consider for the layout: the base measure, the stacked measures,
or a combination of both.

7.6.2 Automatic Pattern Detection

In Section 7.5.2, we describe how users can select a dimension of interest and
highlight all dimensions that are visually similar. This user-guided analysis is
particularly interesting for the application of specific patterns of interest. However,
in most applications, users are primarily interested in linear correlations, clusters,
and outliers as introduced by our pattern topology. SMARTEXPLORE supports users
in automatically identifying these patterns: For each pattern-type, we defined a
template describing the ‘optimal’ pattern for a single dimension. These templates
correspond to the examples of the pattern topology, as shown in Figures 7.4 and 7.5.
We adapt the size of the pattern to the number of rows in the (stacked) SMARTABLE.
For patterns like the outliers in Figure 7.5 (e), we iterate the position of the pattern
(here: outlier) through all rows of the dimension. Finally, the different templates
for each pattern are matched against each dimension in the dataset - analog to the
manual similarity search.
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7.6.3 Reliability of Visual Patterns

While the visual design supports finding different data patterns, SMARTEXPLORE
automatically and transparently supports the analyst in the question “How reliable
are these findings?” (R11).

Statistical Significance and Visual Representation

Different colors for visualized descriptors naturally indicate that the underlying
values are different. However, based on the normalizing strategy and the chosen
colormap (e.g., bi-polar), the minimum descriptor (/min) is mapped to blue and the
maximum (maz) to red. In the visualization, users cannot quantify the difference
between min and max without using the tooltip or table lens. The same is true
for all descriptors in-between. Therefore, SMARTEXPLORE automatically computes
various statistical tests to assess whether differences are statistically significant or
not. The following two levels-of-detail are considered:

S1: Significance of a descriptor. For every computed descriptor, a statistical test is
used to decide whether it is significantly different from the overall dimension. To
measure this difference, classical tests are t-tests to compare the mean (descriptor)
with the mean of a dimension, Chi? tests for categorical dimensions, and a binomial
test for binary dimensions.

S2: Significance of a dimension. To measure the significance of multiple descrip-
tors at the same time, classical tests are an ANOVA for numerical, and a Chi?-test for
categorical and binary dimensions. These tests generalize the understanding of S1
to an entire dimension, but do not indicate the significance of each descriptor.

Assumption-based selection of statistical test. Each statistical test relies on differ-
ent assumptions that need to be fulfilled in order to achieve reliable results. In nu-
merical dimensions, for example, analysts have to check whether the data follows a
normal distribution (e.g., using the Kolmogorov-Smirnov test), for variance homo-
geneity for independent samples (using Levence’s test), and sphericity for dependent
samples (for ANOVA with rep. measures, using Mauchly test). The same applies to
categorical and binary dimensions in which, for example, the sample size has to be
taken into account. Following Andy Field [Fiel3], there are 11 tests for numerical,
three for categorical, and one for binary dimensions that apply to our application.
SMARTEXPLORE supports the user by automatically selecting the appropriate test
for each dimension. Based on the data type, the (in)dependence of samples, and the
significance type S1 or S2, SMARTEXPLORE computes all statistical tests and their
assumptions. Appropriate test are selected as proposed by Andy Field [Fiel3]. Then
the test’s p — value is compared to a user-defined « to determine the significance of
a dimension or a computed descriptor. The tooltip shows the p — values of all tests
and assumptions such that the user can compare their difference and reproduce the
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Fig. 7.6. Comparison of nutrition, eating motives, and calories per meal (rows). Meals, rich
in calories, are merged into one record group (bottom). Significant dimensions
and descriptors (mean) are marked.

system’s selection. Users can also manually determine the applied test for a single
dimension, a subspace, or globally for the entire dataset.

A p — value only informs whether a statistical effect exists; it does not show its
magnitude. The appropriate effect size (e.g., Cohen’s d, Cramer’s V) for the selected
tests is also automatically computed.

Visual representation of statistics. The statistic results can be added to SMAR-
TABLE. The significance of a descriptor (S1) is visualized by an overlay. Users can
choose between a dot for significant descriptors (Figure 7.6) and a glyph that uses
full size for significant and a smaller size for non-significant descriptors. Applying
the first option, users can concentrate on the patterns and use the statistical infor-
mation as added value. The second option modifies the visual representation such
that significant results jump out and users can concentrate on areas with mainly
significant descriptors.

To show the significance of a dimension (S2), users can enable a red or green icon be-
low each dimension (Figure 7.6). Also, an adaptive colormap ™= —
can be used. Significant dimensions use the full range of colors, non-significant, only
the inner part. As a result, users can still perceive differences in the descriptors, but
they are visually less dominant as significant ones.

Missing Values

Missing values are common in many applications and influence the reliability of
descriptors. Therefore, the visualization should highlight the areas in the data space
which contain missing values and show their proportions. Other-
wise, the uncertainty of calculated descriptors is not shown, and
the visualization pretends a reliable pattern which does not exist
in the underlying data. SMARTEXPLORE supports different visual
overlays to show the amount of missing values. For example, the
glyph covering adds a gray layer on top of the visualized descriptor
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in order to reduce its expressiveness. The texture overlay covers the visualized de-
scriptors with random noise, as used by Buchmdiller [Buc+15]. Estimating the exact
proportion of missing values is not possible. However, it is more intuitive as it seems
there are ‘holes’ in the data, analog to missing values.

7.7 Effectiveness and Generalizability Evaluation

We evaluate SMARTEXPLORE for two general criteria: First, its usability and under-
standability for pattern analysis tasks, and second its generalizability to different
datasets and domains.

Evaluating effectiveness

To assess the effectiveness and usability of SMARTEXPLORE, we conducted a qualita-
tive expert user study with six participants. Our evaluation process is structured in a
multi-stage evaluation process:

(1) We generate a set of ‘ground truth findings’ from the food dataset derived by two
participants, who are familiar with the data due to earlier analysis using established
statistics. Both subjects have no far-reaching VA experience, but continuously
provided feedback during the development and use SMARTEXPLORE on a regularly
basis. We refer to these participants as E1 and E2 as they are experts in both, the
data and SMARTEXPLORE.

(2) We target the usability across different expertise levels, by conducting four pair
analytics [KF14] studies with two different user groups. In the first group, two
psychologists without VA experience, but good knowledge of the food dataset
participated. We refer to these participants as data experts (DE1 and DE2). In the
second group, two visual analytics experts (PhD students with one to three years
of experience), VE1 and VE2, participated. VE1 and VE2 did not have knowledge
about the food dataset. We planned about one hour per pair analytics session
per participant and conducted a semi-structured interview for gathering feedback,
feature requests, and potential improvements. None of these participants (DE1+2
and VE1+2) has been using SMARTEXPLORE before.

Evaluating generalizability

In order to showcase SMARTEXPLORE’s applicability on datasets of various domains,
we also let our VA experts VE1 and VE2 analyze the university- ranking dataset!.
This dataset contains the top-1000 universities for the years 2014-2017, ranked
according to nine different metrics, such as the quality of education, number of
publications and patents. The metrics result in a numerical score, used to derive an

!Source: http://cwur.org; last accessed: 2018-06-26.

7.7 Effectiveness and Generalizability Evaluation
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Tab. 7.1. Overview of expert users and their role during the evaluation.

VA Dataset(s) Role Method
E1+2 ) food ground truth indep. analysis
Psych. novice generation & feedback
DE 1+2 compare across air analytics
novice food pare @ pau yt
Psych. expertise & interview
VE 1+2 food compare across pair analytics
expert . _ . . .
CS university expertise & data & interview

overall ranking. As before, we conducted a pair analytics study combined with a
semi-structured interview which took 30 minutes in total.

An overview of all user groups, expertise levels, roles, and evaluation methods is
shown in Table 7.1. In the following we will describe the results of each experiment
in detail.

7.7.1 Insight Generation

During the last year E1 and E2 have been using SMARTEXPLORE in different stages
of the implementation. Both experts primarily analyzed the food dataset. We are
not able to report all findings in this chapter, but we will describe interesting usage
scenarios and depict the general analysis process of the experts. According to E1 and
E2, finding statistically significant commonalities among a large set of semantically
grouped dimensions, (e.g. eating motives or ingredients), is the most convincing
argument for using SMARTEXPLORE.

The experts analyzed how age influences the preference towards certain ingredients
(Figure 7.1 (A)). The dimensions are, hereby, normalized within a subspace to
find coinciding products that are generally consumed a lot. The experts found
(statistically) obvious insights easily, such that milk, small bread, and vegetables are
generally consumed more often (dark red colors) than fish, potatoes, and pulse (dark
blue colors). Older people (last row) seem to use more milk than younger people, a
finding which could be later rejected due to its unreliability (p — value of 0.06). E1
and E2 found that there is variance based on the gender, so they created a stacked
SMARTABLE (Figure 7.1 (B)). In the group 53-66 years, the amount of vegetables is
slightly above average (light red color), but differs strongly for male (less vegetables)
and female (more vegetables). The experts made use of our automatic pattern
retrieval functionality by selecting this pattern and searched for similar findings.
The experts extended the analysis by comparing the age also to different motives
(reasons why people consumed a specific meal; Figure 7.3). Different normalizing
strategies and colormaps were applied. The SMARTABLE illustrates that motives like
convenience, hunger, affect-regulation, and sociability might be more important for
younger people, while older people are more motived by price, tradition, and social
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norms (top row). The experts also found that, generally, the motives liking, visual-
appealing, and hunger are the most common motives. Further analysis results can
be found in Figure 7.2 and 7.6 in which E1 and E2 analyzed the relation between
ingredients and nutritions, respectively motives to consume meals with high/low
calories.

7.7.2 Comparability across Expertise-levels

To analyze the influence of expertise-levels on the usefulness of SMARTEXPLORE
we asked DE1+2 and VE1+2 a non-trivial analysis question: “Which meal type
is generally most unhealthy?” Based on this controversial question, we gave the
participants a ten minute introduction and showed them the most important features.
All experts showed active interest in our available normalizing strategies, how to
interpret particular visual patterns, and asked for the internals of our automatic
computation of statistical tests; a circumstance of significant importance, especially
in the psychology domain. After understanding that SMARTEXPLORE automatically
selects the test based on all assumptions, DE1 stated that SMARTEXPLORE “[...] not
only lets us validate [hypothesis] significantly faster, but also mitigates the problem
of choosing accidentally a wrong test”.

After all open questions were answered, we asked the participants a second, more
open analysis question: “Which motives and ingredients relate to meals with high,
middle, and low calories?” All participants started analyzing the dataset by grouping
the record over the dimension kcal. The grouping granularity, however, changed
between the different user groups. While VE1+2 used a grouping with more
bins, DE1+2 created only five bins based on a similar grouping in the literature;
Figure 7.6. Independent of the grouping granularity, both participant groups where
able to identify a (linear) correlation between kcal and all dimensions within the
nutrition subspace (all statistically significant). VE1 then merged all record groups
with kcal > 900 into a single group to remove the distorted distribution of group size.
The resulted groups are similar to manual groups of DE1+2. Based on this grouping,
VE1 could identify that meals with higher number of calories might be associated
with the motives social-norms, hunger, tradition, and visual-appealing, while a lower
number of calories corresponds to motives like natural-concerns, weight-control, and
health (see Figure 7.6). Changing the granularity levels of the grouping by kcal,
the computed descriptors alternated between significant and non-significant. These
findings are in line with the ‘ground truth’ identified by E1 and E2.

Afterward, all participants were motivated to continue analyzing the dataset based
on their own interest. DE1 expanded the search to other dimensions and continued
with stacked aggregations separating male vs. female for different meal types. DE2
started a completely new analysis and looked for patterns w.r.t. stress and mood
before and after meals. VE2 analyzed which ingredients and motives are related to
a high body-mass-index. Surprisingly, a small number of participants tried to avoid
food and ingredients with a high amount of sugar and calories. As weight control is
one of the outstanding motives of this record group, VE2 hypothesized that these
participants may be planning or conducting a diet.

7.7 Effectiveness and Generalizability Evaluation
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rank 1- 100
rank 101 -200
rank 201 - 300
rank 301 - 400
rank 401 - 500
rank 501 - 600
rank 601 -700
rank 701 - 800
rank 801 - 900

rank 901 - 1,000

rank

Fig. 7.7. Dataset university, grouped by world-rank, and visualized by mean (left) and
variance (right subspace). The ten dimensions represent different ranking mea-
sures. Left: (blue — good rank and red — low rank); right (white — low and
red — high variance). Missing values are shown by noise overlay. Table lens is used
to investigate the data distribution and the descriptor of dimension national rank.

7.7.3 Comparability across Datasets

In a separate session, VE1+2 started analyzing the university dataset. Both VA
experts directly applied their experience from the first study and wanted to find out,
which aspect correlates mostly with the overall ranking of universities. Therefore,
the universities were grouped and binned by their world rank. Figure 7.7 shows the
mean and variance descriptors for all dimensions. Missing values (universities with a
rank > 1000 within one dimension) are visually highlighted with our random noise
overlay. Both participants found effortlessly that all of the attributes correlate to the
world rank (first dimension). However, there were two observations: (1) the ranking
is not linear, and (2) there is a strong variance in all dimension. The dimension
national rank is visually outstanding as the variance seems to be linearly correlated
with the world rank. VE1 continuously used the tooltip to get the data distribution
while VE2 used the stacked-aggregations to analyze differences in the different
years. He found, for example, that the influence of the rank by patents changed
significantly between 2014 and 2017. Both experts made use of the statistical tests
for verification, but relied mainly on the pattern taxonomy, and the distribution
overlay to generate findings.

The reported findings of the university dataset are rather an illustrative example
than a comprehensive user study. However, we could show that SMARTEXPLORE
can be used for other datasets as well and the usefulness is acknowledged by VA
experts (see below).
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7.8 Discussion

In our expert case studies we have shown that SMARTEXPLORE can be applied to
various applications. Users with different data and VA expertise are able to identify
and understand interesting patterns in HD data. Based on their feedback and our
observations during the study, we summarize the following lessons learned:

Lessons Learned

Instant applicability through familiar representation. Both, the E1+2 and D1+2
participants have not been using sophisticated VA tools before to find patterns across
a large set of dimensions. When we asked them to apply SMARTEXPLORE to their
data and give feedback (E1+2), and to participate in our study (D1+2) the experts
showed some skepticism on the usefulness. However, after only a few minutes
the familiar representation of the SMARTABLE convinced them instantly to see its
usefulness for their own data. Of course, applying SMARTEXPLORE to their own data
helped them building a mental relationship between previous findings and the visual
patterns. We were able to see that the participants fully understood SMARTEXPLORE
by the following observations: (1) During the feedback sessions E1+2 proposed
useful extensions based on the concept of SMARTEXPLORE. For example, they
suggested to clone entire subspaces for a comparative analysis using different statistic
tests, and initiated the discussion for the automatic reliability analysis. (2) After a
short training, D1+2 directly applied the concepts of SMARTEXPLORE to their own
analysis questions. They did not question our design choices but were immediately

able to make sense of the visible patterns and explain interesting relationships.

Therefore, we conclude that they were able to effectively use SMARTEXPLORE after
only a short training phase.

Findings by automatic support. We realized that most participants acknowledged
the automatic support of SMARTEXPLORE. For example, they liked that similar
dimensions are arranged next to each other by default and appropriate statistic
test are proposed. As a consequence, the participants were able to spot interesting
patterns without any pre-configuration and parameter choices. Once an interesting
pattern has been identified, the participants investigated the automatic selections
and adjusted the settings.

Linking to classical approaches. Even though the layout of the SMARTABLE is
quite fixed, sophisticated patterns could be detected by VE1+2. Both argued that
our design choices along with the automatic support is helpful to identify and explain
various patterns. Especially, they liked the possibility to analyze datasets with mixed
data types. However, to confirm some of the hypothesis they proposed to transform
a subset of the data to other visualization approaches. For example, to see the
actual values of records across all dimension (and not just its descriptors), Parallel
coordinates are useful.

7.8 Discussion
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Future Work

Although SMARTEXPLORE presents a sophisticated table-based VA system, we iden-
tified five areas for future improvements:

Data types. We have limited ourselves to datasets with numerical, categorical, and
binary dimensions. While the analysis of these mixture datasets is itself challenging,
e.g., due to the problematic definition of similarity and aggregations, a broad range
of further data types exist. Text-, geo-spatial-, time series-, or relational datasets
impose further challenges to both visualization and analytics.

Layout flexibility. SMARTEXPLORE’s main visualization is a table which borrows
the static layout of rows and columns. While it has significant advantages for a
broad range of users, we envision a system that lets the user freely change back and
forth between known layouts and, e.g., projection-based layouts to facilitate more
intuitively high-dimensional similarity assessments.

Data and analysis provenance. In SMARTEXPLORE, we present an implicit data
provenance approach: All analysis stages are encoded in the URL. However, we
found that an explicit gallery or journal view would be highly appreciated by our
user group.

Supporting hypothesis generation. Within the user study, VE1 argued that even
for unknown datasets users will need an initial hypothesis. VE1 suggested to show
small previous of different aggregations and orderings. Ideally these previous should
be sorted and incorporate the user’s interaction provenance. VE2 had a similar idea
by proposing to generally highlight relations in the data (e.g., correlation matrix) in
order to guide the analysis.

Trust-building. One of SMARTEXPLORE’s primary contributions is its automatic
reliability analysis, which builds trust in the tool and its findings. Further, an
algorithmic ‘helper’, such as subspace clusterings [PHLO4] or subspace nearest
neighbor search [Hun+15a], could be explored into (semi-) automated exploration
processes.

7.9 Conclusion

Finding and understanding clusters, correlations, and complex patterns in high-
dimensional data is a challenging task, especially if the underlying dataset contains
a mixture of different data types. With SMARTEXPLORE, we present a fully func-
tional table-based visual analytics technique that combines automatic analysis with
user-guided- and purely interactive exploration. In an easy to use interface, our
system automatically guides users to interpretable patterns and supports the explo-
ration through semi-automated pattern matching and user invoked reordering. Our
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interaction concept, based on drag&drop, context-dependent menus, and on-the-fly
sliders, allows the user to effectively explore datasets along the record and dimen-
sion axis. While some of our approaches are inherent to SMARTEXPLORE’s design,
we claim that, e.g., our automatic reliability analysis is generalizable to other sys-
tems. By means of an expert case studies with users of different expertise, we show
that SMARTEXPLORE is effective for a broad audience and application domains.

7.9 Conclusion
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Conclusion and Future Work

This chapter concludes the doctoral thesis. We will take a retrospective view of the
user studies and implemented tools, summarize the contributions in a bigger context,
and point to promising research directions for the next years for a pattern-driven
design of visualizations.

Recap and Summary of Contributions

Knowledge needs to be extracted from high-dimensional and complex datasets to
support data analysis processes across various research and economic disciplines.
Visualizations play hereby an essential role in the identification and understanding
of patterns within such datasets. They can be used as a primary analysis method, or
support the understanding of automatic analysis methods. However, the choice of
visual mappings heavily influences the effectiveness of the visualization. While one
design choice is useful for a particular task, the very same design can make another
analysis task more difficult, or even impossible. The design space of visualizations is
huge, making it hard to ultimately develop a design that fits a particular analysis task
and corresponds to the characteristics of the data. Data analysts are overwhelmed
with numerous choices during the design process, such as selecting data attributes,
visualization types, and the particular properties of each visualization. Hence,
this thesis supports the effective design of visualizations by tackling the following
research question: “How can we effectively design visualizations to highlight patterns
— using automatic and user-driven approaches”. The thesis thereby advanced the
quality and pattern-driven design and optimization of visualizations in two core
areas, namely automatic optimization through quality metrics, and user-centered
approaches. These two core areas also structured the two parts of the thesis.

Part I: Quality Metric-Driven Design for Pattern Analysis

The first part focused on quality metrics and addressed the research question “how can
we automatically measure the quality of a particular design to optimize the layout?”

In Chapter 2 we contributed a survey of quality metric research for visualiza-
tions for high-dimensional data. We unified the vocabulary, enumerated the dif-
ferent existing metrics, and highlighted research gaps. In the survey, we focused
on high-dimensional visualizations in which quality metrics play a key role, namely,
scatter plots, scatter plot matrices, parallel coordinates, pixel-based techniques, ra-
dial visualizations, and glyph representations. Our results showed that a large body
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of research exists, and various quality metrics have been developed in the past. How-
ever, many metrics follow similar concepts (also across visualization types) but differ
in their vocabulary or understanding of what quality means. Therefore, our pre-
sented survey provides a broad overview of the state-of-the-art and helps analysts
choose metrics appropriately.

In Chapter 4, we extended the overview of quality metrics for parallel coordinates.
We concentrated on metrics measuring the quality of a particular axes arrangement.
We introduced a classification of the existing metrics, grouped them according
to their inner workings, and summarized their intended patterns and meta-
characteristics. For more practical support, we implemented a set of 14 strategies
in JavaScript and made them available, along with the source code.

One of the main findings of the survey in Chapter 2 is that many metrics are proposed
in the literature, but not evaluated in empirical settings. Often authors, who are
proposing new quality metrics, evaluate them only with examples and case studies —
instead of conducting user studies with synthetic or real datasets. In particular, we
identified that for two of the most common visualizations for high-dimensional data,
parallel coordinates, and star glyphs, necessary user studies are missing. The order
of the axes plays a fundamental role in the design of both visualization techniques.
Different arrangements of axes show different visual patterns, which can either
support or prevent a successful analysis. In this thesis, we pushed axes reordering
for both visualization techniques towards empirical guidance by conducting a user
study for parallel coordinates (Chapter 4) and star glyphs (Chapter 3). For both
studies, we selected cluster identification as analysis task due to its primary focus
in the literature. Our main finding for both studies was that ordering dimensions
based on dissimilarity (place dimensions with a high dissimilarity next to each other)
outperform the classical similarity-based arrangement. Most likely, the salient shapes,
produced by dissimilar-based arrangements, help to identify groups of similar data
records (i.e., clusters). Based on these findings, we proposed a new reordering
method for parallel coordinates and star glyphs.

While experimenting with different axes orderings in parallel coordinates, we found
out that standard parallel coordinates systematically distort the perception of pat-
terns, in particular clusters. In Chapter 5, we proved that this problem is inherent to
the technique itself: diagonal line segments are rendered longer (=need more pix-
els) and closer to each other (=less background color), compared to horizontal lines.
Consequently, clusters are distorted, and ghost clusters (fake clusters, not existing
in the data) can emerge. Based on these findings, we contributed a formalization
of the problem and provided an automatic method to adjust the rendering of
the polylines based on their slope. Our proposed technique can be computed in
linear time and added on top of most parallel coordinate variations.

For reproducibility, and to help researchers applying our findings to new applications,
we made all materials of the papers (data, analysis scripts, analysis results, and
source codes) publicly available on different repositories at the Open Science
Framework (OSF). An overview can be found at https://osf.io/yjxw2.
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Part Il: User- and Task-Driven Design for Pattern Analysis

In many applications, the design of visualizations and the selection of visual elements
depends on the underlying analysis tasks and may even need a highly iterative
approach to describe and identify the patterns of interest. The second part of this
thesis, therefore, provided user- and task-driven approaches to (semi-)automatically
optimize visualizations. We addressed the question “how can analysts support the
design of visualization to highlight particular patterns?” As a result, we contributed
two techniques that advance the automatic design of visualizations from a user-
centered research perspective.

The first technique, called v-plot designer (Chapter 6) is build for the comparative
analysis of data distributions. Based on the selection of one or multiple analysis tasks,
the v-plot designer proposes an automatic recommendation of basic charts (e.g.,
box plots, violin-typed visualizations, and bar charts), along with a customized
hybrid chart which is called a v-plot. v-plots are automatically optimized to
support all selected analysis tasks, and highlight required distribution properties.
The automatic recommendations and the system design were developed based on the
findings of a user study of 20 InfoVis and statistic practitioners. This study provided
a solid foundation for the automation of the v-plot designer. We evaluated the
designer and the v-plot itself, by measuring the fitness for purpose and applicability
in a second study with four domain and statistic experts. The v-plot designer’s focus
was to select and adapt the visual properties of a particular visualization (v-plot)
based on a given set of analysis tasks.

For the second tool, SMARTexplore (Chapter 7), our motivation was different.
We used a table-based representation to simplify the interactive analysis of high-
dimensional datasets. SMARTexplore is intended for both novice and expert users
alike. Rows of a table can be aggregated manually, or with the help of clustering
algorithms. Dimensions can be grouped into semantically meaningful subspaces, or
automatically into groups of similar dimension patterns. SMARTexplore combines
easy-to-apply interaction concepts with the automatic and pattern-driven lay-
out of rows and columns of the table. The reliability of the perceived patterns can
be verified by an automatic performed statistical analysis, which is encoded as possi-
ble overly in the visualization. The focus of SMARTexplore is to provide analysts with
a tool to explore a dataset and identify their desired customized patterns. Based on
these patterns, SMARTexplore allows to optimize the layout and to search for similar
patterns throughout the entire datasets. Furthermore, an automatic reliability analy-
sis helps analysts to see whether an identified pattern is statistically relevant or not.

Similarly to the first part of the thesis, we provide the material, source code, and a
runnable version of the tools on our websites (https://smartexplore.dbvis.de
and https://v-plot.dbvis.de) and on OSF. The available tools also allow to
upload new data, making it possible to compare them to other approaches.

The different techniques presented in this thesis have a strong focus on classical
information visualization. However, most of the techniques build the foundation
of more advanced visual analytics frameworks. For example, a framework that
uses parallel coordinates as a (meta-)visualization, the reordering classification in
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Chapter 4 can help to find a useful initial ordering, based on the analysis task at
hand. Afterwards, analysts can continue with a more interactive analysis.

To give an overview, the core contributions of this thesis have been summarized in
Table 1.1 of Chapter 1.

Open Research Questions and Promising Directions

All chapters discuss future work with respect to their particular contribution. In the
following, we want to highlight promising research directions for the next years from
a more general perspective. We see great potential for future work in the following
foru research areas:!

Multi-Criterion Quality Metrics for Customized Patterns

The current design of quality metrics mostly follows one straight path. However, the
underlying data and the resulting visualizations rarely expose just one clear visual
pattern but present rather a mixture of several patterns. Accordingly, it is challenging
to say under which circumstances particular quality metrics and automatic chart
designs work and fail. What is needed are “flexible” quality metrics that adapt to
the underlying dataset at hand and promote the main visual pattern. Then, what is
even more important, these multi-criterion quality-metric should notify the user upon
usage that their dataset contains more than just the main pattern and offer a faceted
visual pattern space view. To give an example for parallel coordinates: A multi-
criterion QM would first let the user see the expected primary pattern (e.g., data
clusters) and then promote —optimally related- other aspects (e.g., correction) by
suggesting a different reordering of the axes. Advanced techniques should go even
one step further, and show only relevant attribute combinations (i.e., subspaces)
to the analysts. Of course, the relevance of a particular attribute or subspace
may also change based on the pattern of interest. Here, researchers may apply or
adapt concepts and algorithms from subspace analysis techniques, such as subspace
clustering [PHL04; KKZ09] and subspace outlier detection [Kri+09; ZSK12].

Task-Adapted Optimization of Visualizations

In interactive and exploratory systems, the notion of quality, especially concerning
the current analysis task, may change over time. However, the existing approaches
are often not integrated into an exploration workflow and cannot change their
quality notion by adapting to the currently conducted task or analysis direction.
Research towards task-adapted optimization of visualizations should, therefore, be
focusing in two different areas.

!The following arguments are based on Section 11 of my publication: [Beh+18]. Please refer to
Sections 1.4 and 1.5 of this thesis for the contribution clarification and general citation rules.
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First, there are analysts or particular applications in which the analysis tasks can
clearly be defined. Of course, in such applications, analysts also know when a partic-
ular analysis task is changing. Hence, we need to provide helpful user interfaces in
which analysts can select or change particular tasks. Here, the necessary research
is not about finding a particular task but about changing the properties of visual-
izations such that it is accessible to the analyst. Analysts need to understand the
design properties (e.g., the order of dimensions or the applied colormap) before and
after a change. Otherwise, they cannot connect the patterns from one visualization
design to the next. Here, research has to investigate different methods in terms of
animation, visualizing provenance, and connected small-multiple designs.

Second, there are applications in which analysts can neither describe the task at hand
nor directly indicate when a particular exploration path changes over time. Here, the
research needs to be conducted to identify the analyst’s task and identify once the
analysis task is changing. There is a body of research on extracting the intention of
users in visualizations and visual analytics systems. For example, Xu et al. [Xu+20]
provides a survey of provenance and user interaction, Brown et al. [Bro+14] is
learning user intention from low-level interactions, Endert et al. [EFN12] provides
an example for semantic interactions, and Blascheck et al. [Bla+17] surveys how
eye tracking can be used to implicitly learn from users.

A promising research direction is to combine these existing approaches with quality
metrics and develop analysis systems that capture the users’ intentions (both explicit
and implicit) and adapt visualizations in a traceable way. Such changes in the visual
design should also include possibilities to (automatically) switch the representation
between different visualization types.

Interactive and Human-Supported Quality Steering

Related to the two aspects above is interactive and human-supported quality as-
sessment. Interactive and reactive systems should facilitate the same exploration
flexibility as the user in a manual process. Several approaches have already been
presented in this growing research field with different foci on how quality metrics
can be integrated into the exploration workflow:

Behrisch et al. [Beh+14] and Dennig el al. [Den+19] present a relevance feedback
approach for a user-defined notion of interestingness in scatter plots. Users itera-
tively rank presented candidate views for their perceived interestingness. A gradu-
ally adapted classification model and a similarity advisor try to mimic the current un-
derstanding of interestingness in a given feature space. At the same time, a so-called
“decision support system” constantly monitors the user and assesses the relevance-
driven search process for convergence and stability.

Another interesting approach is presented by Wongsuphasawat et al. [Won+16] in
their Voyager system. Voyager is designed as a mixed-initiative system, in which
intelligent services and the user collaborate to achieve the analysis goals [Hor99] —
an idea also inherently incorporated in the Visual Analytics mantra [Kei+08]. Upon
startup, the user is provided with a gallery of automatically-generated visualizations
for each (statistically) interesting data variable. The user navigates in the data space
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by a drill-down on one meaningful/expressive data variable and the underlying Com-
pass recommendation engine enumerates, clusters, and ranks related visualizations
according to both their underlying data properties and the resulting perceptual prin-
ciples.

The interactive navigation and query definition for (complex) visual patterns are in
the focus of the work of Shao et al. [Sha+14]. Confronted with a scatter plot pattern
retrieval task, the user draws a vague idea of an expected visual pattern into a canvas.
Upon each stroke, the system retrieves the most similar, respectively, most dissimilar
plots; an idea referred to as guided-sketching. Visually similar results are clustered
and can be taken over to the canvas to adapt the search in this specific direction.

Following these lines of how analysts, quality metrics, and classifications work
together, there is a great potential to extend these ideas in several directions. One of
the most interesting and promising directions is to understand the user’s input and
feedback better and encode this knowledge into adaptive quality metrics.

Machine Learning

Deep-learning based approaches have proven to be good visual pattern detectors.
This could make deep learning-based quality metrics a viable research direction. Two
preconditions must hold [Var+16]: (1) a sufficiently large training dataset must be
provided or generated, (2) an appropriate network structure has to be found that is
able to deal not only with one expected visual pattern but rather a mixture-model of
the pattern space.

To date, only a few approaches exist which apply deep learning to measure the qual-
ity of a visualization or propose potentially interesting views [Sak+18]. VizDeck
[Key+12] is one of the first attempts for a machine-learning based approach. Using
users’ up and down votes on a large set of visualization, VizDeck learns to recom-
mend charts that the user will most likely vote up. Data2Vis [DD19] is a more recent
model that generates visualization specifications in the Vega-Lite grammar [Sat+17]
from descriptions of a dataset. The model was trained on thousands of exam-
ple pairs of data and visualizations recommended by the rule-based system Com-
passQL [Won+17]. Similar approaches are VizML [Hu+19] and DeepEye [Luo+18]
which have been published recently. Sabour et al. [SFH17] have shown an interest-
ing approach in which the activity vector of groups of neurons, so-called capsules,
represents a specific type of entity, such as an object or an object part. This approach
could be used for learning capsules, one for each visual pattern. The network rout-
ing scheme decides which of the visual patterns are visually outstanding (have the
most information content).

While these approaches could lead to satisfactory results, proving their perceptual
correspondence will be even harder since these approaches suffer inherently from
the interpretability gap.
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Concluding Remarks

In summary, this thesis set out from the research question “How can we effectively de-
sign visualizations to highlight patterns — using automatic and user-driven approaches?”
In the previous chapters, we have contributed various techniques and user studies to
push the quality-driven automation of visualization forward. Based on our findings,
we now have more evidence on how to reorder the dimension of parallel coordi-
nates and star glyphs, know how to reduce distortion in parallel coordinates, and
have an overview of the state-of-the-art in quality-metric research. We proposed an
automatic chart recommendation engine for the comparative analysis of data distri-
butions, along with task-specific customization of a hybrid chart, grounded in an
expert survey. Finally, we presented SMARTexplore, a table-based visual analytics
system allowing analysts to identify complex patterns in high-dimensional data.

However, we can also see that there are numerous ways to build on top of this thesis’
findings. We are looking forward to the upcoming research in the next years, which
will make the (semi-) automatic design of visualizations even more effective.
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