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Abstract—In this paper, we present a systematization of techniques that use quality metrics to help in the visual exploration of
meaningful patterns in high-dimensional data. In a number of recent papers, different quality metrics are proposed to automate
the demanding search through large spaces of alternative visualizations (e.g., alternative projections or ordering), allowing the user
to concentrate on the most promising visualizations suggested by the quality metrics. Over the last decade, this approach has
witnessed a remarkable development but few reflections exist on how these methods are related to each other and how the approach
can be developed further. For this purpose, we provide an overview of approaches that use quality metrics in high-dimensional data
visualization and propose a systematization based on a thorough literature review. We carefully analyze the papers and derive a set
of factors for discriminating the quality metrics, visualization techniques, and the process itself. The process is described through a
reworked version of the well-known information visualization pipeline. We demonstrate the usefulness of our model by applying it to
several existing approaches that use quality metrics, and we provide reflections on implications of our model for future research.

Index Terms—Quality Metrics, High-Dimensional Data Visualization.

1 INTRODUCTION

The extraction of relevant and meaningful information out of high-
dimensional data is notoriously complex and cumbersome. The curse
of dimensionality is a popular way of stigmatizing the whole set of
troubles encountered in high-dimensional data analysis; finding rele-
vant projections, selecting meaningful dimensions, and getting rid of
noise, being only a few of them. Multi-dimensional data visualiza-
tion also carries its own set of challenges like, above all, the limited
capability of any technique to scale to more than an handful of data
dimensions.

Researchers have been trying to solve these problems through a
number of automatic data analysis and visualization approaches that
cover the whole spectrum of possibilities: from fully automatic to
fully interactive. Visualization researchers have discovered early on
that searching for interesting patterns in this kind of data can be done
through a mixed approach, where the machine based on quality met-
rics automatically searches through a large number of potentially in-
teresting projections, and the user interactively steers the process and
explores the output through visualization.

The pioneering work of Friedman and Tukey in 1974 with their pro-
jection pursuits method [21] introduced the idea. They recognized the
limit of human beings in exploring the exponential set of projections
and tackled the high-dimensionality issue by letting an algorithm dis-
cover interesting linear projections in 1D (histograms) and 2D (scatter
plots) and letting the user evaluate the corresponding output.

During the last few years the use of this paradigm has witnessed
a growing interest, and an increasing number of techniques has been
published in key data visualization conferences and journals. Qual-
ity metrics have been used for very disparate goals such as: search-
ing for interesting projections, reducing clutter, and finding meaning-
ful abstractions. However, the initial idea of quality metrics has been
elaborated and expanded so much further and into so many different
directions that it is hard to come up with a coherent and unified pic-
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ture for them. A reader of one of these papers may well appreciate
the value of a single technique without having a way to place it into
a larger context. Also, researchers who might want to approach this
area of investigation for the first time and develop new techniques may
have a hard time appreciating the whole spectrum of possibilities and
directions related to the use of quality metrics.

In this paper we move first steps towards filling this gap. We pro-
vide a systematization of using quality metrics in high-dimensional
data analysis through a literature review. We analyzed numerous pa-
pers containing quality metrics and went through an iterative process
that led to the definition of a number of factors and a quality metrics
pipeline, which is inspired to the traditional information visualization
pipeline [12].

The extracted factors and the pipeline have the following interre-
lated goals: (1) putting the existing methods into a common frame-
work, (2) easing the generation of new research in the field, (3) spot-
ting relevant gaps to bridge with future research.

In the paper, we provide an extensive explanation of the methodol-
ogy we followed, the results we obtained, and their practical use. In
particular, we demonstrate by going through a number of selected ex-
amples how we are able to describe existing approaches through the
proposed models. Also, we spot a number of interesting gaps and give
guidelines on how to carry out new research in this area. To the best of
our knowledge, despite the numerous techniques that can be catego-
rized under the umbrella of quality-metrics-driven visualization, this
is the first attempt in this direction.

1.1 Definitions

In order to make the goal and scope of our work clear, we provide
some initial definitions.

Information Visualization Pipeline: a reference model that de-
scribes how to transforms data into visualizations through a series of
processing steps, as defined in [12].

Quality Metric: a metric calculated at any stage of the information
visualization pipeline that captures properties useful to the extraction
of meaningful information about the data.

High-Dimensional Data: any data set with a dimensionality that
is too high to easily extract meaningful relations across the whole set
of dimensions. In the context of this paper, any dimensionality higher
than 10 is considered high-dimensional.

Our focus is on the analysis of methods that apply quality metrics
at any stage of the information visualization pipeline as a way to fa-
cilitate the detection and presentation of interesting patterns in high-
dimensional data.



1.2 Examples
We first discuss a few short examples of the approaches covered in our
review to familiarize the reader with the concepts exposed in the paper
and get the feeling of their heterogeneity. They cover a broad selection
of the factors, denoted with italics, which will be presented in detail in
Section 5.1.

Best ranked views using RVM
100 97 75

Worst ranked views using RVM
0 0.3 5.6

Figure 6: Results for the Parkinson’s Disease dataset using our RVM
measure (Section 4.1). While clumpy non-correlation bearing views
are punished (bottom row), views containing more correlation are
preferred (top row).

We used the following datasets: Parkinson’s Disease is a dataset
composed of 195 voice measures from 31 people, 23 with Parkin-
son’s disease [15, 14]. Each of the 12 dimensions is a particular
voice measure. Olives is a classified dataset with 572 olive oil sam-
ples from nine different regions in Italy [25]. For each sample the
normalized concentrations of eight fatty acids are given. The large
number of classes (regions) poses a challenging task to the algo-
rithms trying to find views in which all classes are well separated.
Cars is a previously unpublished dataset of used cars automatically
collected from a national second hand car selling website. It con-
tains 7404 cars listed with 24 different attributes, including price,
power, fuel consumption, width, height and others. We chose to
divide the dataset into two classes, benzine and diesel to find the
similarities and differences between these. Wisconsin Diagnostic
Breast Cancer (WDBC) dataset consists of 569 samples with 30
real-valued dimensions each [20]. The data is classified into ma-
lign and benign cells. The task is to find the best separating di-
mensions. Wine is a classified dataset with 178 instances and 13
attributes describing chemical properties of Italian wines derived
from three different cultivars.

First we show our results for RVM on the Parkinson’s Dis-
ease dataset [15, 14]. The three best and the three worst re-
sults are shown in Figure 6. Interesting correlations have been
found between the dimensions Dim 9(DFA) and Dim 12(PPE),
Dim 2(MDVP:Fo(Hz)) and Dim 3(MDVP:Fhi(Hz)), as well as Dim
2(MDVP:Fo(Hz)) and Dim 4(MDVP:Flo(Hz)) (Fig. 6). On the
other hand visualizations containing few or no correlation infor-
mation at all received a low value.

In Figure 7 the results for the Olives dataset using our CDM
measure are shown. Even though a view separating all different
olive classes does not exist, the CDM reliably choses three views
which separate the data well in the dimensions Dim 4(oleic) and
Dim 5(linoleic), Dim 1(palmitic) and Dim 5(linoleic) as well as
Dim 1(palmitic) and Dim 4(oleic).

We also applied our HDM technique to this dataset. First the 1D-
HDM tries to identify the best separating dimensions, as presented
in Section 4.2.2. The dimensions Dim 1(palmitic), Dim 2(palmi-
toleic), Dim 4(oleic), Dim 5(linoleic) and Dim 8(eicosenoic) were
ranked as the best separating dimensions. We computed all subsets
of these dimensions and ranked their PCA views with the 2D-HDM.
In the best ranked views presented in Figure 8 the different classes

Best ranked views using CDM
100 97 84

Worst ranked views using CDM
0 15 24

Figure 7: Results for the olive dataset using our CDM measure (Sec-
tion 4.2.1). The different colors depict the different classes (regions)
of the dataset. While it is impossible for this dataset to find views
completely separating all classes, our CDM measure still found views
where most of the classes are mutually separated (top row). In the
worst ranked views the classes clearly overlap with each other (bot-
tom row).

Best ranked PCA-views using HDM
85.45 84.98 84.9

Figure 8: Results for the Olives dataset using our HDM measure
(Section 4.2.2). The best ranked plot is the PCA of Dim(4,5,8)
were the classes are good visible, the second best is the PCA of
Dim(1,2,4) and the third is the PCA on all 8 dimensions. The differ-
ences between the last two are small, because the variance in that
additional dimensions for the 3rd relative to the 2nd is not big. The
difference between these and the first is good visible.

are well separated. Compared to the upper row in Figure 7, the vi-
sualization uses the screen space better, which is due to the PCA
transformation.

To measure the value of our approaches for Parallel Coordinates
we estimated the best and worst ranked visualizations of different
datasets. The corresponding visualizations are shown in Figure 9,
10 and 11. For a better comparability the visualizations have been
cropped after the display of the 4th dimension. We used a size of
50× 50 for the Hough accumulator in all experiments. The algo-
rithms are quite robust with respect to the size and using more cells
generally only increases computation time but has little influence
on the result. Figure 9 shows the ranked results for the Parkinsons
Disease dataset using our Hough Space Measure.

The HSM algorithm prefers views with more similarity in the
distance and inclination of the different lines, resulting in the promi-
nent small band in the visualization of the Parkinsons Disease
dataset, which is similar to clusters in the projected views of these
dimension, here between Dim 3(MDVP:Fhi(Hz)) and Dim 12(PPE)
as well as Dim 6(HNR) and Dim 11(spread2).

Applying our Hough Similarity Measure to the Cars dataset

Fig. 1. Ranking projections according to their class density measure,
favoring projections with minimal overlap between predefined classes
(i.e., the colors) [48].

Example 1. Tatu et al. in [48] analyze high-dimensional data sets
by computing an interestingness score for every scatter plot generated
with all the possible combinations of axis pairs from the original data.
The score is calculated by running image processing algorithms on top
of each scatter plot in order to detect images with clusters in the visu-
alization. The system returns a list of scatter plots as those presented
in Figure 1 sorted in order of relevance according to the chosen quality
measure.

Figure 3: Scatterplot matrices visualization of Cars dataset. In (a) dimensions are randomly positioned. After clutter reduction (b) is generated.
The first four dimensions are ordered with the high-cardinality dimension reordering approach, and the other three dimensions are ordered with
low-cardinality approach.

uous, such as height or weight, and can take on any real number
within the range. In low-cardinality dimensions, data values are
often discrete, such as gender, type, and year. These data points of-
ten take a small number of possible values. It is often perceived that
plots involving only high-cardinality dimensions will place dots in a
scattered manner while plots involving low-cardinality dimensions
will place dots in straight lines because a lot of data points share
the same value on this dimension. In this paper, we determine if a
dimension is high or low-cardinality depending on the number of
data points and their possible values. Let mi denote the number of
possible data values on the ith dimension, and m denote the total
number of data points. If mi ≥ √

m, dimension i is considered to be
of high-cardinality, otherwise it is low-cardinality.

We will treat high-cardinality and low-cardinality dimensions
separately because they generate different plot shapes. The clutter
definition and clutter computation algorithms for these two classes
of dimensions will differ from each other.

4.2 High-Cardinality Clutter Measure in Scatterplot Matrices

4.2.1 Defining and Computing Clutter

The correlation between two variables reflects the degree to which
the variables are associated. The most common measure of correla-
tion is the Pearson Correlation Coefficient, which can be calculated
as:

r =
∑i (xi −xm)(yi −ym)√

∑i (xi −xm)2
√

∑i (yi −ym)2
(2)

where xi and yi are the values of the ith data point on the two
dimensions, and xm and ym represent the mean value of the two
dimensions.

Since plots similarly correlated will likely display a similar pat-
tern and tendency, we can calculate the correlations for all the
two-dimensional plots (in fact half of them because the matrix is
symmetric along the diagonal), and reorder the dimensions so that
plots whose correlation differences are within threshold t are dis-
played as close to each other as possible. To achieve this goal,
we define the sum of the distances between similar plots to be the
clutter measure. In our implementation, we define the plot side
length to be 1 and calculate the distance between plots X and Y us-
ing

√
(RowX −RowY )2 +(ColumnX −ColumnY )2. For example,

in Figure 4, the distance between similar plots A and B will be√
(1−0)2 +(1−0)2 =

√
2. Larger distance sum means similar

plots are more scattered in the display, thus the view is more clut-
tered.

Figure 4: Illustration of distance calculation in scatterplot matrices.

In the high-cardinality dimension space, our approach to calcu-
late total clutter for a certain dimension ordering is as follows. Let
pi be the ith plot we visit. Let threshold t be the maximum corre-
lation difference between plots that can be called ”similar”. Note
that we are only concerned with the lower-left half of the plots, be-
cause the plots are symmetric along the diagonal. The plots along
the diagonal will not be considered because they only disclose the
correlations of dimensions with themselves. This is always 1.

In a fixed matrix configuration, we do the following to compute
the clutter of the display. First, a correlation matrix M(n,n) is gen-
erated for all n high-cardinality dimensions. M[i][ j] represents the
Pearson correlation coefficient for the plot on the ith row and jth
column. If data number is m, the complexity of building up this
matrix is O(m ∗ n2). Then, for any plot pi, we find all the plots
that have a similar correlation with it, i.e, the differences between
their Pearson correlation coefficients with pi’s are within threshold
t. This process will take O(n3). We store this information so we
only have to do it once.

4.2.2 The Optimal Dimension Order

We get a total distance for any scatterplot matrix display. With
this measure, comparisons between different displays of the same
data can be made. Unlike the one-dimensional parallel coordinates
display, we have to calculate distances for every pair of plots. If a
pair of plots has similar correlation, their distance is added to the
total clutter measure of the display. This is an O(n2) process. An
optimal dimension order can be achieved by an exhaustive search
with complexity O(n!). Therefore the total computing time will be
O(n2 ∗n!).

4.3 Low-Cardinality Clutter Measure in Scatterplot Matrices

4.3.1 Defining and Computing Clutter

In low-cardinality dimensions, we also want to place similar plots
together. But we use a different clutter measure from high-
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Fig. 2. Clutter reduction achieved through axes reordering in a scatter
plot matrix (initial visualization on the left, reordered on the right) [39].

Example 2. Peng et al. in [39] provide algorithms to reorder the axes
of multi-dimensional data visualizations (parallel coordinates, scatter
plot matrices, glyphs, recursive patterns) in order to reduce clutter and
make interesting patterns more clearly visible. For each visualization
a specific quality metric calculated in the data space is used to find
the best ordering. In Figure 2, we present an example on scatter plot
matrix reordering.

The original data set containing 16384 items. Targeting a visual quality of 0.95 
retains 987 items.

Fig. 3. Data abstraction algorithm based on sampling, aiming at reduc-
ing data size while preserving relevant patterns. Original visualization
on the left with 16384 data items. Sampled visualization on the right
with 987 items and a visual quality of 0.95 [28].

Example 3. Johansson et al. in [28] study the abstraction obtained

by applying sampling or aggregation algorithms on top of parallel co-
ordinates and provide quality metrics to judge when the abstraction
disrupts relevant patterns in the data. In Figure 3 we show an example
from their work, where on the left the data set containing 16384 items
is displayed with parallel coordinates. On the right side they display
an image targeting a visual quality of 0.95 (on a scale from [0,1]) by
displaying only 987 items. The image quality is calculated by a screen
metric using distance transforms.

All the approaches have in common that they use quality metrics in
the context of high-dimensional data visualization; nonetheless they
can differ on a variety of aspects. For instance, in Example 1 the pur-
pose is to find interesting projections, in Example 2 the purpose is to
reduce clutter, whereas the purpose in Example 3 is to find the right ab-
straction level. The approaches can as well differ in a number of other
aspects such as: the visualization techniques employed, the space in
which the quality metrics are calculated, or the level of interaction they
provide.

Therefore the questions are: How we can put all the approaches
into a common framework which is able to highlight commonalities
and differences? What are the main factors through which we can
describe them? How can we learn from the approaches and build on
top of them to systematically move the idea of quality-metrics driven
visualization forward?

These are the main questions that motivate our work and in the fol-
lowing sections we will provide the results of our investigation.

2 BACKGROUND

Quality metrics in visualization have a long history. While in our work
we focus only on their specific use in high-dimensional data analysis,
they have a broader scope than we can describe here. Early attempts to
calculate quality metrics can be traced back to the work of Tufte [51],
where he proposed metrics such as the data to ink ratio and the lie fac-
tor, which respectively optimize the use of the visualization space and
reduce the distortions that visualization may introduce. Later in 1997
Richard Brath proposed a rich set of metrics to characterize the qual-
ity of business visualizations [11] and, around the same period Miller
et al. advocated the use of visualization metrics as a way to compare
visualizations [37]. The graph drawing community developed its own
set of metrics, most notable aesthetic metrics such as those found in
the foundational work of Ware et al. on cognitive measurements of
graph aesthetics [52]. Later, the word quality metrics assumed a more
specific meaning; in particular it appeared in the context of a number
of papers related to clutter reduction and scalability [9, 10, 28, 30, 39].

While all these works are related to our goal, early in our project we
decided to focus on the use of quality metrics in high-dimensional data
exploration only. Our initial data gathering process included a broader
class of papers, including those cited above. However we soon real-
ized there is no all encompassing model able to synthesize the relevant
aspects and, at the same time, is useful in practice. For this reason the
paper focuses only on the use of quality metrics in high-dimensional
data.

There exist a number of research papers which try to categorize ex-
isting work in the visualization area. Here we briefly mention some
recent ones to put our work in a larger context. In Rethinking Visual-
ization [50] Tory and Möller provide a taxonomy to describe scientific
and information visualization under the same structure. Ellis and Dix
organize a large number of existing clutter reduction techniques into
a clutter reduction taxonomy [18]. Yi et al. review a large number of
visualization systems to better understand the role of interaction in vi-
sualization [60]. Segel and Heer analyze a large body of story telling
visualizations to identify common design patterns [43]. All these pa-
pers share with ours the need of putting some order into a complex as-
pect of data visualization by starting from a detailed analysis of what
researchers and practitioners have proposed in the past.

Since our proposed systematization uses a data visualization
pipeline as the basis for the analysis of quality metrics, we deem im-
portant to briefly discuss existing data processing pipelines. The in-
formation visualization pipeline has been presented by Card et al. [12]
and is widely accepted as the standard processing model for infor-



mation visualization. The Data State Reference model [13] is largely
based on the information visualization pipeline and classifies visual-
izations according to how they use the operators in the pipeline. In
this regard it is similar to our work in that we also use elements of the
pipeline to classify the papers we have analyzed. The KDD pipeline
[19] has been developed in the early nineties to describe the data pro-
cessing stages involved in knowledge discovery. While we took inspi-
ration from this model, as quality metrics involve automatic computa-
tion and visualization, we decided not to use it as a basis for our work
because visualization does not explicitly appear in the intermediary
steps of the process. Keim et al. [31] and Bertini et al. [8] present al-
ternative pipelines that show how automated data analysis algorithms
can be included in the data visualization process. These papers are also
sources of inspiration for our work as they focus on the integration of
automated algorithms and data visualization.

3 METHODOLOGY

We followed an iterative data gathering, coding, and modeling ap-
proach inspired to the methods used in grounded theory analysis [47].
We started from a small set of papers about quality metrics we knew
from our own experience and used this initial list to derive a first set
of descriptive factors. After that, we expanded the list by analyzing
the references contained in the first set of papers and by searching in
relevant visualization venues. In particular, we used Google Scholar 1

to search for references to and from the collected papers. We also
expanded our list by targeted keyword search.

At this stage we decided to narrow down the scope of our study and
focus on quality metrics for high-dimensional data analysis. We dis-
carded the papers that (1) did not explicitly address high-dimensional
data, (2) did not propose quality metrics systems or algorithms. For
instance we discarded a number of interesting papers on the use of
quality metrics for generic data visualizations [27], for graph drawing
[16], or the discussions on generic aspects of quality metrics [10].

Two of the authors went independently through the current list of
papers and completed a table with the current version of the classifi-
cation and took notes on necessary modifications/additions to accom-
modate new aspects discovered during the analysis. After this first
phase the two lists and the notes where confronted in order to reach a
consensus on table factors and paper coding. The third author played
the devil’s advocate role at this stage to confirm the factors were ex-
plicative, understandable and relevant. A third set of additional papers
were gathered and coded at this point to test the classification further.

We proceeded then to the definition of a visualization pipeline able
to capture the data visualization processes described in the papers. We
started from the traditional information visualization pipeline [12] be-
cause it is widely known and helps capturing key elements of quality-
metrics-driven visualizations (details in Section 4).

We generated the quality metrics pipeline iteratively using the set of
gathered papers and the descriptive table with quality metrics factors
as reference. In particular, (1) we built a first draft of the new pipeline;
(2) we went through the whole list of papers and checked whether the
pipeline was able to describe every aspect involved in the process; (3)
where discrepancies were found, we refined the pipeline accordingly.
As a final step, we double-checked that every paper in the list could
be described by a specific instance of the pipeline. Similarly to the
procedure followed in the first phase we let one of the authors, not
involved in the model generation phase, again play devil’s advocate
and refine the model at intermediary steps. The work on the pipeline
generated also small adjustments that led to the final version of the
quality metrics table (Table 2).

It is important to note that while we followed a systematic approach
there is no guarantee that this is the only way to describe quality met-
rics and their use. Many of the elements introduced in the proposed
models are the result of our own experience and are thus necessar-
ily subjective. Nonetheless, the usefulness of the proposed model is
demonstrated by its ability to describe the whole set of papers and to
identify relevant gaps interesting for future research.

1http://scholar.google.com/

4 QUALITY METRICS PIPELINE

We briefly recall the main elements of the Card et al.ś pipeline [12]
and then we move forward to the description of our extensions.

The original purpose of the infovis pipeline was to model the main
steps required to transform data into interactive visualizations. The
quality metrics pipeline in Figure 4 preserves its main elements: pro-
cessing steps (horizontal arrows), stages (boxes), and user feedback
(with few naming differences we will explain soon). Data transfor-
mation transforms data into the desired format. Visual mapping maps
data structures into visual structures (visualization axes, marks, graph-
ical properties). View transformation creates rendered views out of the
visual structures. The whole set of transformations is influenced by
the user who can decide at any time to transform the data (e.g., filter),
use different visual structures and, navigate the visualization through
different view points.

The infovis pipeline captures extremely well the key elements
of interactive visualization across a variety of domains and visual
techniques. However, when we focus on the visualization of high-
dimensional data patterns a practical problem arises. While the whole
set of processes is still valid, the number of possible combinations
at each step is so high that it is impractical to find interactively the
most effective ones. An example in the spirit of Mackinlay’s semi-
nal analysis [36] helps to clarify the problem: if the original data has
dimensionality n = 10 (still a quite low number) and the number of
available visual parameters is k = 4 (e.g., a scatter plot with the fol-
lowing visual primitives: x-axis, y-axis, size, and color), the number
of alternative mappings at the visual mapping stage is already more
than 5000 (k-permutations, i.e., the number of sequences without rep-
etition: n!

(n−k)! ).
The main function of quality metrics algorithms is to aid the user

in the selection of promising combinations. Typically, the algorithms
search through large sets of possibilities and suggest one or more so-
lutions to be evaluated by the user. To describe these steps we created
an additional layer in Figure 4 that we call quality-metrics-driven au-
tomation, which depicts how quality metrics fit into the process. The
metrics draw information from the stages of the pipeline (green up-
wards arrows) and influence the processing steps (blue downwards
arrows) with their computation. The user remains in control of the
whole process letting the machine perform the computationally hard
tasks. We named the new pipeline the quality metrics pipeline.

The concept of generation of alternatives and their evaluation is at
the core of the method. Regardless the purpose, all the systems we
have encountered follow a common general pattern:

1. Create alternatives (projections, mappings, etc.)
2. Evaluate alternatives (rank views, orderings, etc)
3. Produce a final representation (ranked list of views, small multi-

ples, etc.)

As we will show in Section 6, systems with disparate purposes can
be described by this same model.

Processing. In the following we provide details about specific fea-
tures of the processing steps of the quality metrics pipeline.

1. Data Transformation (source data → transformed data). In the
original pipeline this step has the main role to put the data in a
tabular format, hence the original name tabular data of its out-
put. Since here we focus on high-dimensional data we assume
the source data to be already in a tabular format and we rename
it into transformed data. At this stage data transformation is re-
sponsible for the generation of alternative data subsets or deriva-
tions. Common operations include: feature selection, projection,
aggregation, and sampling.

2. Visual Mapping (transformed data → visual structures). Visual
mapping is the core stage of the pipeline where data dimensions
are mapped to visual features to form visual structures. Distinct
mappings of data features to visual features provide alternatives
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Fig. 4. Quality metrics pipeline. The pipeline provides an additional layer named quality metrics base automation on top of the traditional information
visualization pipeline [12]. The layer obtains information from the stages of the pipeline (the boxes) and influences the processes of the pipeline
through the metrics it calculates. The user is always in control.

that can again be evaluated in terms of quality metrics. The most
common type of operation at this stage is the generation of or-
derings; by assigning data dimensions to visualization axes in
different orders. In general, alternatives can be generated by con-
sidering the full set of visual features (e.g., color, size, shape).

3. Rendering/View Transformation (visual structures → views).
Rendering transforms visual structures into views by specifying
graphical properties that turn these structures into pixels. We
added the word Rendering to the pipeline to emphasize the role
of the image space; many quality metrics are thus calculated di-
rectly in the image space considering the pixels generated in the
visualization process. At this stage alternatives views of the same
structures can be generated automatically. Surprisingly, as we
discuss in Section 7, this stage is, in the context of our inquiry,
rarely used.

Quality metrics computation. Quality metrics can draw informa-
tion from any of the stages of the pipeline. As we describe later in
Subsection 5.1 quality metrics can be calculated in the data space, im-
age space or a combination of the two. Metrics calculated at the View
stage draw information from the rendered image, whereas the others
draw information from the data space (and elements of the visual struc-
tures in some few cases). Many different kind of metrics are possible.
Our analysis of quality metrics features in Subsection 5.1 provides nu-
merous additional details.

Quality metrics influence. As described above, quality metrics al-
gorithms generate alternatives and organize them into a final represen-
tation. At the data processing stage they can for instance generate 1D,
2D, or nD projections (e.g., [20, 22, 44]), data samples (e.g., [9, 28]),
or alternative aggregates (e.g., [14]). At the visual mapping stage the
layer generates alternative orderings or mappings between data and
visual properties (e.g., [39, 42]). At the view stage the layer can gen-
erate modifications of the current view like changing the point of view,
highlighting specific items, or distorting the visual space (e.g., [4]).

User influence. The quality metrics layer does not want to sub-
stitute the user in favor of the machine. While the users can always
influence all the stages of the pipeline, their main responsibility be-
comes to steer the process, e.g., by setting quality metrics parameters,
and to explore the resulting views. It is worth noting that the process
is not necessarily a linear flow through the steps. As will be evident
from the examples in Section 6 in many cases complex iteration takes
place.

5 SYSTEMATIC ANALYSIS

Through our paper review we identified two main areas of investiga-
tion. First, we classify the papers according to quality metrics criteria
that help explaining their key features. Second, we provide a more
detailed categorization of the visualization techniques we have come
across.

5.1 Quality Metrics

Through the literature review we identified a number of factors that
describe the methods encountered. Each factor has a number of possi-
ble values and each paper can assume one or more of these values (see
Table 2).

What is measured. This factor describes what is measured by the
quality metric. In our analysis we have grouped the metrics in the
following categories: Clustering metrics measure the extent to which
the visualization or the data contain groupings, that is, well-separated
clusters that can be easily identified. Clustering is loosely defined be-
cause we have encountered many alternative approaches. It is worth
to keep in mind that with clustering here we intend any measure in the
data or image space which is able to capture groupings. Correlation
relates to two or more data dimensions and captures the extent to which
systematic changes to one dimension are accompanied by changes in
other dimensions. Simple Pearson correlation between two variables
is one of the most commonly used measure in this category but global
correlation among multiple data dimensions are also used [30]. Outlier
metrics capture the extent to which the data segment under inspection
contains elements that behave differently from the large majority of
the data, i.e., outliers. Complex patterns metrics capture aspects that
cannot be easily categorized as any of the classes described above. We
detected a number of papers with such measures and grouped all of
them in this class. An example is Graph-Theoretic Scagnostics [54] a
technique where it is possible to characterize scatter plots with features
like “stringy” or “skinny”. Image quality refers to metrics where the
purpose is not necessarily to find specific patterns but more to identify
the degree of organization of a visualization or, as some of the papers
call it, the amount of clutter. Feature preservation metrics focus on
the comparison between a reference state and the representation in the
visualization, or between the features in the data and the visualization,
with the intent to preserve the features of interest as much as possible.
A subset of these papers focus on classified data, searching for pro-
jections where the original classes are well separated [46, 48]. In the
same category we can find papers that measure the information loss
due to data abstraction techniques such as sampling and aggregation
[9, 14, 28]. It is worth noticing that in this categorization we classified
the techniques according to their main target. This however does not
hinder a metric of one type to also detect patterns of another type. For
instance, clustering and correlation, as well as complex patterns and
image quality, may have such an overlap.

Where it is measured (data/image space). In our review we have
found a completely mixed set of approaches with respect to where the
metrics are calculated: data space or image space. Metrics calculated
in data space detect data features directly in the data without using in-
formation from the view that will be used to display the results. For
instance, the Rank-by-Feature technique ranks 1D and 2D projections
according to a number of statistical properties calculated only in data
space. Metrics calculated in image space bypass the analysis of the
data and work directly on the rendered image. Often these methods
employ sophisticated image processing techniques like in the work of



Tatu et al. where interesting scatter plots are ranked using a Hough
Transformation [48]. A mixed-space approach, where both data and
and image space are used at the same time, is also possible. We found
two distinct cases. Bertini and Santucci [9] present a measure to com-
pare features in the data space to features in the image space; with
the intent of preserving as much as possible data features in the final
image. Peng et al. [39] measure clutter in relation to the ordering of
visualization axes: these calculations need data features (outliers, cor-
relations) and visualization features (e.g., axes adjacency) at the same
time. Please note that the entries in Table 2, where both data and image
space are present, do not necessarily imply the use of the aforemen-
tioned mixed approach. More often, they simply mean that alternative
approaches co-exist in the context of the same paper.

Purpose. Purpose describes the main reason for using quality met-
rics, that is, what is the goal to be achieved with the metric. We iden-
tified the following purposes. Projection aims at finding subsets of the
original dimensions in which interesting patterns reside, e.g., analyz-
ing all the possible 2D projections of a multidimensional data set by
checking whether interesting groupings exist in a scatter plot. Order-
ing aims at finding, where possible, an ordering of the visualization
axes that eases the visual detection of interesting patterns. Parallel
coordinates is a classical example where the order of the axes greatly
influences the chances of detecting interesting patterns in the data. Ab-
straction aims at maintaining or controlling a certain degree of data
representation quality when data reduction techniques are used to in-
crease the scalability of a visualization. Sampling and aggregation are
the two main types of abstraction techniques we encountered. For in-
stance, in [14] the authors propose a data abstraction technique that
permits to measure the information loss due to abstraction and to find
a trade-off between data loss and data reduction. Visual mapping aims
at finding interesting mappings between the original data features and
the visual features of the visualization technique. Features such as
color, size or shape fall into this category. View optimization aims at
modifying parameters of the view with the intent to produce better vi-
sualizations, in which, for example, data segments with a high degree
of interest are highlighted.

Interaction. The last column of the table indicates which papers
offer the possibility to interact with the quality-metrics-based automa-
tion. We extracted two main classes of interaction: threshold selec-
tion and metrics selection. With threshold selection we mean the pos-
sibility to set thresholds in the quality metrics computation mecha-
nism (e.g., the data abstraction level in [14] or the density estimation
smoothing parameter in [20]). With metrics selection we mean sys-
tems in which the user can either switch from one metrics to another
or combine them into an integrated one (e.g., [15, 30]). Please note
that some of the papers may contain interaction capabilities and still
be marked as not interactive because they do not provide direct inter-
action with the quality metrics mechanisms.

5.2 Visualization
The original table we have designed to classify the full set of papers
(see Table 2 below) contains a rough categorization of visualization
techniques into three main classes: scatter plots (SP), parallel coordi-
nates (PC) and others (which include a fairly large number of different
techniques). While this categorization helps understanding how these
techniques distribute over the whole set of papers (SP and PC accounts
for 80% of the total) it does not say anything about key features of vi-
sualization techniques; especially those closely related to the usage of
quality metrics.

We define layout dimensionality as the number of data axes a vi-
sualization has. A data axis is the visualization feature that establishes
what position a single visual mark takes in the visualization. For in-
stance, scatter plots have dimensionality two because they can accom-
modate two spatial dimensions.

The visualization techniques are classified into 1D, 2D, 3D, 4D and
nD, where nD stands for techniques that can accommodate an arbi-
trary number of dimensions (with obvious scalability limits when the
number of dimensions grows too big).

It is worth noticing that in general every visualization has an addi-

tional number of visual features to which data features can be mapped,
e.g., color and size, but here we focus on the layout because it is the
variable that most characterizes every visualization technique and that
has the biggest impact on the use of quality metrics. Table 1 shows the
dimensionality of all the techniques we have identified in the review.

The visualization techniques that are not in the nD class necessarily
need an additional mechanism for the analysis of high-dimensional
data. Typically, as discussed below, they are organized in a higher
level structure that accommodates several projections. Those which
can accommodate an arbitrary number of dimensions (nD) all need
some kind of ordering mechanisms.

Table 1. Visualization techniques categorized by their layout dimension-
ality (i.e., the number of axes of the visualization).

Visualization Layout Dimensionality
histogram 1D

jigsaw map [53] 1D
scatter plot 2D

pixel bar charts [32] 4D
dimensional stacking [33] nD

matrix [7] nD
parallel coordinates [26] nD

radvis [24] nD
scatter plot matrix [56] nD

star glyphs [45] nD
table lens [40] nD

While not explicitly discussed in any of the reviewed papers,
we have noticed that often a quality-metrics-driven approach needs
some kind of (implicit or explicit) meta-visualization. With meta-
visualization we mean a visualization of visualizations. More specif-
ically, a visualization layout strategy that organizes single visualiza-
tions into an organized form. For instance, when a quality-metrics-
driven technique produces a number of interesting scatter plots as an
output, there is the need to organize them into a schema that facilitates
their comprehension and analysis (e.g., organized into a list sorted by
interestingness). From our analysis we have identified the following
main meta-visualization strategies. List: a layout strategy that orga-
nizes visualizations in an ordered linear fashion (often sorted to reflect
quality metrics rankings). Matrix: a layout strategy that organizes vi-
sualizations in a grid format, where grid entries are organized accord-
ing to some data features (e.g., column and rows represent data dimen-
sions) (often called also Small Multiples, Trellis, Lattice, Facets).

It is worth noticing that some basic visualization techniques can be
considered meta-visualizations themselves. A notable example is the
scatter plot matrix which shows a set of scatter plots organized in a
matrix layout.

In general there is a strong interplay between visualizations and
meta-visualizations. As mentioned above, techniques with a fixed di-
mensionality need to be organized in a meta-visualization. The meta-
visualization influences the ordering of the visualizations and in some
cases also the content. For instance, the matrix layout requires that
the visualization within a grid cell corresponds to the data values it
represents.

Finally, meta-visualizations can themselves be influenced by qual-
ity metrics. All the layout strategies have some degree of freedom
in terms of reordering, and an optimal reordering (according to some
given goal) can only be achieved by searching in the space of solutions
(e.g., as presented in [39]).

6 EXAMPLES

In this section we provide three selected examples from our review
as a way to show how our proposed model can describe existing ap-
proaches in this area. We selected the examples in a way to cover as
many interesting aspects as possible. In particular, we picked papers



Table 2. Quality metrics papers classified according to quality metrics factors (sorted by purpose).
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with different purposes because they guarantee a larger variety of fea-
tures.

The first example comes from the work of Tatu et al. [48]. The main
goal of this paper is to find interesting projections of n-dimensional
data using image processing techniques. The paper contains several
measures and visualization techniques, here we focus only on the part
dealing with parallel coordinates and one specific metric.

(a) (b)

Figure 5: Synthetic examples of Parallel Coordinates and their re-
spective Hough spaces: (a) presents two well defined line clusters
and is more interesting for the cluster identification task than (b),
where no line cluster can be identified. Note that the bright areas
in the ρθ -plane represent the clusters of lines with similar ρ and θ .

∑h(x)
2

= ∑g(x) , where (13)

g(x) =

�
x if x ≤ m;
m else.

Using the median value, only a few clusters are selected in an accu-
mulator space with high contrast between the cells (See Fig 5(a)),
while in a uniform accumulator space many clusters are selected
(See Fig 5(b)). This adaptive threshold is not only necessary to se-
lect possible line clusters in the accumulator space, but also to avoid
the influence of outliers and occlusion between the lines. In the oc-
clusion case, a point that belongs to two or more lines is computed
just once in the accumulator space.

The final goodness value for a 2D visualization is due to the num-
ber of accumulator cells ncells that have a higher value than m nor-
malized by the total number of cells (wḣ) to the interval [0,1]:

si, j = 1− ncells

wh
, (14)

where i, j are the indices of the respective dimensions, and the com-
puted measure si, j presents higher values for images containing
well defined line clusters (similar lines) and lower values for im-
ages containing lines in many different directions and positions.

Having combined the pairwise visualizations, we can now com-
pute the overall quality measure by summing up the respective pair-
wise measurements. This overall quality measure of a parallel vi-
sualization containing n dimensions is:

HSM = ∑
ai∈I

sai,ai+1 , (15)

where I is a vector containing any possible combination of the n
dimensions indices. In this way we can measure the quality of any
given visualization, using Parallel Coordinates.

Exhaustively computing all n-dimensional combinations in or-
der to choose the best/worst ones, requires a very long computation
time and becomes unfeasible for a large n. In these cases, in or-
der to search for the best n-dimensional combinations in a feasible
time, an algorithm to solve a Traveling Salesman Problem is used,
e.g. the A*-Search algorithm [8] or others [2]. Instead of exhaus-
tively combining all possible pairwise visualizations, these kind of
algorithms would compose only the best overall visualization.

5.2 Parallel Coordinates Measures for classified data
While analyzing Parallel Coordinates visualizations with class
information, we consider two main issues. First, in good Par-
allel Coordinates visualizations, the lines that belong inside a
determined class must be quite similar (inclination and position
similarity). Second, visualizations where the classes can be

separately observed and that contain less overlapping are also
considered to be good. We developed two measures for classified
Parallel Coordinates that take these matters into account: the
Similarity Measure that encourages inner class similarities, and the
Overlap Measure that analyzes the overlap between classes. Both
are based on the measure for unclassified data presented in section
5.1.

5.2.1 Similarity Measure
The similarity measure is a direct extension of the measure pre-
sented in section 5.1. For visualizations containing class informa-
tion, the different classes are usually represented by different col-
ors. We separate the classes into distinct images, containing only
the pixels in the respective class color, and compute a quality mea-
sure sk for each class, using equation (14). Thereafter, an overall
quality value s is computed as the sum of all class quality measures:

SM = ∑
k

sk. (16)

Using this measure, we encourage visualizations with strong inner
class similarities and slightly penalize overlapped classes. Note that
due to the classes overlap, some classes have many missing pixels,
which results in a lower sk value compared to other visualizations
where less or no overlap between the classes exists.

5.2.2 Overlap Measure
In order to penalize overlap between classes, we analyze the differ-
ence between the classes in the Hough space (see section 5.1). As in
the similarity measure, we separate the classes to different images
and compute the Hough transform over each image. Once we have
a Hough space h for each class, we compute the quality measure as
the sum of the absolute difference between the classes:

OM =
M−1

∑
k=1

M

∑
l=k+1

P

∑
i=1

||hi
k −hi

l || (17)

Here M is the number of Hough space images, i.e. classes respec-
tively and P is the number of pixels. This value is high if the
Hough spaces are disjoint, i.e. if there is no large overlap between
the classes. Therefore, the visualization with the smallest overlap
between the classes receives the highest values.

Another interesting use of this measure is to encourage or search
for similarities between different classes. In this case, the overlap
between the classes is desired, and the previously computed mea-
sure can be inverted to compute suitable quality values:

OM INV = 1/OM. (18)

6 APPLICATION AND EVALUATION

We tested our measures on a variety of real datasets. We applied
our Class Density Measure (CDM), Histogram Density Measure
(HDM), Similarity Measure (SM) and Overlap Measure (OM) on
classified data, to find views on the data which try to either separate
the data or show similarities between the classes. For unclassified
data, we applied our Rotating Variance Measure (RVM) and Hough
Space Measure (HSM) in order to find linear or non-linear correla-
tions and clusters in the datasets, respectively. Except for the HDM,
we chose to present only relative measures, i.e. all calculated mea-
sures are scaled so that the best visualization is assigned 100 and
the worst 0. For the HDM, we chose to present the unchanged mea-
sure values, as the HDM allows an easy direct interpretation, with a
value of 100 being the best and 0 being the worst possible constel-
lation. If not stated otherwise our examples are proof-of-concepts,
and interpretations of some of the results should be provided by
domain experts.

Fig. 5. Synthetic examples of parallel coordinates and their Hough trans-
form: (a) two well defined clusters with bright areas in the hough plane,
(b) no clear clusters visible, no bright pattern in the hough space [48].

The basic idea of the method is to generate all possible 2D combi-
nations of the original dimensions and evaluate them in terms of their
ability to form clusters in a 2-axis parallel coordinates representation
(see Figure 5). Every pair of axis is evaluated individually using a
standard image processing technique (the Hough transform), which
permits to discriminate between uniform and chaotic distributions of
line angles and positions (for details please refer to the original paper).
Once interesting pairs have been extracted, they are joined together to
form groups of parallel coordinates of a desired (user-defined) size
(e.g., in Figure 6, groups of 4-dimensional parallel coordinates).

Best ranked views using HSM
100 97 97

Worst ranked views using HSM
0 0.7 1.1

Figure 9: Results for the non-classified version of the Parkinsons Disease dataset. Best and worst ranked visualizations using our HSM measure
for non-classified data (ref. Section 5.1.1). (a) Top row: The three best ranked visualizations and their respective normalized measures. Well
defined clusters in the dataset are favored. Bottom row: The three worst ranked visualizations. The large amount of spread exacerbates
interpretation. Note that the user task related to this measure is not to find possible correlation between the dimensions but to detect good
separated clusters.

Best ranked views using SM
100 98 98

Worst ranked views using SM
0 0.6 1.5

Figure 10: Results for the Cars dataset. Cars using benzine are shown in black, diesel in red. Best and worst ranked visualizations using
our Hough similarity measure (Section 5.2.1) for Parallel Coordinates. (a) Top row: The three best ranked visualizations and their respective
normalized measures. Bottom row: The three worst ranked visualizations.

Best ranked views using OM
100 99 99

Worst ranked views using OM
0 0.1 0.2

Figure 11: Results for the WDBC dataset. Malign nuclei are colored black while healthy nuclei are red. Best and worst ranked visualizations
using our overlap measure (Section 5.2.1) for Parallel Coordinates. (a) Top row: The three best ranked visualizations. Despite good similarity,
which are similar to clusters, visualizations are favored that minimize the overlap between the classes, so the difference between malign and
benign cells becomes more clear. Bottom row: The three worst ranked visualizations. The overlap of the data complicates the analysis, the
information is useless for the task of discriminating malign and benign cells.

Fig. 6. Ranked list of four-dimensional parallel coordinates. Best ranked
on top, worst ranked on the bottom [48].

Figure 7 presents the pipeline for this example. We can recognize
three main elements: (A) all 2D parallel coordinates are generated in
the data transformation phase; (B) all the alternatives are evaluated
in the image space at the view stage; (C) the algorithm combines the
interesting segments into a list of parallel coordinates (like those in
Figure 6) using the visual mapping stage.

Transformed 
Data

Source
Data

Visual 
Structures

Quality-Metrics-Driven Automation

Views

Data
Transformation visual Mapping

View 
Transformation

User
Rendering

A BC

Fig. 7. Quality metrics pipeline for [48]: (A) generation of alternatives;
(B) evaluation of alternatives (image space); (C) creation of the final
representation.

The technique uses parallel coordinates (PC) as principal visualiza-
tion technique and a list as a meta-visualization. It measures clustering
properties, in the image space, and its main purpose is to find interest-

ing projections. Interaction, in the way it is discussed in the paper, is
very limited if not absent.

The second example comes from the work of Johansson and Jo-
hansson on interactive feature selection [30]. The technique ranks ev-
ery single dimension for its importance using a combination of cor-
relation, outlier, and clustering features calculated on the data. This
ranking is used as the basis for an interactive threshold selection tool
by which the user can decide how many dimensions to keep; weight-
ing the choice with the corresponding information loss presented by
the chart (see Figure 8). Once the user selects the desired number of
dimensions the system presents the result with parallel coordinates and
automatically finds a good ordering using the same data features cal-
culated for ranking the dimensions. The user can also choose different
weighting schemes to focus more on correlation, outliers or clusters.
Figure 9 shows the results of clustering (top) and correlation (bottom).

Fig. 4. Interactive display of the amount of information lost relative to
number of variables to keep in the reduced data set. The black line
represents the combined information loss for all quality metrics, the blue,
red and green lines represent information loss in cluster, correlation and
outlier structures respectively. The red vertical line corresponds to the
number of variables currently selected.

sum of I(�x j) for the removed variables and Itotal is the sum of I(�x j)
for all variables in the data set.

The interactive display (figure 4) consists of a line graph and a
graphical user interface for modification of weight values and selec-
tion of number of variables to keep. The line graph displays the rela-
tionship between Ilost (y-axis) and number of variables to keep in the
reduced data set (x-axis), representing each quality metric individually
by a line and using one line for the combined importance value of all
metrics. A similar approach is taken in [6], where quality measures for
data abstractions such as clustering and sampling are integrated into
multivariate visualizations. A vertical line is used in the interactive
display to facilitate identification of lost information for the selected
number of variables. If retaining 18 variables, according to the posi-
tion of the vertical line in figure 4, it can be seen from the display that
some of the retained variables contain no cluster information at all. In
figure 6 the corresponding 18 variable data set is visualized using par-
allel coordinates. As can be seen from the visual aids at the bottom
of the axes, the five left variables are of low global importance and
also have low cluster and correlation importance. By looking at the
patterns of the lines it is also quite easily seen that these variables are
rather noisy, hence more variables can be removed from the data set
without losing much more information.

3.4 Variable Ordering
The order of variables in multivariate visualization has a large impact
on how easily we can perceive different structures in the data. The
proposed system combines several quality metrics to find a dimen-
sionality reduction that can be regarded as a good representation of
the original data set, focusing on the structures that are of interest for
the particular analysis task at hand. Finding one appropriate variable
ordering enhancing all interesting structures at once may, however, be
unrealistic since enhancement of some structures obstructs enhance-
ment of others. An aim of the system is to provide the user with good
visual representations of the reduced data set by enhancing the existing
structures within the data. The ordering of variables in the system has
been approached by supplying a selection of automatic orderings, each
enhancing the structures of an individual quality metric. The user can
interactively switch between different variable orderings and to enable
comparison of different variable orders multiple displays are used.

Within this paper three quality metrics are discussed, correlation,
outliers and clusters. The variable ordering focusing on correlation is
inspired by the variable ordering described in [4]. In connection to the
correlation analysis in the initial phase of the dimensionality reduction,
information on the correlation of variable pairs is computed. When
the variables of the reduced data set are to be ordered, the variable
pair,�xa�xb, with the highest correlation within this data set is identified.

Third iteration:

Cluster
c0 0.9
c1 [2, 3, 10, 17]

[1, 2, 7]
0.7
0.4

Quality value
[3, 6, 7, 10]

c2

Variables

[1, 2, 12, 16, 3, 7, 10]
c0

[1, 12, 16, 2, 3, 10, 7]
c1 c0

[12, 16, 1, 2, 3, 10, 7]
c0c1c2

Sreduced = [1, 2, 3, 7, 10, 12, 16]

First iteration:

Second iteration:

Fig. 5. Example of variable ordering algorithm for cluster enhancement.
Initially the clusters are ordered according to quality values. For each
iteration the reordering is found that results in the longest sequence of
connected variables being part of ci, without traversing the borders of
previous clusters (represented by red and pink rectangles)

This pair forms the basis of the ordering. Next the variable pair with
the highest correlation containing�xa or�xb and a variable that is not yet
ordered is identified. The unordered variable is positioned at the left or
right border of the ordered variables, next to the variable with which it
forms a highly correlated pair. This continues by identifying variable
pairs with highest correlation containing one of the ordered variables
positioned at the leftmost or rightmost position and one of the not yet
ordered variables, until all variables are ordered.

The variable orderings enhancing cluster and outlier structures are
based on the quality values calculated for each cluster or outlier in
connection with the cluster and outlier detection, and are performed in
the same way. An example of the ordering algorithm, based on cluster
structures, is shown in figure 5, where Sreduced is the set of variables
retained after dimensionality reduction. The ordering algorithm is per-
formed as follows:

1. Initially the clusters are sorted in descending order according to
quality value, as shown in figure 5 where the ordering is to be
based on three clusters, c0, c1 and c2.

2. In the first iteration all variables in Sreduced that are part of the
first cluster, c0, are positioned next to each other. In figure 5,
c0 includes variable 6. This variable is not part of Sreduced and
is hence not taken into consideration. The red rectangle in the
figure represents the positions of the border variables of c0.

3. In the subsequent iterations the variables in ci that are part of
Sreduced and of any cluster, c j where j < i, are identified. For
c1, for instance, variables 2, 3 and 10 are part of Sreduced and
variables 3 and 10 are also part of c0.

4. The reordering of variables in Sreduced that results in the longest
sequence of connected variables being part of ci, without any
variables traversing the border positions of previous clusters (red
rectangles) are found, and Sreduced is reordered accordingly. For
i = 1 this is achieved by switching the positions of variables 7
and 10, and positioning variable 2 next to variable 3.

5. The algorithm iterates from step 3 until no more re-orderings
are possible, that is, if all variables in Sreduced are separated by
cluster borders, or until reordering is performed for all clusters.

In figure 2 an example of the synthetic data set reduced to 9 variables is
displayed using parallel coordinates with two different variable orders.
The top view is ordered according to cluster structures and the bottom
view according to correlation.

4 RESULT

This system has been implemented using C# and DirectX. All tests
have been run on a desktop computer with an Intel 2 GHz CPU, 2
GB of RAM and with an NVIDIA GeForce 7800 GTX graphics card.
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Fig. 8. Interactive chart to select number of dimensions to keep vs.
information loss [30].

Fig. 2. The synthetic data set reduced to 9 variables using different
quality metric weights and variable orders. In the top view clustering is
assigned a large weight and the variables are ordered to enhance the
cluster structures. In the bottom view a corresponding weighting and
ordering is made for correlation structures.

the unit, N is the total number of data items in the data set and D is
the range of the variable containing the one-dimensional unit. A k-
dimensional unit is considered dense if its density is higher than the
thresholds of all one-dimensional units of which it is composed.

Within the proposed system the clustering algorithm has been
slightly modified to further speed-up the cluster detection by using
a variable removal approach inspired by the retaining of ‘interesting’
subspaces in [1]. The goal of the cluster analysis in the system is to
identify variables with high importance for cluster structures. Due to
this only variables with high cluster coverage are of interest. Hence,
units belonging to variables where only a small number of items are
part of a cluster are removed from further analysis. Furthermore the
maximum dimensionality of clusters is limited using a dimensionality
threshold, ξ . The creation of candidate dense units iterates until no
more candidate units can be extracted or until k = ξ . The maximum
cluster dimensionality is defined by the user, who can also control the
cluster dominance factor α . In [16] an α-value above 1.5 is said to be
acceptable, and based on this, three default values are presented to the
user, similarly to the outlier constraints of outlier detection.

A quality value, σc, is computed for each cluster based on its
density, dc, its dimensionality, kc, and the fraction of the data set
that it covers, fc. A dense cluster with high coverage in a subspace
with a large number of variables is considered to be of high quality.
σc = d̃ck̃c f̃c, where d̃c,k̃c, f̃c ∈ [0,1]. Individual cluster importance
values, Iclust(�x j) for variables are computed by summing σc for all
clusters where the variable is part of the subspace and where fc≥ϕ ,
where ϕ is a small user defined value, typically 0.02, used to avoid
large numbers of insignificant clusters, containing only a small frac-
tion of the data set, adding up to what appears to be a significant cluster
value.

3.2 Weighting
As described in section 3.1 a variable quality value is computed for
each quality metric and for each variable. To provide control of im-
portance of quality metrics each of these values is normalized so that
maximum variable importance for a metric equals 1 and minimum
equals 0. The relative importance of the individual metrics is defined
by assigning weight values, and a global importance value, I(�x j), is
computed for each variable based on these. Through the weight val-
ues a single highly important metric can be given high impact on the
dimensionality reduction, and in the same way metrics that are of no
importance do not have to be considered at all. If a single metric is
of interest to the user, the weight values of the others can be set to 0.
Equation 2 shows how to compute I(�x j) when using correlation, out-
liers and clusters as quality metrics and where wcorr, wout and wclust
are the weight values.

Fig. 3. The visual aids of a parallel coordinates display, facilitating un-
derstanding of the importance and quality metrics of individual variables.
r is the correlation between adjacent axes, with negative correlation in
red and positive in blue. I is the global importance value, and Iclust , Icorr
and Iout are the cluster, correlation, and outlier quality values.

I(�x j) = wcorrIcorr(�x j)+woutIout(�x j)+wclustIclust(�x j) (2)

The part of the system work flow that is most computationally heavy
is the quality metric analysis described in section 3.1, but this depends
entirely on the computation time of the selected quality metrics. Once
that analysis is performed it will not need to be re-performed unless
any quality metric parameters have to be changed. Hence modifica-
tion of weight values and re-computation of variable importance is
performed in a few milliseconds even for data sets with hundreds of
variables. In figure 2 two examples of the synthetic data set reduced
to 9 variables, using different weight values, are displayed using par-
allel coordinates. In the top view clusters are given five times as high
a weight as correlation and outliers and in the bottom view correlation
is given five times as large weight value. As can be seen the highly
correlated variables to the left in the bottom view are not part of the
reduced data set when clustering is assigned a higher importance (top).

To facilitate the understanding of the importance and structures
within the individual variables, the user is provided with visual aids
(figure 3). Using colour, ranging from red (low importance) to blue
(high importance), the global importance value as well as the value
of each individual quality metric is displayed in an easily perceived
manner.

3.3 Information Loss and Selection of Data Set Size
The appropriate size of a reduced data set that is to be visualized is
dependent both on the structure of the data and on the task of analysis,
as well as on the size of the display to use. Using user-defined quality
metrics to analyse the structures within a data set and to extract indi-
vidual importance values enables a task- and user-oriented approach
to identification of important variables. Within the presented system a
reduction from an M-dimensional to a K-dimensional data set is per-
formed by retaining the K variables with highest global importance
value, I(�x j), and by removing the remaining (M−K) variables. When
a weighting is performed, as described in section 3.2, the value of I(�x j)
is recomputed for each variable resulting in a new set of variables be-
ing selected as the K most important.

To enable investigation of the trade-off between number of variables
retained in the reduced data set and amount of information lost, and
hence to facilitate the decision on appropriate size for the reduced data
set, the system presented in this paper offers an interactive display
presenting the relationship between number of variables to keep and
the amount of information lost, Ilost = Iremoved

Itotal
, where Iremoved is the
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Fig. 9. Top: best ordering to enhance clustering. Bottom: best ordering
to enhance correlation [30].

Figure 10 shows the pipeline for this example. Again we have three
main elements: (A) every single dimension is ranked by the quality
metrics directly from the source data. The reason why the source data
is needed is because the importance measure of a single dimension is
computed taking into account the full set of dimensions (see the paper
for details); (B) the user selects the dimensions guided by the quality
metrics, both the user and the quality metric influence the data trans-
formation process; (C) the system finds the best ordering according
to the weighting scheme proposed by the user producing one specific
visual mapping. The view is presented to the user.

This technique uses parallel coordinates as principal visualiza-
tion. There is no meta-visualization to organize alternative results in a
schema but the interactive chart functions as a way to pilot the genera-
tion of alternatives. It measures clustering, correlation and outliers in
the data space and its main purpose is to find interesting projections
and orderings. Interaction plays a central role in the selection of the
number of dimensions and in the weighting scheme.

The third example is taken from the work of Cui et al. on data
abstraction quality [14]. This paper proposes a technique to create
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Fig. 10. Pipeline for [30]: (A) dimensions ranked by their importance;
(B) selection of number of dimensions to retain vs. information loss; (C)
creation of the final mapping with ordering.

abstracted visualizations in a user-controlled manner. The system
features data abstraction metrics (Histogram Difference Measure and
Nearest Neighbor Measure) and controllers to let the user find a trade-
off between abstraction level and information loss. In particular, the
data abstraction quality is calculated by comparing features of the orig-
inal data to features in the sampled or aggregated data.

CUI et al.: MEASURING DATA ABSTRACTION QUALITY IN MULTIRESOLUTION VISUALIZATION

2. When changing from a high DAL to lower DAL, all the records
in the new sample should come from the previous sample.

3. When broadening or narrowing the brushing boundary, the sys-
tem should keep the records from the previous view, and then
employ the same rules as above. We follow the above guide-
lines to maintain view continuity. Analysts still have the option
to resample at any time or whenever they change the DAL or the
selected region.

4.4 Widget to Control Cluster-Based Abstraction
Hierarchical clustering generates a tree of clusters ranging from a sin-
gle cluster containing the entire dataset to terminal clusters containing
one record each. To represent a cluster in multiresolution visualiza-
tion, one member of the cluster can be selected as a representative or
a new record can be constructed to summarize the records in this clus-
ter. This new record becomes the parent of all the records or clusters
it contains. By recursively clustering data into related groups, a tree of
clusters is formed.

The abstracted dataset in clustering is defined as all the items with a
specific node depth. This node depth represents the DAL. If the tree is
visited using an in-order traversal algorithm, then all the nodes of this
tree will be sorted and each node corresponds to a unique position in
this order. Brushing is thus achieved via selecting a range of nodes in
this order. We employ two handles to control this range. All the nodes
in this range form a subtree. Analysts can adjust the abstraction level
and visualize selected nodes in more or less detail.

Fig. 3. Structure-based brushing tool. (a) The tree frame; (b) Contour
corresponding to current level-of-detail; (c) Leaf contour approximates
shape of the tree; (d) Structure-based brush; (e) Interactive brush han-
dles; (f) Colormap legend for level-of-detail contour.

Figure 3 shows the widget to control both the level of abstraction
and brushing, referred to as the Structure-Based Brush (SBB) [12].
The triangular frame depicts the tree (see (a)). The leaf contour (see
(c)) depicts the silhouette of the tree. It delineates the approximate
shape formed by chaining the leaf nodes. The colored bold contour
(see (b)) across the tree delineates the tree cut that represents the ab-
stracted dataset in a specific data abstraction level. Analysts can adjust
the DAL by moving this contour. The two movable handles (see (e))
on the base of the triangle are called range handles. The range han-
dles, together with the apex of the triangle, form the selected region in
the structure space (see (d)). Analysts can adjust the selected region
by moving the left handle, the right handle or both. This interface,

while specific to hierarchically clustered data, can support all of the
interactions on the abstraction.

5 CASE STUDY 1: CHOOSING A DATA ABSTRACTION LEVEL
(DAL)

In this section, we show how to choose an appropriate DAL. At this
level, the abstracted dataset should have high data abstraction qual-
ity (equal or more than 0.90) and the visualization should have the
best visual quality under the constraints of the data abstraction qual-
ity. The analytic task is to search for clusters in the OUT5D dataset.
This dataset consists of five remote sensing channels: SPOT, Mag-
netics, Potassium, Thorium and Uranium, with 16384 records. We
employ scatterplots to visualize this dataset. Figure 4 shows the origi-
nal dataset. Data points have significant overlaps with each other and
so we cannot distinguish relative data density in different regions and
have difficulty observing any trends within this dataset.

Fig. 4. Scatterplots of original dataset (DAL=1.00)

Fig. 5. Scatterplots of abstracted dataset (DAL=0.02)

First we make an abstraction with the DAL equal to 0.02. The cor-
responding HDM is 0.92 and the NNM is 0.93; this abstraction quality
meets our requirements. The abstraction quality is positively related to
the data abstraction level in general, although small fluctuations may
exist. The scatterplot matrix with DAL equal to 0.02 is shown in Fig-
ure 5; we can see that a cluster (named Cluster A) exists in the marked
scatterplot, but data points in other places are too sparse to observe
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Fig. 6. Scatterplots of abstracted dataset (DAL=0.08)

Fig. 7. Scatterplots of abstracted dataset (DAL=0.04)

Fig. 8. Data abstraction measures

definitive clustering behavior. Next we will focus on searching for a
visualization with the best visual quality.

We change the DAL to 0.08. As shown in Figure 6, the sparse
region in the marked scatterplot illustrates very good visual quality.
However, data points in Cluster A are overplotted, thus the actual rela-
tive data density in Cluster A is higher than the relative data density we

observe. Next we adjust the DAL to 0.04. As shown in Figure 7, the
visual quality in the marked scatterplot is very good while the relative
data density is maintained, although a small number of data points in
Cluster A still overlap with each other. The quality measures of this
abstraction are shown in Figure 8. This quality meets our requirement
and we terminate our exploration.

Abstraction quality measures give us confidence in the pattern we
discovered. If we only know that the DAL, the ratio between the num-
ber of abstracted records and the number of original records, is 0.04,
we cannot have much confidence in our discoveries because we know
that 96 percent of the data are not shown. However, with the HDM
more than 0.95 and the NNM more than 0.96 for both clustering and
sampling, we are fairly certain that the abstracted dataset represents the
original dataset very well and that the pattern (Cluster A in this case)
is very likely valid. In general, we can assign the abstraction quality
measures to the discovered pattern to indicate the confidence level of
the pattern, which enables analysts to make more accurate decisions.

6 CASE STUDY 2: COMPARING DATA ABSTRACTION METH-
ODS

In this application, two data abstraction methods, clustering and sam-
pling, are compared using the proposed data abstraction measures em-
bedded within our multiresolution visualization system. We employ
the AAUP dataset, which surveys the number, salary and compensa-
tion of professors at 1161 institutions. We use parallel coordinates to
visualize this dataset. Through this case study, we find that sampling
has the advantage of maintaining the relative density of datasets while
clustering has the advantage of maintaining the outliers of the dataset.

First we briefly review some characteristics of the HDM and NNM.
The HDM is based on the histogram and minimizes the difference
between the distributions of two datasets, so it excels in detecting
changes in the relative density of data. The NNM minimizes the dis-
tance between the original dataset and the abstracted dataset. Outliers
cannot be eliminated during abstraction without the increase of the
average distance, because they tend to be far from most of the data
records. Thus the NNM method gives high priority to outliers and is
good at monitoring the change of outliers.

Fig. 9. Parallel Coordinates of AAUP dataset

The original dataset is shown in Figure 9. On the last dimension,
the dense range with low values is marked as A and highlighted with
red color; the sparse range is marked as B and drawn with green color.
We can see that most of the data records are gathered in range A. We
sample the original dataset and tentatively set the DAL to 0.08. Figure
10 shows the visualization of this abstraction. Figure 12a shows the
data abstraction quality of the whole dataset: HDM is 0.90 and NNM
is 0.95. We then cluster this dataset, and also set the DAL to 0.08 to
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Fig. 11. Visual abstraction of a scatter plot matrix from [14].

Figure 12 shows the pipeline for this example. We have two main
elements: (A) the data abstraction quality measures are calculated by
comparing the source data to the transformed data; (B) the user selects
the desired abstraction quality and receives feedback on its quality by
steering the data transformation process.
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Fig. 12. Pipeline for [14]: (A) data features compared between the orig-
inal data and the abstracted data; (B) instantiation of the desired ab-
straction level guided by quality metrics.

The paper applies the technique to scatter plots and parallel coordi-
nates but it is generic enough to be applied to many other techniques.
There is no meta-visualization to organize alternative results but sim-
ilarly to the second example an interactive chart is used to set an ab-
straction threshold (see Figure 13). It measures feature preservation,
and its main purpose is abstraction. Interaction plays a central role in
the selection of the right abstraction level.

These three examples cover many aspects discussed in the paper,
especially metrics calculated in the data vs. image space, different
purposes, different measure types, different uses of the pipeline, and
different interaction levels. Many of the papers we have reviewed have
similar elements and functions, nonetheless there are others that devi-
ate considerably from these ones. While we cannot provide the full set
of examples in the scope of this paper we discuss in Section 7 some
findings that stem from the analysis of the whole set, including those
with uncommon approaches.

7 FINDINGS

In the following we discuss some major trends we have observed dur-
ing our analysis.
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total or average distance between pairs of image pixels. The PSNR
(peak signal-to-noise ratio) is the most common image quality mea-
sure, derived from MSE (mean squared error) and used in the JPEG
2000 Standard [22]. It is defined by the following equations:

MSE =
∑N

i=1 ∑M
j=1(F(i, j)− F̂(i, j))2

NM
(12)

where MSE is the mean squared error, F(i, j) is the pixel value at (i, j)
in the original image, F̂(i, j) is the pixel value at (i, j) in the com-
pressed image, and M and N are the length and height of the image.

PSBR = 10log10(
MAX2

I
MSE

) (13)

where PSBR is the peak signal-to-noise ratio and MAXI is the maxi-
mum pixel value. As we can see, the NNM employs the same method
to compute the average distance between two datasets. The only dif-
ference is that they employ different methods to process the average
distance to get the measures.

4 INTEGRATING QUALITY MEASURES WITH MULTIRESOLU-
TION VISUALIZATION

In this section, we describe our work on integrating quality measures
into XmdvTool to develop effective and abstraction-aware multires-
olution visualization. First we describe the interaction tool that we
use to display quality measures. Then we present the interactive op-
erations we support for quality measures. Next, we discuss the view
continuity problem of sampling, and finally we give an overview of
the Structure-Based Brush (SBB) we use to control abstraction param-
eters in clustering data. Analysts can adjust the DAL of clustering
through both the general widget for all abstraction methods and the
SBB, while they can only brush the structure formed by clustering
through the SBB.

4.1 Displaying Measures
XmdvTool supports interactive selection via brushing [12, 16] using a
rich assortment of tools. The data selected through brushing is called
the selected data, while the remaining data are called the unselected
data. Analysts can adjust the DAL for the selected data as well as
the unselected data. Each view of the data generates several quality
measures. We use bar charts to display them. Figure 1 shows two such
bar charts, the left one conveys the quality measures for the selected
data, and the right one conveys the quality measures for the unselected
data.

Fig. 1. Graphs to display measures and sliding bars to adjust the DAL

These charts only illustrate the quality measures at a single DAL.
We use 1D plots to illustrate quality measures and their relationship to
the DAL. In Figure 2, the left and right plot show the quality measures
for the selected and unselected regions, respectively. In each plot, the

x-axis represents the DAL and the y-axis represents the quality mea-
sures. The red and blue line represent the changes of HDM and NNM
against the abstraction level, respectively. A vertical line called the
DAL handle is drawn to indicate the current abstraction level. The
cross points of this vertical line and the plot lines denote the corre-
sponding measures of this abstraction level. The DAL and measures
are displayed to the right of the DAL handle. With these plots, analysts
can know the quality of the current DAL in the context of the entire
quality space.

Fig. 2. 1D plots of quality measures

4.2 Interactive Operations
Several interactive operations are supported in this system. Users can
move the slider bar in Figure 1 or the DAL handle in Figure 2 to ad-
just the data abstraction level. After the DAL has been changed, the
system will generate an abstracted dataset and display it in the data
visualization. The DALs for selected and unselected data can be ad-
justed independently. Users can also modify the location of one of the
boundaries of the selected region by clicking the left mouse button on
or near the boundary and dragging in the desired direction. In addi-
tion, the selected region can be moved by choosing a region on the
data display, and then adjusting the DAL for the region. This usually
means that the user knows the data subset that she wants to explore
and wants to take advantage of the scalability of multiresolution visu-
alization. Alternatively a user can first choose a DAL in the current
selected region, and then adjust the selected/brushing boundary to en-
large or diminish the size of the region. This usually means that an
acceptable data abstraction level had been found, but the area of inter-
est needs to be increased or decreased.

Analysts can also instruct the system to run the abstraction algo-
rithm again to generate a new abstraction. For example, resampling
can help analysts verify patterns that had been discovered in the pre-
vious samples. If a pattern still exists after resampling several times,
this pattern is most likely a robust one. Furthermore, analysts can com-
pare the abstraction measures from mutiple resampling, and select an
abstraction with best quality. Finally, a user can indicate a desired
quality level based on one of the measures and let the system decide
the appropriate DAL.

4.3 View Continuity for Sampling
When analysts change the DAL, the patterns in the previous sample
can be more easily remembered and compared with those in the current
sample if view continuity is maintained. This can be accomplished by
following the three guidelines below:

1. When changing from a low DAL to a higher DAL, all the records
in the previous sample should be kept.
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Fig. 13. Visual abstraction chart with threshold setting for the abstraction
level and feedback on abstraction quality [14].

From the visualization point of view we already discussed the role
of meta-visualizations, that is, visualizations with the purpose to ac-
commodate other visualizations. During the paper review we found
very limited explicit discussions of this aspect which we deem ex-
tremely relevant. Many of the papers we have analyzed seem to as-
sume that providing a simple list of interesting visualizations will au-
tomatically solve the user’s task. To the best of our knowledge, the
only work that analyzes the issue explicitly and in great depth is the
Trellis display [6], which organizes the display in a way to make pat-
terns among views apparent. We believe a deeper investigation of this
issue is needed.

Interestingly, some of the papers we reviewed do take care of the
navigation issue, that is, how to explore configurations automatically
found by the algorithm. These papers usually provide an additional vi-
sualization that permits to navigate from one configuration to another.
For instance, Johansson et al. provide a line chart visualization to in-
teractively show alternative projections in parallel coordinates [30].
Similarly, “hierarchical dimension ordering” [58] uses the InterRing
visualization to the let the user navigate through alternative subsets of
dimensions organized in a hierarchical fashion. Finally, the Rank-by-
Feature framework [44] uses color-coded interactive lists and scatter
plot matrices to provide a preview of the statistical properties of each
views.

We also noticed a lack of systematic approaches to the ordering
problem; every paper proposes its own method. The whole topic of
seriation, introduced in the early work of Bertin [7] and discussed
in depth by Hahsler et al. [23], deserves deeper investigation and ac-
knowledgment. Also, innovative ways of ordering data dimensions
may exist, like the eulerian tours and hamiltonian decompositions pre-
sented by Hurley et al. [25], which explores the possibility of repeating
the axes in order to reduce dependency on a specific order.

In Subsection 5.2 we list a series of meta-visualizations that we
have found, namely list, small multiples, and matrix. We believe this
list can be expanded if novel solutions are developed. A promising
one we have noticed in a few papers, but not included in the review
(because they are not specifically using quality metrics) is the idea of
arranging iconic versions of the visualizations generated in a scatter
plot view (e.g., using MDS or similar techniques). Such a technique
is for instance proposed in the work of Yang et al. where pixel-based
icons are laid out with an MDS projection in a scatter plot [57].

Another issue we noticed from our analysis is the limited use of
the visual mapping and view transformation functions in the pipeline.
More specifically, visual mapping is almost exclusively used as a way
to generate alternative orderings, taking into account exclusively the
mapping between the original data dimensions and the visualization
axes. But alternative mappings can also be generated by linking data
dimensions to the whole spectrum of visual features like color, size,
shape, etc., as is common in several systems based on visual lan-
guages like ggplot2[1], tableau[3], and protovis[2]). Pixnostics [42]
is the only technique in our review presenting this kind of a process
supported by quality metrics.

View transformation is also rarely used in the quality metrics
pipeline. The only example we found is the use of quality metrics
to automatically select focus area parameters in table lens [4]. The



automatic selection of interesting point of views in 3D scatter plots,
for example, is one clear case where the use of quality metrics at the
view transformation stage would be beneficial. Another one is the au-
tomatic highlight of interesting items in a view (e.g., visual boosting
in pixel-based visualizations [38]).

Finally, the purposes we have considered can be roughly classified
into two broad higher level purposes: finding interesting visualizations
and scaling visualizations to larger data sets. When considering these
goals it is evident how clustering, correlation, outliers, and complex
patterns support more the first goal, whereas image quality and fea-
ture preservation tend to support more the second one. One interesting
pending issue is whether the use of quality metrics in high-dimensional
data is confined to these two general purposes. One purpose which to
the best of our knowledge is totally unexplored is the use of quality
metrics to automatically or semi-automatically compare different vi-
sual techniques of the same data.

8 FILLING THE GAPS: A RESEARCH AGENDA

In the following we present a selected set of research issues we deem
important for the advancement of quality-metrics-driven data visual-
ization.

Evaluation and applications. Surprisingly, none of the papers we
have analyzed reported on user evaluation. While we are convinced
that quality metrics are useful and need to be further developed, we
also realize that the whole idea has not yet been tested. Usefulness
is therefore one of the most important aspect to consider, followed by
usability issues. To the best of our knowledge there are no studies
reporting on the use of the quality metrics approach in real-world set-
tings. Observatory studies or even simple case studies would greatly
improve the approach and most likely direct research to specific issues
hard to anticipate without observation.

Perceptual tuning. All the metrics that work in the image space try
to simulate the human pattern recognition machinery to some extend.
They try to partially substitute human vision with image processing
algorithms with the (implicit) assumption that algorithm rankings will
match user rankings. This assumption needs a much deeper investiga-
tion. The study presented in [49], where quality metrics rankings of
clusters in scatter plots are compared to human rankings, represents a
first step in this direction. In addition, it is necessary to validate and
tune the image space metrics in a way that the parameters take models
of human perception into account. Excellent examples of initial steps
in this direction are in the following papers [29, 34, 41], where the
perception of visual patterns has been tuned according to user studies
aimed at modeling the way humans perceive them.

Metrics systematization. During our review we collected a very
large number of alternative quality metrics, some calculated in data
space some in image space. While this proliferation of metrics is a sign
of the richness of this approach, it is currently very hard to compare
them and understand which one is suitable for a given task. Some au-
thors provide a number of metrics in the same environment letting the
user choose which one to use. Nonetheless we fear that this approach
with limited guidance may not be effective for end users, especially, if
there is a lack of understanding of the level of redundancy between one
metric and another. Similarly, given the above mentioned dichotomy,
it is hard if not impossible to state which approach yields the best re-
sults in which contexts. On a side note, the mixed approach of giving
the user the possibility to combine several metrics into a composite
one need much more investigation, validation, and guidance.

Scalability. Image space and data space quality metrics have dif-
ferent scalability issues. Quality metrics in image space have the ad-
vantage of being independent from the original data size, e.g., [15],
that is, their computational complexity only depends on the screen di-
mensions. However, as data grows in size, virtually all visualizations
experience some degrees of degradation that may influence the dis-
criminatory power of the metric. For instance, visualizations with a
lot of clutter might hinder the discovery of the desired patterns. Qual-
ity metrics in data space, on the other hand, are expected to be more
robust in terms of pattern detection, but their computation is directly
affected by data size. A thorough investigation of these issues and how

to find a compromise between the two is clearly an interesting subject
for future research.

9 LIMITATIONS

Our work has some important limitations to take into account; first of
all its subjective nature. We are by no means suggesting this is the only
way to describe the current state of quality metrics in high-dimensional
visualization. There are no doubt a number of equally good alternative
ways to describe it; this paper provides a much-needed starting point.
We encourage the reader to use the paper as a way to get inspiration
for further research and to understand its status.

Similarly, while we did our best to follow a thorough methodology
(see Section 3), there might be relevant papers we overlooked. Even
though we tried to be very broad and inclusive, the review is heavily
influenced by our background. Especially, given our focus on Com-
puter Science we might have missed relevant literature from Statistics.
However, we feel confident that at this point of our review any ad-
ditional paper would not change the structure or the elements of our
model. In other terms, the real goal of our review was not to include
every possible paper on the discussed matter but more to have enough
coverage to build a coherent and useful picture.

10 CONCLUSION

We presented a systematic analysis of quality metrics as a way to
support the exploration of high-dimensional data sets. Quality met-
rics have been used in a variety of contexts and purposes. With this
work we started a collection of these disparate systems under one um-
brella and provided a way to reason about their characteristic features.
Specifically, we presented an analysis of the visualization techniques,
the quality metrics, and the processing pipeline. The analysis has two
main outcomes. First, it permits to describe the methods in details
to capture their key components. Second, as shown in Section 7 and
Section 8, it permits to spot interesting research gaps and promising
directions for future research. While we consider this work just an ini-
tial step, we hope it will spur new ideas and support researchers and
practitioners in the development of interesting new applications and
novel techniques.

ACKNOWLEDGMENTS

This work was partially supported by DFG Research Training Group
GK-1042 ”Explorative Analysis and Visualization of Large Informa-
tion Spaces”, University of Konstanz.

REFERENCES

[1] ggplot2. http://had.co.nz/ggplot2/.
[2] Protovis. http://vis.stanford.edu/protovis/.
[3] Tableau. http://www.tableausoftware.com/.
[4] G. Albuquerque et al. Improving the visual analysis of high-dimensional

datasets using quality measures. In Proc. IEEE Symp. Visual Analytics
Science and Technology (VAST), 2010.

[5] M. Ankerst, S. Berchtold, and D. A. Keim. Similarity clustering of di-
mensions for an enhanced visualization of multidimensional data. In
Proc. IEEE Symp. Information Visualization (InfoVis), 1998.

[6] R. A. Becker, W. S. Cleveland, and M.-J. Shyu. The visual design and
control of trellis display. Journal of Computational and Graphical Statis-
tics, 5(2):123–155, 1996.

[7] J. Bertin. Semiology of graphics. University of Wisconsin Press, 1983.
[8] E. Bertini and D. Lalanne. Investigating and reflecting on the integra-

tion of automatic data analysis and visualization in knowledge discovery.
SIGKDD Explor. Newsl., 11:9–18, 2010.

[9] E. Bertini and G. Santucci. Quality metrics for 2D scatterplot graphics:
Automatically reducing visual clutter. In Proc. Smart Graphics (SG),
2004.

[10] E. Bertini and G. Santucci. Visual quality metrics. In Proc. AVI workshop
on BEyond time and errors: noveL evaluation methods for Information
Visualization (BELIV). ACM, 2006.

[11] R. Brath. Metrics for effective information visualization. In Proc. IEEE
Symp. Information Visualization (InfoVis), 1997.

[12] S. K. Card, J. D. Mackinlay, and B. Shneiderman. Readings in informa-
tion visualization: using vision to think. Morgan Kaufmann Publishers
Inc., 1999.



[13] E. H. Chi. A taxonomy of visualization techniques using the data state
reference model. In Proc. IEEE Symp. Information Visualization (Info-
Vis), 2000.

[14] Q. Cui, M. Ward, E. Rundensteiner, and J. Yang. Measuring data abstrac-
tion quality in multiresolution visualizations. IEEE Trans. on Visualiza-
tion and Computer Graphics, 12:709–716, 2006.

[15] A. Dasgupta and R. Kosara. Pargnostics: Screen-space metrics for par-
allel coordinates. IEEE Trans. on Visualization and Computer Graphics,
16:1017–1026, 2010.

[16] C. Dunne and B. Shneiderman. Improving graph drawing readability by
incorporating readability metrics: A software tool for network analysts.
Technical Report HCIL-2009-13, University of Maryland, 2009.

[17] G. Ellis and A. Dix. Enabling automatic clutter reduction in parallel co-
ordinate plots. IEEE Trans. on Visualization and Computer Graphics,
12:717–724, 2006.

[18] G. Ellis and A. Dix. A taxonomy of clutter reduction for information
visualisation. IEEE Trans. on Visualization and Computer Graphics,
13:1216–1223, 2007.

[19] U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth. The KDD process for ex-
tracting useful knowledge from volumes of data. Commun. ACM, 39:27–
34, 1996.

[20] B. J. Ferdosi et al. Finding and visualizing relevant subspaces for cluster-
ing high-dimensional astronomical data using connected morphological
operators. In Proc. IEEE Conf. Visual Analytics Science and Technology
(VAST), 2010.

[21] J. H. Friedman and J. W. Tukey. A projection pursuit algorithm for ex-
ploratory data analysis. IEEE Trans. Comput., 23:881–890, September
1974.

[22] D. Guo. Coordinating computational and visual approaches for interac-
tive feature selection and multivariate clustering. Information Visualiza-
tion, 2:232–246, 2003.

[23] M. Hahsler, K. Hornik, and C. Buchta. Getting things in order: An in-
troduction to the R package seriation. Journal of Statistical Software,
25(3):p. 1–34, 3 2008.

[24] P. Hoffman, G. Grinstein, and D. Pinkney. Dimensional anchors: a
graphic primitive for multidimensional multivariate information visual-
izations. In Proc. Workshop on New Paradigms in Information Visualiza-
tion and Manipulation (NPIVM). ACM, 1999.

[25] C. B. Hurley and R. W. Oldford. Pairwise display of high-dimensional
information via eulerian tours and hamiltonian decompositions. Journal
of Computational and Graphical Statistics, 19(4):861–886, 2010.

[26] A. Inselberg and B. Dimsdale. Parallel coordinates: a tool for visualizing
multi-dimensional geometry. In Proc. IEEE Conf. on Visualization (VIS).
IEEE Computer Society Press, 1990.

[27] H. Jänicke and M. Chen. A salience-based quality metric for visual-
ization. Computer Graphics Forum (Proc. EuroVis), 29(3):1183–1192,
2010.

[28] J. Johansson and M. Cooper. A screen space quality method for data ab-
straction. Computer Graphics Forum (Proc. EuroVis), 27(3):1039–1046,
2008.

[29] J. Johansson, C. Forsell, M. Lind, and M. Cooper. Perceiving patterns in
parallel coordinates: determining thresholds for identification of relation-
ships. Information Visualization, 7:152–162, April 2008.

[30] S. Johansson and J. Johansson. Interactive dimensionality reduction
through user-defined combinations of quality metrics. IEEE Trans. on
Visualization and Computer Graphics, 15:993–1000, 2009.

[31] D. A. Keim et al. Visual analytics: Scope and challenges. In S. Simoff,
M. H. Boehlen, and A. Mazeika, editors, Visual Data Mining: Theory,
Techniques and Tools for Visual Analytics. Springer, 2008.

[32] D. A. Keim, M. C. Hao, U. Dayal, and M. Hsu. Pixel bar charts: A vi-
sualization technique for very large multi-attribute data sets. Information
Visualization, 1(1):20–34, 2002.

[33] J. LeBlanc, M. O. Ward, and N. Wittels. Exploring N-dimensional
databases. In Proc. of the IEEE Conf. on Visualization (VIS). IEEE Com-
puter Society Press, 1990.

[34] J. Li, J.-B. Martens, and J. J. van Wijk. Judging correlation from scatter-
plots and parallel coordinate plots. Information Visualization, 9:13–30,
2010.

[35] A. MacEachren et al. Exploring high-D spaces with multiform matri-
ces and small multiples. In Proc. IEEE Symp. Information Visualization
(InfoVis), 2003.

[36] J. Mackinlay. Automating the design of graphical presentations of rela-
tional information. ACM Trans. on Graphics, 5:110–141, 1986.

[37] N. Miller, B. Hetzler, G. Nakamura, and P. Whitney. The need for metrics
in visual information analysis. In Proc. Workshop on New Paradigms in
Information Visualization and Manipulation. ACM, 1997.

[38] D. Oelke et al. Visual boosting in pixel-based visualizations. Computer
Graphics Forum (Proc. EuroVis), 2011.

[39] W. Peng, M. O. Ward, and E. A. Rundensteiner. Clutter reduction in
multi-dimensional data visualization using dimension reordering. In
Proc. IEEE Symp. Information Visualization (InfoVis), 2004.

[40] R. Rao and S. K. Card. The table lens: merging graphical and symbolic
representations in an interactive focus + context visualization for tabular
information. In Proc. SIGCHI Conf. on Human factors in Computing
Systems (CHI). ACM, 1994.

[41] R. A. Rensink and G. Baldridge. The perception of correlation in scat-
terplots. Computer Graphics Forum (Proc. EuroVis), 29(3):1203–1210,
2010.

[42] J. Schneidewind, M. Sips, and D. A. Keim. Pixnostics: Towards mea-
suring the value of visualization. In Proc. IEEE Symp. Visual Analytics
Science and Technology (VAST), 2006.

[43] E. Segel and J. Heer. Narrative visualization: Telling stories with data.
IEEE Trans. on Visualization and Computer Graphics, 16:1139–1148,
2010.

[44] J. Seo and B. Shneiderman. A rank-by-feature framework for unsuper-
vised multidimensional data exploration using low dimensional projec-
tions. Information Visualization, 4:96–113, 2005.

[45] J. H. Siegel, E. J. Farrell, R. M. Goldwyn, and H. P. Friedman. The sur-
gical implication of physiologic patterns in myocardial infarction shock.
Surgery, 72:126–141, 1972.

[46] M. Sips, B. Neubert, J. P. Lewis, and P. Hanrahan. Selecting good views
of high-dimensional data using class consistency. Computer Graphics
Forum (Proc. EuroVis), 28(3), 2009.

[47] A. Strauss and J. M. Corbin. Basics of Qualitative Research : Techniques
and Procedures for Developing Grounded Theory. SAGE Publications,
1998.

[48] A. Tatu et al. Combining automated analysis and visualization techniques
for effective exploration of high-dimensional data. In Proc. IEEE Symp.
Visual Analytics Science and Technology (VAST), 2009.

[49] A. Tatu et al. Visual quality metrics and human perception: an initial
study on 2D projections of large multidimensional data. In Proc. Inter-
national Conf. on Advanced Visual Interfaces (AVI). ACM, 2010.

[50] M. Tory and T. Moller. Rethinking visualization: A high-level taxonomy.
In Proc. IEEE Symp. Information Visualization (InfoVis), 2004.

[51] E. R. Tufte. The visual display of quantitative information. Graphics
Press, 1986.

[52] C. Ware, H. Purchase, L. Colpoys, and M. McGill. Cognitive measure-
ments of graph aesthetics. Information Visualization, 1:103–110, June
2002.

[53] M. Wattenberg. A note on space-filling visualizations and space-filling
curves. In Proc. IEEE Symp. Information Visualization (InfoVis), 2005.

[54] L. Wilkinson, A. Anand, and R. Grossman. Graph-theoretic scagnostics.
In Proc. IEEE Symp. Information Visualization (InfoVis), 2005.

[55] L. Wilkinson, A. Anand, and R. Grossman. High-dimensional visual an-
alytics: Interactive exploration guided by pairwise views of point distri-
butions. IEEE Trans. on Visualization and Computer Graphics, 12:1363–
1372, 2006.

[56] C. William S. and M. E. McGill. Dynamic Graphics for Statistics.
Wadsworth Inc., 1988.

[57] J. Yang, D. Hubball, M. O. Ward, E. A. Rundensteiner, and W. Ribarsky.
Value and relation display: Interactive visual exploration of large data sets
with hundreds of dimensions. IEEE Trans. on Visualization and Com-
puter Graphics, 13:494–507, 2007.

[58] J. Yang, W. Peng, M. O. Ward, and E. A. Rundensteiner. Interactive hier-
archical dimension ordering, spacing and filtering for exploration of high
dimensional datasets. In Proc. IEEE Symp. Information Visualization (In-
foVis), 2003.

[59] J. Yang, M. O. Ward, E. A. Rundensteiner, and A. Patro. Interring: a
visual interface for navigating and manipulating hierarchies. Information
Visualization, 2:16–30, March 2003.

[60] J. S. Yi, Y. a. Kang, J. Stasko, and J. Jacko. Toward a deeper understand-
ing of the role of interaction in information visualization. IEEE Trans. on
Visualization and Computer Graphics, 13:1224–1231, 2007.


