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Abstract

Networks are a universal language for modeling the underlying structure of real-
world systems, such as computer networks, social networks, or financial networks.
Many of these modeled real-world systems are dynamic, meaning the relationships
between the entities change over time. A central goal in dynamic (temporal) network
analysis is to discover similar network structures and retrace structural changes over
time. However, visually analyzing dynamic networks remains challenging due to
large-scale data often evolving over long periods.

This thesis presents studies for the multiscale visual analysis of dynamic networks.
The presented studies introduce multiscale dynamic network visualizations for iden-
tifying, comparing, tracing, and interpreting similar network structures over time.
The proposed visualizations combine automated analysis methods with interactive
visualizations to reveal evolving network structures across multiple abstraction scales
(multiscale analysis). The presented multiscale visualizations scale to large-scale
dynamic networks and enable analysts to relate high-level overviews with low-level
details to reveal structural changes and similar network structures over time. The
presented studies are showcased by prototype implementations using real-world
datasets and are validated with domain experts, quantitative evaluations, and use
cases. Moreover, the thesis systematically discusses the benefits and limitations of
the presented studies and outlines future research perspectives.
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Zusammenfassung

Mithilfe von Netzwerken lässt sich die zugrunde liegende Struktur von realen Syste-
men wie Computernetzwerken, sozialen Netzwerken oder Finanznetzwerken model-
lieren. Viele dieser modellierten realen Systeme sind dynamisch. Das bedeutet, dass
die Beziehungen zwischen den Objekten sich im Laufe der Zeit ändern. Ein zentrales
Ziel der dynamischen (zeitlichen) Netzwerkanalyse ist es, ähnliche Netzwerkstruk-
turen zu entdecken und strukturelle Veränderungen über die Zeit zu verstehen. Die
visuelle Analyse von dynamischen Netzwerken ist jedoch, aufgrund der sich oft über
lange Zeiträume entwickelnden Datenmengen, eine Herausforderung.

In dieser Thesis werden Arbeiten für die multiskalige visuelle Analyse von dy-
namischen Netzwerken präsentiert. Die vorgestellten multiskaligen dynamischen
Netzwerkvisualisierungen ermöglichen es, ähnliche Netzwerkstrukturen über die
Zeit zu identifizieren, zu vergleichen, nachzuverfolgen und zu interpretieren. Die Vi-
sualisierungen kombinieren automatisierte Analysemethoden mit interaktiven Visual-
isierungen, um sich ändernde Netzwerkstrukturen über mehrere Abstraktionsstufen
hinweg darzustellen (Multiskalenanalyse). Die vorgestellten multiskalen Visual-
isierungen skalieren auf große dynamische Netzwerke und ermöglichen es Analysten,
high-level Übersichten und low-level Detailansichten zu verknüpfen, um strukturelle
Veränderungen und ähnliche Netzwerkstrukturen über die Zeit sichtbar zu machen.
Die präsentierten Arbeiten werden mithilfe von Prototyp-Implementierungen unter
Verwendung realer Datensätzen vorgestellt und mit Domänenexperten, quantita-
tiven Auswertungen und Anwendungsbeispielen validiert. Des Weiteren diskutiert
die Thesis systematisch die Vorteile und Schwächen der vorgestellten Arbeiten und
erläutert zukünftige Forschungsperspektiven.
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Introduction 1
1.1 Motivation

Networks are useful for modeling and understanding relationships of real-world
systems, such as financial networks, ecological networks, computer networks, neural
networks, or social networks. Analyzing such networks (graphs) is crucial for under-
standing relationships (edges) between real-world entities (nodes). For example, in
biology, physics, or computer science, typical network analysis tasks are to provide
insight into node connectivities, motifs, or communities. Moreover, many real-world
networks are dynamic (temporal), meaning that the modeled systems’ structure
changes over time [149]. Analyzing such dynamic networks enable analysts to
understand evolving relationships, processes, and changes in real-world systems. For
instance, analysts use dynamic networks to study information diffusion in social net-
works [173], analyze communication networks [96], examine protein interactions
in biological systems [135], or study viruses’ spreading in societies [72].

A central task in dynamic network analysis is understanding where in the network,
when in time, and what has happened [24]. For example, gaining insight into stable,
growing, or shrinking sub-networks and clusters helps to understand structural
changes in dynamic networks. Yet, the complexity of dynamic network analysis rises
with a growing number of nodes, edges, and especially time steps due to the increas-
ing amount of temporal changes. Automatically quantifying every structural change
in a dynamic network remains difficult since no algorithm or metric can capture all
evolving network properties. Moreover, examining aggregated network metrics or
the result of fully automated algorithms only helps answer precise hypotheses. In
many instances, however, analysts first need to explore the dynamic network data to
generate such hypotheses. Thus, analysts frequently utilize interactive visualizations
to explore and reveal unknown patterns in dynamic networks [103]. Visually ex-
ploring datasets to discover such unknown patterns and generate new hypotheses
is known as exploratory data analysis [294]. However, visualizing dynamic net-
works in a readable and scalable manner remains challenging due to the underlying
large-scale data, making the visual analysis of dynamic networks a non-trivial task.
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Previous dynamic network visualizations, therefore, often utilize abstraction meth-
ods to present relevant summaries of the evolving data. For example, visualization
approaches utilize dimensionality reduction methods to provide an overview of
higher-level network structures over time [103]. However, selecting useful abstrac-
tion methods for large-scale dynamic networks remains challenging for multiple
reasons. First, the abstraction method’s usefulness depends on many factors, such
as the application domain, the user task, the network size, and the frequency of
changes. Moreover, such abstraction methods must consider and integrate two im-
portant data aspects, the relational network structure and the temporal dimension.
There is a considerable trade-off between visualizing the detailed network structure
for each time step, and presenting the evolving networks over time [36]. Finally,
selecting an appropriate abstraction scale poses another challenge for both the rela-
tional and temporal data aspects. For instance, a fine-grained temporal aggregation
scale will produce numerous summaries with little information being unable to
provide an overview of the dynamic network. In contrast, a coarse-grained temporal
aggregation will produce only a few summaries, making it impossible to retrace
network changes over time [36]. The same is true for the relational aspect since the
network structure can be abstracted and analyzed at numerous scales (e.g., nodes,
paths, and clusters) [196]. Thus, selecting an appropriate abstraction scale is crucial
for visually exploring and gaining insight into large-scale dynamic networks. Yet,
to date, many dynamic network visualizations lack methods for visually analyzing
evolving network structures at multiple abstraction scales (multiscale analysis).

This thesis proposes multiscale dynamic network visualizations to overcome these
challenges. Multiscale dynamic network visualizations are one way to make dynamic
networks manageable and understandable. Multiscale visualizations are useful for
exploring data at multiple abstraction levels to relate high-level overviews with
low-level details. Thus, the following thesis presents studies for visually analyzing
relational and temporal patterns in dynamic networks at multiple abstraction scales.
This thesis contributes to information visualization research by presenting novel
multiscale visualizations and visual analytics approaches for dynamic networks. The
presented studies combine automated analysis methods with interactive visualiza-
tions to display the large-scale dynamic network data in a readable and scalable
manner. The proposed multiscale dynamic network visualizations scale to large-scale
dynamic networks, produce less clutter, reveal the emergence of patterns at different
abstraction scales, and helps to reveal useful abstraction methods and scales.
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1.2 Research Objectives

The central thesis goal is to improve and advance the multiscale visualization of
dynamic networks. Thus, this thesis addresses the general research question:

• How can we enhance the multiscale visual analysis of dynamic networks?

This thesis answers the research question by addressing the following research
challenges. First, developing multiscale visualizations remains challenging due to
the ambiguity and usage of ”multiscale visualization” in information visualization
research. Thereby, defining the terminology and understanding common design
practices is crucial for developing multiscale dynamic network visualizations. Sec-
ond, gaining an overview of a dynamic network is crucial for revealing potentially
useful analysis and visualization methods, including identifying proper abstraction
methods and scales. Yet, the large-scale data and the limited display space pose
a significant challenge for visualizing and tracing structural changes in dynamic
network visualizations. Thus, providing an uncluttered overview visualization of
the temporal dimensions is necessary to identify structural changes and similar
temporal states. Moreover, there is a trade-off between visualizing the detailed net-
work structure for each time step and the evolving data over time. Third, a central
challenge for exploring evolving network structures is the visualization, navigation,
and interpretation of patterns. The interactive navigation across scales is essential,
including the simultaneous exploration of relational and temporal data. Further-
more, it is not enough to display the data at different abstraction scales but also to
enable semi-automated exploration across scales. Another challenge is visualizing
the relational and temporal network structure using novel visual metaphors to reveal
dynamic patterns, such as structural changes, trends, states, and outlier network
structures. In this context, distinct application domains require tailored multiscale
visual metaphors based on a domain-specific requirements analysis. Finally, multi-
scale dynamic network visualizations must display the evolving data in a readable
and scalable manner.

This thesis presents multiple studies addressing the previously described challenges.
The presented studies and the developed visualization prototypes are based on
real-world use cases in different application domains. The proposed visualization
approaches are not limited to the presented application domain but are generalizable
to other fields with similar dynamic network analysis tasks.

1.2 Research Objectives 3



1.3 Thesis Outline & Contributions

The following section outlines the primary thesis contributions that address the afore-
mentioned research question and challenges. In summary, this thesis contributes
visualizations to enhance the interactive multiscale visual analysis of dynamic net-
works. The thesis consists of seven chapters (see Figure 1.1). Chapter 1 motivates the
tackled research challenges and introduces relevant terminology. Chapter 2 surveys
and provides background information about common design factors in multiscale
visualizations. Next, Chapter 3 introduces a design study highlighting the benefits
of multiscale visualizations in the application domain of collective animal behavior.
The Chapters 4-5 present scalable pixel-based visualization techniques to provide an
overview of changes in dynamic networks based on unsupervised graph embeddings
and motif analysis. Chapter 6 introduces a multiscale visual analytics approach
to seamlessly integrate graph analysis methods with visualization techniques to
interactively analyze evolving network structures. Chapter 7 summarizes the thesis
contributions and discusses open research challenges.

The following descriptions summarize each chapter’s content and scientific contribu-
tions. Moreover, each chapter’s project code or results are openly accessible online
using the specified URLs.

Chapter 1 The introduction motivates and presents the research in this thesis.
Moreover, the chapter introduces research challenges, contributions, terminology,
and reused publications, including contribution clarifications.

Chapter 2 The second chapter provides an overview of design practices in mul-
tiscale visualization research. The structured literature analysis reviews and
categorizes 122 multiscale visualizations to understand common design practices.
The primary contributions of the chapter are: (1) a unified terminology of multi-
scale visualization, (2) a taxonomy of multiscale visualization design practices,
(3) a collection of design considerations, and (4) the discussion of open research
challenges. Researchers and practitioners can use the structured literature analysis
to explore existing techniques to develop novel multiscale navigation and visual-
ization methods. The list of the reviewed papers, paper codings, and taxonomy
are accessible online at https://multiscale-vis.dbvis.de.

Chapter 3 The third chapter presents a multiscale visualization application that
enables domain experts in collective animal behavior to explore spatio-temporal
networks and group structures at multiple aggregation scales. In the interdisci-
plinary design study, we addressed biologists’ needs and proposed various glyph

4 Chapter 1 Introduction
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Fig. 1.1 The thesis consists of an introduction, five core chapters, and a conclusion. The
figure provides an overview of all chapters.

designs to reveal similar movement behavior and emergent group properties at
multiple scales. The main contributions of the chapter are: (1) a design study
within the domain of collective animal behavior, (2) a glyph design for summa-
rizing and encoding spatio-temporal networks, (3) a visualization prototype to
enable domain experts to analyze local and global network properties over time,
and (4) a spatio-temporal clustering benchmark for the field of collective animal
behavior. The resulting glyph design enables domain experts to display and ex-
plore visual summaries of dense spatio-temporal networks in collective animal
behavior. The developed prototype is online at https://glyph.dbvis.de and the
code is accessible at https://github.com/eren-ck/MotionGlyphs. Moreover,
spatio-temporal clustering benchmark is accessible online at https://github.
com/eren-ck/spatio-temporal-clustering-benchmark.
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Chapter 4 The fourth chapter presents dg2pix , a multiscale pixel-based visualiza-
tion technique to explore temporal and structural properties in large-scale dynamic
networks. The technique consists of multiscale temporal modeling, unsupervised
graph embeddings, and dense pixel visualization. The scientific contributions are
the following: (1) dg2pix , a time-scalable visual metaphor to highlight changes
and similar temporal states in dynamic networks, (2) interpretation strategies for
the visual patterns in dg2pix , and (3) a prototype that allows exploring dynamic
networks at multiple temporal scales. Overall, dg2pix provides a scalable overview
of temporal and structural changes in a dynamic network. The code for the devel-
oped prototype is accessible online at https://github.com/eren-ck/dg2pix.

Chapter 5 The fifth chapter presents two complementary scalable pixel visualiza-
tions to provide an overview of changing motif structures in large-scale dynamic
networks. The pixel visualizations reveal structural changes, trends, states, and
outliers in dynamic networks. The main contributions of the chapter are: (1) the
usage of motif analysis to provide an overview of significant topological changes in
a dynamic network, (2) the description of visual patterns and reordering strategies
for both pixel visualizations, (3) and a prototype implementation with extensive
use case scenarios that analyze synthetic and real-world dynamic networks. The
linked pixel-based visualizations allow exploring static and dynamic network
summaries to search for temporal patterns and visually analyze the underlying
network structure. The code for the developed prototype is accessible online at
https://github.com/eren-ck/motif-pixel-vis.

Chapter 6 The sixth chapter presents Multiscale Snapshots, a multiscale visual
analytics approach for analyzing temporal summaries in dynamic networks. The
approach combines temporal hierarchical abstraction with unsupervised graph
learning methods to semi-automatically visually analyze changing graph prop-
erties at multiple scales. The contributions of the work are: (1) the Multiscale
Snapshots approach to visually analyze temporal and structural properties in a
dynamic network, and (2) a temporal hierarchical abstraction that utilizes unsu-
pervised graph learning methods to reduce the complexity and speed up analytical
tasks. Overall, the approach enables the discovery of similar temporal summaries
and the exploration of temporal states, trends, and outliers. The prototype code is
accessible online at https://github.com/eren-ck/MultiscaleSnapshots.

Chapter 7 The last chapter recaps the presented research and summarizes the thesis
contributions. Moreover, the chapter discusses future research perspectives.
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1.4 Terminology

In visualization research, practitioners often use terms or concepts for which different
definitions exist. Therefore, the following section introduces and defines essential
terms used in this thesis.

Graph & Network: A graph models relationships between a set of objects. A graph
G = (N,E) consists of nodes (vertices) N and edges (links) E ⊆ N × N which
describe the relationship between nodes. A directed graph consists of ordered edges,
and in an undirected case, the nodes are mutually connected. In visualization
research, the term network typically refers to real-world graphs (e.g., a social
network) where nodes or edges have additional attributes [309]. The node and edge
attributes can be of any data type, for instance, typical node and edge attributes are
person names or categorical linkage values. Overall, the term network typically refers
to real-world systems, and a graph describes the mathematical representation of a
network. Thus, this thesis will use the terms graph and network interchangeably.

Dynamic Graph & Network: Dynamic graphs or networks model changing rela-
tionships between objects over time. In a dynamic network, there can be changing
and varying numbers of nodes, edges, and attributes over time. For instance, users
(nodes) typically join or leave social networks, new friendships appear (links), and
attributes like people’s interests change over time. A dynamic graph can be defined
as a sequence of static graphs with DG = (G1, G2, ..., Gn) with Gi representing a
static graph and i being the temporal index. Alternative terms for a dynamic network
are time-varying [150], evolving [108], or temporal networks [149]. Moreover, for
a more detailed discussion of different dynamic network models, please refer to the
work of Archambault et al. [16].

Information Visualization: The interdisciplinary field of information visualization
develops effective visual communication methods to reveal relationships in complex
datasets. The InfoVis pipeline [70] outlines the process of information visualization
and describes the mapping of data to visual representations to help users make sense
of the data. The pipeline consists of the following high-level steps: (1) transforming
raw data into data tables, (2) visually mapping the data tables into visual structures,
(3) rendering the visual structures to a view, and (4) utilizing the view to solve a user
task. Users have to interact and adapt the individual steps of the InfoVis pipeline to
handle complex datasets and solve their particular tasks. Information visualization
utilizes algorithms and interactive visualizations to display and reveal relationships
in complex datasets.

1.4 Terminology 7



Multiscale Visualization: Multiscale visualizations are helpful for visually analyzing
multiscale processes and datasets in different application domains, for instance, in
molecular biology [221] or geography [119]. Such multiscale visualizations scale to
larger datasets and reveal patterns at different abstraction scales while producing
less clutter. This thesis will use the following definition as derived in our structured
literature analysis of multiscale visualizations in Chapter 2: "Multiscale visualizations
allow users to present, navigate, and relate data across multiple abstraction scales."
Overall, multiscale visualizations help investigate complex systems by displaying
and analyzing small-scale patterns and their effects on larger-scale patterns.

Visual Analytics: Visual analytics is the process of interactive visual data analysis,
combining automated data analysis methods with interactive visualizations to help
users gain knowledge about datasets [171]. The main goal of visual analytics
is to combine the strengths of computers and humans to support the effective
understanding and reasoning of large and complex datasets [169]. The research field
combines methods from data management, information visualization, data mining,
machine learning, and human-computer interactions to solve real-world problems.
Overall, visual analytics aims to overcome fully-automated algorithms’ limitations by
including humans in the analysis process using interactive visualizations [169].

1.5 Publications

In the following, I outline the previously published journal and conference pub-
lications included in my thesis. Moreover, I detail the work distribution for each
publication and each author’s contribution providing transparency about the origins
of my thesis. The content was written or revised by myself during the writing process.
The publications are sorted according to their appearance in the thesis chapters.

[61] Eren Cakmak, Dominik Jäckle, Tobias Schreck, Daniel Keim, Johannes Fuchs.
“Multiscale Visualization: A Structured Literature Analysis“. IEEE Transactions
on Visualization and Computer Graphics, 2021.
(Chapter 2)
Contribution clarification. The publication presents a structured literature
analysis of multiscale visualizations to understand existing design practices,
design considerations, and research challenges. After designing several mul-
tiscale visualizations, I had the idea of analyzing common design factors in
multiscale visualizations. I took the lead in the project and was responsible for
all sections. Dominik Jäckle labeled 20 randomly selected papers using our
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coding schema to validate our coding process. Tobias Schreck and Daniel Keim
provided feedback on the general idea and commented on paper drafts, as did
all other authors. Moreover, Johannes Fuchs regularly provided feedback on
the paper’s structure, organization, and content. I was the primary contributor
to the paper and wrote all sections. I revised all paper sections several times
and implemented the online prototype. Therefore, I reuse the paper text
without citation marks in Chapter 2.

[57] Eren Cakmak, Hanna Schäfer, Juri Buchmüller, Johannes Fuchs, Tobias Schreck,
Alex Jordan, Daniel Keim. “MotionGlyphs: Visual Abstraction of Spatio-Temporal
Networks in Collective Animal Behavior“. Computer Graphics Forum Vol. 39.
No. 3, 2020.
(Chapter 3)
Contribution clarification. The publication is the result of interdisciplinary
collaboration. The design study presents a problem characterization and a
glyph design for the multiscale abstraction of spatio-temporal networks in
the field of collective animal behavior. I initiated the project and took the
project lead. Hanna Schäfer helped conduct the pair analytics session and
primarily wrote the evaluation section. Juri Buchmüller investigated similar
methods and wrote the gaps in the related approaches subsection. Johannes
Fuchs regularly provided feedback on the paper’s structure, organization, and
content. Tobias Schreck, Alex Jordan, and Daniel Keim provided feedback
and commented on paper drafts, as did all other authors. I was the primary
contributor to the paper and implemented all designs, including the prototype.
I wrote all sections and revised Section 3.2.7 as well as Section 3.4, which Juri
Buchmüller and Hanna Schäfer initially wrote. Thus, I reuse the paper text
without citation marks in Chapter 3.

[63] Eren Cakmak, Manuel Plank, Daniel Calovi, Alex Jordan, Daniel Keim. “Spatio-
temporal clustering benchmark for collective animal behavior“. Proceedings of
the 1st ACM SIGSPATIAL International Workshop on Animal Movement Ecology
and Human Mobility, 2021.
(Chapter 3)
Contribution clarification. The publication follows up the design study [57]
by presenting a clustering benchmark in the field of collective animal behavior.
This interdisciplinary project proposes a reproducible clustering benchmark,
including a diverse set of synthetic datasets with ground truth and scalable
implementations of spatio-temporal clustering methods. I was responsible for
the project lead. Under my supervision, Manuel Plank helped generate the
synthetic datasets, contributed to the experiments section, and implemented
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the benchmark, including extending state-of-the-art clustering methods. Daniel
Calovi supported the synthetic dataset generation by proposing different agent-
based models and helped to write the dataset design subsection. Alex Jordan
provided background information on the application domain in the background
section. Daniel Keim provided feedback and commented on paper drafts, as
did all other authors. I was the primary contributor to the paper. I wrote
all sections or revised the sections several times during the writing process.
Therefore, I reuse the paper text without citation marks in Chapter 3.

[62] Eren Cakmak, Dominik Jäckle, Tobias Schreck, Daniel Keim. “dg2pix: Pixel-
Based Visual Analysis of Dynamic Graphs“. Visualization in Data Science (VDS),
2020.
(Chapter 4)
Contribution clarification. The publication presents a pixel-based visualiza-
tion technique to reveal changes and similar temporal states in a dynamic
network. The proposed approach allows exploring temporal and structural
properties in long sequences of large-scale networks. Again, I initiated and
led the project. Dominik Jäckle regularly provided feedback on the paper’s
structure, organization, and content. Tobias Schreck and Daniel Keim provided
feedback on the general idea and commented on paper drafts, as did all other
authors. I was the primary contributor to the paper and wrote all sections. I
revised all paper sections several times and implemented the prototype. Thus,
I reuse the paper text without citation marks in Chapter 4.

[59] Eren Cakmak, Johannes Fuchs, Dominik Jäckle, Tobias Schreck, Ulrik Brandes,
Daniel Keim. “Motif-Based Visual Analysis of Dynamic Networks“. Submitted to
Visualization in Data Science (VDS), 2022.
(Chapter 5)
Contribution clarification. The publication presents two complementary
pixel-based visualizations based on motif analysis to provide an overview of
significant topological changes in dynamic networks. The linked pixel-based
visualizations allow exploring motifs in different-sized networks to analyze
topological structures within and across dynamic networks. Again, I was
responsible for the project lead. Johannes Fuchs regularly provided feedback
on the paper’s structure, organization, and content. Dominik Jäckle, Tobias
Schreck, Ulrik Brandes, and Daniel Keim provided feedback on the general idea
and commented on paper drafts, as did all other authors. I was the primary
contributor to the paper and wrote all sections. I revised all paper sections
several times and implemented the prototype. Therefore, I reuse the paper
text without citation marks in Chapter 5.
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[64] Eren Cakmak, Udo Schlegel, Dominik Jäckle, Daniel Keim, Tobias Schreck.
“Multiscale Snapshots: Visual Analysis of Temporal Summaries in Dynamic
Graphs“. IEEE Transactions on Visualization and Computer Graphics 27.2
517-527, 2020.
(Chapter 6)
Contribution clarification. The publication presents a visual analytics ap-
proach for visually analyzing temporal summaries of a dynamic network at
multiple scales. The paper proposes a hierarchical abstraction using unsuper-
vised graph learning methods to reduce the size of a dynamic network and
speed up analytical tasks. I initiated and took the lead in the project. Udo
Schlegel helped to implement the experimental evaluation. Dominik Jäckle
regularly provided feedback on the paper’s structure, organization, and con-
tent. Daniel Keim and Tobias Schreck provided feedback on the general idea
and commented on paper drafts, as did all other authors. I was the primary
contributor to the paper and wrote all sections. I revised all paper sections
several times and implemented the prototype. Thus, I reuse the paper text
without citation marks in Chapter 6.

I also authored and contributed to the following chronologically ordered publications,
which impacted my research but are not included in this thesis.

[271] Rita Sevastjanova, Eren Cakmak, Shauli Ravfogel, Ryan Cotterell, Menna-
tallah El-Assady. “Visual Comparison of Language Model Adaptation“. IEEE
Transactions on Visualization and Computer Graphics, 2022.

[49] Juri Buchmüller, Udo Schlegel, Eren Cakmak, Daniel Keim, Evanthia Dimara.
“SpatialRugs: A compact visualization of space and time for analyzing collective
movement data“. Computers & Graphics, 2021.

[87] Frederik Dennig, Eren Cakmak, Henrik Plate, Daniel Keim. “VulnEx: Explor-
ing Open-Source Software Vulnerabilities in Large Development Organizations
to Understand Risk Exposure“. IEEE Symposium on Visualization for Cyber
Security (VizSec), 2021.

[214] Tran Hai Dang Mai, Felix Hinderer, Eren Cakmak, Udo Schlegel, Juri Buch-
müller, Daniel Keim. “VisMe: Visual and Uncertainty Analysis tool in Object
Recognition“. IEEE Conference on Visual Analytics Science and Technology
(VAST Challenge 2020 Mini Challenge 2), 2020.

[106] David Englert, Pablo Martinez-Blasco, Eren Cakmak, Udo Schlegel, Juri
Buchmüller, Daniel Keim. “Somewraps - Something with Graphs: Visual
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Analytics of Network Data“. IEEE Conference on Visual Analytics Science and
Technology (VAST Challenge 2020 Mini Challenge 1), 2020.

[265] Udo Schlegel, Eren Cakmak, Daniel Keim. “ModelSpeX: Model Specification
Using Explainable Artificial Intelligence Methods“. International Workshop on
Machine Learning in Visualisation for Big Data (MLVis), 2020.

[50] Juri Buchmüller, Udo Schlegel, Eren Cakmak, Evanthia Dimara, Daniel
Keim. “SpatialRugs: Enhancing Spatial Awareness of Movement in Dense Pixel
Visualizations“. EuroVis Workshop on Visual Analytics (EuroVA), 2020.

[263] Udo Schlegel, Eren Cakmak, Hiba Arnout, Mennatallah El-Assady, Daniela
Oelke, Daniel Keim. “Towards visual debugging for multi-target time series
classification“. Proceedings of the 25th International Conference on Intelligent
User Interfaces (IUI), 2020.

[47] Juri Buchmüller, Eren Cakmak, Natalia Andrienko, Gennady Andrienko, Jolle
Jolles, Daniel Keim. “Moving Together: Towards a Formalization of Collective
Movement“. EuroVis Workshop on Visual Analytics (EuroVA), 2019.

[266] Udo Schlegel, Wolfgang Jentner, Juri Buchmüller, Eren Cakmak, Giuliano
Castiglia, Renzo Canepa, Simone Petralli, Luca Oneto, Daniel Keim, Davide
Anguita. “Visual Analytics for Supporting Conflict Resolution in Large Railway
Networks“. INNS Big Data and Deep Learning conference (Springer Cham),
2019.

[48] Juri Buchmüller, Dominik Jäckle, Eren Cakmak, Ulrik Brandes, Daniel Keim.
“MotionRugs: Visualizing Collective Trends in Space and Time“. IEEE Transac-
tions on Visualization and Computer Graphics, 2019.

[66] Eren Cakmak, Daniel Seebacher, Juri Buchmüller, Daniel Keim. “Time Series
Projection to Highlight Trends and Outliers“. IEEE Conference on Visual
Analytics Science and Technology (VAST Challenge 2018 MC2), 2018.

[65] Eren Cakmak, Udo Schlegel, Matthias Miller, Juri Buchmüller, Wolfgang
Jentner, Daniel Keim. “Interactive Classification Using Spectrograms and Audio
Glyphs“. IEEE Conference on Visual Analytics Science and Technology (VAST
Challenge 2018 MC1), 2018.

[29] Benedikt Bäumle, Ina Bösecke, Raphael Buchmüller, Yannick Metz, Juri
Buchmüller, Eren Cakmak, Wolfgang Jentner, Daniel Keim. “Interactive
Webtool for Tempospatial Data and Visual Audio Analysis“. IEEE Conference on
Visual Analytics Science and Technology (VAST Challenge 2018 MC1), 2018.
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[246] Isabel Piljek, Giuliana Dehn, Jannik Frauendorf, Ziad Salem, Yerzahn Niyaz-
bayev, Juri Buchmüller, Eren Cakmak, Wolfgang Jentner, Florian Stoffel,
Daniel Keim. “Identifying Patterns and Anomalies within Spatiotemporal Water
Sampling Data“. IEEE Conference on Visual Analytics Science and Technology
(VAST Challenge 2018 MC2), 2018.

[58] Eren Cakmak, Giuliano Castiglia, Wolfgang Jentner, Juri Buchmüller, Daniel
Keim. “Visualization For Train Management: Improving Overviews in Safety-
critical Control Room Environments“. 4th International Symposium on Big
Data Visual and Immersive Analytics, 2018.

[264] Udo Schlegel, Eren Cakmak, Juri Buchmüller, Daniel Keim. “G-Rap: inter-
active text synthesis using recurrent neural network suggestions“. European
Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning (ESANN), 2018.

[60] Eren Cakmak, Alexander Gärtner, Thomas Hepp, Juri Buchmüller, Fabian
Fischer, Daniel Keim. “Applying visual analytics to explore and analyze move-
ment data“. IEEE Conference on Visual Analytics Science and Technology
(VAST Challenge 2015 MC1), 2015.
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Multiscale Visualization: A
Structured Literature Analysis

2

Summary

The visualization community typically employs multiscale visualizations to explore
multiscale processes and data in different application domains. However, developing
such multiscale visualizations remains challenging due to the plethora of existing
work and the expression ambiguity in the visualization research community. The
following chapter presents a structured literature analysis to compare and categorize
common design practices in multiscale visualization research. In the literature
analysis, we reviewed and organized 122 published journal and conference papers
between 1995 and 2020. Visualization researchers can use the resulting taxonomy
to explore existing techniques, common design practices, research trends, and open
research challenges. The primary goal of this chapter is to provide an overview of
existing multiscale visualization approaches and help visualization practitioners to
develop new multiscale navigation and visualization techniques. The taxonomy,
the list of reviewed papers, and the resulting paper codings are accessible online at
https://multiscale-vis.dbvis.de.

The chapter is based on the following publication. Please refer to Section 1.5 for
contribution clarifications. The used icons in this chapter are MaterialDesign icons
(Apache License 2.0).

[61] Eren Cakmak, Dominik Jäckle, Tobias Schreck, Daniel Keim, Johannes Fuchs.
“Multiscale Visualization: A Structured Literature Analysis“. IEEE Transactions
on Visualization and Computer Graphics, 2021.
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2.1 Introduction

Many multiscale visualizations have been proposed in visualization research. These
multiscale visualizations are essential in various application domains to analyze
large and high-dimensional datasets, such as in geography [119], physics [241], or
biology [221]. For instance, in molecular biology, multiscale visualizations are used
to analyze genomes’ multiscale hierarchical structure, such as the nucleus with a
division into chromosomes, fibers, and, at the lowest scale, atoms [133]. Typically,
in contrast to single-scale visualizations, multiscale visualizations scale to larger
datasets, produce less clutter, and reveal the emergence of patterns at different levels
of scale. For example, aggregation methods can be recursively utilized to promote
a top-down or bottom-up hierarchical visual exploration of large datasets [98].
However, designing multiscale visualizations is challenging due to the plethora of
existing approaches and different design considerations.

In visualization research, authors regularly used the expression multiscale (multi-
scale) visualization in different contexts with often varying meanings. Examples
of different contexts include interaction-based multiscale zooming methods [159]
or multiscale statistical summary visualizations [295]. Visualization experts know
about the expression’s ambiguity and typically specify the meaning in their papers.
However, the different definitions of what is meant by a multiscale visualization may
be confusing for novice readers. For example, selecting a multiscale visualization
approach can be challenging for data analysts due to the expression’s ambiguity.
There has been little work to categorize and compare multiscale visualizations to
understand their design practices. To address this challenge, we provide a systematic
literature analysis of multiscale visualizations to gain insights into common design
factors and improve communication between researchers.

In this chapter, we provide a comprehensive overview of multiscale visualization
approaches. We systematically analyzed 122 papers from multiple journals and
conferences to understand general design practices for multiscale visualizations. The
result is a categorization of multiscale visualization approaches into a taxonomy.
We discuss how different multiscale visualizations enable us to analyze and relate
information at various scales to gain insight into complex systems, such as in
molecular biology [221]. Further, we summarize design considerations and highlight
open research challenges for multiscale visualizations. Overall, we provide a basis for
the systematic reasoning about multiscale visualizations, and the key contributions
are: (1) a unified definition of the terminology, (2) a taxonomy of design practices
for multiscale visualizations, (3) a summary of design considerations, and (4) a
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collection of crucial open research challenges. An extensive list of the reviewed
papers, the resulting paper codings, and the taxonomy are accessible online at
https://multiscale-vis.dbvis.de.

2.2 Background

In this section, we first examine some definitions and derive a unified consensus on
the multiscale visualization terminology. We also search for similar concepts and
synonyms in visualization research. The second part discusses commonalities and
differences between our literature analysis to related work.

2.2.1 Terminology

Some expressions are often so widely used that people use them without specifying
their exact meaning. The term multiscale visualization belongs to these expressions.
In visualization research, the potential characteristics and interpretations of multi-
scale visualizations are quite broad. Therefore, we reviewed existing definitions to
derive a consensus on what is meant by multiscale visualization.

In a broader context, multiscale visualizations are a form of multiscale analysis.
In many fields, multiscale analysis is widely used to understand the emergent
properties of systems in the real world, such as in physics [241] or biology [8]. The
essential term ”multiscale” has the following dictionary definition: “operating or
occurring over different levels“ [89]. The dictionary definition highlights the main
characteristics of multiscale analysis, analyzing data at various levels of detail. Such
a multiscale analysis’s primary goal is to investigate complex systems by examining
small-scale patterns and their effects on emerging large-scale patterns [8]. For
instance, multiscale analysis is useful to analyze local interactions between animals
in collective animal behavior to understand individual animals’ influence on large-
scale swarm behavior [209].

In the following, we examine definitions of multiscale visualizations to derive a more
precise definition. First, Furnas and Bederson [118] specify multiscale visualization
(multiscale interfaces) as an approach to display data at different magnifications or
scales. Next, Stolte et al. [287] provide another perspective. The authors emphasize
that multiscale visualizations utilize data and visual abstraction methods to present
the data at different abstraction levels. Data abstractions transform and reduce the
underlying dataset (e.g., aggregation or filtering), and visual abstractions change
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the data point representations (e.g., semantic zooming or distortions). Further,
Elmqvist and Fekete [98] propose a multiscale structure and navigation strategies to
turn existing approaches into multiscale visualizations and present data at multiple
aggregation levels. Ebert et al. [95] describe the need for multiscale interactions to
understand scientific data and system-of-systems at multiple problem scales. Viola
and Isenberg [306] characterize multiscale visualizations as representations that
display and relate abstracted data across various levels of scale.

We want to highlight that the previous definitions include different concepts such as
navigating and relating abstracted data (e.g., aggregated data) across scales. These
concepts are essential in multiscale analysis in various domains. For example, in
the visualization of DNA nanostructures [221], domain experts have to navigate
and relate information across different scales to understand complex system-of-
systems. Overall, concepts such as the presentation and navigation of different
abstraction scales expose patterns and relationships in datasets at varying scales.
Therefore, we derive the following definition from the listed previous research:
“Multiscale visualizations allow users to present, navigate and relate data across multiple
abstraction scales.“ Our definition integrates various interpretations to specify the
ideal characteristics of multiscale visualizations.

We reviewed the visualization literature to identify similar concepts and notions
to the expression multiscale visualization. We use these similar expressions in our
literature analysis as search terms to identify related papers. We used the IEEE VIS
paper keyword search by Isenberg et al. [155] and the derived keyword topics [153]
to search for synonyms. Additionally, we scanned the keywords and abstracts of
the updated metadata collection about IEEE VIS publications [154]. We reviewed
the CHI conference proceedings accessible on the ACM digital library for related
expressions. We searched for the author keywords (tags) for “multiscale“ and
scanned the resulting 29 papers for related expressions. We identified multiple
reoccurring similar expressions such as multi-scale, multiple scales, multi-level, cross-
scale, multi-resolution, and multiple resolutions in combination with terms such as
visualization, interface, representation, viewing, interaction, navigation, model, design,
and analysis are used to describe similar concepts in visualization research. To
determine which of the related expressions is most often used in the literature, we
investigated the term usage of our literature analysis search results (see Figure 2.1).
The term multiscale (multi-scale) is the most commonly used term of the previously
listed expressions.
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Fig. 2.1 The five most frequently used expressions among the surveyed 122 papers. The
most common expression is multiscale visualization.

2.2.2 Related Work

Multiscale visualization has been a part of visualization research for some time. Next,
we discuss related theories and surveys that describe multiscale visualizations.

Theoretical Work: Many related theory papers discuss multiscale visualization
approaches. Furnas and Bederson [118] provide an analytical framework and space-
scale diagrams to understand multiscale interfaces. Stolte et al. [287] formalize
multiscale visualizations using abstraction methods for data cubes. Kehrer and
Hauser [168] discuss multi-faceted visualization approaches, including a multi-
model scenario. Goodwin et al. [119] discuss the modifiable areal unit problem
(MAUP) [234] and propose a framework for multivariate visual comparison across
multiple geographical scales. Viola and Isenberg [306] examine and formalize the
concept of abstraction in visualization research. The authors discuss multiscale
visual abstractions for spatial and temporal data. In comparison, we focus less on
providing another theoretical framework and concentrate more on presenting an
overview of multiscale visualization design practices in visualization research.

Surveys: In visualization research, three surveys investigate multiscale visualizations
in specific application domains. Vaquero et al. [298] review the visualization
and interaction techniques for multiscale biomedical data, such as anatomy or
genomics. Ezzati-Jivan and Dagenais [110] survey multiscale navigation of execution
trace data, focussing on multilevel trace abstraction and visualization methods.
Miao et al. [220] discuss multiscale visualization techniques for analyzing and
manipulating 3D DNA structures in molecular biology. These surveys investigate
multiscale visualizations for particular application domains. Furthermore, Ebert et
al. [95] describe challenges and opportunities for multiscale scientific visualizations.
In contrast, we systematically review design practices for multiscale visualizations in
a broader context of visualization research, exceeding the traditional survey scope.
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Hierarchical Visualizations: Further related work focus on hierarchical and tree-
based visualizations. Yang et al. [325] propose a framework called Interactive Hierar-
chical Displays (IHD) for the multi-resolution view and navigation (e.g., drill-down)
of hierarchies. Elmqvist and Fekete [98] propose a more general framework that
presents a multiscale structure and navigation methods to turn existing techniques
into multiscale visualizations. Schulz et al. [269] elaborate on the design space of
implicit tree visualizations. In contrast, we provide a broader review of visualization
research by analyzing design factors in existing multiscale visualizations.

In summary, all these previous approaches present significant contributions by
introducing frameworks, techniques, or domain-specific surveys. However, none of
the previous work explored the broader visualization literature for existing multiscale
visualization. Such a literature analysis is essential to understand common practices
(e.g., interaction methods and targets). To the best of our knowledge, our literature
analysis is the first analysis of design practices for multiscale visualizations.

2.3 Methodology

Our literature analysis’s primary goal is to give a comprehensive overview of multi-
scale visualizations. The guidelines for qualitative literature analysis [124] inspired
our methodological approach. We focus on papers that use the expression multiscale
visualizations or the identified related expressions (see Section 2.2.1). Moreover, our
literature analysis cannot include all possible multiscale data models in visualization
research, as this would go far beyond the scope of our work. We did not explore
visualization approaches that only employ hierarchical or tree-based models. Specif-
ically, we omitted all papers that only utilize multiscale models (e.g., hierarchical
clustering) without any multiscale visualization. In the following, we describe our
literature search and analysis procedure.

2.3.1 Selection of Literature

First, we used multiple search engines to identify relevant papers from various
conferences and journals. We used the search term visualization and the identified
related expressions (see Section 2.2.1) for online keyword search. We used the
following search engines, which led to the results: IEEE Xplore digital library (327
results), ACM digital library (651 results), EG digital library (129 results), and DBLP
computer science bibliography (781 results).

20 Chapter 2 Multiscale Visualization: A Structured Literature Analysis



The automatically identified papers were refined in three steps. In the first step,
we only included peer-reviewed full papers published in journals or conferences.
The step reduced the number of papers from 1888 to 1312. In the second step,
we manually excluded papers unrelated to multiscale visualizations. We excluded
papers that only use multiscale models (e.g., hierarchical clustering) without any
multiscale visualization. As a result, the papers were further filtered from 1312 to
75. As for the last step, we recursively scanned the paper references and followed
the citations in both directions on Google Scholar. Hence, the number of papers
increased again from 75 to 122.

2.3.2 Coding Scheme

We developed a coding scheme and tagged the 122 papers with labels. The coding
scheme is designed to capture multiscale visualization characteristics and is based
on existing taxonomies. We combined some labels in more abstract categories to
keep our coding scheme focused and manageable. Thus, some details might get lost,
like the distinction between line charts and scatterplots, which have been summa-
rized as statistical graphics. A paper can have multiple labels of a specific coding
category (e.g., multiple target labels). The authors coded the papers. We randomly
selected and encoded 20 papers redundantly to validate our coding process. For
the redundantly encoded papers, Cohen’s kappa coefficient for inter-rater reliability
reached a substantial agreement with κ = 0.61 (83% overall agreement). We tagged
the 122 papers with the following coding scheme (see Table 2.1).

Journal: We labeled the papers with the year and journal or conference to identify
trends and the leading paper outlets.
Visualization Idioms: Munzner [229, Chapter 7-9] describes various categories of
visualization techniques for different dataset types, such as spatial or network data.
We selected ten prominent visualization idioms from the described visualization
techniques to label the respective multiscale visualizations. We also added an extra
category “other“ describing unique visualizations that do not fall into any defined
visualization idioms category. The following list summarizes the labels.

• statistical graphics: traditional charts, such as line charts, bar charts, or scatter-
plots.

• parallel coordinates: display multivariate datasets as lines between parallel
axes.
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Category Labels Multi-Label Source

Journal name of the journal or conference and year Source of Publication

Visualization Idiom statistical graphics, parallel coordinates, dense layouts,
glyph, 3D, geographic, spatial fields, graph, stacked charts,
other

Munzner [229, Chapter 7-9]

Target trends, outliers, features, distributions, extremes, depen-
dency, correlation, similarity, topology, paths, shape

Munzner [229, Chapter 3]

Interaction select, navigate, arrange, change, filter, aggregate Brehmer and Munzner [46]

Composite Visualization juxtaposed, superimposed, overloaded, nested, and inte-
grated views

Javed and Elmqvist [158]

Dataset Type tables, networks & trees, fields, geometry Munzner [229, Chapter 2]

Attribute Type categorical, ordinal, quantitative, hierarchical Munzner [229, Chapter 2]

Navigation Strategy top-down and bottom-up exploration strategies Battle and Heer [28]

Level of Analysis microscale, mesoscale, macroscale Shi et al. [274] and Xu et al. [324]

Application Area CompSystems (computing systems), LifeBio (life sciences,
biology), MLStatsModel (machine learning, statistics), Sci-
enceEngr (physical science, engineering), SocHum (social
science, humanities), OtherApp (other application areas),
NAApp (domain agnostic)

IEEE VIS Paper Submission Keywords [307]

Paper Type technique (technique & algorithm), system, design study
(application & design study), evaluation (empirical study),
or model (theory & model)

IEEE VIS Paper Types [152]

Evaluation computational benchmark, qualitative evaluation, quanti-
tative evaluation, usage scenario, and no evaluation

visualization evaluation strategies [9, 71, 191]

Tab. 2.1 The applied coding scheme with tags. In case a category is multi-label, then several
labels can be assigned to one paper.

• dense layouts: pixel-oriented visualization techniques display data records’
values as colored pixels.

• glyph: multivariate data records are mapped to glyph, icon, and symbol
representations.

• 3D: three-dimensional geometric visualizations.

• geographic: geographic visualizations for spatial data, such as choropleth maps.

• spatial fields: visualizations of scalar-, vector-, and tensor fields.

• graph: graph (network) and tree visualizations.

• stacked charts: present data in multiple stacked layers, such as streamgraph
visualizations.

• other: visualization techniques not fitting into any of the categories above.

Target: We labeled the target of the visualization using the suggested detailed
targets by Munzner [229, Chapter 3].
Interaction: We used the manipulation methods for visualizations of Brehmer and
Munzner [46] to tag the supported interaction methods. The listed manipulation
methods [46] unify interaction and visual encodings as both are closely related to
each other.
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Composite Visualization: We used the composite visualization design space [158]
to label the combination of different visual representations in the same view.
Dataset Type: We facilitated four basic dataset types (tables, networks & trees, fields,
geometry) described by Munzner [229, Chapter 2] to tag each paper.
Attribute Type: Munzner [229, Chapter 2] described the four attribute types cat-
egorical, ordinal, quantitative, and hierarchical. We labeled the papers using these
attribute types.
Navigation Strategy: We consider two navigation strategies top-down and bottom-
up exploration strategies [28]. The strategies can be described by drill-down (top-
down) and roll-up (bottom-up) operations.
Level of Analysis: We consider the three levels of analysis scale: micro-, meso-, and
macroscale. These analysis levels are often used to describe the analysis scale (e.g.,
in Shi et al. [274] and Xu et al. [324]). Microscale analysis is the smallest level of
scale that displays individual data points, such as examining nodes and edges in a
graph. The mesoscale analysis is in-between and investigates structural properties,
for instance, analyzing motifs and communities in a graph. Macroscale analysis
focuses on the dataset’s global properties, such as the number of nodes and edges
in a graph. Ideally, a multiscale visualization visualizes all three analysis scales to
enable users to relate abstracted data across scales.
Application Area: We utilized the IEEE VIS application areas keywords (see Ta-
ble 2.1) to tag the application domain [307].
Paper Type: We categorized the papers according to the five IEEE VIS paper types
(see Table 2.1) to point out popular paper types in the research field [152].
Evaluation: We investigated common evaluation strategies in visualization re-
search [9, 191] and on quantitative evaluation studies [71]. We used five tags to
label the evaluation strategies: computational benchmark, qualitative evaluation,
quantitative evaluation, usage scenario, and no evaluation.

2.4 Multiscale Visualization Taxonomy

The following section outlines prevalent coding labels and a taxonomy of similar mul-
tiscale visualization contributions. Furthermore, we derived design considerations
based on our structured literature analysis. Researchers can explore the complete
paper codings and the taxonomy online at https://multiscale-vis.dbvis.de.
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2.4.1 Coding Results

First, we provide a high-level overview of the coding labels based on the coding
scheme categories (see Table 2.1). The following percentages always refer to the
122 papers and do not necessarily add up to 100%, as a paper can have multiple
category labels at the same time.
Publication Venues & Paper Types In recent years, an increasing number of mul-
tiscale visualization papers have been published (see Figure 2.2). The top three
publication venues are IEEE TVCG (44/122), Computer Graphics Forum (15/122),
and ACM CHI (14/122). The remaining 49 papers were published in related journals
or conferences. The most common paper types are technique (46%), design study
(25%), and model (16%) papers. The two other paper types, system (7%) and
model (6%), rarely appear over the years. From 2015 to 2020, the proportion of
paper types has remained constant, except for a fluctuating number of design study
papers. Recently, the IEEE TVCG publications reached an all-time high with nine
papers in 2020 as the topic is gaining popularity for visualizing large-scale datasets.
Visualization Idioms The following labels, statistical graphics, geographic, 3D, and
graph, occur separately in 25-28% of all papers. The previous four labels, considered
altogether, appear in about 80% of all papers. The number of 3D, geographic, and
graph idioms has steadily increased since 2008 due to a growing number of multi-
scale visualizations in social sciences and biology (e.g., 3D DNA visualization [220]).
Each of the remaining idioms occurs as follows: 10% dense layouts, 10% glyph, 7%
parallel coordinates, and 5% spatial fields, as well as stacked charts. Interestingly,
our label ”other”, representing unique visualization techniques and tailored design
studies, appears in 40% of all papers.
Target The commonly assigned target labels for visualizations are with 80% features,
57% shape, 41% similarity, 39% distribution, and 30% for topology as well as trends.
The remaining target labels appear in 28% paths, 27% correlation, 27% outliers,
and 18% dependency of all papers. The target label ”extremes” occurred only ten
times, which is rare considering the number of analyzed tabular datasets (46%).

Fig. 2.2 The chart presents the paper types for the years 1995-2020.
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Interaction In almost all papers, essential interaction methods are the navigation
(85%) and selection (83%) of abstraction scales. Papers without those two labels
discuss more theoretical contributions, such as frameworks or workflows. The pro-
portion of the label aggregation (47%) and change (34%) has remained constant
since 2006. The interaction methods filter (30%) and arrange (17%) have slightly
increased after 2014. Notably, the interaction methods select and navigate likewise
aggregate and change tend to appear together as navigation across scales often
includes selecting an appropriate scale, and aggregation involves changing the data
abstraction scale.
Composite Visualization An overall 45% of all papers received the label juxtaposed.
Each remaining label nested, superimposed, integrated views, and overloaded ap-
peared overall in 13-15% of all papers. In terms of temporal shifts, we observed
13 superimposed views from 2013 to 2017, contrasting the only four previously
superimposed views from 2003 to 2013. Furthermore, 40 papers did not describe
any composite views, as the approaches proposed only visualization techniques or
discussed theoretical work.
Dataset Type The utilized types are 50% geometry, 46% table, 25% network &
tree, and 7% field datasets. We want to highlight that tabular dataset appear nearly
13% in conjunction with geographic or network & tree datasets, i.e., geographic
attributes. Multiscale analyses of field datasets first appeared in 2014 and are overall
underrepresented with only eight papers.
Attribute Type The analyzed attribute types are in 81% of the cases categorical,
46% quantitative, and only 2% ordinal. Furthermore, 18% of papers analyze hierar-
chical data attributes. We want to highlight that there are no dedicated multiscale
visualizations for only ordinal data attributes.
Navigation Strategy Overall, 74% of papers utilize top-down approaches, with
only eight papers applying bottom-up approaches. Seven of the eight bottom-up
approaches were proposed after 2013. There are only three approaches that describe
only the bottom-up navigation strategies.
Level of Analysis For the next category, the label occurrences are as follows: 89%
microscale, 75% mesoscale, and 12% macroscale. For 65% of all papers, the labels
microscale and mesoscale occur together. We noticed that most multiscale visualiza-
tions are not displaying macroscopic information, which is essential for relating the
abstracted structures to the overall global dataset properties.
Application Area The labels appear with the following frequencies: 28% LifeBio,
11% SocHum, 8% CompSystems, 5% ScienceEngr, and 2% MLStatsModel. Further,
34% of all papers are domain agnostic, and 15% are in other application areas. The
following trends have emerged. The number of life science and biology papers has
steadily increased from one in 2013 to six papers in 2020. Multiscale visualizations
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Fig. 2.3 The proportion of paper evaluations for the years 1995-2020, showing a positive
trend towards more extensive paper evaluations.

for machine learning applications appeared after 2017 and will inevitably increase
in the future, as multiscale visualizations are suited to display deep learning archi-
tectures at varying scales, such as network layers and their underlying neurons.
Paper Evaluation The number of utilized evaluation approaches are 51% usage sce-
nario, 29% quantitative as well as 20% qualitative user studies, 20% no evaluation,
and 11% computational benchmark. We also examined the proportion of evalua-
tion methods over the years (see Figure 2.3). The analysis indicates an increase
in quantitative and qualitative user studies, including a slight decrease in usage
scenarios. Additionally, since 2014, there has been an increase in computational
benchmarks in paper evaluations. Overall, there is a positive trend towards more
detailed evaluations with benchmarks and user studies.

2.4.2 Multiscale Visualization Taxonomy

Next, we introduce prevalent classes of contributions in multiscale visualization
research. Our taxonomy consists of six main classes of paper contributions with
multiple sub-classes (see Figure 2.4). We outline how we derived the taxonomy
based on several clustering iterations and the refinement of the clusters. First, we
encoded the labels using one-hot encoding and applied k-means clustering using
the cosine similarity to identify similar multiscale visualization papers. Considering
the input parameters, we used the silhouette coefficient and the elbow method to
identify a decent number of k-clusters. We decided to select k = 6 after we examined
k between two and twenty. We manually analyzed the clusters in the second step
and chose appropriate class names for each cluster. We also refined and reassigned
22 borderline papers to more suitable classes. Finally, we recursively applied the
previously described steps to the resulting six classes to identify similar sub-classes
of papers. We assigned each of the 122 reviewed papers to exactly one sub-class.
Next, we describe the common design factors of each sub-class.
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Fig. 2.4 The chart shows the resulting taxonomy, including the number of papers. The six
classes are Multiscale Visual Representations, Multiscale Visualization Applications,
Multiscale Visual Analytics, Multiscale Interaction & Navigation, Theoretical Work,
and Multiscale Visualization Systems.

Multiscale Visual Representations

Multiscale visual representations are listed as a primary contribution across the
reviewed papers. The class contains multiscale visualization technique papers,
including two design studies that list visualization techniques as part of their contri-
bution. The class is further divided based on visualization idioms (see Figure 2.5)
into the six sub-classes: statistical graphic, 3D, geographic, graph & tree, dense, and
miscellaneous representations. The remaining visualization idioms did not occur
often enough to form sub-classes.

Statistical Graphics (5/36): All sub-class papers utilize juxtaposed statistical
graphics to analyze temporal patterns at multiple scales. The primary targets are
exploring temporal data (e.g., time series) to discover similar features (5), including
identifying trends (4). The sub-class papers provide the following interaction
methods to change (5), navigate (4), and aggregate (4) data. The datasets are
tabular (5), examining mainly quantitative data attributes (4). For example, a
unique paper is the work of Mao et al. [216], which depicts multiscale statistical
trends in text documents, including low-level semantics (e.g., topic shifts) and
high-level characteristics (e.g., general trends), as a smooth curve.

3D (8/36): The second sub-class employs 3D multiscale visual representations
tailored for biological applications (8) to explore 3D hierarchical datasets (3). The
sub-class consists of visualizations for geometric (7) and field datasets (4). The
central targets are to identify distributions of geometric shapes (8) and similar
features (7). The proposed interaction methods are to select (7) and navigate
(6) 3D spaces in a top-down manner. The analysis level is mainly mesoscale (7),
including interactive aggregations methods to locate and compare geometric shapes
(3). An example paper is ClearView [186], an interactive focus+context visualization
method for complex volumetric data.

Geographic (5/36): The next sub-class summarizes geographic visual represen-
tations that provide insight into spatial phenomena. The targets are to discover in
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Fig. 2.5 The Figure presents how often visualization idioms appear in the six multiscale
visual representation sub-classes. Papers usually utilize multiple visualization
idioms in their approaches (e.g., ZAME [97] depicts a matrix visualization with
glyphs.

all papers spatial distributions, trends, outliers, and features, such as shapes. The
interaction methods are to select, navigate, filter, aggregate, and change spatial
scales (4). The navigation strategy is top-down from coarse to fine granular (5) and
depicts micro-, and mesoscale (3). For example, the TopoGroups [331] technique
provides an overview and navigation means to explore geographical distributions
across different aggregation scales.

Graph & Tree (8/36): The following sub-class is about abstracting and visually
exploring graph data such as networks and trees. The sub-class papers summarize
graph structures into a hierarchy of strongly connected sub-graphs, for example,
recursively into a multiscale visualization of small world networks [22]. The regular
targets are to explore similar aggregated graph topologies (8), paths (7), and
features (5). Nearly all approaches enable users to select, navigate and aggregate
the graphs in a top-down fashion to examine nodes (microscale) and meta-nodes
(mesoscale). Interestingly, paper evaluations only report usage scenarios (7), except
for some computational benchmarks (2). Lately, for instance, Pezzotti et al. [243]
proposed a technique to explore large bipartite graphs (social networks) to reveal a
hierarchy of clusters.

Dense Layout (5/36): The next sub-class papers present temporal events with
dense layouts, also known as pixel-based visualizations. The primary targets are
to compare similar features (5), including identifying temporal trends (3) in large
datasets. All sub-class papers combine navigation and aggregation interaction
methods for tabular datasets at micro-, and mesoscale. All evaluations are primarily
usage scenarios. For instance, dg2pix [62] provides an overview of large dynamic
graphs using a dense pixel-based visualization to explore graph embeddings at
multiple temporal scales. A notable paper is Pálenik et al. [236] that proposes a
pixelmap to analyze spatio-temporal particle simulations at multiple temporal and
spatial scales.
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Fig. 2.6 The chart presents the application areas distribution for the corresponding taxon-
omy classes Section 4.2.

Miscellaneous (5/36): The last sub-class contains rarely occurring visualizations
idioms. Like the two parallel coordinate approaches that combine aggregations
with navigation methods to summarize features, trends, and outliers [115, 252].
The remaining three papers propose distinct techniques. For example, Veras and
Collins [302] propose a display-optimized tree cut algorithm to reduce clutter for
multiscale visualizations, such as treemap or sunburst diagrams. Since the sub-class
contains different approaches, describing common design factors is pointless.

Summary: The central element of the class papers is to visually explore and compare
similar features (32), distributions (23), shapes (16), network topologies as well
as paths (16) of data across multiple scales. However, relating data across scales is
challenging and often overwhelming for users due to the cognitive and interaction
overload [331].

Multiscale Visualization Applications

The second class encompasses design study papers that describe and solve application-
focused challenges using multiscale visualizations. Figure 2.6 provides a general
overview of the surveyed 122 papers’ application areas.

Biological Applications (8/19): The sub-class papers appeared in biology and
life sciences. The papers commonly utilize juxtaposed visualizations (4), such as 3D
and graph representations. Typical targets are to explore and summarize similar
network (5) and geometric (4) datasets features (8) and distributions (4), such as
3D shapes (5), network topologies (5), and paths (5). The interaction methods
are selecting (8) and navigating (6) in a top-down fashion to filter and change
categorical data (8) attributes across micro- and mesoscale. The paper evaluations
are usage scenarios (6), including some qualitative user studies (4). For instance,
Abstractocyte [227] enables exploring 3D mesh and node-link representation of
astrocytes and neurons.
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Computing Applications (6/19): The second sub-class contains design study
papers in computing, including machine learning applications (2). The used vi-
sualization idioms are graph (4) and other juxtaposed (5) domain-specific visual
representations for categorical and quantitative data attributes. The targets are to
investigate features (6), network topology (5), and outliers (4) in tabular (5) and
network datasets (3). The utilized interaction methods are selecting (6), navigating
(5), filtering (5), and changing (5) the data granularity using aggregation methods.
All papers present usage scenarios as a central part of their evaluation. A recent
sub-class paper is, for instance, Cao et al. [69] river-based visualization to explore
adversarial examples in deep neural networks at multiple levels.

Spatio-Temporal Applications (3/19): The third application sub-class is about
multiscale spatio-temporal analysis. The sub-class consists of papers focusing on
visually analyzing spatio-temporal data across multiple spatial scales. For example,
Biswas et al. [40] propose a workflow to examine the uncertainty of multiple weather
ensemble models across varying spatial resolutions. Given that the sub-class consists
of only three papers, the description of common design factors is excessive.

Miscellaneous Applications (2/19): The last sub-class contains papers that did
not fit into the previously listed sub-classes. One paper describes the multi-level
visualization design for poetry [226], and the other paper the interactive analysis of
social tag networks and hierarchies [121]. The discussion of common design factors
for this sub-class is again challenging, considering the number of papers.

Summary: Visualization researchers proposed biological (8), computing (6), and
spatio-temporal (3) design study papers. However, the proposed application-specific
solutions are often challenging to transfer and generalize to similar issues in other
application areas.

Multiscale Visual Analytics

The third class contains multiscale Visual Analytics (VA) approaches for temporal,
geospatial, and graph datasets. Since the class contains only eight papers, we will
briefly discuss some design factors for the whole class. The targets are exploring
quantitative (7) and categorical (5) data attributes to identify overall distinct features
(7), outliers (7), and trends (6). The papers implement a rich set of interaction
methods, including selecting (8), navigating (8), filtering (7), and changing (6), as
well as aggregating (6) data.
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Temporal VA Approaches (3/8): The first sub-class encompasses three papers
to explore time-series data, utilizing the Visual Analytics mantra [172]. The papers
allow exploring features, extremes, trends, and outliers in time-series data. For in-
stance, Sips et al. [280] proposed a rare bottom-up navigation approach that utilizes
a matrix-like visualization for the multiscale exploration time-series patterns.

Geospatial VA Approaches (3/8): The second sub-class consists of approaches
for geospatial datasets that provide extensive systems for the multiscale analysis
of geospatial features, such as shapes. For example, Wang et al. [310] presented a
multi-resolution VA approach for weather simulation ensembles, comprising nested
parallel coordinate plots. The paper combines juxtaposed, superimposed, and
nested composite visualizations with set operations and range queries to highlight
parameter correlations for the weather simulations.

Graph-Based VA Approaches (2/8): The last sub-class contains VA approaches
for graph datasets. The approaches enable users to analyze relationships and
clusters across scales to identify similar network topologies. For example, Multiscale
Snapshots [64] utilizes graph embeddings with multiple visual metaphors to semi-
automatically analyze temporal states and trends in dynamic graphs. The two
approaches display various temporal scales using different visual representations at
all analysis levels.

Summary: Visual Analytics aims to overcome the information overload of large-
scale datasets by interactive semi-automated means which involve the user in the
visual exploration process [172].

Multiscale Interaction & Navigation

Multiscale interaction techniques are often reported contributions across the re-
viewed papers. We divided the papers into four sub-class that encompass similar
multiscale interaction techniques for visualizations, display devices, virtual environ-
ments, and some empirical user studies. A unique characteristic is that most papers
(23) in this class contribute quantitative user study (see Figure 2.7).

Interaction Techniques (14/27): The first sub-class comprises interaction and
navigation techniques for multiscale interfaces. The sub-class interaction methods
are useful for locating and identifying features (12), such as shapes (9), in multiscale
spaces. The papers utilize a wide range of composite visualizations, with integrated
(7) and juxtaposed (5) views. Typically, authors present interaction methods on
geometric (8) and tabular (5) datasets, using categorical data attributes (12). Many
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Fig. 2.7 The chart displays for the corresponding taxonomy classes the presented evalua-
tions. Papers regularly contain multiple evaluation methods, for instance, a usage
scenario and a benchmark.

sub-class papers utilize top-down navigation strategies (13). For instance, Javed et
al. [161] present the PolyZoom technique to progressively build a hierarchy of focus
regions that enables users to backtrack and relate multiple magnification scales.

Interaction Techniques for Display Devices (3/27): The sub-class contains
multiscale interaction techniques for different display devices. The targets are to
lookup geometric datasets using top-down navigation strategies. A unique paper
is FingerGlass [166] which allows navigating between locations at multiple scales
using multitouch screens.

Interaction in Visualization Environments (6/27): The next sub-class contains
papers that describe interaction techniques for multiscale virtual environments. The
sub-class targets are the identification of categorical data attributes (microscale) in
geometric datasets. For example, HyperLabels [183] proposed navigational aids
(labels) for the simultaneous top-down and bottom-up exploration of hierarchical
molecular 3D models.

Empirical Studies (4/27): The last sub-class includes evaluation papers that
assess multiscale navigation techniques. For example, Pietriga et al. [245] compare
four multiscale interaction techniques (e.g., pan-zoom and constrained distortion
lenses) for searching tasks. The main target is to identify and locate geometric
shapes in a top-down manner. Two sub-class papers [256, 157] investigate the effect
of display size in multiscale navigation. The results indicate no apparent benefit for
larger display sizes [157].

Summary: The class encompasses multiscale interaction techniques, which pose
new challenges as users are often lost in the multiscale information space, also
known as the desert fog problem [162].
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Theoretical Work

Theoretical visualization research (e.g., framework and workflows) is a central part
of the contribution (22). The following class primarily contains such theory and
model papers. We divided the papers into four sub-classes: multiscale visualization
theory, multiscale navigation theory, frameworks, and related surveys. We only
outline some outstanding papers for these theory sub-classes as there is no substantial
overlap between the respective coding labels.

Multiscale Visualization Theory (6/22): The first sub-class includes theoretical
papers describing multiscale information visualization’s characteristics and chal-
lenges. For instance, Viola and Isenberg [306] analyze the concept of abstraction
used in visualization research and emphasize the importance of multiscale visual
abstractions for presenting multiscale processes in particular application domains.
We included the work of Cui et al. [83] in the sub-class as the authors propose
quality measurements for data abstractions. Such abstraction quality metrics are
useful to assess how much the abstracted data differs from the initial data.

Multiscale Navigation Theory (4/22): The second class involves model papers
about multiscale navigation theory. For example, Jul and Furnas [162] introduce the
desert fog problem and further extend view navigation theory. The authors propose
the critical zones concept using navigational aids to reduce and overcome the desert
fog problem. Further, Guiard et al. [128] discuss the concept of multiscale pointing
and introduce a framework for Fitt’s law in multiscale navigation.

Frameworks for Multiscale Visualizations (5/22): The sub-class contains
frameworks for multiscale information visualization. For example, Elmqvist and
Fekete [98] presented a hierarchical aggregation model to turn existing visualization
techniques into multiscale visualizations that scale to large datasets. The authors
also describe interaction methods to analyze the aggregated hierarchy, such as
drill-down and roll-up operations. In another work, Goodwin et al. [119] propose
a theoretical framework for visual comparison across scale and geography. The
framework allows users to explore local and global variations, including sensitivities
and correlation across multiple spatial scales.

Surveys (7/22): The last sub-class includes related surveys and reviews. For
instance, Cockburn et al. [79] survey interfaces for both focused and contextual
viewing (e.g., overview+detail or focus+context). Such interfaces are exceptional
cases of multiscale visualizations as the views display two varying magnification
scales. Another recent example is the preliminary study of multiscale maps by
Dumont et al. [93] that investigates how the map scale influences the displayed map
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content. For example, the authors discuss how the visual complexity varies across
scales, such as abstracting buildings and roads.

Summary: The class contains frameworks and workflows that propose solutions for
particular multiscale visualization challenges (e.g., desert fog problem [162]).

Multiscale Visualization Systems

The last class contains technical multiscale visualization systems, which we did not
further subdivide into sub-classes as there was no further plausible distinction.

Systems (10/10): The papers describe scalable systems, toolkits, and archi-
tectures to enable multiscale visual analysis of large datasets. Stolte et al. [287]
presents a system for multiscale visualizations using zoom graphs and data cubes
operations. The targets are to identify (8) explicit target features (8), such as
geometric shapes (6). The approaches utilize the statistical graphics visualization
idiom (5). The systems allow selecting (8), navigating (8), and aggregating (5)
tabular (7) and hierarchical (4) geometric (6) datasets. The application areas are
either biological (3) or domain agnostic applications that focus on micro-, and
mesoscale analysis. The system papers report a broad set of evaluation methods
among usage scenarios (5). Representative papers are, for example, the Kyrix [290]
and Kyrix-S [289] toolkits that provide a declarative model and grammar to create
and manage pan/zoom visualization scales for large-scale datasets.

Summary: The class contains research introducing novel architectures and software
solutions for multiscale visualizations (e.g., Kyrix-S [289] declarative grammar).

2.4.3 Design Considerations

We extracted seven essential design considerations based on our literature analysis.
Multiscale structures enhance visual scalability. Researchers utilized multiscale
structures with easily distinguishable and interpretable visual summaries to reduce
clutter and increase the visual scalability [98]. Moreover, Visual Analytics approaches
can increase visual scalability [253], such as dynamic analysis pipelines [332].
Understand relations across different scales. Users can relate data across multi-
ple scales by using either various juxtaposed views [219] or interactive lenses [292].
Using different scales, users can progressively build multiscale hierarchies of focus
regions [161] or employ space-distortion techniques to highlight multiple focus
regions [100]. Noteworthy in the context are space-scale diagrams [118], which
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support the understanding of multiscale interfaces.
Guide users during multiscale navigation. Researchers display context informa-
tion across multiple scales to alleviate interaction overload in multiscale visualiza-
tions [331]. For example, residual landmarks across scales can be used to guide
and navigate users toward interesting patterns [162]. We identified the following
approaches for guiding users in multiscale environments through visual cues [162],
topology-aware interaction methods [160], overview visualization [243], anima-
tions [297], and navigation viewport optimization [298].
Visualize abstraction measurements across scales. Displaying data abstraction
measurements helps to assess the effects of abstraction methods and uncertainty
across scales [83, 75]. For instance, comparing scale-independent aggregation mea-
surements enables quantifying the abstraction quality across geographic scales [329].
Combining data and visual abstraction methods. The exploration of both data
and visual abstraction methods reveals trade-offs and insight into sensitive abstrac-
tion parameters [287]. For example, exploring the trade-off between reducing
precision and resolution reveals useful analysis scales [145].
Recursively abstract data features. Typically, abstraction methods are recursively
utilized to condense information (e.g., hierarchical clustering [321]) and gradually
explore data features (e.g., drill-down and roll-up operations [18]). A representative
technique is ZAME [97], which uses a hierarchy to abstract and explore graph data
utilizing multiple alternative visual representations.
Design tailored multiscale domain visualizations. Domain experts benefit from
distinct visual encodings and adaptive interaction methods for domain-specific
scales [220]. Thus, experts themselves need to select the most appropriate design
from a set of abstraction and visualization methods for their tasks [227].

2.5 Research Challenges

The visual analysis of data at multiple scales poses several challenges. Understanding
the emergence of data patterns across scales represents a challenge for users due to
the amount of data and displayed data scales [331]. Therefore, developing more
semi-automated analysis methods is essential to help users identify, compare, and
relate useful analysis scales and visual representations. In this context, particularly
multiscale visualizations based on dense layouts, glyphs, and spatial field visual-
ization idioms are underrepresented. Further, new data abstraction measurements
and dimensionality reduction methods can also reveal similarities and differences
across abstraction scales in one view. We believe that such methods are well suited
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for the multiscale exploration of the underrepresented field, network, and tree
datasets. The development of such methods can likewise enhance uncertainty anal-
ysis across scales. In addition, multiscale visualizations can be distinguished into
approaches for real-world multiscale environments (e.g., biological data) and large
non-spatial spaces (e.g., networks), both requiring dedicated frameworks, visual-
ization techniques, and interaction methods. Another considerable challenge is to
evaluate how different composite visualizations for multiscale visualizations affect
data exploration. For instance, evaluating how simultaneously displayed juxtaposed,
superimposed, or integrated views of different scales influence multiscale analysis.

The interaction and navigation across scales are fundamental in multiscale visualiza-
tions, often leading to interaction overload. A unique research gap for multiscale
interaction and navigation techniques are novel methods to arrange, filter, and
change the data appropriately to multiple displayed scales. Such methods are
notably needed if users simultaneously navigate horizontally (e.g., filtering) and
vertically (e.g., aggregation). Moreover, only a few multiscale visualizations also vi-
sualize the data on a macroscale, which is potentially useful for novel user guidance
methods and interactive overview visualizations. In addition, improving multiscale
transition and navigation models (e.g., 3D camera management systems) are also
of enormous importance for preserving the users’ mental map during navigation.
Researchers proposed largely top-down navigation in this context, and bottom-up
navigation approaches and frameworks are rarely utilized. Further, seamlessly
switching between different visual abstractions and technical devices, such as dis-
plays, tablets, and smartphones, can further advance the collaborative exploration
of large multiscale information spaces.

Multiscale visualizations repeatedly claim to enhance visual scalability. For instance,
the visualization of multiple abstraction scales (e.g., aggregation) allows analyzing
and extracting knowledge from large datasets [98]. However, multiscale visualiza-
tion scalability is typically not quantified, and existing approaches generally are
not compared against each other. Hence, the comparison of computational and
visual scalability of multiscale visualizations is still outstanding. A detailed trade-off
analysis between data and visual abstraction methods for multiscale visualization
may reveal useful information. For instance, comparing the multiscale data and
visual abstraction methods in statistics and engineering will provide new insight into
the scalability of the recently proposed approaches. Overall, we believe that more
empirical studies are required to assess the scalability of existing multiscale visu-
alizations, especially interaction methods for particular user tasks. Such empirical
studies will considerably improve the reusability of multiscale visualizations.

36 Chapter 2 Multiscale Visualization: A Structured Literature Analysis



A further examination of paper codings also reveals research gaps that have not
been sufficiently studied. For example, multiscale machine learning applications are
noticeably underrepresented in the reviewed papers. A potential solution can be
to design unique bottom-up interaction methods for machine learning models that
combine overview visualizations with navigational aids and annotation methods to
analyze and understand the functionality of different layers and neurons in deep
learning models. Overall, researchers can utilize the resulting paper codings in
our online interface to identify further research gaps. For instance, an analysis of
the dataset type labels unveils that ”field” data is rarely used, implying that the
multiscale visualization approaches for continuous fields (e.g., human magnetic
resonance imaging scan) are still largely unexplored.

2.6 Discussion

In our systematic literature review, we used the results of our initial exploration
of similar expressions (see Section 2.2.1) as keywords to query the search engines.
However, multiscale visualization approaches might not necessarily explicitly use
one of the listed keywords. We tried to resolve the issue by recursively scanning
paper references and citations in both directions. Consequently, some reviewed
papers do not necessarily list the expression, although the authors describe similar
concepts. Further, we did not include all multiscale modeling approaches (e.g.,
hierarchical clustering) in visualization research since such a survey requires several
additional categories (e.g., type of model construction) that reflect multiscale data
models’ characteristics, which is far beyond one paper’s scope. Moreover, the
derived taxonomy highlights only the most important design practices and research
challenges. For instance, more research challenges for multiscale visualizations
are reported than previously discussed. Despite all those limitations, we hope our
resulting taxonomy will stimulate new multiscale visualization approaches, including
new multiscale visualization theory, interaction methods, and evaluations.

2.7 Conclusion

In this chapter, we contribute a structured literature analysis of design practices
in multiscale visualization research. We reviewed 122 papers with an extensive
coding scheme to reveal general multiscale visualization designs, such as typical
visualization idioms, targets, and interaction methods. Based on this systematic
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review, we derived a taxonomy for multiscale visualizations, which describes distinct
design factors and design considerations to help identify trends and gaps in research.
Our results help researchers and practitioners design, present, and analyze datasets
at multiple abstraction scales.
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Visual Abstraction of
Spatio-Temporal Networks

3

Summary

Collective animal behavior experts often analyze spatio-temporal networks to under-
stand the relationships between moving animals over time. However, visualizing
such spatio-temporal networks remains challenging due to the often large-scale
data with fixed spatial positions and the temporal dimension, resulting in node
overlap and edge clutter. In this chapter, we present MotionGlyphs, a design study
that allows domain experts to visually abstract and explore dense spatio-temporal
networks in the field of collective animal behavior. The proposed glyph designs
enable domain experts to summarize and explore spatio-temporal network data
at multiple aggregation scales. We validated the proposed design with an expert
evaluation, highlighting the design’s benefits and how experts can reveal patterns in
the spatio-temporal network data. Moreover, the chapter presents a spatio-temporal
clustering benchmark in collective animal behavior. Overall, the main goal of the
proposed design is to enable multiscale visual exploration by reducing visual clutter
through the abstraction of the spatio-temporal network data to glyphs.

The chapter is based on the following publications. Please refer to Section 1.5 for
contribution clarifications.

[57] Eren Cakmak, Hanna Schäfer, Juri Buchmüller, Johannes Fuchs, Tobias Schreck,
Alex Jordan, Daniel Keim. “MotionGlyphs: Visual Abstraction of Spatio-Temporal
Networks in Collective Animal Behavior“. Computer Graphics Forum Vol. 39.
No. 3, 2020.

[63] Eren Cakmak, Manuel Plank, Daniel Calovi, Alex Jordan, Daniel Keim. “Spatio-
temporal clustering benchmark for collective animal behavior“. Proceedings of
the 1st ACM SIGSPATIAL International Workshop on Animal Movement Ecology
and Human Mobility, 2021.
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3.1 Introduction

Collective animal behavior is an intriguing phenomenon appearing in nature in
many forms. Prominent examples are the collective movement of fish schools,
insect swarms, or flocks of birds [120]. Research in biology and other fields aims
to explain the mechanisms by which group motion patterns emerge in natural
and social sciences [81]. Such patterns can be, for instance, relationships among
multiple animals (e.g., social influences), temporal trends (e.g., migrations), and
sub-group behavior of animals (e.g., group of leaders). These group patterns
are yet not fully understood since the movement depends strongly on influences
and interactions between possibly many animals (movers) [81]. Recent research
has modeled collective behavior as spatio-temporal network data to analyze the
emergent properties of groups [111]. For example, Rosenthal et al. [257] analyze
evolving interaction networks in which they map movers to nodes and the sensory
information of a mover to weighted links (edges). A purely statistical analysis of
such spatio-temporal networks (e.g., networks metrics) should be avoided as the
interpretation in the context of collective animal behavior remains challenging [111].
The field, therefore, requires tailored visual metaphors to analyze the evolving
network structure and highlight correlations between movers [111].

Spatio-temporal network data is a particularly challenging as it consists of evolving
relationships between spatially positioned entities (attribute-driven layout) [233].
Real-world applications are, for instance, traffic [242], network security [276],
and migration analysis [267]. Visualizing such data promotes identifying spatial
and topological patterns over time. However, two main challenges limit the visual
exploration of such evolving patterns. First, the fixed network topology of spatial
networks often leads to node overlaps as well as edge crossings in dense areas [319].
Therefore, Nobre et al. [233] recommend displaying spatial networks only for
small and sparse networks. Second, the additional temporal dimension poses a
challenge in presenting the data in a readable, scalable, and expressive manner [31].
Visualization techniques for multivariate [233] as well as dynamic networks [31]
aim to reduce the complexity of such data (e.g., aggregation [315, 94, 176] or
filtering [244, 104]). Yet, such methods either change the positions of movers or
reduce data characteristics (e.g., filtering), which has to be avoided in collective
animal behavior analysis as it can hide potential sub-patterns and consequently
decrease the interpretability [111]. An uncluttered overview visualization of spatio-
temporal networks in collective animal behavior, therefore, can help domain experts
analyze single movers (ego-centric) and groups of movers (socio-centric).
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Fig. 3.1 MotionGlyphs allows biologists to visually explore and abstract dense spatio-
temporal network data in collective animal behavior. The figure presents the
same time instance of golden shiner fish data in a node-link diagram (left), Mo-
tionGlyphs representation (middle), and with additional clustering (right). The
color of the movers displays the speed (blue to red), and the links (light blue to
dark blue) encode the similarity between movement properties (direction, speed,
distance to each other). The example above shows how MotionGlyphs abstract re-
lationships and aggregate movers into groups to reduce visual clutter and highlight
different group structures.

In contrast to earlier work, our MotionGlyphs prototype (see Figure 3.1) focuses
on reducing visual clutter by abstracting a spatio-temporal network to glyphs. We
demonstrate the usefulness of our approach by conducting expert interviews and pair
analytics sessions [20]. In summary, the primary contributions of this chapter are: (1)
a design study with problem characterization, findings, and lessons learned within
the domain of collective animal behavior, (2) a glyph design for the summarization
and depiction of spatio-temporal networks at multiple levels of granularity, (3)
a visualization prototype for experts to explore local as well as global network
properties over time, and (4) a spatio-temporal clustering benchmark for collective
animal behavior.

3.2 Related Work & Application Background

The visual identification of patterns (e.g., clusters or trends) in spatio-temporal
network data remains challenging due to the high dimensionality and the scalability
issues in space, time, and network characteristics. We cover related visualization
research, addressing these challenges from different perspectives in the fields of
spatial, dynamic, as well as spatio-temporal network data.
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3.2.1 Spatial Networks Analysis

Spatial networks (also known as geographic networks) are a way to model rela-
tionships between spatial locations. Real-world examples include the analysis of
air traffic [181] and transportation data [12]. Nobre et al. [233] defined spatial
network data as a special type of multivariate network data (attribute-driven lay-
out). Multivariate network visualization can be applied to spatial networks such as
Pivot-Graphs [315], Semantic Substrates [278], GraphDice [38], or dimensionality
reduction [92]. However, the listed approaches focus on either node or edge (link)
attribute comparisons or abstract the spatial positions. Matrix visualizations using
geographical embeddings (e.g., Yang et al. [326]) are not suited for the application
domain as the approaches do not scale to many time steps, and the matrices grow
quadratically with the number of movers. Other visualization approaches for spatial
networks aim to reduce the complexity and visual clutter by either filtering [244,
104], aggregation [315, 94, 176], clustering [97], edge bundling [202], deriving
new attributes [92] (e.g., node degree), or converting edges to nodes [163]. Fil-
tering, aggregation, clustering, and edge bundling techniques reduce the number
of displayed nodes or links. However, this results in information loss, which may
lead to misinterpretations in the application domain [111]. Furthermore, deriving
new attributes (e.g., node metrics) can lead to misleading information [111], and
the conversion of edges to nodes is not applicable in our application domain as it
would produce additional movers. For spatial network visualization, Ko et al. [181]
analyzed flight journeys as origin-destination data and introduced a petal glyph that
displays multivariate network features. The glyph enables us to assess, for example,
the number of flight or security delays for airports. However, the proposed glyph
does not scale for dense areas. Zou and Brooks [336] present a visualization system
to aggregate nodes into hubs, which enables to display local and global information.
The authors propose a dynamic circular layout with new edge curving and node
positioning algorithms. The approach is, however, unsuited for our application as
the method does not allow displaying the exact spatial position or adapting the
applied aggregation method.

3.2.2 Dynamic Network Visualization

Visualizing dynamic (temporal) networks has gained research interest [31]. The
automatic analysis of such data enables the examination of structural properties
of the network, for example, the temporal analysis of static network metrics (e.g.,
node degree, centrality [45]) as well as dynamic network metrics (e.g., change
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centrality [113]). However, only analyzing such automatically extracted structural
properties in collective animal behavior might hide specific local dynamic patterns
and how such local changes affected the overall dynamic phenomena [111]. In-
teractive visualizations overcome these challenges by allowing users to visually
analyze the changing relationships in their evolving structural context. Beck et
al. [31] categorized dynamic network visualization into: animation (time-to-time
mapping) [90, 248, 19], timeline (time-to-space mapping) [125, 25, 144] and
hybrid visualizations [130, 32, 23]. Timeline mappings map the temporal dimension
to a spatial axis (e.g., small multiples), which, however, does not scale to long
sequences [31]. Other approaches from this category (e.g., NodeTrix [143]) do not
preserve the position of each node (mover) over time. Similarly, the usefulness and
effectiveness of animation is still controversial [296, 254]. While animation has
been shown to be effective in some domains such as flow visualization [314], it does
not scale to large quantities of nodes and links, often higher cognitive load [296].
For further reading, we refer to the survey of Beck et al. [31].

In summary, the current visualizations either change the positions of the movers
(timeline mapping) or animate the temporal evolution of the underlying dynamic
data. Therefore, the field of collective animal behavior requires new visual metaphors
that combine spatial and temporal abstraction methods to reduce the presented data
and highlight temporal and structural changes (e.g., cluster splitting).

3.2.3 Spatio-Temporal Network Visualization

Recently, techniques for the analysis of spatio-temporal networks (dynamic geo-
graphic networks) have been proposed (e.g., for collective movement in trans-
port [14]). These approaches focus mainly on the study of origin-destination data.
Frequently in flow map visualization, movement data is discretized to highlight
the direction and magnitude of mobility patterns [12]. Kim et al. [177] propose
a heatmap to display origin-destination data, which can, for example, highlight
the origins of disease outbreaks. The approach, however, discards the movement
(trajectory) data, which is crucial in analyzing collective animal behavior. Zhu and
Guo [334] apply a hierarchical clustering method to identify significant and dense
flows in the traffic data. The approach scales to large spatial data but does not scale
for large time periods. Andrienko et al. [12] proposed a method for spatial and
temporal abstraction, including a composite glyph to reduce clutter and occlusion in
the origin-destination data. The proposed composite glyph displays for each location
the flow angle and the distance between the locations to reveal regional mobility
trends. The approach highlights periodic patterns by aggregating overall spatial
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events and then clustering the temporal dimension into periods. A limitation is that
information is lost due to spatial and temporal aggregation, and with an increasing
number of spatial locations, the glyph becomes challenging to interpret.

In summary, the listed approaches for spatio-temporal networks focus on flow
visualizations in specific applications, for instance, mobility trends between locations
(origin-destination data) [12]. In contrast to these approaches, we focus on the
visual exploration of changing relationships in collective animal behavior, for which
no design studies have been carried out. In this design study, we address the needs
of biologists and propose a design to tackle the challenge of visualizing evolving
relationships between single movers and groups of movers.

Application Background

This design study aims to create a visual analysis design supporting the identification
of group patterns over time in a large set of moving entities. We interviewed two
domain experts (postdoctoral researchers) to clarify the user needs, and understand
the workflow and requirements in the targeted domain. The domain experts analyze
spatio-temporal networks to discover similar behavior, evolving group structures,
and outliers.

3.2.4 Collective Animal Behavior

Collective animal behavior aims to understand the social influence (relations) as
well as information flow between individuals and groups [81]. The research field
is lately observing and tracking animal groups at larger scales in lab experiments
or field studies due to technological advances (e.g., small GPS devices) [185].
Pure statistical approaches are usually used to analyze data generated by such
experiments [281]. While they support verifying a single hypothesis, they are
typically unable to observe potentially interesting patterns in the data which fall
outside the chosen parameters and scope of the selected statistics [86]. In the
research field, a lot of effort is put into revealing evolving groups (clusters) of animals
that influence individual groups and vice versa how individuals affect internal group
characteristics (e.g., through local influences) [81]. The analysis of influences
between animals (e.g., interactions) requires methods that display the spatial data
accurately and preserve local neighborhoods as this helps to follow and interpret
emerging group properties [82]. Clustering local interactions enable, furthermore,
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to distinguish movers with similar behavior [240] at the loss of some spatial accuracy
and summarize group structures to reduce the complexity of the data. The similarity
between all movers for each time step is essentially a weighted network (distance
matrix). The visual exploration of such evolving similarities can reveal underlying
group characteristics of collective animal behavior [86]. For example, Rosenthal
et al. [257] displayed communications networks to study behavioral changes and
social influences in collective evasion maneuvers. For instance, we are visually
exploring a real-world dataset consisting of 151 Golden Shiner fish swimming
through a depthless fish tank (2.1m x 1.2m) for 12 minutes (18000 frames). The
two-dimensional dataset consists of 2.7 million data records and 18000 similarity
matrices with more than 410 million links. A similarity matrix is computed using the
weighted Euclidean distance between the features of a mover (see Section 3.3.1).

3.2.5 Problem Description

During the interviews, we investigated how domain experts analyze data, which tools
they use, and what potential high-level problems must be addressed to understand
collective animal behavior. We considered movers (nodes) with similar behavior
over time in a group, for instance, the aligned movement of multiple movers towards
a food source. Analyzing an appropriately constructed distance matrix (based on
similarity) for each time step provides a possibility to identify groups of similar
behavior and to investigate socio-centric patterns (e.g., group leaders). For the
visual analysis of such socio-centric patterns in collective animal behavior, we have
to address the following high-level problems (P):

P1. Display the ego-centric relationships In the application domain, it is crucial
to investigate the relations of one mover to all other movers (ego-network). For
example, to examine if there are similar ego-networks in space or if ego-networks
increase and decrease simultaneously over time. The visual analysis of relationships
between multiple evolving movers, however, remains challenging due to visual
clutter in spatially dense networks [336]. A visualization of the ego-centric network,
therefore, should aim to provide an uncluttered overview (summary) of such re-
lations. A compact ego-network visualization can help domain experts to identify
similar movers, compare movers, and detect outliers.

P2. Identify groups of movers with similar behavior The visualization of movers
is challenging as with a growing number of movers, the clutter and overlap in
dense areas increase, which can hide spatio-temporal patterns [86]. For such cases,
often visual data aggregation (e.g., clustering, density maps) is applied to reduce
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the number of movers [10]. We consider two types of clustering based on the
spatial-temporal data and the evolving network structure. The visual analysis of
such clustering methods should also involve domain experts in exploring different
parameter settings for grouping elements together [12].

P3. Present the socio-centric relations in groups The display of groups of movers,
for example, through a meta-node, can help to reduce the number of displayed
movers and reduce clutter in dense areas. However, through such a clustering,
relevant information within dense areas themselves, such as internal group dynamics,
is lost [12]. The visualization of intra-cluster relationships of groups can present
underlying socio-centric processes.

3.2.6 Requirements

Slingsby and van Loon [281] held a workshop with multiple animal movement
ecologists and described the requirements necessary for the initial visual analysis
of movement ecology. The research disciplines of movement ecology and collective
animal behavior are related as both disciplines work on the analysis of collective
movement [318]. In discussion with our domain experts, we selected and adapted
key requirements, which are relevant for identifying group patterns in collective
animal behavior, from the proposed requirements of Slingsby and van Loon [281].
We also identify related key properties a technique needs to support to satisfy these
requirements, denoted in italic for each item.

R1: Display the original data Group patterns in collective animal behavior emerge
from local spatio-temporal interactions between movers. Displaying the raw data
is, therefore, essential as it helps to interpret and understand the emergent group
properties. This means, the node representation needs to be explicit and spatially
accurate to enable node and neighbor comparability. Also, since typical use cases
range from small to large amounts of movers, scalability towards a broad range of
network sizes is required.

R2: Relate the time, space, and attribute dimensions Define and present a sum-
mary of the multivariate relationships between the dimensions space, time, and
attributes of a mover (node). To do so, node exploration by attributes and a dynamic
temporal representation need to be provided.

R3: Enable the aggregation into groups Enable the aggregation into “ecologically-
meaningful“ units, which is crucial to abstract and simplify large movement datasets.
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Consequently, the technique needs to support the cluster and subnetwork explorability
and comparability.

R4: Allow the exploration of the spatio-temporal network at different scales
Networks can be observed from an ego-centric (low-level) perspective or a socio-
centric (high-level) perspective. The technique needs to support both perspectives,
both for the global view and local groups (subnetwork).

3.2.7 Gaps in Related Approaches

In Table 3.1, we compare relevant related work using the properties defined in the
requirements (see Section 3.2.6) to highlight the research gap we intend to close.
We selected the related work based on recursive scanning of references from the
following surveys of Vehlow et al. [301], Beck et al. [31], and Nobre et al. [233].

The Table 3.1 reveals several insights. First, approaches that scale to large networks
often fail to consider the temporal dimension (R2), for instance, Dunn and Shnei-
derman, [94], or Zou et al. [336]. Second, approaches relying on static timeline
representations are, on the other hand, not suited to represent live group dynamics,
such as the work of Dork et al. [92], Andrienko and Andrienko. [13], or Park et
al. [238]. Third, related work utilizing animation applies node or edge aggregations
to reduce the visual complexity and thus introduce the loss of some spatial accu-
racy (R1) between movers, such as the approaches by Scheepens et al. [262], or
Andrienko et al. [12]. The drawback of such animations is that identifying tempo-
ral trends remains challenging due to the cognitive efforts to remember changes
over time [254]. Moreover, many approaches utilize aggregations to abstract and
summarize the developing dynamics by disregarding the behavior of individual
nodes making the identification of common behavior challenging (R3); for example,
Andrienko et al. [12], or Yao et al. [327]. Finally, approaches including the tempo-
ral dimension often visualize only large or small networks, thus contradicting the
requirement R4.

The comparison reveals that related work is not suited to display movers’ temporal
dynamics using accurate spatial node representations. Furthermore, in contrast
to related work, we also utilize node aggregation and spatial clustering as crucial
features of MotionGlyphs. Overall, MotionGlyphs satisfies the domain requirements
at the cost of implicit edge representation and the loss of spatial accuracy to explore
group structures.
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MotionGlyphs • • • • • • • • • • • • • explicit implicit

Scheepens et al. [262], 2014 • • • • • • • explicit none

Ko et al. [181], 2014 • • • • • • • • explicit explicit

Kim et al. [177], 2017 • • • • • • implicit aggregated

Li et al. [203], 2017 • • • • • • • • • • explicit explicit

Andrienko et al. [12], 2016 • • • • • • • • • aggregated aggregated

Andrienko & Andrienko [13], 2010 • • • • • • • • • aggregated aggregated

Park et al. [238], 2019 • • • • • • • • explicit order-based

Gou & Zhu [129], 2014 • • • • • • none explicit

Dunne & Shneiderman [94], 2013 • • • • • • • • • • • • aggregated aggregated

Yao et al. [327], 2019 • • • • • • • • • aggregated aggregated

Dörk et al. [92], 2011 • • • • • • • • • • • explicit explicit

Huang et al. [151], 2019 • • • • • • • • • explicit explicit

Zou & Brooks [336], 2019 • • • • • • • • • • • • explicit explicit

Tab. 3.1 The table shows a comparison of related work. We sorted the rows by spatial
representation and presentation of temporal aspects. The Spatial Representation
defines the spatial accuracy, such as the accurate, inaccurately (e.g., aggregation),
or displaced spatial representation. The Temporal Apect defines the visual repre-
sentation of the temporal dimension. The Scalability describes how many nodes
and edges the approach can display, including small (<100), medium (<1000),
and large (>1000) networks. The Explorability and Comparability defines if the
network structures are explorable using the technique. The Relational Represen-
tation describes how the approaches visualize nodes and edges.

3.3 Visual Design

MotionGlyphs was designed over five months in close collaboration with two domain
experts from the field of collective animal behavior. We followed the design guide-
lines by Lloyd and Dykes [208] to make the design process interactive, including
real-world data, developed digital sketches, allowing the free exploration of proto-
types and think-aloud protocols. MotionGlyphs is a web prototype to visually explore
group patterns spatio-temporal network data, consisting of two components for data
modeling and visualization. The data model is responsible for feature extraction
(e.g., speed of a mover), computation of similarities matrices, and spatio-temporal
clustering. The visual interface of the prototype (see Figure 3.2) consists of the
navigation panel to change the temporal dimension, the feature panel to adapt the
visual variables (e.g., clustering scale), and the glyph panel to display the single and
cluster glyphs.
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Fig. 3.2 The glyph panel shows a subset of the 151 golden shiner fish school data, the
attribute color displays the speed (blue to red), and clustering is applied. The fish
school has a fast (red group on the left) and a slower subset (blue groups on the
right). Multiple groups with different characteristics are visible (e.g., number of
movers, density, number of links), which enables us to analyze them over time. The
granularity of the aggregation can also be changed at any time to allow analyzing
detailed group structures or abstract movers into larger groups.

3.3.1 Data Model

We briefly describe the functionality and choices we made for the feature extraction,
spatio-temporal networks, spatio-temporal clustering. The data model component
models interactions between movers by enabling domain experts to compute specific
evolving networks and clusters. The input file for the prototype has a standard
domain-specific format (time, animal-id, x, y). Domain experts suggested data
cleaning methods (e.g., interpolation) and feature extraction (e.g., average speed,
direction, and distance to the centroid). For the extraction of features, domain
experts have to define the temporal scales (e.g., per second, per minute), which
usually depends on the tracking resolution. A network for each time step can be
defined by a user-defined similarity metric based on the extracted features (e.g.,
weighted euclidean distance) or the segmented trajectories of the mover (e.g.,
Fréchet distance). Such a similarity metric can be, for instance, the weighted
euclidean distance between all (or a subset) of the extracted features. Varying
combinations of weights in the euclidean distance metric generate different networks,
which can be used to highlight specific patterns. For example, using the direction,
speed, and acceleration of each mover, the aligned movement of a group towards
a particular target can be emphasized. The network for each time step includes
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the temporal information as derived features (e.g., average speed) are computed
using a rolling window approach. Using temporally smoothed features (e.g., average
heading changes per second) improves the interpretation as noise is smoothed out
(e.g., small tracking errors).

Domain experts can use either the network weights (distance matrices) or another
similarity metric to compute spatio-temporal clusters. The spatio-temporal clustering
helps to summarize as well as examine the temporal evolution of relationships and
highlight the changes of group properties in the data. We apply the density-based
clustering proposed by Peca et al. [239] as the algorithm scales to large datasets.
The proposed algorithm has two parameters εtime and εspace, which we discussed in
detail with the domain experts. By default, the εtime is set to the temporal scale of the
extracted features (e.g., average speed per minute). The clustering is applied several
times with a varied εspace, which results in clusterings with different spatial densities.
The default values of εspace are defined by the maximum distance a mover can travel
between two consecutive time steps, which is a useful heuristic to determine the
possible spatial changes.

3.3.2 MotionGlyphs

MotionGlyphs allows visualizing single (single glyph) and groups of movers (cluster
glyph) (see Figure 3.3). The single glyph displays the spatio-temporal network
using the spatial positions (geospatial-layout) (R1) and abstracts network links by
mapping them to a radial representation (outer-ring) of the glyph. The inner-circle
of the glyph allows to display characteristics of the mover (e.g., speed), and the
glyph arrow depicts the movement direction (R2). The outer-ring of a single glyph
is essentially a doughnut chart with segments (link abstraction arcs) that aim to
summarize the direction and median link weights to other movers that lie in that
direction. The segments preserve link characteristics, such as the direction and
strength (weight) (R2). By default, we segment the outer-ring into 12 segments of
30 degrees. Domain experts can, furthermore, adapt at any time the segment width.
The abstraction of links to segments prevents edge crossings and was inspired by
the work of Ko et al. [181] in which the authors simplify origin-destination. Two
color scales from ColorBrewer [138] are used to encode values: For the inner-circle
attributes, a divergent color scale from blue to red is used to highlight low and high
attribute values. For example, in some fish schools, the animals are continually
moving; therefore, values below and above the mean speed are usually interesting
for domain experts. The link weights are mapped to the outer-ring using linear light
blue to dark blue color scale.
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Fig. 3.3 Glyph for single movers (left) and for group of movers (right). The inner-circle
display attributes (e.g., speed) and the outer-ring abstracted links to other movers.

MotionGlyphs allows to abstract groups of movers into a cluster glyph (see Fig-
ure 3.3) to present the underlying group structure (R3). The cluster glyph is a
disjoint flat group structure visualization, which is, to the best of our knowledge,
the first node glyph proposed for this category [301]. The cluster glyph size is nor-
malized and mapped to the number of nodes in the group. The maximum size (all
movers) of the cluster glyph is five times the size of a single glyph. The outer-ring of
the cluster glyph displays the abstracted links to all other glyphs. The inner-circle de-
picts the underlying spatio-temporal network of the group as an animated node-link
diagram. We visualize the underlying group structure as an additional level of detail
view for cluster interpretation to allow the exploration of the data at different scales
(R4). The spatial centroid of the group defines the position of a cluster glyph. The
inner-circle also enables to display the average attributes of the group (e.g., average
speed) as the background color of the inner-circle (R2). The node-link diagram in
the center of the cluster glyph is also colored and encodes attribute information (e.g.,
speed) for the nodes and the links (weights) (R2). The color encoding in the cluster
glyph allows comparing the group nodes with the average attribute values of the
spatio-temporal group (R4). The cluster glyph also has an arrow, which indicates the
average movement direction of the group (R2). By default, the prototype only uses
the spatial positions for the spatio-temporal clustering [239] due to the preference
of domain experts (R1). Domain experts can, furthermore, adapt and explore the
spatial scale of the clustering as we pre-compute the clustering with varying input
parameters (R4).

Design Rationale

In the following, we describe our design rationales to facilitate transferability to
other domains with similar tasks and requirements.
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Why are we using a glyph visualization? The complexity of spatio-temporal net-
works poses a challenge for the visual exploration of group patterns in collective
animal behavior. Typically, methods like clustering [11], which aggregate and
abstract the nodes into meta-nodes, and edge-bundling techniques [202], which
display flow patterns in dense areas, are used to reduce the complexity of such data.
In edge-bundling, the links between pairs of nodes are difficult to perceive [129],
and the artifacts produced by such methods often lead to misinterpretations [12].
Glyph-based visualizations depict multivariate data as visual objects to enable the
discovery of patterns (e.g., anomalies, clusters) [44]. A glyph maps data charac-
teristics to visual variables providing a compact view of multivariate records and
enabling comparison of the data records (e.g., star-glyph [117]). Recent approaches
of Scheepens et al. [262] and Andrienko et al. [12] highlight how glyphs can be
used to reduce visual clutter for scalable visualizations (e.g., through aggregation).
Dunne and Shneiderman [94] also show how different glyphs can be used to improve
network readability. Based on these methods, we decided, together with domain
experts, to develop sketches and design a glyph [208] to reduce visual clutter and to
highlight group structures in collective animal behavior.
Visual variables used: Multiple visual variables (e.g., size, color) can be used to
design a glyph. We chose to keep the number of visual variables low to maximize
the discriminatory factor between such visual variables. We decided to use a circle
for the single glyph design and to display the temporal dimension of the data using
animation. We choose not to adapt the shape and size of the single glyph as such dis-
tortions modify the spatial positions of movers (nodes) and could be misinterpreted
as physical sizes of movers. We also incorporated two other visual variables, an arrow
for direction, and color the circle based on movement characteristics (e.g., speed).
The visual variable color (hue) is selective and associative [37]. These features
are usually used in the visualization of movement data [262] and the application
domain [211]. We use color and orientation as visual variables to draw attention to
changes in these attributes [44]. We abstract and encode the links in an outer-ring
of the glyph to summarize and highlight the relationship characteristics of a node
(direction and weight). For the design choice of the outer-ring, we used the design
space described by Andrienko et al. [12] and decided to use the combination of a
circle and juxtaposition components (CJ flow diagram). A drawback of abstracting
the links is that the detailed connection information (e.g., the distance between
movers) is lost, which can be incorporated by using multiple outer-rings that also
encode the distance to the target node (e.g., CJ glyph [12]). In collective animal
behavior, however, showing multiple outer-rings is not useful as movers are usually
uniformly distributed and retain similar distances to each other [288, Chapter 2].
We chose to keep the complexity of the glyph low and only display one ring.
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Why is a cluster glyph useful? Based on the requirements R3 and R4, we iteratively
designed another glyph to allow domain experts to abstract movers into groups.
The goal of the cluster glyph is to reduce the number of displayed glyphs, clutter
in dense areas, and the cognitive load for the user. The cluster glyph, furthermore,
summarize and presents the structural properties of the group, the segments of
the nested glyphs, and displays internal links in such groups. We discussed with
our collaborators the idea of aggregating and show multiple single glyphs in the
inner-circle of a bigger group glyph (nested design) and created a digital sketch
as proposed by Lloyd and Dykes [208]. This first alternative cluster design (see
Figure 3.4) was complex as the nested glyphs were hardly readable and difficult to
interpret since the segments of nested glyphs could be misinterpreted as links to
movers outside of the group. Additionally, a minimal amount of space is required
to communicate color, which is not given in such a small-sized glyph [116]. We
chose to show and animate a simple node-link diagram in the inner-circle of the
glyph, which downsizes and displays all the movers of the cluster. For this, we map
the spatial extent of the nodes in a cluster to the inner-circle of the cluster glyph.
Using such a mapping, we retain the spatial distances between movers (R1). The
node-link diagram also encodes additional attributes (e.g., speed) and link weight
(R2). The directional arrows for the internal node-link diagram are not displayed,
as they are barely readable after mapping the movers to a smaller scale.
Why do we use animation? We display data by animation, as this is the conven-
tional method to display temporal data in the domain of collective animal behavior
(e.g., in Rosenthal et al. [257]). Visualizing the data through animation remains
challenging due to change blindness [279] and our limited short-term memory [140].
We aim to overcome these challenges by reducing the number of nodes through
clustering, and we highlight merges or splits of movers in groups by coloring the
single glyph (merge) or a node in a cluster glyph (split) pink (0.5 seconds). The
goal of the highlighting is to help experts to maintain a mental map of the changes.
Identifying such group changes, such as split, merge, and swappings between groups
remains challenging due to noisy real-world data and the animation speed.
How to interact with the glyph? To further facilitate the visual exploration of
group patterns, MotionGlyphs enables a set of interactions. The glyph depicts the
abstracted links during a mouseover to investigate the links of a specific node, which
was suggested by domain experts in a free exploration of the prototype [208]. The
prototype also enables filter links, limit the overall presented number of segments in
the outer-ring, and modify the width (in degrees) of the displayed segments. The
prototype implements a zoom and the option to adapt the spatial clustering scale
using a slider (R4).
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Fig. 3.4 The first design of the cluster glyph (left) and two alternative designs for single
glyph (middle, right) which also enables to encode the distance information to
other nodes and present the ego-network in an off-screen outer-ring.

3.3.3 Design Alternatives

Many glyph visualization techniques for either spatio-temporal or network data have
been proposed. A possible design alternative to simplify the spatio-temporal network
is to apply motif simplifications [94]. The approach replaces motifs in the networks
(e.g., fan and cliques) with glyphs. The primary problem of motif simplification
for collective animal behavior is that the interpretation of such motif glyphs over
time is difficult as the approach abstracts structural motifs (e.g., fan motifs). The
single glyph has a similar design as the proposed petal glyph [181], rose or sunburst
diagrams [101, 272, 12] which are used to present origin-destination data [181].
The design space analysis by Andrienko et al. [12] for origin-destination data
provided us with a structured way of thinking about the possibilities of abstracting
links. The proposed variants of flow diagram designs examine different glyphs to
reveal mobility trends between regions. The usage recommendation for the CJ glyph
(circle and juxtaposition), which is similar to the single glyph design, is to highlight
details for individual regions [12]. We discussed many alternative sketches and
designs with domain experts to encode attributes as visual variables. For example,
we explored different background colors, different hues, shapes, and the usage
of small multiples. Through the usage of these digital sketches [208] we learned
that the domain experts prefer rather simple glyph designs to identify behaviorally
similar movers. Two examples of such design alternatives for the encoding of the
links can be seen in Figure 3.4. Off-screen visualization techniques inspire the first
alternative glyph in which the linked movers are mapped to circles in the outer
ring. The design was inspired by the work of Farrugia et al. [112] in which they
displayed ego-network neighborhoods in concentric circles, which are mapped to
a time step. In contrast to a single glyph, the first design alternative animates and
places the ego-network nodes based on the distance and the direction to the linked
mover. The color of each node in the outer-ring encodes the weight of the abstracted
link. The second design alternative displays the whole ego-network with links. The
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two design alternatives allow displaying evolving ego-networks of movers in more
detail. However, identifying changes and comparing values in the relatively small
and complex outer-rings would have been difficult due to clutter resulting from the
detailed information.

3.3.4 Design Process

We conducted contextual interviews to understand the data analysis workflow of
our collaborators. During these interviews, our collaborators described examples of
challenges, common features, and methods (e.g., spatio-temporal clustering) used
in the domain. We identified that the main focus is to verify a single hypothesis with
statistical tools, with only a few tools to display spatio-temporal data (e.g., Animal
Ecology Explorer [285]). Standard network visualization tools (e.g., Gephi [27]),
furthermore, have limited support for dynamic networks and do not support any
abstraction methods over time. We did not find any specifically tailored visualization
tools to present and analyze spatio-temporal data in the application domain. After-
ward, we discussed potential abstractions methods and designs in the form of slides
with our collaborators [208]. Based on the feedback we received, we implemented a
prototype to visualize the spatio-temporal network by a first simple glyph design. In
later iterations, we redesigned the cluster glyph based on the feedback we received
and added more features (e.g., filter links) to the prototype. Finally, we conducted a
user evaluation to understand how users perform real tasks.

3.4 Evaluation

We conducted audio-recorded interview sessions of 60-90 minutes with five domain
experts to showcase the usability of the MotionGlyphs approach. We questioned
each domain expert about their background knowledge, expectations, and first
impressions of the design. Afterward, the domain experts used the MotionGlyphs
prototype in a screen-recorded pair analytics session [164]. The interview concluded
with a comparison of the initial expectations and the proposed design.

3.4.1 Participants

The participants (P1-P5) are researchers in collective animal behavior, with four
male and one female participant. The educational background and age distribution
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were one master’s student, three Ph.D. researchers, and one Post-Doc, with four
participants between 20-30 years and one between 30-40 years. The participants
never used or saw the approach before participating in the study.

3.4.2 Dataset and Tasks

We prepared a real-world 151 golden shiner fish dataset to provide a realistic analysis
scenario. During the session, the participants had to solve the following six tasks:

1. Introduction - Familiarize with all interactions using a test dataset

2. Temporal - Identify and analyze an interesting point in time

3. Spatial - Find an outlier fish and analyze its characteristics

4. Network - Find a group and analyze its characteristics

5. Find at least one meaningful single behavior pattern

6. Find at least one meaningful group behavior pattern

The participants were also motivated to use and compare the network view to the
glyph view. The tasks were all conducted on the real-world 151 golden shiner
dataset. The participants were encouraged to use the animation, the filtering, and
the clustering feature to gain insight into real single and group behavior patterns.

3.4.3 Background and Domain Characteristics

The participants had different background knowledge. Three out of five participants
studied fish behavior, and the other two participants analyzed insect or mammal
behavior. All participants analyzed collective behavior with three (3) experts focusing
on collective movement data. The primary tasks of all participants are the following:
analyzing interactions (3), finding clusters (2), and identifying distinct groups (2).
Four participants utilize custom programs to analyze and solve their analysis tasks.
The participants mainly use visualizations to visually explore their experimental data
(3) and present their experiments’ final results (3). Essential elements of their data
analysis were social interactions (5), movement metrics (2), and vision fields (2).
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3.4.4 Expectations and First Impressions

The specified goals of participants for explorative visualizations are extracting
essential data subsets (5), the interactive filtering of information (3), and the
comparison of groups (3). Upon introducing the single and cluster glyphs design, all
participants agreed that the design was easy to understand. The raised questions
in this context were the glyph interpretability in collectives (2). Moreover, stated
important interaction features were zooming (3) and the adaption of the glyph
parameters (3). Some participants also emphasized some design similarities to their
current approaches for data exploration (3).

3.4.5 Pair Analytics Session

The mentioned crucial features are the animation, the spatio-temporal clustering,
and displaying the data as node-link or glyph representations. The temporal ex-
ploration using animation was crucial for the analysis. The participants suggested
adapting the animation speed (4), automatically following movers or groups during
animation (4), and displaying the original video synchronized with the animation
(4). Moreover, the participants agreed that the network visualization is cluttered
and overloaded (4), appreciating the clean design while also being able to display
the edge information on hovering a glyph (2). All participants agreed that the
aggregation into the cluster glyph helps identify and explore groups and outliers in
dense areas. The following participant’s quote highlights this: "Even when proper
filtering is applied, there is no way to see the interactions of a fish in the center [of a
cluster]. Then the glyph is way better. [...] In high-density formations, the glyphs
are awesome. In low-density formations, the network is much more important".

The participants suggested various improvements. First, the scaling of the cluster
glyph has to be adapted since the interior network structure was challenging to read
(3). In addition, the multiscale clustering scale has to be adapted to include more
fine-tuned variations (2). The participants also suggested adding interactive link
parameterization (4), adapting the distance metric (4), and the spatial granularity
(3). A commonly requested feature was labeling individuals, groups, and the
temporal dimension (4). In addition, the participants suggested the automatic
selection of sweet spots via distribution information (2), scaling the approach to
long sequences (2), and displaying the exact values via a mouseover (2).
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3.4.6 Expectation Review and Future Use

The participant’s feedback was overall positive, and they solved the given tasks and
identified meaningful patterns. The participants were able to detect outliers (4),
large groups (3), and group transitions (3). Furthermore, some participants were
able to identify leaders and followers (2), milling groups (2), and outlier subgroups
re-joining the larger group (2). The participants confirmed the applicability of
MotionGlyphs to their projects (5) and were also excited about the web interface (2).
Moreover, the participants required additional features such as contextual spatial
information (e.g., 3D or geographic maps) and exporting relevant dataset subsets
for statistical analysis with other tools (2).

3.4.7 Use Case

The selected use case (see Figure 3.5) highlights the merging process of two fish
groups and shows how MotionGlyphs can be used to identify structural and temporal
patterns. The use case is adapted from a pair analytics session and shows the 151
Golden Shiner fish data (color mapped to speed). (A-B) display the same time
moment as a node-link diagram (A) and as MotionGlyphs with clustering (B). The
left group in (A) and (B) reveals how MotionGlyphs helps to reduce clutter and
emphasizes movers with different behaviors (see left red box in (B)). Also, in (B),
there is an apparent mover (influencer) who is going to initiate the merging process
of both groups. The influencer mover leads between (B-C) a subgroup from the
main group (right) towards the smaller group (left). The merging process between
the two groups is reflected by the movers being added to the left cluster glyph (see
merging in (C-E)), which indicates that the in-between subgroup of movers imitates
the behavior from the left group. The merged group moves, afterward, towards the
larger group on the right (see (E-F)). In (C-F), furthermore, a group of followers
trying to catch up with the left cluster glyph is visible. The follower movers in (C-F)
group accelerate, and some followers catch-up with the group and merge into the
cluster glyph. However, in (F) still, two follower movers, as well as an outlier fish
below, are visible, which did not yet manage to catch up and integrate into the
merging cluster group. In (C-F), a fish in-between the groups is apparent, and the
temporary influences on the in-between mover are visible through the as abstracted
links. The in-between fish moves in (D-E) towards the left group and adapts his
behavior in (F) towards the direction of the right group. In Figure 3.5 (F), the cluster
granularity was also adjusted to aggregate the movers further into groups to reduce
overlapping glyphs and present higher-level patterns in the merging fish swarm. The
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Fig. 3.5 The presented use case in Section 3.4.7 from the 151 golden shiner. The color of
the glyph is mapped to the speed of movers. The time steps show how two groups
merge initiated by an influencer fish. The example illustrates how the designed
glyphs display relations between movers and group structures to identify patterns
and generate new insight using the proposed glyphs.

use case shortly describes how MotionGlyphs can be utilized to analyze the temporal
evolution of interactions and group structures in collective behavior. In the use
case, more patterns are visible (e.g., outlier movers), which allows further detailed
analysis to understand the influences among the movers. Experts can perform such
an investigation by tracking the movers or groups over time and examining the links
between them.

3.4.8 Lessons Learned

Domain experts test hypotheses and apply familiar visualizations (e.g., heatmaps)
for presenting statistical results. The interactive aggregation and disaggregation of
data help them to unveil behavior processes in space and time. Domain experts,
however, need the original video in addition to the animation, as the individual
behavioral traits of movers are also dependent on the posture and visual field of
movers. The animation rate seems to influence the perceived patterns heavily
and should, therefore, automatically adapt to a user-defined metric so that the
animation plays faster for intervals in which the change is minimal. There was
also an emphasis on including an export functionality for the data subset to verify
the identified pattern with statistical tools. This shows that visual exploration
and statistical analysis are seen as complementary and require new methodologies
combining both perspectives.
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3.5 Spatio-Temporal Clustering Benchmark

The following section present a spatio-temporal clustering benchmark for the field
of collective animal behavior. The reproducible benchmark follows up on the
MotionGlyphs work and compares practical spatio-temporal clustering methods. The
benchmark reveals that temporal extensions of clustering algorithms are inherently
useful for the detection of moving clusters in collective animal behavior.

3.5.1 Motivation

Spatio-temporal clustering is crucial for analyzing groups of moving objects in
various applications, such as in transportation analysis or the study of collective
animal behavior. A central task in such domains is to identify moving clusters, a
group of objects moving close together in space and time [91]. However, identifying
such moving clusters remains challenging due to often large-scale datasets, resulting
in a trade-off between computational cost and accuracy. In addition, the performance
of spatio-temporal clustering methods is rarely compared against each other, posing
a challenge for users to select accurate and scalable methods.

Hence, we present a benchmark of spatio-temporal clustering in the field of collec-
tive animal behavior. The benchmark proposes 3600 datasets with varying data
characteristics to compare the performance of different common spatio-temporal
clustering methods. We believe that our benchmark enhances the experimental
reproducibility of spatio-temporal clustering results within animal movement ecol-
ogy. For the benchmark datasets and implemented methods, please refer to our
online project page. 1 In summary, the main contributions of this section are: (1)
A diverse set of synthetic collective behavior datasets with ground-truth, (2) a re-
producible benchmark of spatio-temporal clustering algorithms, and (3) scalable
implementations of spatio-temporal clustering methods.

3.5.2 Background

Collective animal behavior studies the interactions and behaviors of animal groups,
exploring how local interaction rules produce behavioral patterns [178]. One of
the central goals is to understand the spatio-temporal interaction rules in animal
collectives and the resulting behavior, for example, in social insects [42] or fish

1https://github.com/eren-ck/spatio-temporal-clustering-benchmark
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schools [312]. Thus, it is essential to understand the interaction frequency and if
the animals form loose or stable associations with other individuals [197]. Ana-
lyzing movement patterns helps to discover collectives, such as the clustering of
flocks [127], swarms [205], or convoys [333]. We use the term moving clusters
as described by Dodge et al. [91] instead of domain-specific terms, such as flocks,
swarms, or convoys. Spatio-temporal clustering methods can be classified into
techniques for trajectory and moving object clustering [205]. Trajectory clustering
usually uses specific geometric distance metrics (e.g., dynamic time warping) to
compute similarities between the trajectories and utilizes afterward standard cluster-
ing techniques (e.g., K-means) [328]. Moving object clustering discovery identifies
similar movement behavior directly by adapting classical clustering algorithms to
spatio-temporal data, such as the spatio-temporal extension of DBSCAN [39]. For
further reading on spatio-temporal clustering, we refer to the surveys of Kisilevich et
al. [179], Yuan et al. [328], Atluri et al. [21], and Ansari et al. [15].

In contrast to previous work, we present a spatio-temporal clustering benchmark
comparing methods against each other to evaluate their performance. Experimental
studies have usually compared spatio-temporal clustering methods against baselines
on custom datasets (e.g., Agrawal et al. [3]). As there is no unified and commonly
used experimental dataset and protocol, it remains challenging to compare the
performance of spatio-temporal clustering methods. Therefore, we propose a bench-
mark for detecting moving clusters in collective animal behavior to overcome these
prevailing shortcomings, focusing on generated synthetic data with ground truth,
and presenting state-of-the-art baseline methods.

3.5.3 Benchmark Design

Problem Statement

Spatio-temporal clustering detects jointly moving objects in space and time without
having any labels. Intuitively a moving cluster can be seen as a sequence of static
spatial clusters with the objects being spatially close to each other during the whole
sequence. Identifying such moving clusters is valuable for various applications in
animal movement ecology, such as analyzing migrating bird flocks. In such applica-
tions, we cannot cluster the spatio-temporal data with standard clustering methods
(e.g., DBSCAN [109]) due to the temporal dimension. Hence, detecting such moving
clusters requires adopting clustering methods utilizing similarity metrics that parti-
tion both the spatial and temporal data dimensions. Ideally, such spatio-temporal
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clustering methods are scalable to large-scale datasets, handle high-dimensional
data with additional attributes, and discover arbitrary cluster shapes [3].

Dataset Design

The goal of our dataset design was to generate realistic spatio-temporal datasets
with ground truth. We used three collective behavior models to generate synthetic
datasets with known ground truth clusters, covering all the main features of existing
models. First, Reynolds [250] proposed a model in which agents have a fixed
speed and adapt their movement direction based on the separation, flocking, and
wandering behavior. Second, Couzin [82] proposed another model based on three
zones around an agent: the zone of repulsion, orientation, and attraction. Third,
the Gautrais-Calovi model [67] is a data-driven model that describes the movement
of agents using the persistent turning walker model (PTW). In this model, agents
interact based on the Voronoi neighborhoods and the turning speed of each agent.
We refer the reader to the respective publications for a detailed explanation and
specification of three used collective behavior models. Based on the specified
parameters, the three models produce different phase transitions and polarization
(schooling) and vortexing (milling) behavior. The Gautrais-Calovi model [67]
investigates and defines parameters for movement patterns (e.g., milling states).

We used data generation models several times with different parameters and later
concatenated them to obtain datasets with clusters. We created 30 datasets with
a length of 50,000 time steps, varying numbers of movers, clusters, and different
input parameters for each model to obtain datasets with distinct characteristics, e.g.,
different cluster densities. We enclosed the exact input parameter configurations for
each dataset with our datasets. Afterward, we randomly sampled from the produced
90 datasets a variety of different sized datasets, with a varying number of moving
objects, clusters, and timesteps. We likewise added noise by randomly sampling
and attaching single movers from the initial 90 datasets. Furthermore, we also
subsampled moving objects from the original moving clusters randomly over time,
for instance, we randomly subsampled 20 movers from a cluster with 50 movers.
Through the sampling, we generated diverse datasets with different temporal lengths,
cluster densities, uncertainty, and noise. We generated 100 datasets for the three
collective behavior models with the temporal lengths of 100, 300, 600, 900, 1200,
1500, 1800, 2100, 2400, 2700, 3000, and 3500. Every dataset has up to ten clusters
with up to 20 agents per cluster. The dataset sizes range from 1200 up to 520,000
data points. As a result, we obtained 3600 spatio-temporal datasets with a diverse
set of data characteristics.
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Evaluation Metrics

We compared the performance and execution time of the spatio-temporal clustering
methods. We measured the clustering quality using the ground truth with the
adjusted mutual information (AMI) score [305]. We employed the adjusted metric
to ensure that uniform random label assignments will result in scores close to zero.
Moreover, we captured the run-time in seconds of each algorithm for all synthetic
datasets. We limited the run-time to 120 seconds, meaning that if an algorithm takes
longer than two minutes, we canceled the respective clustering method.

3.5.4 Experiments

Methods

We compare two standard baseline methods against a set of temporal extensions
of standard clustering algorithms. The two baselines are ST-DBSCAN [39] and
trajectory clustering using Euclidean distance as a similarity measure. 2

Our implemented clustering algorithms extend standard algorithms in two ways by
(1) processing large-scale datasets by splitting the datasets into frames and thus (2)
generalizing them to discover clusters in spatio-temporal clusters. We argue that we
can adjust most clustering algorithms to accommodate both spatial and temporal
features. Two approaches inspired our temporal extensions of clustering algorithms.
First, ST-DBSCAN [39] uses two distance parameters to assess whether a data point
is density-reachable from another data point. Second, the splitting and merging
process for spatio-temporal data by Peca et al. [239]. Building on these ideas, we (1)
split the dataset periodically into overlapping frames, (2) filter the distance matrix
of data points using a temporal distance parameter, (3) employ standard clustering
algorithms, and afterward (4) merge the results of subsequent frames. Only subsets
of the original data are loaded into memory by splitting the temporal dimension
into frames using a fixed time window. Two subsequent frames also always have
an overlapping period to ensure that we can merge the resulting cluster labels of
individual frames. We benchmark the outlined extension for the following scalable
clustering methods: DBSCAN [109], agglomerative clustering, K-Means, BIRCH, and
HDBSCAN [68] using the following implementations.3 Moreover, we implemented

2Using implementations of: https://github.com/GISerWang/Spatio-temporal-Clustering and
https://github.com/cshjarry/trajectory_cluster.

3Using implementations of: https://github.com/scikit-learn/scikit-learn and https://
github.com/scikit-learn-contrib/hdbscan.
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spatio-temporal extensions of spectral and affinity propagation clustering methods.
However, even for smaller datasets, both methods required more than two minutes
of execution time.

We perform a simplistic hyperparameter search by grid search for the 3600 datasets
and each clustering method. The searched parameter space examines suitable param-
eter combinations, which we specified based on the generated data characteristics.
For instance, we determine the number of clusters for the temporal extension of
K-Means using the dataset ground truth. To guarantee the successful merging of
cluster labels across frames, we choose an overlap of 10% between two subsequent
frames. We compare two baseline approaches against a set of scalable temporal
extensions of standard clustering algorithms. We evaluate the clustering quality and
execution time in detecting moving clusters.

Experimental Setup

All experiments were computed on a server with 30 CPU cores (Intel Xeon CPU
E5-2640 v3 @ 2.60GHz) and 162 GB RAM. The setup with so much main memory is
necessary for the baseline methods. For example, ST-DBSCAN calculates a distance
matrix between all points and thus has a quadratic memory consumption. We
excluded the parameter search in our run-time analysis. If the underlying clustering
implementations were parallelized, we employed the parallelization functionality.

Results

Figure 3.6 shows the respective results for grouped dataset sizes. For instance,
the first group 800 encompasses all data sets containing 800-3000 data points.
The AMI results show that the temporal extensions of the standard algorithms and
the ST-DBSCAN baseline method achieve comparable clustering quality for small
datasets, for instance, less than 20,000 data points). However, the baseline ST-
DBSCAN method does not scale to large datasets due to the quadratic memory
consumption. Moreover, the trajectory clustering method using the Euclidean
distance fails to detect moving clusters, even for smaller datasets. We identified
three scalable clustering methods, specifically the temporal extensions of HDBSCAN,
DBSCAN, and agglomerative clustering. For larger datasets, the AMI decreases
due to increasing cluster overlaps and consequently growing merging errors for
subsequent overlapping frames. Our temporal extension of ST-DBSCAN scales the
furthest, up to 200,000 data points. The execution time highlights the performance
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Fig. 3.6 The results of our benchmark. The average adjusted mutual information (AMI)
score and the average run-time for different dataset group sizes are displayed. For
example, the group 800 includes all datasets containing 800-3000 data points.

of each method. Some methods only scale to small data sets, such as the baseline
ST-DBSCAN or the baseline trajectory clustering method. The standard clustering
method’s temporal extensions are scaling better considering the datasets are split
into subsequent frames and then merged again, requiring no quadratic memory
consumption. However, the potential merging process also causes defects due to
possible spatial overlaps within the overlapping frames. None of the evaluated
methods detected moving clusters in datasets larger than 200,000 points within two
minutes of run-time. The benchmark results show the performance of our temporal
extensions of standard clustering methods is useful for detecting moving clusters in
collective animal behavior datasets. We recommend using our temporal extension of
ST-DBSCAN or ST-HDBSCAN to identify moving clusters if the number of clusters
is not known in advance. If the number of clusters is available, we recommend
agglomerative clustering. Overall, the proposed methods enable analyzing group
dynamics of swarms, flocks, and other animal collectives. We believe that the
implemented spatio-temporal clustering methods are crucial to detect group and
sub-groups of moving clusters in collective animal behavior. For example, one can
use the proposed methods to study evolving structures within collectives by exploring
temporally stable and changing sub-groups.

3.5.5 Limitations

First, we mainly focused on generating and comparing 2D spatio-temporal datasets.
However, our implemented clustering methods can also be used to cluster and
benchmark 3D spatio-temporal datasets, such as the 3D movement of a fish shoal.
Moreover, the clustering methods have several parameters that need to be specified.
We tried to set the hyperparameters for our benchmark with a simple parameter

3.5 Spatio-Temporal Clustering Benchmark 65



search. However, such parameters have to be set manually by the user in real-
world applications. For example, the frame size strongly influences the run-time
and the clustering quality, leading to the computation of larger distance matrices
and possibly resulting in fewer merging errors. We also decided to use a run-time
constraint of two minutes to limit the execution time of the methods. Likewise, our
dataset partitioning into groups (e.g., 800-3000 data points) resulted in differing
dataset numbers in each group due to random data generation and sampling. In
our benchmark, we did not investigate moving clusters with a varying number of
movers over time. As a result, movers cannot switch from one cluster to another.
Moreover, the synthetic datasets are not modeling specific animal species but rather
capture general movement patterns of collectives.

3.6 Discussion

The cornerstone of our design is the visual abstraction of spatio-temporal network
links and group structures. The approach consists of the basic steps, (1) to define
a spatio-temporal network based on a similarity metric, (2) the spatio-temporal
clustering, and (3) the visual exploration using MotionGlyphs. There are multiple
parameters to set for the steps (1-2), for example, choosing what features to use
in the similarity metric and the range of spatial densities for the clustering. The
meaningfulness of the network and the clustering, therefore, depends on the input
parameters and the similarity metric (Euclidean or cosine distance) [249]. Many of
these parameter choices must be defined by a domain expert and depend on the data
characteristics (e.g., tracking resolution). We consider the flexibility of computing
different networks and clusterings an advantage of our approach and a possibility
for future work to explore which similarity metric works best for particular patterns
(e.g., following a leader).

The choice of encoded attribute poses another challenge, as there are multiple alter-
native designs possible. The downside of the link abstraction is that the aggregated
segments are harder to interpret and that minimal variations and segment changes
are hardly readable. However, in the application domain, such minimal variations
result from noise, and domain experts’ primary focus is to visually identify evolv-
ing structural properties (e.g., group changes). Identifying changes (e.g., movers
frequently swapping between groups) in the evolving data poses a challenge and
requires further visual support (e.g., smoothing of the animation). The cluster glyph
aims to reduce clutter and the number of displayed movers, however, the mapping
results in a small visual space in which changes are difficult to interpret. Visual
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indicators such as highlighting changes (e.g., mover leaving a group) intend to
point out evolving structural properties in the group. The cluster glyph placement
using the centroid distorts the positions of the individual movers and can create
overlaps between groups and single movers. Such an overlap between a group and
a single mover indicates that the single mover is a local outlier as the movement
characteristics differ from the spatially related neighbors.

We consider two types of scalability: the network size and the number of time
steps. The approach is robust to a larger group of movers (e.g., 800 movers) as the
proposed glyph designs reduce the number of displayed network links. MotionG-
lyphs is, however, currently not fully able to cover datasets with different spatial
distributions, which can be supported by applying other density-based clusterings
(e.g., ST-OPTICS [3]). We also used agent-based models (e.g., Couzin et al. [82]) to
investigate the temporal scalability (6000 time steps) of the approach and identified
that the current prototype scales up well to 25 million network links. The glyphs are
less useful in the application domain if the number of movers and links is below a
certain threshold as we rely on the visual abstraction of links as well as groups.

3.7 Conclusion

In this chapter, we presented a design study to visually explore spatio-temporal
networks and group structures in collective animal behavior. The result of our itera-
tive design process is a glyph that enables us to display a visual summary of dense
spatio-temporal network data, which are typically hard to visualize. MotionGlyphs
is iteratively designed by a series of discussions with our collaborators. We validate
our design with an expert evaluation, highlighting how the design and prototype
can be used to gain insights into the underlying evolving data. We learned that
the glyph design is appropriate and can be extended for various analysis use cases
(e.g., context analysis). Even though the application domain motivated the design
of MotionGlyphs, the design is suitable for visualizing any spatio-temporal networks.
We plan to evaluate the designed glyph for similar analysis tasks in other domains,
such as identifying attacks in network security. We also plan to combine a semantic
zoom with a hierarchical clustering by modifying AGNES [167] to work with spatio-
temporal data to split groups interactively during a semantic zoom into smaller
subgroups and to adapt the proposed glyph to group sizes. Finally, we also presented
a benchmark, an initial step toward practical algorithms for finding spatio-temporal
clusters in collective animal behavior. We generated numerous synthetic datasets
and compared the performance of different spatio-temporal clustering algorithms.
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Based on our benchmark, we report that temporal extensions of standard clustering
methods are valuable and scalable methods to detect moving clusters in the field of
collective animal behavior.
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Pixel-Based Visual Analysis
of Dynamic Networks

4

Summary

Providing a scalable overview of dynamic networks remains challenging due to the
often underlying large-scale structural changes. Previously proposed visualization
approaches often apply dimensionality reduction methods based on designed feature
vectors to reduce the overall complexity of the evolving data. This chapter presents
dg2pix , a multiscale pixel-based visualization that provides a scalable overview and
enables users to visually explore temporal and structural properties in long sequences
of large-scale dynamic networks. dg2pix utilizes a multiscale temporal model, graph
embeddings, and an interactive pixel-based visualization. We demonstrate the
technique’s applicability through two use cases that analyze synthetic and real-world
large-scale dynamic networks. dg2pix effectively uses the display space and presents
changes in large-scale dynamic networks without overlap and clutter.

The chapter is based on the following publication. Please refer to Section 1.5 for
contribution clarifications.

[62] Eren Cakmak, Dominik Jäckle, Tobias Schreck, Daniel Keim. “dg2pix: Pixel-
Based Visual Analysis of Dynamic Graphs“. Visualization in Data Science (VDS),
2020.
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4.1 Introduction

Dynamic graph visualizations are used in many real-world applications to present
evolving relationships between entities, such as in social network analysis. A primary
user task in such dynamic graph visualizations is to obtain an overview of the
temporal dimension, for instance, to identify temporal states such as trends, outliers,
and similar graph structures over time [103]. However, visualizing large-scale
dynamic graphs remains challenging as such visualization techniques have to present
large amounts of evolving data in a readable and scalable manner [31].

Visualization techniques for dynamic graphs can be distinguished by the following
primary categories: animation and timeline visualization [31]. However, both cat-
egories do not scale due to a large number of nodes, edges, and time steps [30].
Particularly, the evolving, highly complex data may pose a significant challenge for
the visual detection and traceability of changes in dynamic graph visualizations.
Therefore, previous approaches for the visual analysis of dynamic graph data often
rely on dimensionality reduction methods to provide an overview of higher-level
structures over time [103]. Such dimensionality reduction methods reduce the
complexity by embedding the evolving topological structures in low-dimensional
space. While to date, some dynamic graph visualization techniques leverage dimen-
sionality reduction methods (e.g., 2D embeddings [103]), they still fail to provide
a scalable overview of the structural changes as the approaches depend on the
temporal analysis scale and the designed feature vector (e.g., graph metrics).

We propose dg2pix (dynamic graph to pixel-based visualization), a novel visualization
technique for large-scale dynamic graphs based on unsupervised graph learning
methods (e.g., graph2vec [230] or FGSD [303]). The main goal is to provide a
scalable overview of the temporal dimension and enable the initial exploration of the
high-dimensional data to support the identification of temporal changes and similar
temporal states. The visualization technique consists of three main steps: multiscale
temporal modeling, graph embeddings, and a pixel-based visualization. The graph
embedding reduces the dynamic graph to a low-dimensional representation (50-
300 dimensions) and learns the similarity between graphs to capture the evolving
topology of the high-dimensional data. The compact visualization technique allows
users to interactively adapt the temporal analysis scale and compare high-level
as well as fine-grained structural changes. We demonstrate the usefulness of our
approach through two use cases to show how dg2pix can be utilized to identify
temporal changes and states in dynamic graphs.
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Fig. 4.1 The example presents a synthetic dynamic graph (200-time steps) using
graph2vec [230]. The x-axis presents the temporal dimension, and the y-axis
displays for each time step a graph embedding as a pixel-bar. The reoccurring states
(A-C) have for each time step the same amount of nodes (2500) and edges (350000)
with a different number of clusters. Each state (20-time steps) was generated with
SBM [147] with slight variations for the density of edges between clusters. The
graphs (A-C) display a sample graph for each state.

In summary, the contributions of this chapter are the following: (1) The novel
dg2pix visualization technique, a time-scalable visual metaphor to reveal changes
and similar temporal states in a dynamic graph; (2) an interpretation strategy of
visual patterns that users can examine in dg2pix ; and (3) an interactive prototype
that allows exploring dynamic graphs at multiple scales.

4.2 Related Work

We briefly discuss related work from dynamic graph visualizations, the visual analysis
of dimensionality reduction methods, and pixel-based visualization techniques.

4.2.1 Dynamic Graph Visualization

In many application domains, dynamic graph visualization techniques have recently
gained more research attention [31]. Such techniques can be classified into two
main categories: animation and timeline visualizations [31]. The animation of
large-scale dynamic graphs is often regarded as inadequate due to the cognitive
efforts to maintain a mental map [248] and trace changes [296]. On the other hand,
timeline visualizations often map the graph to a compact representation to reduce
cognitive efforts and enable the comparison of periods. For instance, the parallel
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edge splatting technique [55] displays dynamic graphs as a sequence of bipartite
graph layouts. However, even in the improved version that uses the interleaving
concept [52], the identification of temporal patterns remains challenging due to the
over-drawing problems between the individual graphs. Further, Van den Elzen et
al. [102] propose to extend massive sequence views and suggest different reordering
strategies to minimize block overlaps. Nevertheless, identifying temporal patterns
in dense and large-scale graphs remains challenging due to the overlapping edges,
making it difficult to trace changes in the linear-ordering. An extensive survey
of further dynamic graph visualization techniques can be found in the surveys of
Kerracher et al. [174], Beck et al. [31], and Nobre et al.[233].

In summary, dynamic graph visualizations such as animations and timeline map-
pings do not scale to long sequences of large-scale graphs due to limited display
space [31]. Therefore, previous visualization approaches apply dimensionality
reduction methods to reduce the complexity of the high-dimensional graph data.

4.2.2 Dimension-Reduced Dynamic Graph Visualization

Visualization approaches based on dimensionality reduction focus on summarizing
and abstracting dynamic graphs to highlight temporal and structural changes. For
example, Van den Elzen et al. [103] use dimensionality reduction methods (e.g.,
t-SNE [213]) to reduce the amount of data and provide an overview of high-level
temporal states in a dynamic graph. The proposed visual analytics approach, how-
ever, depends on the temporal discretization scale and requires feature engineering
for embedding the discretized intervals into vectors. Time curves [26] likewise
embed the temporal data in a spatial layout to highlight temporal patterns and
anomalies. Still, time curves heavily depend on feature engineering of the vec-
tors, the quality of the distance metric, and often produce visual clutter for long
sequences due to overlapping issues. For further reading, we refer to the survey
Engel et al. [105], Sacha et al. [260], and the work of Vernier et al. [304].

Overall, dimensionality reduction methods reduce the complexity of the dynamic
graph data and support the identification of temporal patterns. However, such
methods frequently fail to capture structural changes as the methods heavily depend
on the designed feature vector (e.g., graph metrics). Furthermore, such methods
do not scale to long sequences due to the visual clutter caused by overlaps in the
spatial layout. Pixel-based visualization techniques can be utilized to avoid such
over-drawing problems.
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4.2.3 Pixel-Based Visualization

Pixel-based visualizations effectively use the whole display space and allow us to
present large amounts of data without overlap and clutter [170]. For example,
Buchmueller et al. [48] highlighted the usefulness of pixel-based visualizations for
the visual summarization of changes in spatio-temporal data. There are, however,
only a few pixel-based visualizations for dynamic graphs. For instance, a matrix
of pixel-based glyphs can be used to highlight temporal patterns in small social
networks [286]. Furthermore, space-filling temporal treemap visualizations [182]
can be extended to display medium-sized evolving trees in a pixel-based visual-
ization manner. Such temporal treemaps [182] and other hierarchy based visual
metaphors [53] are, however, only able to depict evolving hierarchies. Another
pixel-based timeline visualization is GraphFlow [84], which displays graph metrics
to highlight structural changes in a dynamic graph. The GraphFlow [84] method,
however, only works for small graphs with a limited number of time steps, and the
energy-based visualization also heavily depends on the used graph metric (e.g., node
degree) that can fail to capture the overall dynamic phenomena.

4.2.4 Delineation to our Work

This chapter proposes an overlap free multiscale pixel-based visualization that does
not require any feature engineering, scales up to long sequences of graphs, and
enables us to drill down into aggregated temporal intervals. We utilize unsupervised
analysis methods (graph embeddings) from the field of machine learning to automat-
ically learn and embed graph structures in low-dimensional space without requiring
any features engineering [330]. Such graph embedding methods stand in contrast
to previous analysis methods (e.g., GraphFlow [84]) that typically used static or
dynamic graph metrics (e.g., diameter [45] or change centrality [113]). However,
there are currently no visualization techniques that leverage graph embeddings
for dynamic graphs even though they have shown to be efficient for various tasks
(e.g., in link prediction [123]). Our approach was inspired by the stripe-based
visualizations of word embeddings that can be used to highlight semantically similar
word groups [275]. Contrary to previous approaches, dg2pix scales to long and
large-scale dynamic graphs, providing an encompassing overview of possible tem-
poral aggregation levels. This chapter also investigates how the visual patterns in
dg2pix can be interpreted.
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Fig. 4.2 The dg2pix enables users to discover similar temporal states. The approach consists
of three main adjustable steps (1) temporal aggregations, (2) graph embeddings,
and (3) the visual mapping to the pixel-based visualization.

4.3 Dynamic Network to Pixel-Based Visualization

dg2pix is a scalable visualization technique to gain an overview of the temporal
dimension in long and large-scale dynamic graphs. The approach combines temporal
aggregations with dimensionality reduction methods (graph embeddings) at multiple
temporal scales to reveal temporal patterns, for instance, reoccurring states with
similar graph structures. With dg2pix , we show how graph embeddings can be
interactively used to surpass state-of-the-art visualization techniques for dynamic
graphs by the amount of displayed information.

The visualization technique consists of three adjustable steps (see Figure 4.2). The
technique’s basic idea is to use graph embeddings combined with a pixel-based
visualization to present vast amounts of high-dimensional data to support the ex-
ploration and summarization of dynamic graphs [46]. The (2-3) transformation
steps (see Figure 4.2) are, to the best of our knowledge, not considered in previous
literature for dynamic graph visualizations even though graph embeddings outper-
forming many state-of-the-art unsupervised learning methods [330], and pixel-based
visualizations enable to display large amounts of data overlap and clutter-free [170].
Next, we explain the three steps of dg2pix and present the implemented prototype.

4.3.1 Multiscale Temporal Modelling

Temporal abstraction methods (e.g., temporal aggregations) are applied to dynamic
graphs to reduce the amount of data and summarize the changes over time. Typically,
such temporal abstraction methods are based on aggregation, such as the supergraph
computation, which summarizes intervals by unifying all nodes and edges of a
sequence of graphs [131]. Supergraphs provide an overview of temporal intervals
by summarizing a sequence of graphs into only one graph with the cost of discarding
temporal information [36]. The computation of supergraphs can be seen as a
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discretization of the temporal dimension. However, the usefulness of such a temporal
discretization depends on many aspects, for instance, graph size, frequency of
topological changes, and the temporal aggregation scale [36]. For example, a fine-
grained temporal aggregation into supergraphs results in various intervals with
little information and is unable to provide an overview. In contrast, coarse-scale
aggregation produces only a few supergraphs, containing a high variance, where
important intervals may remain hidden. Moreover, finding the optimal fixed interval
length for analysis depends on the user task at hand [88].

We compute supergraphs at different temporal aggregation scales to enable users
to explore temporal states at multiple temporal granularities interactively. In con-
trast to previous discretizations of time that use uniform or non-uniform temporal
granularities (time-slices) [311], we propose to recursively partition the data using
uniform time-slicing methods and compute for each interval a supergraph. For
example, the recursive supergraph generation can be done based on the cyclic
division of time, such as the division into a year, months, and days. We propose
the following default dynamic graph coarsening approach for domains with no
reasonable temporal partitioning. The default approach slices T time steps of the
temporal dimension recursively into intervals of length 2l with l being the level
l ∈ 1, ..., dlog(T )e. The resulting levels contain at the lowest level one intervals of
length one and the highest level dlog(T )e a supergraph of all graphs. We compute
a supergraph for each of these intervals, which results in dT/2l−1e supergraphs for
each the level l. The multiscale temporal modeling computes dlog(T )e levels of
granularity having overall (2 · T ) + 1 supergraphs.

The temporal multiscale modeling essentially recursively coarsens the dynamic graph
into supergraphs, which are used in combination with the original evolving graphs
in the next step to learn the similarities between graphs in a latent space. Our
multiscale temporal modeling was inspired by Elmqvist and Fekete [99] hierarchical
aggregation, which enables us to turn visualizations into multiscale (multiresolution)
approaches that scale better to large datasets. The multiscale temporal modeling is
later used to perform unbalanced drill-down and roll-up operations.

4.3.2 Graph Embedding

In the second step, we apply dimensionality reduction methods (graph embeddings)
to all generated snapshots to learn the similarities between graphs and reduce the
high-dimensional data to low-dimensional vectors. We apply graph embeddings (e.g.,
graph2vec [230]) as they are scalable to large-scale dynamic graphs, outperform
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state-of-the-art methods in the field of unsupervised learning, do not require feature
engineering, and are small enough to fit into main memory for interactive visual
analysis [330]. For example, graph2vec outperforms graph kernels, and substructure
embedding approaches for classification tasks on large graph datasets [230]. A
graph embedding can be seen as a function f : V → Rd that maps a set of vertices
(e.g., random walks) to a d dimensional embedding. Typically, the embeddings of
the latent space Rd are used to gain insight into the data and for further standard
machine learning tasks. For example, we cluster the embeddings to visualize and
gain an overview of similar temporal states. In contrast to previous dynamic graphs
visualization approaches (e.g., van Elzen et al. [103]), which depend strongly
on the used graph metric, unsupervised graph embeddings do not require any
feature engineering, are task agnostic and data-driven. An advantage of graph
embeddings is that the methods learn similarities between graphs in the latent space
by approximating different graph metrics [43]. Furthermore, we employ graph
embeddings instead of node embeddings because graph embeddings only compute
one vector for a given time step and therefore scale to large datasets.

We utilize the three recently proposed graph embeddings [258] for our approach:
graph2vec [230], GL2Vec [73], and FGSD [303] as the approaches have moderate
run-time complexities. We compute embeddings of all 2T + 1 supergraphs of the
multiscale temporal modeling step and embed the graphs, as suggested by Bonner
et al. [43], into the range of 50 − 300 dimensions. Per default, we embed each
graph to a vector of 128 features and applied L2 normalization to the embeddings.
The normalization maps the vectors to unit length and enables us to use cosine
similarity instead of the dot product as a distance measurement [201]. The vectors
are later displayed in the pixel-based visualization as pixel-bars to identify changes
in dynamic graphs visually. In Figure 4.5, three different graph embeddings of a
synthetic dataset are presented, highlighting that the proposed methods capture
temporal states in dynamic graphs. In our discussion (see Section 4.6), we elaborate
on the input parameters and the scalability of such graph embeddings.

4.3.3 Pixel-based Visualization

In the last step, we visually encode the embeddings into dense pixel-based visualiza-
tions to provide an overview of the temporal dimension and reveal similar graphs.
We particularly visualize the embeddings as they are compact encodings of the
structural information of each graph. The embeddings are displayed as linearized
pixel-bars that are basically grid-based columns in which each rectangle (pixel) is
a feature of the embedded vector. The technique colors each pixel by the feature’s
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value by using a diverging color scheme from ColorBrewer [138]. We utilize a
global segmented color scheme with two distinct values to support the comparison
task [291]. We sequentially order each displayed pixel-bar (graph embedding) by
time, creating a dense pixel-based visualization. The y-axis ordering of the colored
pixel-bars is per default, based on the linear order of the vector. The challenge of
finding a useful linear order to highlight particular patterns visually can be mapped
to the linearization problem [34]. We are utilizing different reordering algorithms
to improve the global ordering of the embeddings to emphasize different patterns
along both axes of the pixel-based visualization. For example, we apply clustering
algorithms to all displayed data features to group and arrange similar features over
time. We discuss different reordering strategies in Section 4.4.3.

We utilize the computed supergraphs of the multiscale temporal modeling to present
the data at multiple user-defined levels of temporal aggregation (see Figure 4.4).
Such a multiscale (multiresolution) visualization helps to set detailed abstraction
levels into the overall temporal context [99]. For example, the visualization tech-
nique presents 1000 supergraphs as pixel-bars instead of several thousand individual
graphs and enables users to drill-down into intervals. We limit the number of de-
picted grid-based columns to the available horizontal pixels of the screen space to
address our approach’s visual scalability, which means that the minimum width of a
pixel-bar is precisely one pixel. If a user drills down and reaches the limit of screen
space pixel, he has to coarsen temporal intervals to reduce the number of overall
displayed pixel-bars. Next, we describe our implemented prototype.

4.3.4 Prototype

The dg2pix prototype implementation 1 enables us to explore the temporal changes
of large scale dynamic graphs. In the following, we briefly introduce the two main
linked views of the prototype.

The dg2pix view (see Figure 4.3) consists of a toolbar (A), a zoom context bar (B),
and the pixel-based visualization (C). The toolbar allows selecting and presenting
various graph embeddings for particular datasets, including choosing different
training epochs and applying automated analysis methods. For example, the x-axis
can be reordered based on a clustering of the graph embeddings (see Section 4.4.3).
Furthermore, the toolbar enables us to change the temporal granularity of intervals
(drill-down and roll-up) and display selected graph embeddings in the graph view.
The zoom context bar presents additional information for the vertical and horizontal

1https://github.com/eren-ck/dg2pix
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Fig. 4.3 The dg2pix component consists of three views a toolbar (A), the zoom context bar
(B), and the pixel-based visualization (C). In (C) the embeddings (GL2Vec [73])
of a synthetic dynamic graph (SBM[147]) with reoccurring states are depicted.
The displayed embeddings of the x-axis are clustered (HDBSCAN [68]), and y-axis
ordering is based on the median of each vector attribute. The reordering and
clustering of the synthetically created reoccurring states highlight large clusters of
similar graphs and outliers in the temporal data.

temporal navigation and provides an overview of the displayed temporal interval
and granularities. The view (see also Figure 4.4) displays for each pixel-bar the
corresponding temporal granularity as a zoom bar (rectangle). The height is mapped
to the zoom level, meaning the zoom bars of low levels of temporal granularity are
rather small. The zoom bars are always ordered by time and enable us to relate
the potentially reordered pixel-bars to their overall temporal context via brushing
and linking. The zoom context bar also allows for selecting and filtering periods of
the pixel-based visualization, allowing navigating horizontally along the temporal
dimension. The pixel-based visualization displays per default the medium zoom level
of the graph embeddings ordered by time. The view allows us to select individual
and multiple pixel-bars and adapt the temporal granularity by drilling-down a lower
temporal granularity or coarsening the temporal dimension (roll-up). The view is
also directly linked to the zoom context bar, enabling us to keep an overview and
relate the pixel-bars to the temporal dimension. The x- and y-axis of the pixel-based
visualization can also be reordered using different reordering strategies to highlight
clusters and similarities between the embeddings (see Section 4.4.3). Furthermore,
multiple pixel-bars can be selected to display the underlying supergraphs and graphs
in the second main view.
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Fig. 4.4 The zoom context bar enables us to investigate the zoom level for an individual
and multiple pixel bars. Further, it allows filtering time intervals for vertical and
horizontal navigation.

The graph view allows us to display the underlying graph data of the selected
pixel-bars as a supergraph to highlight and compare the intersections and disjoint
nodes and edges between the graphs in the temporal data. The supergraph nodes
and edges are colored using two graph set operations on all selected time steps to
highlight similarities and differences. The applied set operations are intersection
(orange) and disjoint (blue) on all nodes and edges of the selected time steps. The
goal of the set operation comparisons is to investigate the changes in the temporal
graph, which helps to identify and interpret which graph structures were preserved
in the latent space. The view uses per default for all time steps one precomputed
graph layout (Fruchterman-Reingold [114]) by computing a supergraph for the
whole dynamic graph. We facilitate one global layout to preserve the user’s mental
map [30]. The graph view can also be explored via semantic zooming to explore
particular graph structures (e.g., node and link attributes).

4.4 Visual Interpretation

dg2pix provides a scalable overview by emphasizing the underlying changes a in dy-
namic graph. The main idea of the approach is to learn and display low-dimensional
embeddings of graphs that capture the similarity between graphs in a latent space.
However, interpreting such embeddings in the latent space remains challenging as
the meaning of particular numeric values cannot be directly mapped to topological
features of the graph. For example, the specific meaning of a dimension value
of 0.3 of an embedding with 128 dimensions remains unanswered. Consequently,
the abstractness of what low and high values of each dimension encode poses a
challenge to understand and map the patterns in dg2pix to topological changes
in the evolving graph. In previous work, typically, 2D visualizations are used to
interpret and understand such latent space [206]. For instance, the Embedding
Projector [282] by Google Brain uses projections (e.g., t-SNE [213]) to present word
embeddings as 2D and 3D scatterplots. However, such simple 2D visualizations
discard latent space information as the d-dimensional embeddings are again reduced
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into 2D embeddings for the visual representation. The following section describes
the underlying challenges of visualizing latent spaces, interpreting visual patterns,
and different reordering strategies to highlight temporal changes.

4.4.1 Latent Space Visualizations

Recently, the visual analysis of latent spaces (embedding spaces) has gained research
interest [206]. For example, ad-hoc dimensionality reduction methods (e.g., PCA,
t-SNE [213], or UMAP [218]) are often applied to display neighbors in the latent
space in 2D space. The latent space representation’s central goal is to provide more
insight into the underlying embedded data and enable the qualitative interpretation
of the learned embeddings [206]. Heimler and Gleicher [141], for instance, describe
tasks for word embeddings and display words in a matrix-based view to highlight
co-occurrences between words. Further, Liu et al. [206] describe a set of tasks for
exploring latent spaces and present a cartography system to visually investigate
relationships between data points and compare attributes of vectors (e.g., word
embeddings). The visual analysis of latent spaces currently remains the primary
method to investigate and interpret graph embeddings. There has been little theo-
retical work to prove that such embeddings approximate and learn different graph
metrics [43]. For example, EmbeddingVis [204] enables the comparison of different
latent spaces of node embeddings to investigate which node metrics are preserved
by applying regression.

In contrast to all previous approaches, our primary goal is to generate a visual
summary of the temporal dimension that helps to understand and highlight temporal
states in the evolving data. We display the embeddings with all their dimensions to
visually compare similarities and apply reordering strategies to present changes in
the latent space. Our approach also allows us to present the underlying graphs in
combination using graph set operations (e.g., union or intersection) to help interpret
and compare the latent space with the original evolving graph data. Next, we
elaborate on how dg2pix can be interpreted, and automatic approaches can be used
to find similar temporal states.

4.4.2 Interpretation of Visual Patterns

Graph embeddings are machine learning models that produce abstract low-dimensional
vector representations for graphs that are difficult to interpret, as the individual
values of the dimension themself have no exact interpretation [261].
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Challenges The reasons for interpretation challenges arise from the stochastic
algorithms (e.g., graph2vec [230]), which utilize non-transparent neural networks
with hyperparameters [261]. Further, the embeddings can be changed with unitary
rotation, completely transforming each dimension’s values while preserving the
latent space distances. Therefore, the complexity of interpreting graph embedding
dimensions can be compared to the efforts to understand activations in neural
networks for image classification [261]. Nevertheless, recent experiments [261, 43]
indicate that graph embedding methods learn to approximate various topological
features of graphs. Therefore, we utilize and visualize graph embeddings to highlight
changes in dynamic graphs as the methods have shown to be effective feature spaces
for various graph mining tasks, such as classification of graphs [303, 293, 73].

Interpretation The pixel-based visualization enables us to perceive similarities and
differences between embeddings to provide an overview of the dynamic graph.
Generally, the visualization of embeddings can reveal relationships in the latent
space, as shown by Shin et al. [275] for the comparison of semantically similar word
embeddings. The graph embeddings can only be interpreted in relation to other
embeddings by investigating the pairwise similarity between embeddings. More
specifically, if two subsequent graph embeddings in the dynamic graph are, to some
extent, similar to each other, then the original graphs are also similar to one another.
Also, vice versa, if two successive embeddings are different, then the two embedded
graphs are dissimilar to some extent. Therefore, we can use the embeddings to
examine and highlight changes and temporal states in a dynamic graph even though
we cannot interpret the individual values of particular dimensions.

Visual Comparison of Embeddings Consequently, the human-centric visual analysis
of temporal states (e.g., reoccurring graphs) can be mapped to distinguishing similar
pixel-bars in the dg2pix . For instance, Figure 4.3 displays a large block of similar
pixel-bars with an apparent outlier in-between. The visual analysis of pairwise
similarities between pixel-bars enables identifying temporal changes and states in
the underlying dynamic graph. However, the cognitive efforts to compare multiple
pixel-bars are high since the user has to simultaneously relate numerous dimensions
of different embeddings. The pairwise similarities between multiple embeddings
can also be computed using the cosine similarity. We, therefore, propose to use
automatic methods to sort and cluster similar rows and columns in the pixel-based
visualization to enable the identification of temporal states (e.g., outliers).

Explainability We also compare the underlying graph structures of embeddings in
the graph view against each other, intending to generate new insight into the latent
space. For instance, displaying the graph data helps explain graph features’ potential
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reasons and impacts on particular values for individual dimensions. Overall, both
the pixel-based visualization and the graph view can help to understand and explain
the semantic meaning of high and low values of particular dimensions to gain new
insight into graph embeddings, which are black-box models [261].

4.4.3 Reordering Strategies

dg2pix was designed to scale to large-scale dynamic graphs and provide a visual
summary of the temporal data. However, temporal states can remain hidden and
difficult to identify due to the sheer amount of visualized data, for instance, if single
reoccurring pixel columns correlate with other prominent states. Applying different
reordering strategies to the embedding can reveal such otherwise hidden temporal
states. For example, clustering reordering the displayed pixel columns (x-axis) will
highlight similar graph structures. Therefore, we provide users with the option to
apply reordering strategies to reveal similar patterns along both axes.

We provide global reordering strategies for the dimensions of the embeddings (y-axis)
and the temporal dimension (x-axis). In general, identifying an optimal ordering for
our pixel-based visualization is known to be NP-Hard since the issue can be mapped
to the problem of reordering (linearization) of rows and columns in matrices [34].
For the reordering of matrices, various reordering strategies (layouts) have been
proposed to highlight different patterns (e.g., block patterns [34]). We provide for
the reordering of the embedding dimensions (y-axis) several heuristics based on a
statistical metric of each row. For example, before the L2 normalization, the y-axis
can be sorted by the median value for each dimension of the displayed embeddings
to highlight block and band patterns [34]. Furthermore, the prototype allows us
to reorder the dimensions (rows) of the pixel-based visualization using the mean,
minimum, maximum, variance, and standard deviation of the depicted rows.

We also provide two reordering strategies for the temporal dimension (x-axis) to
identify similar temporal states by computing clusters and reordering based on
the distances to one particular column (similarity search). The clustering uses
HDBSCAN [68] for the displayed embeddings facilitating the cosine-similarity as a
distance measurement. We employ HDBSCAN [68] as the approach aims to find the
result with the best stability over different epsilons parameters and accordingly detect
clusters with varying densities. The clustering results are displayed by grouping and
highlighting the pixel-bars according to their clusters using a grey bounding box.
For instance, the clusters are reordered using the median time of all embeddings,
and the underlying embeddings of a cluster are again sorted by time. Second, we
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enable to reorder the y-axis based on the distance to a particular embedding. The
resorting places an embedding to the first position and afterward ranks the presented
embeddings by the distance to the selected embedding (similarity search). This
reordering enables us to compare one particular embedding in time with all other
graph embeddings in detail.

Overall, using such reordering strategies for both axes can help users understand how
the ordering influences the visual patterns, can group, and rank similar temporal
states to explore the latent space in more detail.

4.5 Evaluation

In the following section, we apply dg2pix to synthetic and a real-world dynamic
graph to demonstrate how the approach can be used to gain an overview and provide
insight into the temporal changes and reoccurring states in evolving graphs.

4.5.1 Synthetic Dynamic Graphs

We generated synthetic dynamic graphs, with known ground truths, to show the
applicability and the usefulness of dg2pix . For example, we created different datasets
with the Stochastic Block Model (SBM) [147] with a fixed amount of nodes for each
time step, a varying number of edges, and multiple temporal states (see Figure 4.1).
We elaborate on the results of one dynamic graph to show how the approach can be
used to identify states in large-scale graphs. The synthetic dynamic graph consists
of 1000 time steps, 1000 nodes, more than 30 million edges, and three reoccurring
temporal states. We facilitated the SBM to create three states with different numbers
of clusters (blocks), a slightly varying number of nodes (up to 50) per cluster, and
minor edge density changes (internal and external). The dynamic graph consists of
randomly shuffled data of 500-time steps with two clusters of nodes, 250-time steps
with three clusters, and 250-time steps with four clusters. The dynamic graph was
embedded with three different graph embeddings with the following parameters:

• graph2vec [230]: 1000 epochs, 0.02 learning rate, 2 Weisfeiler-Lehman
iterations, and 128 dimensions.

• GL2Vec [73]: 1000 epochs, 0.02 learning rate, and 128 dimensions.

• FGSD [303]: 128 number of histogram bins with the histogram range of 20.
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Fig. 4.5 The synthetic dynamic graph described in the use cases (see Section 4.5.1) displays
three different graph embeddings with a ground truth of three temporal states.
(A) presents the dynamic graph using graph2vec [230], and (B) shows the same
data with the three temporal states. In (B-D), the same reordering strategies were
applied to highlight the temporal states. The two other graph embeddings, (C)
GL2Vec [73] and (D) FGSD [303], are partially able to learn and highlight the three
temporal states in the synthetic dynamic graph.

The Figure 4.5 (A-D) shows the resulting dg2pix of the synthetic dynamic graph. In
Figure 4.5 (A), the randomly shuffled data is displayed using the graph2vec [230]
embeddings, and in (B), the same pixel-bars are presented after the application of
reordering strategies. We reordered the embeddings (x-axis) based on the clustering
of the embeddings (HDBSCAN [68]), and the rows were globally sorted based on
the standard deviation of each row (ascending). The reordering strategies help to
identify temporal and reoccurring states (e.g., clusters) by grouping similar and
dissimilar pixel-bars and their respective rows together. For example, sorting the
rows by the standard deviation of each row allows users to compare and identify
the embedding dimensions that primarily distinguish temporal states. In Figure 4.5
(B), the three temporal states are visible, which can be verified by displaying the
underlying graph structures in the graph view. Accordingly, graph2vec has learned
the temporal states encoded in the underlying ground truth.

In contrast, GL2Vec [73] was not able to distinguish the three temporal states (see
Figure 4.5 (C)). The same reordering strategies result in only two visible temporal
states. The GL2Vec learned to distinguish the states with the three and four clusters,
however, the model was not able to distinguish the larger group of two clusters
(500-time steps) in the latent space. The clustering grouped the first temporal state
as the visible block of noise and identified two similar states in the ground truth as
two different clusters. The GL2Vec potentially requires a different learning rate or
more epochs to distinguish the third state in the latent space.

In Figure 4.5 (D), the FGSD [303] is displayed which approximately learns the three
temporal states. Compared to the first two methods, the FGSD model embeds the
dimensions only to a positive range (blue color), and only seven dimensions of
the embeddings contain values. The method is almost able to distinguish all three
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Fig. 4.6 The synthetic random dynamic graph contains no known ground truth, and the
proposed approach produces no visible patterns.

clusters except for a little bit of noise, which can be verified by visualizing the graphs
in the graph view. In contrast to the other graph embeddings, the FGSD model
results in considerable white space that can be removed by deleting rows that do
not contain any values.

In addition to the different synthetic graphs with known ground truth, we also
created random dynamic graphs with different graph generators to confirm that the
visible patterns are not arbitrarily learned in the latent space during the training
process. For instance, Figure 4.6 shows a dynamic graph with 1000 randomly
generated connected Watts–Strogatz small-world graph [317] with 2000 nodes
(between 5-50 nearest neighbors), and < 0.1 edge probability edges for each time
step. The same reordering strategies, as in Figure 4.5, were applied, and the resulting
dg2pix shows the graph2vec (1000 epochs) embedding, which does not contain any
visible patterns as the model was not able to learn the similarities between the
random graphs in latent space.

4.5.2 Evolving Social Network

Next, dg2pix is applied to a real-world, large-scale social network. We describe
the temporal visual analysis of the website Reddit [188] to discover structural and
temporal changes as well as reoccurring states between social network communities
(subreddits) during the 2016 US presidential elections. In the following, we describe
the analyzed dataset, highlight the main task and challenges for the analysis of such
data, and how dg2pix can be used to provide an overview of the temporal changes.
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Reddit Data Reddit is a social news aggregation website with approximately 440
million users as of 2020. The website is made up of subreddits in which users post
content (e.g., images or links to news sites) and upvote posts based on a voting
based system to rank interesting content for each subreddit. The dataset [188] is
a dynamic hyperlink graph and consists of subreddits (nodes), and time-stamped
hyperlinks (edges). The analyzed data contains hyperlink graphs grouped by hours
from the 1st January 2016 to 30th November 2016 in which the election campaign
for the 2016 presidential election took place. The dynamic graph consists of 7974
graphs, 18546 nodes (subreddits), and 88328 edges (hyperlinks) between the
subreddits with either positive or negative sentiment. We computed the following
three graph embeddings graph2vec [230], GL2Vec [73], and FGSD [303] with the
same input parameters as described in Section 4.5.1. We verified the resulting insight
by comparing the identified changes and states of the underlying evolving hyperlink
graphs to the real historic news coverage of the presidential elections.

Tasks and Challenges The visual analysis of social network data aims to provide
an overview of structural changes over time, temporal states (e.g., reoccurring
graph structures), and outlier graphs in the evolving data (e.g., political scandals).
However, gaining an overview of large-scale social media data is challenging as it
requires visualizing structural and temporal changes simultaneously and identifying
suitable temporal analysis scales for changes and states of varying temporal length.
Furthermore, the size and complexity of social networks pose another challenge in
visualizing the evolving data since there is a trade-off between the visualization of
the detailed graph structure for each time step and presenting the overall evolving
graph properties. For instance, animations display each graph of the data in detail,
however, animations are considered to be unsuited to provide an overview of long
periods due to cognitive efforts to keep track of changes [296]. In contrast to
previous approaches, we model and embed dynamic graphs at multiple temporal
scales to enable the multiscale temporal analysis of long as well as large-scale
dynamic graphs.

2016 US Presidential Election We begin by investigating the week before and
the week during the 2016 US presidential elections (8th November 2016) to iden-
tify graphs with political subreddits in the temporal data. Per default, the proto-
type displays 400 pixel-bars of the middle level of temporal granularity using the
graph2vec [230] embeddings. First, we use the multiscale temporal modeling to
concentrate on the election weeks in November 2016. We aggregate the pixel-bars
before October into aggregated supergraphs (roll-up), and further split (drill-down)
the election weeks into the lowest temporal granularity of one hour. We display
different graph embeddings to examine the resulting pixel-bars during the election
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Fig. 4.7 The Reddit data described in the use cases (see Section 4.5.2) presents the election
week of the 2016 US presidential election using GL2Vec [73] embeddings. The
multiscale temporal modeling was used to display drill-into the election week
and aggregate other intervals into supergraphs. (A) displays the evolving social
networks sorted by time, and (B) shows the same data after applying reordering
strategies to emphasize temporal states. We linked the clusters of embeddings to
hyperlinks between different communities of subreddits, for example, computer
games related topics, political topologies, or morning graphs structures (AM).

week period visually. We decide to use the GL2Vec [73] embeddings, as there are
some noticeable similar pixel-bars in the dg2pix (see Figure 4.7 (A)) in which the
x-axis is sorted by time. Next, we apply the implemented reordering strategies to
group and highlight similar pixels-bars. The median of each row reorders the y-axis,
and we cluster and reorder the embeddings of the x-axis (see Figure 4.7 (B)). The
first visibly large group of graph embeddings is classified as noise as the embeddings
seem to have distinct values in the latent space. The next groups are clustered
together and also have visually similar looking embeddings. We investigated the
graphs in groups and between groups by displaying and comparing them in the
graph view. Thereby, we interpreted and tried to link the embedding characteristics
to evolving graph structures. For example, we noticed that the first group consists of
many computer games subreddits (e.g., pokemongo) and that the following group
contains various political subreddits (e.g., the_donald, AskTrumpSupporters, or poli-
tics). We were also able to identify graph structures related to specific time aspects.
For example, the last group (AM) consists of hyperlinks posted only in the morning
(between 8-11 am). These graphs posted in the morning have specific characteristics
(e.g., fewer subreddits) that have been learned by the graph embedding.

4.5 Evaluation 87



Searching for Political Events Next, we search for political events during the 2016
presidential election to identify graph structures with hyperlinks between political
subreddits. First, we change the temporal granularity of all embeddings to the
duration of 8 hours, which results in approximately 1000 pixel-bars. We select
the election night of 8th of November (6 pm - 12 am). We assume that political
subreddits, which posted hyperlinks to other subreddits during the election night,
were also active during the election campaign. Afterward, we use the ranking
functionality to search in all three graph embeddings for similar embeddings, and
we examine the top results. The top five-nearest neighbors in the three graph
embeddings reveal different political events. Graph2vec and GL2Vec return the
1st February can be directly linked to Iowa’s democratic and republican caucus.
Other graphs resulting from the similarity search can be related to the democratic
nomination of Hillary Clinton (28th July) and Mike Pence being announced as the
running mate of Donald Trump (15th July). Moreover, FGSD [303] ranks the 23rd
July high, which can be associated with the Wikileaks email release that revealed a
bias of the Democratic Party against Bernie Sanders. The publications of Wikileaks
are particularly visible in the graph view, as some political subreddits are linked (e.g.,
SandersForPresident, politics, political_revolution). Overall, the use cases describe
how dg2pix identifies temporal changes and states (e.g., political events) and relates
the latent space to structural changes in the underlying graph.

4.6 Discussion

The cornerstone of dg2pix are the three steps: (1) the multiscale temporal modeling,
(2) graph embeddings, and (3) the visual analysis of the pixel-based visualization.
Next, we discuss the limitations of dg2pix and potential future research directions.

Parameters The (1-2) step has multiple input parameters that profoundly influence
the perceived patterns in the pixel-based visualization, such as the latent space size,
number of epochs, or the random initialization of the neural network. Currently, the
parameter choices are set by the user as they depend on many factors, for example,
the temporal aggregation depends on the discretization scale of the application
domain. We consider the usage of various parameters as an advantage of our ap-
proach and a possibility for future work to investigate which parameter combinations
(e.g., different graph embeddings) can capture distinct temporal changes, such as
reoccurring motifs or outlier graphs.
Interpretablity The interpretation of the resulting perceivable changes remains
challenging due to multiple reasons (see Section 4.4), which affects the usability of
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the approach as the visual encoding is challenging to read. We consider the inter-
pretation limitation minor as our approach focuses mainly on highlighting temporal
changes. However, we aim to support the latent space’s visual analysis by presenting
the underlying embedded graph structures, enabling us to generate new insight
into the evolving data and lead to new interpretations. We also offer reordering
strategies to examine and interpret neighborhoods and clusters of embeddings in
the latent space. Nevertheless, the extension with further contextual features (e.g.,
evolving graph metrics) is essential to allow a detailed interpretation and guide
users towards interesting patterns.
Graph Embeddings We apply unsupervised graph embeddings to reduce the dimen-
sionality of long sequences of dynamic graphs and automatically learn similarities
between large-scale graphs. In contrast to topological graph metrics (e.g., density),
such unsupervised graph embeddings scale to large graphs, do not require any
feature engineering, and are domain as well as task agnostic. The main limitation
of such embeddings is that it remains unclear how many embedding dimensions
are required to capture specific structural changes [261]. We plan to investigate the
required number of dimensions for synthetic temporal patterns and how different
input parameters and noise influence the resulting embeddings.
Scalability For the computational scalability, we consider the graph size (|V | nodes
and |E| edges) and the number of time steps T . The (1) step computes supergraphs
at multiple levels and requires O(log(T ) · (|V |+ |E|)) memory and time complexity.
The computation of the supergraphs can be parallelized to increase the approach’s
scalability to long sequences of graphs. For further reading of runtime complexities
of graph embeddings, we refer to the survey of Goyal and Ferrara [123], which
emphasizes that recent graph embeddings run in O(|E|). Therefore, the overall
runtime complexity of the approach is O(log(T ) · (|V |+ |E|)). Due to the time and
memory complexities, we suggest precomputing the embeddings for large-scale dy-
namic graphs on GPU servers. Once the embeddings have been calculated, they are
small enough to fit into the main memory. Second, the computational efforts affect
the interactive visual analysis of the dg2pix . For example, the reordering strategy
by clustering scales linearly to the displayed time steps and embedding dimensions.
Also, the visualization of large-scale graphs for the comparison and interpretation in
the graph view does not scale to large-scale graphs as the size impairs the node-link
diagram’s readability. A possible solution for this issue is to cluster the underlying
large-scale graphs and display the identified clusters. However, such a clustering
makes it challenging to compare graphs as nodes and edges are abstracted into meta-
nodes. Therefore, we plan to examine how different graph embeddings, combined
with evolving graph metrics, can be used to compare large-scale graphs.
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4.7 Conclusion

We presented dg2pix , a visualization technique to provide an overview of temporal
changes in long and large-scale dynamic graphs. The novel representation consists of
multiscale temporal modeling, unsupervised graph embeddings, and a dense pixel-
based visualization to explore the embeddings at different temporal scales. The main
idea is visually analyze the latent space to identify temporal changes in the dynamic
graph. The implemented prototype and the use cases show how dg2pix can be used
to provide insight into evolving graphs and highlight the approach’s applicability to
synthetic and real-world dynamic graph data. Overall, the dg2pix is a promising new
research direction for dynamic graphs and can be generalized for the visual analysis
of unsupervised embedding methods and latent spaces.
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Motif-Based Dynamic
Network Visualization

5
Summary

Providing a scalable overview of dynamic networks remains challenging due to the
underlying large-scale elusive topological changes. Therefore, previous dynamic
network visualizations frequently utilize abstraction methods to provide a high-
level overview of topological changes. This chapter presents two complementary
pixel visualizations based on motif and graphlet analysis to provide a multiscale
time-scalable overview of dynamic networks. The pixel-based visualizations allow
identifying, comparing, tracing, and interpreting structural similarities between
evolving network structures to reveal similar temporal states, trends, and outliers
in dynamic networks. Moreover, we discuss the identification of visual patterns in
both pixel-based visualizations, also considering different reordering strategies to
emphasize such visual patterns. We showcase the approach’s usefulness through
use cases analyzing synthetic and real-world large-scale dynamic networks, such as
the evolving social networks of Reddit or Facebook. Overall, this chapter presents a
visualization approach to provide a scalable overview of significant sub-structural
changes in dynamic networks.

The chapter is based on the following publication. Please refer to Section 1.5 for
contribution clarifications.

[59] Eren Cakmak, Johannes Fuchs, Dominik Jäckle, Tobias Schreck, Ulrik Brandes,
Daniel Keim. “Motif-Based Visual Analysis of Dynamic Networks“. Submitted to
Visualization in Data Science (VDS), 2022.
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5.1 Introduction

Many data exploration and analysis problems rely on network representations in
one form or another. Besides the visual analysis of static networks, i.e., where
nodes and relationships are fixed, in many domains dynamic network data arises.
These, in turn, pose challenging questions about the change of the network structure,
features, and patterns over time. For example, social networks, computer networks,
or transportation networks change over time. While first examples of visual analysis
of dynamic networks have recently explored real-world applications [31], such as in
biology [130] or communication analyses [131], it remains a challenging problem.

A typical user task in such applications is to obtain an overview by identifying
similar and dissimilar network structures over time to gain an understanding of
topological changes [103]. However, providing a scalable overview of changing
network structures remains challenging due to large-scale network data that usually
evolve over long periods. For instance, the growing linkage behavior of the social
network Reddit [188] consists of five years of data with roughly 55K nodes and
850K edges. Previous dynamic network visualizations, therefore, regularly utilize
abstraction methods to reduce the complexity and provide a high-level overview
of temporal changes [103]. However, such abstraction methods depend on the
graph size, the frequency of changes, and the extracted global or local metrics (e.g.,
diameter or node degrees). A promising approach is a local analysis of sub-networks
(e.g., motifs or graphlets) that define and provide insight into complex network
topologies [299]. However, in visualization research, sub-networks are mainly used
to abstract and display static networks. For instance, Dunne and Shneiderman [94]
display motifs as simplified glyph representations. To this day, dynamic network
visualizations refrained from using motifs or graphlets, although they can provide
useful, scalable overviews of evolving sub-networks.

In this chapter, we propose two complementary scalable pixel visualizations [170] to
provide an overview of changing motif structures in large-scale dynamic networks.
The first pixel-based representation of network-level census displays significantly
occurring motifs to reveal structural changes, trends, states, and outliers. The visu-
alization allows users to compare topological structures within and across several
dynamic networks. Moreover, we propose a second linked pixel-based represen-
tation of node-level sub-network metrics that presents detailed node neighborhood
information and allows us to compare individual networks within a dynamic net-
work in more detail. We introduce potential visual patterns and discuss different
reordering strategies to emphasize visual patterns, for instance, rearranging the pixel
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representations based on network metrics to highlight similar network superfamilies.
We likewise display a node-link diagram juxtaposed to relate the visual patterns
with the network topology. To improve the scalability of our approach, we apply
clustering to find superfamilies of similar networks and node neighborhoods. Both
pixel-based visualizations allow identifying, comparing, tracing, and interpreting
similar evolving network topologies to understand evolving sub-network structures
in dynamic networks. We demonstrate the usefulness of our approach through use
cases analyzing synthetic and real-world datasets.

The main contributions are: (1) we discuss and exploit the possibilities of a motif
analysis to provide an overview of significant topological changes in dynamic net-
works, (2) we visualize the results with two linked pixel visualizations and discuss
the applicability of reordering strategies to emphasize visual patterns, and (3) we
implement a prototype to evaluate the usefulness of our approach in a use case
analysis with real-world data.

5.2 Related Work

In the following section, we first provide background information on dynamic
networks, motifs, and graphlets. Then, we discuss related static and dynamic
network motif-based visualization approaches. The discussed research is selected
based on back and forward search using the surveys of Kerracher et al. [174], Borgo
et al. [300], Beck et al. [31], Nobre et al. [233], and Ribeiro et al. [251]. Finally, we
compare and delineate our work from related approaches.

5.2.1 Background

Dynamic networks model evolving relationships between real-world entities in
various application domains, such as social network analysis. A dynamic network
DN can be defined as a series of T static graphs DN = (N1, N2, ..., NT ). Where
each network Ni = (Vi, Ei) at the time step i consists of a set of vertices or nodes
V and a set of directed edges E ⊆ V × V . In this chapter, we follow the common
visualization terminology and use the term network to describe graphs in which
nodes and edges have attributes [309]. Next, since our approach analyzes motifs,
network census, and graphlets, we briefly introduce these terms.

Motifs are significantly over-represented directed sub-networks that are often re-
garded as the basic building blocks of a network [225]. Network motifs are crucial
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in various application domains to analyze topological structures, such as in co-
authorship networks [76] or brain networks [284]. Generally, a network motif is a
distinct sub-network that occurs more often than expected in a random reference
network model [225]. Likewise, motifs that are significantly under-represented are
considered to be anti-motifs. We consider motifs as induced sub-networks, meaning
that all existing edges between the sub-network nodes are included.

Network censuses (motif significance profiles) help to compare different-sized net-
works [224]. The census is computed by counting the specific number of motifs mi

in a network N real and normalizing occurrences of the motifs to a set of random-
ized networks N rand with the same degree sequence. The statistical significance is
defined as Zi = (N real

i − N rand
i )/std(N rand

i ) with N real
i being the real number of

motif occurences, and N rand
i the occurrence of the motif in a randomized network.

By default, we use the configuration model [232, Chapter 4] as a null model to
create random networks for the computation of the network census. The normalized
significance profile is defined as follows: SPi = Zi/

√∑
j Z

2
j . SPi indicates the

relative significance of the motif mi compared to the frequency of the same motif
mi in a randomly generated network with the same degree sequence. The values
of SPi are between [−1, 1], with SPi = 1 indicating that the motif is significantly
over-represented, and inversely SPi = −1 defines an anti-motif, meaning that the
motif is significantly under-represented. Furthermore, thirteen triad motifs without
self-loops are often used to compute the network census [224]. We also facilitate
these triads since the motifs capture the lowest level of social structures, considering
relations between three nodes [148]. The triads are crucial to study social networks,
such as triadic closures or transitivity [210]. Such triads are also mainly used
in statistical models for dynamic networks, such as the stochastic actor-oriented
models [283] and temporal exponential random graph models [136].

Graphlets are non-isomorphic induced undirected sub-networks without the concept
of significance and over-representation [247]. Graphlets can be used to calculate the
topological similarity between nodes from different networks [222]. Graphlets are
connected sub-networks and capture the instances of induced motifs occurring in
the neighborhood of a node. The graphlets for two to five nodes around a particular
node are known as the 73-dimensional graphlet degree vector (GDV) [139]. GDVs
enable us to compare the topological similarity between nodes and are essentially
the neighborhood signature of four hops around a given node. There are various
graphlet counting algorithms with reasonable runtimes, such as the orbit counting
(ORCA) algorithm [146]. Please refer to the recent survey of Ribeiro et al. [251] for
a more detailed introduction to motif and graphlet detection algorithms.
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5.2.2 Network Motif Visualizations

In visualization research, motifs are typically used to display static networks. How-
ever, in such scenarios, the concept of over-representation is not taken into account.
For instance, Dunne and Shneiderman [94] simplify and depict fan or clique motifs
as glyph representations. Other related static network visualizations are utilizing
motif-based features to explore motif frequencies in biological networks [268], to
cluster networks [193], to display large signaling networks [212], to visually search
networks [192], to explore biological mutation graphs [199], or to structurally
explore large networks [74]. For example, EgoNav [137] enables users to explore
summarized ego-networks utilizing motif analysis and dimensionality reduction
methods. Moreover, Kwon et al. [190] used graphlet frequencies to compute the
similarity between networks. As for network matrix visualizations, motifs are visual
patterns in a matrix, such as a line pattern. For instance, HiPiler [198] allows
users to explore matrix snippets (motifs) in genome interaction matrices. All of the
aforementioned motif-based visualizations are for static networks. However, the
listed static network visualizations are not suitable for providing a scalable overview
of changes in dynamic networks. The work of von Landesberger et al. [194] is
a unique system in this category. The proposed system allows users to aggregate
user-specified motifs and highlight local motif changes by utilizing a what-if-analysis.
However, the system is not suited for analyzing changes in dynamic networks since
the system only allows investigating the impact of individual differences on local
motif structures. Although the utility of motif-based visualizations is well-known for
static networks, they have not been utilized to present dynamic networks.

5.2.3 Dynamic Network Visualizations

Previous dynamic network visualizations often display the evolving data as timeline
visualizations to reduce the complexity and provide a high-level overview of temporal
changes in dynamic networks [31]. For example, van Elzen et al. [103] apply di-
mensionality reduction methods to embed dynamic network snapshots to connected
points in a 2D scatterplot. However, such dimensionality-based abstraction methods
depend on the graph size, the frequency of changes, the used distance metric, the
extracted global or local metrics (e.g., node degrees), and the non-linear dimen-
sionality reduction methods. Moreover, van den Elzen et al. [102] extend Massive
Sequence Views to visually explore dynamic networks, including simple sub-network
structures and communities, such as star patterns. However, the approach does not
support visual detection of distinct motifs, such as feed-forward loops, which are of
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primary interest in gene regulator networks [273]. Likewise, the approach does not
scale well to an increasing number of nodes and networks, causing more overlap
and clutter, making the visual detection of sub-networks challenging. Hadlak et
al. [131] cluster domain attributes to detect groups of nodes with similar trends
and behavior. However, the approach only clusters time-varying node and edge
attributes, creating clusters without considering or utilizing the network topology.
Bach et al. [24] propose GraphDiaries utilizing animated transitions to navigate
and highlight changes in a dynamic network. Yet, animations are not suitable for
displaying large-scale dynamic networks due to the high cognitive effort to com-
pare and trace changes over time [296]. Other dynamic visualization approaches
utilize persistent homology [132] or display dynamic networks on large physical
displays [195]. However, again both approaches do not allow exploring motif-based
changes in dynamic networks. Recently, Xie et al. [322] proposed MeasureFlow to
explore time-series of network metrics (e.g., network density) to provide an overview
of changes in dynamic networks. The approach also enables tracking and comparing
trends of user-defined sub-networks using metrics (e.g., number of connected nodes)
as superimposed line and bar charts. Yet, the approach’s usefulness depends on
the user-selected sub-networks, the network size, and the frequency of changes,
including the selected temporal granularity. MeasureFlow also does not scale to a
large number of motifs since every motif requires a single line chart. For further
readings, please refer to the surveys of Kerracher et al. [174] and Beck et al. [31].

Recently, visualization researchers proposed initial pixel-based visualizations for
dynamic networks. Pixel visualizations can present large amounts of data without
overlap and clutter [170], being dense and ultimately able to scale to large datasets.
They are generally useful, among others, for visual explorations of groups, trends,
correlations, and outliers in large datasets [35]. Only a few pixel-based dynamic
network visualizations have been proposed, which we present next in chronological
order. First, Stein et al. [286] proposed pixel-based glyphs to present temporal
patterns in an adjacency matrix. The proposed method works only for small social
networks and does not allow motif exploration. Second, Burch et al. [55] proposed
the parallel edge splatting approach to display a series of static as bipartite layouts,
including the interleaving concept [52] to increase the approaches scalability. How-
ever, the proposed approaches are only helpful for visually exploring edges and their
attributes. Next, Cui et al. [84] proposed GraphFlow to display structural changes of
metrics in dynamic networks using a pixel and energy-based visualization. However,
the GraphFlow method depends on the node metric (e.g., node degree) and can
only display smaller networks. Archambault and Hurley [17] present a design study
to highlight trends in telecommunication networks as pixel-oriented visualizations,
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focusing on displaying clustered privacy-preserving histogram data. Again the ap-
proach clusters social network data based on temporal domain attributes (summary
histograms), neglecting the temporal analysis of network topologies. Recently, Cak-
mak et al. [62] proposed dg2pix, a multiscale pixel-based visualization to highlight
temporal states and changes in dynamic networks. Yet, the approach’s usefulness
depends heavily on non-transparent graph embeddings, posing the challenge of
mapping latent space changes to explicit structural changes. Contrary to dg2pix [62],
our approach is interpretable and provides an overview of significantly occurring
sub-network structures. We thereby ensure that the visible patterns are not merely
random in some latent space since we do not use non-linear dimension reduction
techniques and only extract interpretable features. Our approach allows comparing
multiple dynamic networks and single networks against each other.

5.2.4 Delineation to our Work

We compare a selection of related work to delineate our work and highlight the
research gap we intend to close in Table 5.1. The compared dimensions comprise
the following aspects: the visualization type, the scalability regarding the number of
networks, the visually analyzed sub-network structures, and the sub-group analysis
tasks based on the network evolution task taxonomy by Ahn et al. [4].

Table 5.1 reveals common features and outlines the following research gaps: First,
the publications colored in blue (see Table 5.1) utilize sub-networks to abstract
and visualize static networks. The static network visualizations are used to abstract
and increase the readability of node-link diagrams and highlight common motifs.
However, all the listed static motif-based network visualizations do not allow visu-
alizing changes within sub-networks in dynamic networks. Second, animations of
dynamic networks enable exploring structural properties and individual features.
However, animations are not used to display sub-networks in dynamic networks
since they tend to increase cognitive load for users, making it difficult to detect
and trace structural changes over time [296]. Moreover, multiple dynamic network
approaches (orange) provide an overview of evolving dynamic network changes
without enabling the exploration of temporal sub-group tasks. Finally, four timeline
visualizations by van den Elzen et al. [102], Hadlak et al. [131], Archambault et
al. [17], and Xie et al. [322] allow users to explore basic group structures in dy-
namic networks. However, the four papers either focus on clustering domain-specific
attributes or only enable to explore simple motifs or clustered sub-network, such as
star motifs in Massive Sequence Views [102]. For a more detailed delineation of the
last four papers, please refer to the previous Section 5.2.3.
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Our Approach • • • • • • • • • • • •

Schreiber et al. [268], 2005 • •

von Landesberger et al. [193], 2009 • • • • •

Ma’ayan et al. [212], 2009 • • •

von Landesberger et al. [192] 2010 • • •

Harrigan et al. [137], 2012 • • •

Dunne et al. [94], 2013 • • •

Lenz et al. [199], 2013 • • •

Lekschas et al. [198], 2017 • • •

Kwon et al. [190], 2017 • • •

Chen et al. [74], 2018 • • • •

Bach et al. [24], 2014 • • • • •

Stein et al. [286], 2010 • •

Burch et al. [55], 2011 • • •

Cui et al. [84], 2014 • • •

van den Elzen et al. [103], 2016 • • •

Lee et al. [195], 2019 • • •

Hajij et al. [132], 2018 • • • •

Cakmak et al. [62], 2020 • • • •

van den Elzen et al. [102], 2013 • • • • •

Hadlak et al. [131], 2013 • • • • • • •

Archambault et al. [17], 2014 • • • • • • • •

Xie et al. [322], 2020 • • • • • • • • • • •

Tab. 5.1 The comparison delineates our approach from related work. The table is colored by
static (blue) and dynamic network (orange) visualizations, with an additional sub-
ordering by visualization and sub-network type. The first category visualization
shows if the work utilizes static network visualizations, animation, or timeline
representations based on the taxonomy of Beck et al. [31]. The scalability category
indicates the temporal scalability with small (< 100), medium (< 1000), and large
(> 1000) number of networks in a dynamic network. The sub-network category
reveals the visually analyzed structures. The last category describes the supported
temporal sub-group tasks based on the task taxonomy by Ahn et al. [4].

Overall, to this day, dynamic network visualizations did not use motifs and graphlets,
although such sub-network structures can provide useful, scalable overviews of
evolving sub-network topologies. To the best of our knowledge, our proposed
approach is the first dynamic network visualization that provides an overview of
evolving sub-network structures in dynamic networks.

5.3 Structure-Based Visual Abstraction

We propose two pixel-based visualizations: a network-level census view presenting
an entire dynamic network and a detailed node-level sub-network metric view to
investigate the local node neighborhoods of single networks. The views combine
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motif-based network analysis with pixel-based visualizations to reveal evolving
topological structures in dynamic networks and examine network topologies in
detail. Our central idea is to identify significantly occurring motifs and then analyze
the motifs using scalable and clutter-free pixel visualizations. Next, we describe the
employed dynamic network model and both pixel-based visualizations.

5.3.1 Dynamic Network Model

The input to our approach is a discrete series of directed networks, such as daily
snapshots of an evolving social network (see Section 5.6.2). From a practical view-
point, often dynamic networks are modeled as a sequence of events, such as varying
connectivity between nodes. For such cases, temporal discretization can be applied
by computing supergraphs to generate static networks [131]. However, identifying
a proper temporal discretization for dynamic networks remains challenging since it
depends on the application domain, the user task at hand, and the underlying evolv-
ing data. For instance, a low temporal discretization results in a large set of static
networks with no differences in motif structures. On the other hand, a too coarse
temporal discretization leads to large static networks that may hide motif changes.
Thus, selecting a potential temporal discretization scale needs to be predefined by
the user, considering that identifying a proper temporal analysis scale in dynamic
networks is a non-trivial task [88].

5.3.2 Network-Level Census Visualization

Analyzing dynamic networks requires obtaining an overview of the diversity of
topological changes in the evolving data, such as identifying changes, trends, states,
and outliers [103]. Providing such an overview usually goes beyond solely counting
nodes and edges for each time step. There is a great interest in understanding
how the underlying topological structures changed. For instance, in social networks
studying the formation of triadic closures is of great interest [255].

Our network-level census visualization provides an overview of the evolving struc-
tural properties and reveals structural changes, trends, states, and outliers in dynamic
networks. Our visual representation enables identifying similar network structures,
such as networks that consist over-proportionally of triad motifs (see Section 5.6).
Figure 5.1 outlines the three main steps: (1) the computation of a network census
(significance profile) for a set of motifs, (2) the visual mapping, and (3) the explo-
ration of the resulting pixel-based visualization. Our idea is to capture significantly
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Fig. 5.1 The Figure displays the steps for generating the network-level census visualization.
(1) the network motif significance profile (census) is calculated for each time step,
(2) the vectors are presented as a pixel-based visualization, and (3) reordering
strategies are used to reveal similar network superfamilies. SPT illustrates the
relation of the vector values to their respective motifs. The reordering strategies
(see Section 5.4.1) are crucial for grouping similar network topologies to emphasize
structural changes, trends, states, and outliers.

occurring network motifs over time and explore the resulting network census as
dense overlap and clutter-free representations. The basic idea of the computation
of a network census is to reduce and abstract the number of occurring motifs in
a single network into a network census vector. The census helps identify similar
networks and network superfamilies, enabling the comparison of different sized
networks [224]. Network superfamilies are groups (clusters) of similar censuses
and thus similar underlying network topology [224]. We also propose to utilize by
default the thirteen triad motifs without self-loops, which are basic building blocks
of networks [224]. However, the motif selection depends on the application domain
and thus needs to be manually adapted based on the user task. For example, users
might calculate induced or non-induced quads motifs census [235].

In the second step, the vectors are displayed as a pixel-based visualization to pro-
vide an overview of the significantly evolving network structures. The vectors are
visualized as pixel bars that encode each value SPi as a colored rectangle. We utilize
a divergent colorblind-safe color scheme from ColorBrewer [138] to emphasize
anti-motifs (red) and motifs (blue). The colorblind-safe color scheme utilizes percep-
tually linear color coding for the ranges between red (under-represented), white (as
expected), and blue (over-represented). The used colors are easily distinguishable
and have an intense contrast. The network census x-axis displays, by default, the
temporal dimension, and the y-axis the motifs of interest. In the third step, we
utilize different reordering and aggregation strategies to highlight visual patterns
along both dimensions (see Section 5.4).

5.3.3 Node-Level Sub-Network Metric Visualization

A further challenge in dynamic networks is the in-depth comparison of networks
and their topological structures at given temporal states. Therefore, we propose
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a node-level pixel visualization to compare multiple networks and nodes in more
detail, using graphlets instead of motif significance profiles. The graphlet degree
vectors (GDV) are node-level sub-network metrics that describe the local network
structure around a given node and independently of a given null model [139].
We utilize and display the GDVs of one network as pixel-based visualizations to
investigate and compare the structural properties of individual networks in more
detail. The main difference from the previous network-level census visualization
is that we obtain one visualization for each network as the GDVs are computed
for each node. The node-level pixel visualizations are useful for comparing the
structural neighborhood of nodes in a network and several networks against each
other. For instance, visualizing such graphlets can be used to compare and align
topologies of biological networks [187]. The visualization displays on the x-axis the
nodes of the selected network and the y-axis displays the individual GDVs. We also
want to emphasize that two graphlet-based pixel visualizations of two different-sized
networks will also have varying lengths. We use a linear grayscale color scale from
ColorBrewer [138] for the graphlet-based visualization to highlight occurrences
of local neighborhood graphlets. The color scale highlights frequently occurring
graphlets, enabling a simple comparison of GDVs.

5.4 Motif-Based Visual Analysis

In the following, we describe the implemented prototype, which is available at
the following online repository https://github.com/eren-ck/motif-pixel-vis.
The prototype consists of four central components (see Figure 5.2): A toolbar, the
network-level census view, the node-level metric views, and the juxtaposed network
view which displays the underlying network structure as a node-link diagram. As
for the network view, we compute a supergraph and derive a ForceAtlas2 [156]
layout for the whole dynamic network to preserve the user’s mental map. Moreover,
to increase the network view’s scalability, we cluster networks with more than
100 nodes using the Clauset-Newman-Moore algorithm [78]. Thereby, we break
down the exploration of large networks into smaller components, focusing on the
existing motifs in each cluster. Users can explore all views through zooming and
panning using linking and brushing to study the exact pixel values, nodes, and edges
attributes via mouseover tooltips.
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Fig. 5.2 The prototype consists of four central components: (A) the toolbar, (B) the network-
level census view, (C) the node-level sub-metric views, and (D) the network view.

5.4.1 Reordering Strategies

The pixel-based visualizations enable users to obtain an overview of dynamic net-
works through the visual analysis of similar and different pixel bars (see Section 5.5).
However, such visual patterns may remain hidden and difficult to detect in pixel
visualizations due to the vast amount of visualized data. Therefore, we propose
several reordering strategies to reveal similar pixel bars, such as clustering network
censuses to uncover similar network superfamilies. We want to emphasize that
we cannot suggest an optimal reordering strategy, considering that the reordering
depends on the user task at hand, such as identifying the shape and rate of changes
in group structures as described by Ahn et al. [4]. Each pixel-based visualization
can be seen as a m × n matrix A in which each element ai,j ∈ R with 0 < i < m

and 0 < j < n. The matrix rows ai,: represent the motif significance profile values
over time for the network-level census visualization and the number of graphlets for
the node-level sub-network view. The columns of the matrix a:,j encode the motif
census or the graphlet degree vectors. Moreover, a matrix reordering is a bijective
function ϕ→ N that maps the rows or columns with a unique new index position.

We enable users to arrange the columns a:,j , hence, the x-axis of the network-
level and node-level views using clustering and sorting. The clustering of the
network-level census view allows for examining superfamilies of similar network
topologies. The clustering utilizes the cosine similarity between the a:,j vectors and
HDBSCAN [68] to identify superfamilies of similar dynamic network structures. We
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use by default the widely applied cosine similarity, however, other distance functions
like Euclidean or Earth Mover distance can interchangeably be used. Moreover,
we utilize HDBSCAN [68], as this approach implements a heuristic over different
parameters to discover clusters with differing densities. The vectors a:,j in each
identified cluster are ordered by the temporal dimension. We also allow reordering
of the network-level census columns a:,j by sorting the networks using evolving
graph metrics, such as the number of edges or the average clustering coefficient
of each network Ni. The reordering using such metrics enables us to relate global
network metrics with the evolving structural properties over time. The columns a:,j

of node-level metric views can be analogously reordered by clustering and sorted by
node metrics, such as the page rank or centrality of a node to highlight important
nodes. In addition, we enable users to reorder the rows ai,: by computing statistical
measures, such as the mean, minimum, maximum, variance, and standard deviation
of the SPi over time and GDVi values. The reordering of the rows lets us rank
dimensions according to statistical measurements to highlight patterns, such as block
and band patterns as described by Behrisch et al. [34].

The reordering strategies help investigate changes in the underlying evolving sub-
networks and provide an overview of a dynamic network. However, pixel-based
visualizations are hard to understand due to the cognitive effort to derive patterns
from several thousand or more pixels [170]. Thus, we also propose aggregation
methods to abstract visual patterns and reduce cognitive efforts for users.

5.4.2 Aggregation Strategies

We cluster the vectors and allow users to expand and collapse specific clusters to
analyze them in detail if the x-axis does not scale with the number of time points
or nodes. We utilize the HDBSCAN [68] to cluster the vectors, including also the
temporal aspect for the network-level census view. We do not cluster the y-axis since
we expect both visualizations to scale up to 1000 motifs. We include the temporal
aspect into the clustering process for the network-level census view by adjusting
the similarity metric using a temporal filtering threshold εtime. We compute the
distance matrix between all network censuses using the cosine similarity. Afterward,
we filter the distance matrix using an epsilon εtime for the temporal dimension to
cluster only temporally close time steps. For example, for dynamic networks with a
daily temporal granularity, εtime = 7 filters and detects clusters of network censuses
that lie within a week interval. The εtime value can be set in the interface and is per
default set to ten to consider only temporary close networks.
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For the second node-level sub-network metric visualizations, we are utilizing the
standard HDBSCAN [68] algorithm using the cosine similarity between the graphlet
degree vectors. In both pixel-based visualizations, an exploration of the found
clusters is possible by expanding or collapsing them. We display the collapsed cluster
visualization as abstracted versions of each cluster. The abstracted version depicts
the first three and the last three vectors, plus an unfold button which indicates
hidden vectors (see Figure 5.2-(B)). Overall, the aggregation increases the visual
scalability of both pixel visualizations. Naturally, users can combine reordering and
aggregation strategies to emphasize and reveal visual patterns in each cluster.

5.5 Visual Patterns

We want to describe the potential visual patterns for one motif in the network-level
census visualization, meaning row-based changes in a series of pixels (see Figure 5.3-
(A)). There are five fundamental low-level patterns in a series of colored pixels:
the value changes, remains constant, increases or decreases slowly, and alternating
colored pixels. The pattern interpretation depends on the represented motifs and
the underlying dynamic network. However, we can interpret color changes as
overall shifts in the underlying networks. For instance, a white to blue pixel color
change reveals that the network topology changed, meaning that the motif now
appears significantly more often than expected in a random network. Moreover, we
expect domain-specific motifs to occur more often, such as constant anti-motifs in
some social networks. For instance, Figure 5.5-Facebook consists of chain response
anti-motifs (3-triad). In addition, we expect some visual patterns to be rare in real
dynamic networks since real-world data usually does not radically change within
a single time step. For example, changes from anti-motifs (red) to motifs (blue)
between two consecutive pixels. If such rare patterns occur, we support examining
them in more detail to understand why they appear, utilizing our network view.

We want to present high-level visual patterns based on the described changes
between pixel bars (see Figure 5.3-(B)). Changes in such pixel bars can occur for
single or multiple pixel values between two pixel bars. In the network-level view,
blocks of similar pixel bars are temporal states, and the underlying networks are
groups of network superfamilies. Changes between such temporal states are visible
distinct block patterns. Constant changes of pixel bars indicate a temporary trend
and slowly evolving network topologies. Finally, outlier networks in the dynamic
network are visible distinct pixel bars enclosed by similar pixel bars. In the node-level
sub-network metric visualization, each pixel bar encodes the actual occurrences of
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Fig. 5.3 The visual patterns and their interpretations are described in Section 5.5. (A)
highlights the changes between pixels in a row, and (B) displays the potential visual
patterns for pixel bars.

motifs in the node’s topological neighborhood. The view allows to break down large
network structures and compare multiple networks by displaying the graphlet degree
vector (GDV) of a node as a pixel bar (column). The GDV vector interpretation is
relatively straightforward. Similar local sub-network structures have similar pixel
bars and vice versa. Hence, discovering similar motif structures in large networks
requires only the pairwise comparison of similar or dissimilar GDVs.

In both pixel visualizations, users have to identify similar and dissimilar pixel
bars to detect relevant visual patterns. Overall, discovering similar pixel bars is
relatively simple due to the Gestalt principles of continuity, similarity, proximity, and
closure [313, Chapter 3]. The similarity and proximity principles in combination
let us perceive a sequence of similar pixel bars as a block. Such similar blocks are
essentially temporal states which are a sequence of similar network superfamilies in
the evolving network. Moreover, the closure principle lets us perceive reoccurring
blocks of similar pixel bars as repeating temporal states. The visual analysis of the
pairwise similarity between neighboring pixel bars enables users to detect temporal
changes and trends in the dynamic network. If the pixel bars change abruptly,
this indicates that the underlying structure in the dynamic network has changed
drastically. Likewise, based on the continuity principle, constant changes in the pixel
bars indicate a trend of shifting network structures. Discovering an outlier pixel bar
in a block of similar pixel bars or the whole pixel-based visualization can be seen as
a local or global outlier network structure.
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The described visual patterns can be matched to existing dynamic network task
taxonomies. Next, we want to briefly highlight the supported tasks based on the
taxonomy for network evolution analysis by Ahn et al. [4]. The low-level visual
patterns in the network-level census view support the tasks: the shape and rate
of changes of growth & contraction, convergence & divergence, stability, repetition,
plus the fast & slow, and accelerate & decelerate for individual structural groups. For
instance, increasing and decreasing series of pixels can be used to analyze growth
& contraction of motifs. The low-level visual patterns enable identifying the listed
shape and rate of changes. Moreover, the high-level patterns enable analyzing
the shape and rate of changes of multiple motifs simultaneously. Moreover, the
node-level metric view supports some individual temporal feature tasks: examining
and comparing structural metrics using graphlet degree vectors between two time
points. For example, we can use node-level metric views to compare the number
of triads or star motifs in a network and also between networks. We also want to
highlight the individual temporal feature tasks that are not supported. The proposed
visualizations do not allow examining or tracking entities over time, such as the birth
and death of single motifs. The two pixel-visualizations are unsuitable for identifying
a single motif’s appearance or disappearance. However, the network-level census
view allows the identification of such motifs if they occur significantly more often
than expected in a random network. Likewise, our pixel-based visualizations do not
support the temporal analysis of domain attributes of nodes, links, or motifs.

5.6 Evaluation

Next, we showcase the applicability of our approach in two extensive use cases,
analyzing synthetic and real-world dynamic networks.

5.6.1 Synthetic Dynamic Network

The following use case highlights the scalability of our approach using a synthetic
dynamic network with a generated ground truth. The synthetic dataset is used to
showcase how known network superfamilies can be identified and how individual
networks within the dynamic network can be compared.

Dataset Generation We generated 600 synthetic directed networks using five com-
monly used graph generators to derive a dynamic network consisting of 150 nodes
and ≈ 220.000 edges over time. Each synthetic network is made up of 20 to 150
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nodes. In terms of time, we randomly arranged the generated networks to ob-
struct the visual identification of similar networks. Moreover, we computed the
network censuses using the default 13-triads (see Figure 5.4). As a null model, we
used the configuration model [232, Chapter 4]. We utilized the following graph
generators and parameters of the networkX [223] Python package to generate the
600 networks. We explored different parameters for all the used graph generators
to generate networks with distinct motif structures. First, we created 100 Erdös-
Rényi [107] networks with an edge probability of 0.1. We expect these networks to
have slightly over-represented motifs, in particular, often-times all 1− 7-triad motifs.
Second, we created 100 networks using a graph generator with 10− 200 edges using
the selection sampling technique by Knuth [180]. Hereby, we obtain networks with
randomly occurring 2,4,5,6-triad motifs. Third, we created 100 rings of cliques and
100 connected caveman networks [316], consisting of up to ten cliques composed
of complete graphs ranging from three to six nodes. We expect the 8 and 13-triad
motifs to be over-represented in the resulting 200 networks. Finally, we generated
100 networks each, using a growing network with redirection (GNR) [184] using
two different redirection probabilities of 0.7 and 0.8. For a redirection probability
of 0.7 and 0.8, the 2 and 3-triad motifs occur. The 0.7 probability leads to slightly
different networks, with the 4-triad often appearing as an anti-motif.

Problem Background The described artificial dataset contains various synthetic
networks with similar topologies and sub-networks. The first task in our use case
is to explore changes in motif structures over time in the network-level census
visualization, including stability, growth & contraction, convergence & divergence
as described by Ahn et al. [4]. However, providing an overview of such evolving
sub-networks in dynamic networks is a non-trivial task. A fully computational
approach to calculate the similarities between such networks is not feasible. For
instance, the graph editing distance [51] does not scale to networks with more than
16 nodes [41]. Therefore, heuristics are often used, such as the computation of
network censuses which help to identify similar networks [224]. However, such
heuristics are imprecise and require additional visualizations to analyze and validate
potential network superfamilies. To the best of our knowledge, no visualization
approach allows users to visually analyze similar sub-network structures in dynamic
networks. For example, to identify network superfamilies and compare sub-networks
of individual networks. The second task is to examine and compare individual
temporal features and structural metrics using the node-level sub-network view.
The comparison enables us to analyze and compare network topologies of single
networks, which is rather challenging and was never implemented using pixel
visualizations to the best of our knowledge.
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Fig. 5.4 The use case outlines the analysis of a synthetic dynamic network with ground truth
(see Section 5.6.1). First, the top-left pixel visualization displays the entire 600
synthetic networks as a network-level census visualization. The second row shows
the same data after applying clustering and reordering strategies to reveal visual
patterns. (A-D) displays some distinct pixel bars and their underlying networks as
node-link diagrams (left) and node-level metric views (right). The synthetic dataset
reveals how both pixel visualizations can be used to expose temporal states and
compare networks using the complementary node-level metric view.

Network-Level Census View Figure 5.4 (top-left) shows the resulting pixel visu-
alization of the generated synthetic dynamic network. Some visual patterns are
already visible in the network-level census visualization, such as temporal states in
the form of reoccurring pixel bars over time. We apply aggregation and reordering
strategies to emphasize and reveal the encoded visual patterns. First, we cluster and
abstract similar network censuses (columns) on the x-axis to group and abstract the
temporal states of similar network superfamilies. Moreover, we reorder the y-axis
(rows) using the variance of each motif, arranging all motifs with a high variance
at the bottom of the y-axis in the network-level view. The reordering of the y-axis
arranges significance values with a high variance together, allowing one to compare
motifs quickly. More specifically, all motifs commonly occurring within the dynamic
network are placed together, and vice versa, discriminatory motifs between the
networks are placed close to each other. The aggregation and reordering step is
depicted in Figure 5.4 labeled as clustering and reordering. The resulting visible
blocks of similar pixel bars reveal similar networks encoded in our synthetic ground
truth. Moreover, some clusters contain similar pixel bars and are still not assigned to
the same cluster. This can be explained by the fact that we include the temporal di-
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mension in the clustering process. The clustering further increases the visualization’s
scalability since the number of pixel bars has been significantly reduced from 600
to approximately 100 pixel bars. The cluster abstractions also enable us to analyze
and compare pixel bars in more detail by unfolding and displaying all pixel bars of
each respective cluster. For example, to analyze and identify local pixel bar outliers
in each temporal state. In the following, we analyze some clusters by displaying
individual networks of each cluster in the network view. Figure 5.4-(A1 −D1) dis-
plays some distinct pixel bars and their respective underlying networks as node-link
diagrams. (A1) presents a white pixel bar that reveals a randomly sparse network
which was generated with a random graph generator using the sampling technique
as described by Knuth [180]. The label (B1) depicts a more densely connected
network which is recognizable as an almost continuous blue pixel bar displaying
the network census for a network that was created with Erdös-Rényi [107] graph
generator. The following labels (C1 − D1) highlight similar pixels bars clustered
differently due to the temporal distance between the networks. The underlying
networks also look more similar to each other than the previous labels (A1 −B1).
Therefore, we add complementary node-level metric views to enable the comparison
of motifs in the selected networks of (A2 −D2).

Node-Level Metric View Figure 5.4 also displays on the right side the four networks
of (A2−D2) as node-level sub-network metric views. We use clustering and reorder-
ing strategies to cluster the graphlet degree vectors (pixel bars) on the x-axis and
reorder the y-axis according to the variance of each graphlet feature. We can easily
distinguish the sparse and densely connected in (A2) and (B2) node-level metric
views. In addition, one can also see differences between (C2) and (D2), which were
both generated with GNRs [184] and have similar pixel bars in the network level
census visualization. You can see that the networks have a similar topology, but
they are slightly different, which is also visible to some extent in the network view.
For instance, in (C2), more nodes are connected than in (D2), with fewer nodes
resembling a star network. The clustering and ordering of the node-level metric
view are computed for each network separately; hence, we cannot directly compare
the individual nodes on the x-axis with another node-level metric view. Therefore,
we have implemented a linking and brushing that highlights the same nodes in
each node-level metric view using a mouseover. In summary, Figure 5.4-(A1 −D1)
depicts four distinct networks with a varying number of nodes, including two similar
networks (C1−D1), which are generated with the same graph generator and contain
visible differences in the node-level metric view.
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5.6.2 Real-World Data

Next, we analyze real-world dynamic networks to reveal and interpret structural
changes, trends, states, and outliers. Moreover, we provide an overview of the
structural changes and compare the evolving structural properties of three real-
world dynamic networks.

Datasets Figure 5.5 displays the three directed dynamic networks as network-level
census views. The presented real-world dynamic networks are publicly available in
the Stanford Network Analysis Project [200]. The datasets were pre-aggregated to a
daily temporary granularity. Therefore, in the following, every pixel bar corresponds
to one day in one of the following datasets. The Facebook [308] displays wall posts
between users in the City of New Orleans with 1560 days, 45.8K nodes, and 856K
edges. The Bitcoin OTC [189] presents a who-trust-who network on the Bitcoin
OTC platform with 1763 days, 5K nodes, and 35K edges. The Reddit [188] encodes
hyperlinks (edges) in a social network between subreddits (nodes) with 1217 days,
55K nodes, and 858K edges. We want to also briefly describe the network evolution
tasks [4] for the real-world datasets. Similarly, the tasks are the exploration of
shape and rate of changes using the network-level census view and the comparison
of individual temporal features using the node-level sub-network metric view.

Dynamic Network Exploration The initial striking observations are visible differ-
ences and changes in over and under-represented motifs within and across the
displayed evolving networks. The 3-triad motif representing a chain response is
under-represented in all three views, visible as a low-level constant anti-motif pat-
tern. In particular, the 3-triad is prominently visible as an anti-motif in the Facebook
dataset, meaning that chain responses on multiple Facebook walls are underrepre-
sented. In this context, the first label Figure 5.5-(A) highlights a significant structural
change where 4 and 5-triads started to be more frequently over-represented in May
2006, being visible as an increasing low-level visual pattern. The 4 and 5-triads
reflect the mutual posting and replying behavior between friends in the Facebook
network. The appearance of these motif triads in 2006 correlates to the growing
number of Facebook users, which doubled worldwide in 2006, leading to an over-
representation of the 4 and 5-triads. The visible change in Figure 5.5-(A) is a direct
result of the fact that more users joined and started to use the wall feature, creating
more communication in the social network and thus motifs.

The label Figure 5.5-(B) highlights two trends in which the 8-triad is strongly over-
represented on the Bitcoin OTC platform. The trend is visible as an increasing and
afterward decreasing low-level visual pattern for the 8-triad. The 8-triad motif
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Fig. 5.5 The three network-level census views show distinct real-world dynamic networks
(see Section 5.6.2). (A) highlights a significant structural change between two tem-
poral states in a social network. The 4 and 5-triads reflect the mutual posting and
replying behavior between friends in the evolving social network. (B) emphasizes
two temporal trends with 8-triads representing the behavior that two users give
each other trust ratings after transactions. (C) indicates an outlier period in which
the 9-triad is over-represented due to NFL Superbowl.

represents the behavior in which two users on the platform frequently give each
other trust ratings after transactions. Furthermore, the two highlighted periods can
be linked to real-world events. The first period is between May to June 2011, during
which the Bitcoin price rose from $1 to $30, and the second period is from March to
May 2013, in which the Bitcoin price briefly increased to $250. During these two
periods, there was probably increased trading activity, and as a result, users issued
more trust ratings.

Finally, Figure 5.5-(C) outlines an outlier period in the Reddit network between
February to March 2017 in which the 9-triad is over-represented. The visual pattern
is a change, including some alternations between motif (blue) and the occurrences
as expected (white). We can investigate the visible outlier period by selecting the
various networks with the 9-triad motif and displaying the underlying network
structure as node-level sub-network metric views. The detailed views reveal nu-
merous hyperlinks between subreddits dealing with the National Football League
(NFL) in the USA. The triads appear quite prominent following the NFL Superbowl
in February 2017. These structural changes can be linked to real-world events.
Between February and March 2017, there were general discussions about potential
NFL player trades and draft picks, various debates about NFL players protesting
during the national anthem, and a discussion about a proposed “bathroom bill“.
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Social Network Analysis Next, we show how the reordering strategies and the
node-level sub-network metric view help to investigate and compare the structural
properties of networks in more detail. We continue to visually explore the Reddit
hyperlink network [188] in more detail. First, we reorder both axes of the network
census view using clustering for the x-axis and then sort the rows of the y-axis
using the median of each SPi value. As a result, we obtain a network census view
presenting clusters of network superfamilies, including a noise group. The reordering
of the y-axis also highlights block and band patterns in the pixel visualization as
described by Behrisch et al. [34]. Next, we analyze the view in more detail by
zooming into specific parts of the network census view. The first view in Figure 5.6
reveals distinct pixel bars in the “noise“ group and superfamilies of similar networks
in the identified “clusters“. The clusters are grouped temporal states previously
described as high-level visual patterns. In each cluster, the grouped pixel bars are
ordered according to time. Furthermore, we can easily detect minor differences
within the network superfamilies (clusters), which can be investigated and compared
in more detail in the node-level sub-network metric views. For instance, we can
investigate subtle trends or outlier pixel bars within each cluster, visible as a high-
level visual pattern.

Node-Level Metric View Next, we provide an overview of the structural properties
of single networks. We select outstanding networks from the “noise“ group (see
Figure 5.6-(A)) and one prominent census from one of the clusters (see Figure 5.6-
(B)). The prototype then displays the two selected networks as node-level sub-
network views, which we then sort the x-axis according to node page rank in
ascending order. Afterward, we investigate the two node-level metric views and
interpret the apparent groups to expose structural differences between the two
networks. The Figure 5.6-(A) consists of individual nodes that are strongly connected
and many individual nodes that have only one link to another node, forming the
white space in the middle of the pixel visualization. A quick exploration of the nodes
via mouse-over reveals that the left group consists of NFL teams subreddits (e.g.,
49ers and ravens). The right group consists of more general NFL subreddits (e.g., nfl
or nfl_draft) discussing and linking potential trades and draft announcements. The
visible similar pixel bar blocks appear after using the reordering strategy. We want
to highlight that the NFL teams and draft groups have distinct pixel bars, meaning
the nodes have different topological neighborhoods. The NFL teams group consists
of NFL teams that are all linked by the nfl subreddit, which can be a typical bot
activity to advocate trending topics in the subreddits. Moreover, after zooming in
and analyzing the pixel bars, we can see subtle differences between the NFL team
nodes, which we can then investigate in the network view. The subtle differences are
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Fig. 5.6 The first row displays a portion of the Reddit data [188] as a network census view,
and below that are two node-level metric views that depict two selected single
networks (A-B). (A) highlight a distinct pixel bar in the “noise“ cluster containing
varying network censuses. (B) shows an outstanding pixel bar in a cluster of similar
network superfamilies. The node-level metric view of (A) shows NFL subreddits
being linked to trades and draft announcements. (B) reveals political and misc
subreddits linking each other. Section 5.6.2 details the social network analysis.

visible as a high-level pattern of similar pixel bars and originate from the fact that
some NFL team subreddits are also linking each other, which seems to be the typical
linkage behavior of Reddit users. In contrast, the NFL draft group consists mainly
of central nodes linking to all the NFL teams. Moreover, there is one outlier pixel
bar, the NFL team subreddit, the saints linking to more than ten teams, indicating
some bot activity again. The second network Figure 5.6-(B), consists of more linked
sub-network structures, including more nodes with various hyperlinks between them.
For example, a group with political topics that link one subreddit with various nation
subreddits (e.g., Sweden and Greece) is visible. To the left of the political topics group,
there are again numerous nodes that are linked to only one node, indicating some
bot activity. Further, there are larger sub-networks that consist of miscellaneous
topics (misc), such as computer games or education subreddits. Again, there are
sub-groups with similar pixel bars in each of the described groups, which are either
disconnected or connected small sub-networks.

Finally, we want to compare the two node-level sub-network views, revealing that
both networks have different network topologies. In Figure 5.6-(A), there are many
more isolated linked nodes (white space) and fewer mixed subreddits groups. The
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network topology seems to be an exception in the evolving Reddit dataset. In
comparison, the network in Figure 5.6-B occurs more often in the dynamic network
since we have a cluster of similar networks in the network census view. The use case
illustrates how we can use pixel visualizations and reordering strategies to discover
similar networks and compare specific sub-network topologies.

5.7 Discussion

Our use cases demonstrate the applicability of our approach for identifying and
comparing changes, states, trends, and outliers, including superfamilies of similar
sub-networks structures in large-scale dynamic networks. Still, our approach has
some limitations.

Motifs We want to discuss the input parameters of our approach. The first step
in Figure 5.1 depends on the selected motifs and the used null model to compute
the network census (significance profile) for each time step. Hence, these two
parameters have to be set by a user as they heavily depend on the analyzed data
properties, the application domain, and the user’s task. For instance, the null model
depends on the application domain as it has to generate networks with similar
topological properties to the real-world networks (e.g., similar network density).
We plan to investigate useful motifs and null model combinations in future work,
including filtering motifs with particular node and edge attributes. Moreover, we
propose using triad motifs as default since triads are considered the lowest level of
social structures [148], and they are used to reveal network superfamilies [224].
Alternatively, users can select smaller or larger motifs, such as dyads or quads.
However, discovering large motifs is computationally expensive since the runtime of
motif discovery algorithms depends on the motif and network size. Computing motif
censuses for large dynamic networks are only feasible up to eight node motifs since
the runtime increases dramatically starting from eight node motifs, as shown in the
runtime comparison of Masoudi-Nejad et al. [217]. The choice of motifs directly
influences the visual patterns and, hence, the analysis and perception of changes
in the dynamic network. We consider the usage of different motifs, including motif
sizes, as an advantage of our approach and a chance for further future work to
examine how motif sizes affect the perceived visual patterns.

Usability Pixel visualizations remain challenging to read due to the sheer amount of
displayed data. We tried to address this limitation by providing various reordering
strategies to highlight similar rows and columns. In addition, the interpretation of
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network census depends on the application field. For instance, motifs have different
meanings in biology or social network analysis. We also identified the risk that
the white color pixels (SPi ≈ 0) might be misunderstood. The white pixels do not
necessarily imply that the motifs are not occurring in the network but rather that
they are not occurring significantly more or less often than expected in a null model.
Moreover, the visible patterns depend on the used color scheme. For instance, the
decreasing and increasing low-level visual patterns are challenging to see if the color
map nuances resemble each other too much. We plan to resolve this limitation by
interactively adapting the color scheme to user input to highlight particular visual
patterns. We want to point out that two equivalent motif censuses do not imply that
the networks are identical. For a similar motif census, one can only conclude that the
networks have a similar underlying network structure. Still, we cannot infer whether
the network nodes or edges are identical. For this purpose, we propose to utilize
the node-level sub-network metric view to compare multiple networks to explore
similar sub-networks and nodes. Furthermore, the approach remains challenging
for untrained users unfamiliar with network science due to the challenging interpre-
tation of the network census, graphlet degree vectors, and the variety of proposed
reordering strategies. We also want to examine reordering strategies for different
user tasks, for example, to identify helpful reordering strategies to emphasize the
shape and rate of changes in network censuses. In future work, we plan to evaluate
the approach’s usability with users and develop suitable user guidance methods
to analyze the pixel visualizations semi-automatically. Moreover, the node-level
sub-network metric views are independently reordered, so the direct comparison of
columns is currently only possible using linking and brushing. In future versions, we
want to improve the comparison of multiple pixel visualizations through discrepancy
visualizations that highlight minor differences, including exploring new reordering
strategies that better align multiple node-level sub-network metric views.

Scalability The scalability of the approach poses another challenge since the com-
putational time grows exponentially with the size of the motifs as the subgraph
matching problem is known to be NP-complete [80]. Overall, computing network
census or applying the orbit counting algorithm is only feasibly for sub-network struc-
tures between three to eight nodes [146]. For more details regarding the execution
times of various subgraph counting algorithms, please refer to the recent survey of
Ribeiro et al. [251]. In addition, the generation of null model networks can also be
computationally expensive. We are currently generating by default 100 null models
for each network census. Therefore, we suggest precomputing the network census
for each step and loading the significance profiles into the main memory. Apart
from that, the last computationally expensive aspect is the clustering of potentially
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large static networks for the visualizations in the network view. For larger networks
with more than 1000 nodes, the aggregation and visualization method has to be
adapted. The survey of von Landesberger et al. [309] lists and discusses useful
methods to simplify and display large networks. In addition, the visual scalability
for the network census view and the node-level metric view depends heavily on the
available display space. We increase the scalability along the x-axis by aggregating
and simplifying the clusters of similar pixel bars. However, if the clustering outputs
too many clusters, this can lead to the visualization no longer scaling with respect
to the x-axis. In future work, we aim to overcome this limitation by providing an
interactive multiscale clustering for the temporal dimension and also by utilizing
frequent pattern analysis. We assume that this will enable users to change the
temporal and network granularity to reduce the complexity of pixel visualizations.
The y-axis scales up adequately for each pixel visualization up to 1000 motifs. Al-
though, we expect displaying 1000 motifs is not feasible in most applications since
the computation is quite expensive for an entire dynamic network.

5.8 Conclusion

In this chapter, we presented a visualization approach to provide a scalable overview
of structural changes in long and large-scale dynamic networks. The approach
utilizes motif significance profiles and graphlet degree vectors to capture and dis-
play the structural similarities between evolving network structures as pixel-based
visualizations. The pixel-based visualizations reveal similar temporal states, trends,
and outliers in dynamic networks using motifs and node-level statistics. Moreover,
the approach allows exploring abstracted dynamic network summaries searching for
temporal patterns (e.g., network superfamilies) without previous knowledge about
the evolving data. Overall, the proposed visualizations enable us to display static
and dynamic networks to provide an overview of the underlying evolving structural
properties. The main idea of our approach is not limited only to motifs or graphlets
and can be generalized to display other structure-based properties (e.g., evolving
roles) of dynamic networks. In future work, we plan to integrate new methods
for tracing and comparing temporal motif structures and motif sub-networks, in-
cluding the same set of nodes and edges over time. Moreover, we plan to study
network metrics and their effects on the overall changes in the evolving network to
semi-automatically identify essential motifs in the network census which potentially
reveal the before-mentioned network metric changes.
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Multiscale Visual Analysis of
Temporal Summaries in
Dynamic Networks

6

Summary

Providing an overview of changes in a dynamic network remains challenging due
to the underlying large-scale evolving data. Visual analytics approaches, there-
fore, often utilize abstraction methods to reduce the complexity, for instance, by
applying temporal aggregation. However, previous approaches usually abstract the
dynamic processes at only one temporal abstraction scale. We present in this chapter
Multiscale Snapshots, a visual analytics approach to analyze temporal summaries
of dynamic graphs at multiple temporal scales. Multiscale Snapshots combines a
hierarchical temporal model with unsupervised graph learning methods to semi-
automatically analyze temporal states, trends, and outliers in a dynamic network.
Multiscale Snapshots enable users to discover similar temporal summaries and ex-
plore structural and temporal properties of a dynamic network. We demonstrate
the approach’s usefulness through a quantitative evaluation and the application
to a real-world dataset. Multiscale Snapshots enables retracing and comparing
dynamic patterns and changing network properties in large-scale dynamic networks
at multiple levels of temporal resolution.

The chapter is based on the following publication. Please refer to Section 1.5 for
contribution clarifications.

[64] Eren Cakmak, Udo Schlegel, Dominik Jäckle, Daniel Keim, Tobias Schreck.
“Multiscale Snapshots: Visual Analysis of Temporal Summaries in Dynamic
Graphs“. IEEE Transactions on Visualization and Computer Graphics 27.2
517-527, 2020.
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6.1 Introduction

A dynamic graph models changing relationships between entities over time. Many
real-world data analysis problems rely on dynamic graphs, including, among others,
social, computer, and communication networks, and in practice, contain large
amounts of dynamic data, hence presenting challenges for effective exploration.
An important task in such dynamic graphs is to obtain an overview of the evolving
topology by identifying meaningful temporal intervals and their underlying changing
structural properties [54]. For instance, analysts are often interested in identifying
stable, reoccurring, transition, and outlier states [103]. However, as dynamic
graphs are often large-scale and evolve over long periods, it is a major challenge to
identify suitable analysis methods and present the data in a readable, scalable, and
expressive manner [31]. Previous approaches for visual analysis of dynamic graph
data, therefore, often incorporate temporal abstraction methods (e.g., temporal
aggregation and dimensionality reduction) to provide an overview of higher-level
structures over time [103]. In real-world applications, the usefulness of such
temporal abstraction methods depends on many factors, including the selection of
an appropriate temporal scale, the user task at hand, graph size, and frequency of
topological changes. Currently, visual analytics systems for dynamic graphs lack
methods for the visual analysis of dynamic processes at different temporal abstraction
scales (multiscale analysis), often leaving the analyst with the challenging task of
distinguishing overlapping temporal changes manually.

We propose Multiscale Snapshots, a visual analytics approach to semi-automatically
provide a multiscale overview of structural and temporal changes in dynamic graphs.
We combine temporal hierarchical abstractions with unsupervised graph learning
methods to enable the identification of similar evolving graphs. First, the temporal
hierarchical snapshots summarize the dynamic graph recursively at multiple tempo-
ral scales to reduce the size of the large-scale data. Second, we apply unsupervised
graph learning (e.g., graph2vec [230]) to the snapshots of the hierarchy to learn
low-dimensional representations of graph sequences, which enables users to use
the embeddings for analytical tasks (e.g., similarity search) and later on to adapt
the temporal scale semi-automatically. Third, the visualization of the hierarchy of
snapshots provides an overview of trends, allows users to compare periods, and to
explore structural as well as temporal properties of dynamic graphs. The approach
enables exploring various abstraction methods at multiple temporal scales to provide
an overview of large dynamic graphs temporal and structural properties.
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With Multiscale Snapshots, we can retrace how dynamic patterns and changing
graph properties affect the overall evolving data and compare temporal structures
at different levels of temporal resolution. The contributions of this chapter are
the following: (1) The Multiscale Snapshots approach to visually analyze temporal
and structural similarities at multiple temporal scales; (2) A temporal hierarchical
abstraction using unsupervised graph learning methods to reduce the size of dynamic
graphs and speed up analytical tasks (e.g., similarity search).

6.2 Related Work & Application Background

Multiscale Snapshots combines temporal summaries with graph embeddings to
present an overview of the underlying dynamic phenomena. In the following, we
discuss related work from automated analysis, visualization, visual analytics, and
multiscale visualization approaches for dynamic graphs.

6.2.1 Dynamic Graph Analysis and Visualization

The visual analysis of long graph sequences has lately gained research attention [31].
The automatic analysis, such as the temporal analysis of static as well as dynamic
graph metrics (e.g., centrality, diameter [45], or change centrality [113]), enables
us to examine the structural properties of the data. Furthermore, recent approaches
in unsupervised learning focus on embedding graph structures into low-dimensional
space [330]. However, only analyzing such automatically extracted structural prop-
erties might hide specific local dynamic changes (e.g., changes in density) and may
fail to capture the overall dynamic phenomena [330]. Interactive visualizations can
overcome these challenges by allowing analysts to explore the dynamic relationships
in their evolving structural context, and several visualization techniques for dynamic
graphs have been proposed. Popular approaches display dynamic graphs as anima-
tions [90, 248, 19], timeline [131, 84, 26, 85, 323] and hybrid visualizations [259,
23, 56]. For further reading, we refer to the surveys of Kerracher et al. [174], Beck
et al. [31], and Nobre et al.[233].

However, many of the proposed visualization techniques do not scale to a large num-
ber of nodes, edges, and time steps at the same time [130]. Consequently, to adapt
existing techniques to large-scale dynamic graphs, visual analytics approaches were
proposed that combine automatic analysis methods with interactive visualizations to
reduce the presented data and highlight structural changes.
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6.2.2 Visual Analytics of Dynamic Graphs

The visual analytics of dynamic graphs aims to seamlessly integrate graph analy-
sis methods [231] with visualization techniques [31] to interactively analyze the
evolving structural properties. Such visual analytics approaches facilitate abstraction
methods for large-scale dynamic graphs to reduce the amount of data and provide
an overview of high-level changes. The usefulness of such abstraction methods,
however, depends on the applied method (e.g., temporal clustering) and input pa-
rameters (e.g., number of clusters) [131]. Therefore, according to Aigner et al. [6],
it is essential to interactively adapt abstraction methods and tune their underlying
parameters to identify changes that otherwise would remain hidden.

In general, there are two categories of abstraction methods; data space abstraction
(e.g., sampling, clustering) and visual space abstraction (e.g., zooming, focus-and-
context) [83]. The data space abstraction in dynamic graphs reduces the number of
graph elements or time steps [270]. Often, data space abstraction methods lower
the resolution of the data (e.g., temporal aggregation [228]). For instance, Van den
Elzen et al. [103] proposed a visual analytics approach that segments and aggregates
sequences of graphs to a vector and applies dimensionality reduction to obtain an
overview of the states in dynamic graphs. However, the resulting overview depends
strongly on the selected segmentation scale and the abstraction method (extracted
features) into vectors. Further, the dimensionality reduction technique is hard to
interpret as the projection does not visualize the evolving graph structure. For an
overview of data space abstraction methods, we recommend the recent survey of
Liu et al. [207]. The visual space abstraction methods in dynamic graphs reduce
the amount of presented data (e.g., by applying zooming [33]). Many of the visual
space abstraction methods allow the user to interactively change the depicted level of
detail [1, 142, 18, 97, 320, 38, 335]. For example, temporal navigation methods help
to interactively adapt the horizontal (e.g., TempoVis [5]) and vertical (e.g., Bender-
deMoll and McFarland [36]) time dimension. Multiple visual analytics approaches,
including visual abstraction methods, were recently proposed. For instance, Small
MultiPiles [23] enables users to interactively stack and present a sequence of graphs
as piles of adjacency matrices to reduce the number of displayed views. Furthermore,
Cubix [25] allows users to visually explore adjacency matrices of dynamic graphs
in a cube metaphor. However, in both approaches, identifying temporal patterns
in long sequences of adjacency matrix visualizations remains challenging due to
limited display space and overlapping issues in 3D visualizations.

Many of the previously proposed approaches focus mainly on aggregation and display
the abstracted temporal or structural dimension at one scale, making it challenging
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to investigate the influences of abstraction methods on the resulting visualization,
as patterns may be found at different scales and intervals. Multiscale visualizations
aim to overcome these challenges by simultaneously displaying different levels of
abstraction, hence providing an encompassing overview of possible structural and
temporal aggregation levels.

6.2.3 Multiscale Dynamic Graph Visualizations

Multiscale (multiresolution) visualizations present the data at multiple user-defined
levels of abstraction and are useful for setting detailed abstraction levels into the
overall temporal context [99]. For example, Javed and Elmqvist [159] stack different
levels of zoomed time-series data in a tree structure to serve as a graphical history
and preserve the context during zooming. Nearly all of the previously mentioned
approaches visualize the dynamic graphs on a single time granularity (scale) using
mostly one adjustable abstraction method. One notable exception is the recent work
of Burch and Reinhardt [54] that proposed a timeline visualization technique that
allows exploring dynamic graphs at different temporal granularities. However, the
approach focuses on bipartite graphs, and due to the overplotting produced by the
interleaving method, identifying temporal patterns remains challenging. Most of the
listed approaches for dynamic graphs focus on analyzing dynamic graphs at a partic-
ular temporal scale and require the manual definition of parameters. For instance,
the work of Van den Elzen et al. [103] requires users to define a discretization scale,
feature selection, and the choice of a suitable dimensionality reduction technique.
In contrast to these approaches, we propose using temporal hierarchical abstractions
with unsupervised learning methods to explore input parameters (e.g., discretization
scale) and simultaneously visualize graph sequences at different levels of temporal
abstraction.

Application Background

The analytical goal of our approach is to provide an overview of evolving graph prop-
erties at multiple abstraction scales. The following section describes the addressed
problems, the research gap we close, and our derived design goals.
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6.2.4 Problem Description

The starting point of data analysis is often an overview visualization to examine
the overall data structure and to identify useful analytical and visualization tech-
niques [277]. However, providing an overview of large-scale dynamic graphs can
be challenging for multiple reasons [31]. First, the complexity and size of data
pose various challenges as many dynamic graph visualization techniques do not
scale [30]. Second, it is challenging to visualize dynamic graphs as there is a
trade-off between displaying the detailed graph structure for each time step and
presenting the evolving properties over time. For instance, animations support the
exploration of each static graph over time. However, animations are considered
unsuited to provide an overview of long periods due to the problems caused by
cognitive effort [296, 140, 19] and difficulties maintaining a mental map in dynamic
graphs [248]. Third, creating compact temporal abstractions (summaries) of dy-
namic graphs is user task-dependent and relies upon the application domain as well
as data properties. For example, a fine-grained temporal aggregation in large-scale
dynamic graphs results in various intervals with little information and is unable to
provide an overview [36]. In contrast, coarse-scale aggregation produces only a few
intervals, which may contain a high variance, where meaningful intervals could go
unnoticed. Finding appropriate levels of abstraction is a non-trivial task [175].

6.2.5 Gaps in Related Approaches

We compare a selection (see Table 6.1) of recent work on dynamic graph visualiza-
tion to point out the gap, we intend to close. The selected publications are based
on the recursive search of references from the recent surveys of Beck et al. [31]
and Nobre et al. [233]. The categories of our comparison comprise visualization
techniques from the dynamic graph taxonomy [31], the temporal scalability, in-
cluding multiscale approaches, and the temporal explorability of different graph
structures [233]. The comparison reveals several insights. First, the number of tem-
poral multiscale approaches for dynamic graphs is limited. Multiscale approaches
present either time series in a multiresolution design (e.g., graph metrics [131])
or include visualizations having multiscale characteristics (e.g., time curves [26]).
Second, timeline visualizations (time-to-space mappings) reduce the size of the data
and are suitable for providing an overview of a sequence of graphs. However, such
approaches abstract and discretize structural information at one temporal scale (uni-
form time slicing), often requiring users to manually identify overlapping temporal
patterns [311]. For example, timeline-based visualizations often require defining
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Multiscale Snapshots • • • • • • • • •

Rufiange & McGuffin [259], 2013 • • • • • •

Hadlak et al. [131], 2013 • • • • •

Cui et al. [84], 2014 • • • • •

Bach et al. [23], 2015 • • • •

Burch & Weiskopf [56], 2015 • • • • • •

Bach et al. [26], 2015 • • • •

Van den Elzen et al. [103], 2016 • • • • • •

Burch et al. [54], 2017 • • • • •

Dal et al. [85], 2017 • • • •

Xu et al. [323], 2018 • • • • • •

Wang et al. [311], 2019 • • • • • •

Tab. 6.1 The comparison highlights the essential temporal properties of related visualiza-
tion techniques, ordered by publication date, and assessed by us to the best of
our knowledge from analysis of the works. The visualization category classifies
the techniques using the taxonomy of Beck et al. [31]. The scalability category
elaborates on multiscale temporal approaches and the temporal scalability with
large scalability meaning a dynamic graph with more than 1000 graphs. The
temporal explorability is adapted from the work of Nobre et al. [233] and illus-
trates whether the graph structures (e.g., neighbors, clusters) are explorable and
comparable within the temporal dimension.

input parameters, e.g., discretization parameters and derived features [103]. Third,
current work either introduces complex visualizations or the combination of various
simple views, which poses the question of how to arrange the different visualizations
in the limited screen space and link them effectively.

In summary, many visualization techniques view a dynamic graph as a series of
static graphs that neglects to capture the evolving structural properties of dynamic
graphs simultaneously. In contrast to previous approaches, we interactively apply an
unsupervised graph learning method (graph embeddings) on a multiscale temporal
hierarchy to directly learn structural properties. We use graph embeddings as a
familiar representation for an analytical user task (e.g., similarity search) and utilize
the visual exploration of different visual metaphors.
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6.2.6 Design Goals

We derived three design goals for our visual design from the previously described
research challenges outlined in related work [30, 16, 31].

G1: Time-oriented visual analysis The visual analysis of dynamic graphs lacks new
paradigms to examine structural (static) and temporal properties simultaneously.
First, identifying structural properties, e.g., clusters in a static graph, allows searching
for similar structural properties over time. Such an exploration enables users to
identify temporal states and continue to search for similar trends, reoccurring
structures, and outlier structures.

G2: Temporal multiscale overview Our core idea is to provide an overview of
multiple levels of temporal granularity, which facilitates users to relate higher-level
overviews with low-level details. Such a multiscale overview allows detecting useful
temporal analysis scales and gives additional context while navigating the temporal
dimension (e.g., temporal filtering). For instance, a multiscale overview allows
comparing states and transitions across multiple temporal granularities.

G3: Multiple visual metaphors Combining different visual metaphors in a con-
sistent interface allows adjusting the visualization to the data characteristics of
particular intervals. It also increases the task coverage by enabling an analyst to
adapt the visual representations to the task at hand. For example, matrix-based
visualization techniques are better suited for dense dynamic graphs.

6.3 Multiscale Snapshots

Multiscale Snapshots provides an overview of higher-level and fine-grained temporal
intervals of large-scale dynamic graphs. The approach reduces the complexity of the
data by integrating temporal summarization and graph embeddings in an interactive
multiscale visualization.

Our proposed visual analytics approach consists of three adjustable steps (see
Figure 6.1) to promote the exploration and summarization tasks for dynamic
graphs [46]. The first step transforms the temporal dimension into a hierarchy
of snapshots summarizing subsets of the dynamic graph into overlapping multiscale
intervals. The second step reduces the complexity of the snapshots by embedding
the summaries of the evolving topology into vector representations (e.g., using
graph2vec [230]). The mapping of intervals into vector representation allows us
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Fig. 6.1 Overview of our Multiscale Snapshots: We (1) recursively create temporal sum-
maries (snapshots) of graphs at different temporal scales (time granularities); (2)
We then apply an unsupervised graph learning method (graph embedding) to
learn low-dimensional representations of snapshots; Then, we (3) then give an
exploratory visualization that organizes the snapshots of different temporal granu-
larities in a hierarchy to provide an overview of the evolving structural properties,
which utilizes the graph embeddings for analytical tasks (e.g., similarity search).

to automatically adjust the visualization to highlight temporal states, trends, and
outliers. The third step transforms the abstracted temporal data into a flexible and
interactive hierarchical visualization and supports essential interaction as well as
navigation methods to analyze the evolving graph structure visually. Furthermore,
the visualization intends to increase the task coverage by combining different visu-
alizations of dynamic graphs in a consistent interface. The following subsections
describe each transformation step in more detail.

6.3.1 Temporal Hierarchical Snapshots

Dynamic graphs model relationships over time (e.g., social networks) and can be
described as a number of T static graphs DG = (G1, G2, ..., GT ). The temporal
abstraction of dynamic graphs (e.g., aggregation) helps to reduce the data size,
speed up temporal queries, support interactive analysis, and eliminate noise [207].
However, the temporal abstraction of sequence graphs into summaries remains
challenging due to the selection of time granularity, which depends on many factors
(e.g., data size) and the choice of abstraction method (e.g., summarization).

In various dynamic graph visualizations, a simple selection of one time granularity
(uniform time-slicing) is used due to the simplicity of the approach [311]. In contrast,
we propose a recursive temporal abstraction into a hierarchy with temporal overlaps
to model multiple time granularities (see Figure 6.2). We generate and stack multiple
partitionings using uniform intervals (time slices) of different temporal granularities.
We organize the stacked partitionings in a hierarchy that orders the different levels
of abstraction (discretizations) from coarse to fine-grained temporal representations.
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Fig. 6.2 The figure displays the generation of temporal hierarchical snapshots for a dynamic
graph with eight timesteps. First, the dynamic graph is partitioned into overlapping
intervals at four levels of temporal granularity. The fourth level contains all data,
and the first level consists of intervals of size one (static graphs). Second, abstrac-
tion methods are applied to the intervals to generate different compact summaries
of the subsets of the dynamic graph. The result is a hierarchy of temporal snapshots
that contains multiple summary graphs (e.g., union or intersection graph.

Our bottom-up approach groups per default the temporal dimension into intervals
of length 2l with the level l ∈ 1, ..., dlog(T )e. Figure 6.2 displays an example
partitioning for a dynamic graph with eight time steps. Level one of the hierarchy
consists of intervals of length one, containing only one graph of the evolving data.
The intervals are generated using a rolling window method, which facilitates time
discretization without hard boundaries. The rolling window approach for level l
is computed by shifting the interval of width 2l by the temporal overlap of width
2l−1. This results in each level having dT/2l−1e intervals and the whole hierarchy
having (3 ·T )− 1 intervals. Essentially, as seen in Figure 6.2, each generated interval
overlaps partly (e.g., per default half) with the next interval except for level one
(single graph) and the root node (all graphs). The default recursive partitioning into
multiscale intervals results in the height of dlog(T )e. In practice, for most datasets,
the height of the hierarchy is below 20 (< 1 million graphs). The width of time
slicing can be modified to the application domain, for example, intervals with a
width of a day, week, month, and year.

The uniform time-slicing produces intervals of the same width for each level. The
generation of non-uniform intervals for each level can be computed by applying
temporal clustering techniques with varying input parameters. For example, the
temporal clustering approach of Hadlack et al. [131] can be used to identify similar
substructures based on graph properties to provide an overview of temporal trends.
A hierarchy of temporal intervals can also be automatically generated by facilitating
unsupervised learning with boundary detectors to obtain hierarchical temporal
dependencies at different time scales [77]. The generation of such hierarchical
temporal dependencies only works on time-series data of a dynamic graph, for
example, on evolving graph metrics such as average clustering coefficient or density.
Therefore, applying such methods remains challenging as there is no single graph
metric that can capture all of the evolving graph structures.
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The temporal abstraction summarizes and captures the evolving structural properties
of sequences of graphs. We suggest utilizing multiple abstraction methods to gen-
erate diverse representations of the generated multiscale intervals as there is not a
single abstraction method able to encode all evolving properties of a dynamic graph.
We transform the intervals into graph summaries per default using set operations
(union, intersection, disjoint graph). For example, the union operation abstracts
the interval into a supergraph, which helps to provide an overview of all nodes and
edges [130]. The three default graph summarization techniques (see Figure 6.2)
are the union graph that consists of a union of the set of all node and edge sets. The
intersection graph which consists of all nodes appearing more than i-times in the
interval. The disjoint graph consists of all nodes appearing less than i-times in the
interval. We set the default value for the parameter i to the interval overlap of an
interval. If the values of i are below the interval overlap, this will most probably
result in successive intervals with a similar intersection and disjoint graphs.

We call the three computed graph summaries of an interval a snapshot Sl,k (see
Figure 6.2). A snapshot aims to capture the structural and temporal properties of a
sequence of graphs on level l and the k generated interval. The resulting intervals
of the snapshots can be indexed in an interval tree to support the efficient support
window queries, for example, identifying the best fitting interval to a user-defined
period. We suggest, furthermore, utilizing more graph summarization methods based
on the analytical task, data characteristics, and application domain. For example, we
implemented the Clauset-Newman-Moore community detection algorithm [78] to
reduce the overall number of nodes in each static graph and to extract higher-level
properties (e.g., meta-nodes and edges). For more graph summarization methods
that can be added to our approach, we refer to the survey by Liu et al. [207].

Overall, the first step results in a hierarchy of abstracted snapshots at different
temporal granularities (see Figure 6.2). Every interval in the hierarchy contains
multiple graph summaries, which can be used for different types of queries later
on. For example, we can search for similar changes between intervals by using the
disjoint graphs to identify reoccurring changes in the dynamic graph. The resulting
temporal hierarchy of the dynamic graphs is used in the next step of our Multiscale
Snapshots approach by mapping each summary to its vector representation.

6.3.2 Multiscale Dynamic Graph Index

As for the next step, the resulting hierarchical snapshots are learned and embedded
into low-dimensional space to reduce the complexity of the graphs and speed up
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analytical tasks (e.g., similarity search). The main goal is to use unsupervised learn-
ing methods to model the similarities between the different multiscale temporal
summaries and reduce the complex data characteristics to low-dimensional vectors
preserving information. We apply a graph embedding (e.g., graph2vec [230]) to
map all snapshot graphs (e.g., union and disjoint graphs) to vector representations.
In contrast to earlier approaches (e.g., Van den Elzen [103]), unsupervised graph
learning methods learn the topological structures of graphs and do not require any
hand-engineered features. The embeddings can be precomputed and are also typi-
cally small enough to fit into main memory. To the best of our knowledge, Multiscale
Snapshots is the first visual analytics approach to propose using unsupervised graph
learning methods with different temporal granularities to visually analyze intervals
sharing similar properties over time.

Recently, new unsupervised graph learning methods have been proposed to learn
node and graph embeddings [330]. However, many of these methods mainly focus
on learning static graph embeddings and cannot model the evolving properties of
dynamic graphs [330]. In contrast to earlier approaches, we propose to model
dynamic graphs by embedding summaries of subsets of the evolving data to capture
the temporal dependencies between graphs. The analyst can apply graph embed-
dings such as graph2vec [230], GL2Vec [73], and FGSD [303] to the snapshots. The
approach embeds all snapshots of the temporal hierarchy except for level one (single
graphs), which results in the embedding of 2T − 1 snapshots. The resulting 2T − 1
embeddings are also indexed to support efficient K-nearest neighbor search queries.
We employ the following two index structures: an interval tree to support efficient
temporal queries for the intervals, and an individual index structure for each level.
We utilize for the indexing of the graph embeddings the proposed method of Malkov
et al. [215] to perform a fast K-nearest neighbor search in each level.

In our evaluation (see Section 6.4), we compare different unsupervised graph
embeddings, discuss the scalability of the approaches, and show that the embeddings
of the snapshots can capture structural as well as temporal changes.

6.3.3 Multiscale Snapshots Visualization

The final step applies a visual mapping to organize the temporal snapshots in a
multiscale visualization to enable the visual analysis of the generated snapshots and
uses the graph embeddings for analytical tasks. In the following, we describe the
components of our visual and interaction design (see Figure 6.3).
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The visualization presents the hierarchy of snapshots and orders them from coarse
to granular scale (top-down) and facilitates the horizontal (time) as well as vertical
(time granularity) temporal navigation to search for similar properties over time
(G1). The visualization stacks and displays the multiscale temporal abstractions
(G2), allowing to analyze and compare the abstracted data at different temporal
granularities. Presenting multiple abstraction levels enables us to gain more knowl-
edge about the underlying abstracted dynamic graph (e.g., data distribution) [99].
The highest level (root) displays an aggregated version of the whole dynamic graph
(e.g., union graph), and the bottom level enables us to depict a limited number of
each time step. The levels in-between allow visualizing a subset of the generated
snapshots in snapshots views (juxtaposed small multiples).

A snapshot view combines different visual metaphors in a consistent interface to
increase the task coverage (G3) and displays one of the summary graphs (e.g.,
union graph). Every view enables users to depict the data using four kinds of visual
metaphors (node-link, adjacency matrix, animation, and time series of graph met-
rics). We use these visual metaphors since the individual benefits and drawbacks of
the representations are well studied (e.g., graph layout and matrix reordering) [31].
We utilize multiple visual metaphors for certain intervals as the usefulness of dynamic
graph visualization depends on the underlying changing data (e.g., sparse versus
dense graphs) [54]. We consider our snapshot views as hybrid visualizations, as the
view combines different visual metaphors in small multiple representations. Further-
more, the Clauset-Newman-Moore community detection algorithm [78] is applied
to minimize visual clutter and to reduce the number of nodes in a snapshot view, if
the size of the displayed summary graph exceeds a specific threshold (more than
100 nodes). This threshold is based on the size classification of Nobre et al. [233].
The resulting communities are then shown as meta-nodes and allow to filter the
respective nodes and edges of the community for the entire Multiscale Snapshot
visualization. For instance, the filtering of a structural cluster allows us to explore
the evolving properties of the cluster in the displayed snapshot views. The snapshot
view also visualizes derived structural properties using the background color of
each snapshot view to highlight differences between adjacent visual metaphors.
The summary graph’s derived properties (graph metrics) are used to identify and
emphasize temporal or structural graph properties. For instance, we compute graph
metrics such as the sum of the number of edges in a snapshot, which indicates the
density of the underlying graph sequence. A linear color scale from light blue (low
values) to darker blue (high values) is used to highlight changes in the derived
structural properties [138].
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Fig. 6.3 The hierarchy organizes and displays the summaries from the snapshots from coarse
to fine-grained representations. The visual metaphors in each snapshot view can be
manually or semi-automatically adapted. The snapshot views can be abstracted to
reduce the number of displayed views and duplicate information. The background
color of each snapshot is mapped to graph metrics (e.g., number of edges).

Using multiple levels of juxtaposed small multiples remains challenging due to
limited display space and the preservation of the viewer’s mental map. The simul-
taneous presentation of multiple levels and their snapshot views does not visually
scale due to the restricted display space with an increasing number of snapshot
views, as the readability of each view decreases. We, therefore, incorporate visual
space abstraction methods to limit the number of displayed levels and snapshot
views. The number of displayed levels is limited (default four), and during the
vertical navigation, the respective lowest or highest level of temporal granularity
is removed. Furthermore, we abstract snapshot views to reduce the number of
shown visualizations and on particular snapshots while keeping the context of the
abstracted views (focus-and-context principle). An abstracted snapshot is displayed
as a compact colored rectangle without any visual representation. The background
color can be mapped to extracted graph metrics of the selected summary graph,
for example, the number of nodes as well as edges, average clustering coefficient,
density, and transitivity. The coloring of such abstracted snapshot views enables the
identification of intervals with specific properties, such as subsequences of dense
graphs. In general, the usage of such color indicating graph properties allows users
to identify and compare temporal intervals [291]. The abstraction can be done
manually by reducing individual snapshot views or whole levels of the hierarchy,
using a user-driven threshold, and an automated abstraction algorithm.
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The automated algorithm limits the number of intervals by traversing the hierarchy
and abstracting redundant information. The algorithm abstracts snapshots if the
number of views exceeds a specific threshold or if the algorithm detects duplicate
displayed periods. The algorithm traverses each level of the hierarchy (top-down)
and compares the displayed snapshots at each level against each other. If coarse
snapshots (high level) are displayed in the fine-grained snapshots (low levels), they
are abstracted. The automatic abstraction is done based on overlapping windows
in the interval tree, which means that the snapshot view with the highest overlap
with low-level snapshots is abstracted. The algorithm compares, for example, the
time interval of the root view against all other not abstracted snapshots, and if the
periods of these more granular levels display the majority of temporal information
of the root view, then the root snapshot view is abstracted. The thresholds for the
automatic abstraction algorithm, such as the overall number of levels and snapshot
views, are adjustable by the analyst.

Furthermore, we aim to preserve the viewer’s mental map, which increases the
readability and interpretability of the evolving data [248]. To maintain the viewer’s
mental map, we fix and use one global layout for each visual metaphor. For in-
stance, we compute one layout for the overall supergraph of the dynamic graph.
Furthermore, the usage of linking and brushing aims to preserve the mental map
between adjacent snapshots using different visual metaphors and the different levels
of abstraction in the hierarchy.

Multiscale Snapshots utilizes the graph embeddings for automated analysis to iden-
tify trends, reoccurring, and outlier states. For example, an analyst can select a
snapshot view and can apply a k-nearest neighbor search query to detect similar
summary graphs (see the query interface Figure 6.4). The detected k-nearest neigh-
bor snapshots can also be disaggregated to more granular views using the interval
tree (drill-down). The similarity search can also be applied to a particular type of
summary graph, for instance, search for similar intersection graphs. Such similar-
ity queries also enable us to semi-automatically abstract and adapt the displayed
snapshot views. The k-nearest neighbor queries can also be applied to particular
intervals (subqueries) and to specific levels, which allows examining the summaries
of the dynamic graphs in a top-down manner. The embeddings can also be used
to cluster levels of the hierarchy and to identify outlier states by applying outlier
detection algorithms [2].

In summary, the visual design provides an overview of snapshots of a dynamic graph
by combining automatic analysis methods with visual space abstraction methods
(focus-and-context).
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6.3.4 Multiscale Snapshots Prototype

We showcase the approach’s usefulness by applying it to real-world data using our
prototype 1. The prototype has two components (see Figure 6.4 A-B): the Multiscale
Snapshots visualization and the query interface. The components allow users to
semi-automatically search for similar temporal states in the dynamic graph.

The Multiscale Snapshots visualization consists of a toolbar, the stacked snapshot
views, and two context bars. The toolbar facilitates the application of automated
analysis methods (e.g., open the query interface) and visualizes the summary graphs
of the snapshots (e.g., display union or intersection graph). Moreover, the toolbar
enables changing the data space abstraction methods (e.g., filter and cluster nodes)
and adapting visual transformations (e.g., reordering algorithms for matrix visual-
ization). The prototype displays the root of the hierarchy as a supergraph (union
graph) using a node-link diagram visualization. The layout of the node-link diagram
is computed once for the root supergraph using, per default, the Fruchterman-
Reingold [114] layout algorithm and later used for all snapshot views. The hierarchy
enables an analyst to navigate horizontally (time) or vertically (overview to detail)
on the temporal dimension. The two context bars display additional information
during the horizontal and vertical navigation of the temporal dimension. The time
context bar on the top shows the visualized intervals, and the level context bar
on the right allows to add and remove levels. Each snapshot view can be visually
analyzed via zooming, panning, brushing, and changing the layout in all views
(e.g., matrix reordering) to make visual patterns more apparent [34]. The visual
transformations for individual or all snapshot views can be adjusted by the analyst
to enable the adaption of visual metaphors to the underlying sequence of graphs,
such as switching for periods of dense sequences of graphs to matrix visualization.
The prototype also enables filtering by specific graph properties (e.g., node degree)
and clustering [78] to reduce overall displayed elements to extract higher-level
features (e.g., meta-nodes and edges). The background color of each snapshot view
can be mapped to extracted graph metrics and computed node characteristics (e.g.,
clustering coefficient) to node size. To apply a k-nearest neighbor query, an analyst
has to select a specific summary graph in a snapshot view.

The query interface allows applying specific k-nearest-neighbor queries to search for
similar summary graphs on all or particular levels of temporal granularity. The query
interface displays each time dimension of a level and encodes the currently visualized
and already investigated snapshots via color. This additional information helps to
keep an overview of the already explored snapshots of all levels. The timelines can

1https://github.com/eren-ck/MultiscaleSnapshots
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be ordered by different features, such as by the percentage of explored snapshots.
An analyst can select the levels, time interval, and the summary graph type (e.g.,
only union graphs) to apply the k-nearest neighbor search. The number of k-nearest
neighbors is also configurable. The query results are displayed as dots on the timeline,
and the euclidean distance between the underlying graph embeddings is mapped to
the opacity of the dot. The analyst has to select a subset of the nearest-neighbors,
which are then displayed in the Multiscale Snapshots visualization. The selected
results are shown as snapshot views and allow users to analyze and compare similar
temporal states in lower or higher temporal granularities against each other.

6.4 Evaluation

The following section evaluates the two main components of the Multiscale Snap-
shots approach. We provide a usage scenario to demonstrate how the visual analytics
approach can be utilized to gain an overview of temporal summaries in a dynamic
graph. We furthermore quantitatively evaluate the similarity (k-nearest neighbors)
search of the graph embeddings with synthetic and real-world datasets.

6.4.1 Usage Scenario

We demonstrate the applicability of our approach using a real-world, large-scale
dynamic graph of the website Reddit [188]. Reddit is a social news aggregation
website with 440 million active users who can publish and upvote posts of interest
(e.g., link to news sites) in particular communities (subreddits). The analyzed
dataset is a dynamic hyperlink graph in which nodes are subreddits, and edges are
hyperlinks posted between subreddits.
Tasks In the following, we outline the actions that a fictitious analyst takes to
discover structural and temporal changes during the 2016 US presidential elections
(see Figure 6.4). A task in the visual analysis of such hyperlinks is to gain an
overview of temporal events (e.g., political scandals), identify reoccurring links
between communities, and examine structural changes within groups of subreddits.
The visual analysis of such data with state-of-the-art visual analytics approaches
remains challenging due to the varying duration of such events. For example,
the length of political scandals varies significantly due to media exposure and
their temporal context (e.g., during elections). In contrast to previous approaches,
Multiscale Snapshots enables us to detect events/states of different temporal lengths
due to the temporal multiscale modeling.
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Dynamic Graph The Reddit dataset [188] comprises hyperlinks between subreddits
from 1st January 2016 to 30th November 2016. The resulting dynamic graph
contains 7974 graphs (grouped by hours), 18546 subreddits (nodes), and 88328
hyperlinks between subreddits (edges). The timestamped hyperlink posts have
a sentiment label indicating if the post is positive or negative towards the other
subreddit. The dynamic graph index was computed using the Graph2Vec [230]
embedding approach for 80 epochs, and three summary graphs for each snapshot
were generated (union, intersection, and disjoint graphs). The validation of the
detected findings is done by comparison to the real historical news coverage.

Initial Setup Per default, our prototype displays the entire graph as an aggregated
node-link diagram (supergraph). Then, based on the Kamada-Kawai algorithm [165],
a global layout is computed for all snapshot views once. This way, the mental map
is preserved during the visual analysis. Furthermore, snapshot views that display
more than 100 nodes are automatically clustered using the greedy Clauset-Newman-
Moore community detection algorithm [78] to reduce the number of nodes and to
extract higher-level properties (e.g., meta-nodes and meta-edges). The clustering
of the approximately 8000 nodes of the analyzed data reveals several clusters of
subreddits (e.g., computer games subreddits).

Starting Point: Election Week First, the analyst wants to analyze the election
week of the 2016 US presidential race (8th November 2016) to identify important
groups of political subreddits. The analyst enters the dates of the election week, and
the prototype automatically searches for the best fitting snapshot period using the
interval tree. The prototype depicts a union graph of election week, and the analyst
maps the size of the cluster to the node size to discover large groups of subreddits
(see Figure 6.4-A). He selects the largest visible meta-node and all underlying
political subreddits of the cluster. He filters these political subreddits as he assumes
that the political subreddits of the election week have also been active in the political
discourse of the whole election.

Similarity Search To identify political events similar to the election week in the
dynamic graph, the analyst searches for similar embeddings using the election
weeks supergraph. Using the query interface (see Figure 6.4-B), he queries the
five nearest neighbors for each level and sorts the levels by the similarity of the
embeddings. The executed nearest neighbor query is calculated on the unfiltered
summary graphs for each snapshot, which means that the similarity search results
will include false positives that do not necessarily include any political subreddits.
The analyst discovers that the query results are similar embeddings on the second
(2-hour periods) and third level (4-hour periods), which means that these rather
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Fig. 6.4 The prototype implementation consists of two primary components the Multiscale
Snapshots visualization (A) and the query interface (B). The figures present the
visual analysis of the Reddit hyperlink dataset (see Section 6.4.1). The displayed
nodes are subreddits, and the edges are timestamped hyperlinks between subreddits
with either positive (blue) or negative (red) sentiment. The displayed nodes are
subreddits, and the edges are timestamped hyperlinks between subreddits with
either positive (blue) or negative (red) sentiment. The example illustrates by
the case of the 2016 US election how the approach allows searching for similar
temporal states in the dynamic graph. The intermediate steps of the visual analysis
and the resulting interfaces are presented in the sub-figures C-D. In D, the results of
the visual analysis by similarity search are displayed, which are significant events
in the timeline of the presidential election.

short sequences of graphs consist of a subset of hyperlinks similar to the ones during
the election week. The analyst selects the three closest neighbors for both levels
and therefore navigates from a high temporal aggregation (a week) to a lower
granularity (2-4 hours). Three queried snapshots are empty, meaning the views do
not contain any of the previously filtered political subreddits. The empty views are
presumably false positives that capture other graph sub-structures of the election
week. The analyst removes the three empty snapshots and examines the remaining
three snapshots by changing the visual mapping from a node-link diagram to the
time series of graph metrics.

Fine-Grained Temporal Analysis The three remaining snapshots contain a different
amount of nodes. The intersection graph on the second level contains only one
subreddit (the_donald), which means the subreddit was referenced in both graphs
of the snapshot (2 hours). The analyst discovers that a high-level summary graph
(disjoint) includes a displayed snapshot of the second level. The unexpected overlap
steers the analysts towards the low-level disjoint graph, which seems to also be
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the peak in the time series of graph metrics. The time series presents the number
of nodes, edges, as well as connected graph components, the graph density, the
average clustering coefficient, and the transitivity over time. It seems that this second
level snapshot is essential for the search results as the snapshot has similar graph
structures compared to the supergraph of the election week. The peak is presented
as a matrix visualization (see Figure 6.4-C) and can be attributed to the events
of the national democratic convention where H. Clinton was nominated for the
presidential election. The disjoint graph represented as a matrix visualization (see
Figure 6.4-C) can be associated to the political event of the democratic nomination
H. Clinton which resulted in a cluster of hyperlinks between political subreddits (e.g.,
hillaryclinton, asktrumpsupporters, and garyjohnson) and other hyperlinks between
political subreddits (e.g., communism101, altright, and crazyideas) The analyst uses
the snapshot (disjoint graph) for another similarity search. He expects the similarity
search to return more political events because the low-level graph embedding of the
two-hour snapshot contains mainly linked political subreddits.

Searching for Political Events The similarity search finds many similar snapshots
at different temporal granularities indicating that these political events also seem
to be discussed for different periods. The query returns several similar snapshots
of the sixth level with an interval length of 32 hours, which can refer to potential
political events and their daily news coverage scheme (see Figure 6.4-D). The analyst
investigates the different snapshot views, mostly union and disjoint graphs, and
abstracts all snapshot views with only a few subreddits. The remaining presented
snapshots are on levels 5-7 and contain intervals of 16, 32, and 64 hours. The analyst
maps the average clustering coefficient to the background color of each snapshot
view to identify periods with structural clusters. He changes the visual metaphors
of the dense snapshots to matrix visualizations and the higher-level periods to the
time-series metaphor. The different metaphors allow the analyst to put the events
on lower levels into the overall temporal context, for example, the analyst can relate
how the linkage behavior between subreddits declines after political scandals.

Political Events and Scandals The analyst then visually analyzes the periods and
sees that political subreddits link each other during the selected periods, mainly
in a positive (blue edge) or negative (red edge) way. Various subreddits such as
the_donald and asktrumpsupporters usually have positive hyperlinks between each
other. He examines external resources of the timeline of major events for the 2016
US elections and can refer the presented snapshot views to events in the presidential
race. The sixth level of the hierarchy displays several GOP (republican party)
political debates, B. Sanders dropping out of the primary election, and the H. Clinton
Email affair. The analyst is also able to identify structural changes between the
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views, for instance, after B. Sanders drops, the linking activity of some subreddits
(e.g., SandersForPresident or Democratic Socialism) declines. The snapshot view
of 6-7th October on the fifth level stands out as it mostly contains negative links
between the subreddits. The analyst can relate the period to the leaked tapes of
the 2005 Access Hollywood show in which D. Trump brags about sexual exploits
and also on the same day WikiLeaks published the email of H. Clintons campaign
manager revealing her paid Wall Street speeches. The analyst wants to analyze this
snapshot further and displays the supergraph as an animated node-link diagram
to examine the news spread between the subreddits on an hourly basis. During
the further analysis of snapshot views, the analyst can also detect other events, for
instance, the final nomination of D. Trump by the GOP, which results in visible
changes in the time series plot of graph metrics. He also detects some events that he
cannot directly relate to major political events. Those events are probably general
political discussions initiated by Reddit users or targeted news distribution from
public-relations groups or political bots. To further investigate such events, the
analyst can select these non-assignable events and search for similar periods, for
example, to identify the reoccurring post of political bots.

6.4.2 Experimental Evaluation

The generated graph embeddings for the multiscale snapshots are independent of
any analytical task and can be used for clustering, graph prediction, and outlier
detection. In the following, we show that the multiscale graph embeddings allow us
to search for similar sequences of graphs. Across all experiments, we use the same
parameter settings to generate the multiscale index.

Problem Background A similarity search for a set of graphs can be interpreted as a
query to return k-nearest neighbors to a specific graph. An exhaustive simple brute-
force algorithm would compute the distance between all graphs, for example, the
graph editing distance (GED) [51] and return the list of k nearest graphs. However,
the extensive brute-force approach does not scale as the GED computation is not
feasible for graphs with more than 16 nodes [41]. Therefore, heuristics are usually
applied to decrease the computation effort of k-nearest neighbor queries, which
frequently reduces the accuracy of the results. In the following, we apply window
queries for sequences of graphs to show that summarization methods (e.g., union
graph) can capture some temporal characteristics.

Datasets We evaluate the performance of similarity searches on synthetic and real-
world data. We generated five synthetic dynamic graphs using the dynamic stochastic
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block model with diminishing communities [122]. The synthetic datasets consist of
150 nodes with three communities and 100-time steps, containing varying amounts
of diminishing communities (up to 20-time steps) in which two nodes are exchanged
for each time step. We evaluate the approach with real-world datasets. The Reddit
data [188] is a dynamic hyperlink graph with subreddits (nodes) and hyperlinks or
crossposts between subreddits (edges). The Wikipedia dataset [237] consists of a
dynamic graph that captures the editing behavior (edge) between Wikipedia Talk
pages (nodes). For each real-world dataset, we preprocess the data by computing a
supergraph for each hour, which generates descriptive dynamic graphs with more
than two nodes per time step. We evaluated our approach on randomly picked
subsets (100 graphs) of the real-world data. We select a subset of the data as the
computation of the following ground truth is quite expensive.

Ground Truth We calculate a ground-truth similarity score for the k-nearest neighbor
search by computing the distance between the input and all other graphs. We employ
the following similarity measure between two graphs. Our similarity measurement
first models the graphs as two adjacency matrices A and B and then compute for
each matrix the singular values via the singular value decomposition. Afterward, we
calculate the fnorm using

fnorm =

√√√√ S∑
i=0

σ2
i

We define the distance between two graphs as

madist(A,B) = |fnorm(A)− fnorm(B)|

Using the given similarity measurement, we compute the distances between all
graphs to obtain a ground-truth of k-nearest neighbors.

Baseline Methods We used three unsupervised graph learning methods on the
described datasets. The graph embeddings are applied once with and once with-
out the multiscale temporal modeling. We used the following graph embedding
methods [258] with the described input parameters:

• graph2vec [230]: 250 epochs, 0.025 learning rate, 2 Weisfeiler-Lehman
iterations, and 128 dimensions.

• GL2Vec [73]: 250 epochs, 0.025 learning rate, and 128 dimensions.

• FGSD [303]: 200 number of histogram bins with a histogram range of 20.
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For window queries for the single graph embeddings without any summarization
methods, we utilize the median value of the embeddings as the representative
value of the interval. We use the median as the average of the embeddings as
these can lead to potential distortions in the embedded space. For the multiscale
temporal embedding, we applied only one temporal summarization method to
generate a union graph for each snapshot. The searched intervals for the k nearest
neighbor search are extracted before training of embedding techniques. We randomly
extracted five intervals with different lengths (1− 8) from the dynamic graph and
randomly removed one node from each graph.

Evaluation Metrics The following metrics are used to evaluate the approach. We
compute the accuracy of the 5-nearest neighbor queries based on the ground-truth.
For the accuracy computation, we do not incorporate the ordering of the nearest
neighbors and expect only the presence in the result set.

Experimental Setup All experiments were computed on a computer with two CPU
cores (Intel i7-6567U 3.30GHz) and 16 GB RAM. The experiment was repeated five
times, and the average accuracy was computed for each randomly picked interval
with different lengths.

Results The results are described in Table 6.2. The results indicate that FGSD [303]
works best to identify nearest neighbors on an embedding basis using the median.
The results show that the single graph embeddings have a higher accuracy on the
synthetic data. In contrast, the real-world datasets indicate different results by
demonstrating equal or improved results by using the multiscale index for longer
intervals (< 4). An explanation for this can be the fact that there is a drastic
difference between the topology of the synthetic and real-world datasets. For
example, the real-world nodes and edges are added and removed more frequently
between time steps. The synthetically generated dataset has a quite high density,
while in contrast to this, the real-world datasets are much more sparse. For example,
in the synthetic data, the nodes are just moved between the clusters, so only edges
change over time. These synthetic properties prevent supergraphs from encoding
the topological changes over time. Therefore, the multiscale graph index requires a
different temporal summarization method to capture the changes of the synthetic
dataset (e.g., disjoint graph).
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Synthetic Data Reddit Data [188] Wikipedia Data [237]

Interval length 1 2 3 4 8 1 2 3 4 8 1 2 3 4 8

Graph2Vec 0.096 0.146 0.096 0.15 0.096 0.332 0.066 0 0 0.264 0 0 0 0 0.066

GL2Vec 0.096 0.122 0.024 0.024 0 0.198 0.132 0.266 0.066 0.066 0.066 0 0.066 0 0.066

FGSD 0.146 0.224 0.198 0.198 0.048 0.464 0.332 0 0.132 0.066 0.866 0.132 0.066 0.132 0.134

Multiscale Graph2Vec 0.148 0.072 0.096 0.072 0.122 0.266 0.264 0 0.066 0.264 0.234 0.066 0.066 0.066 0.198

Multiscale GL2Vec 0.148 0.072 0.096 0.072 0.122 0.198 0.132 0.066 0.132 0.4 0.234 0.066 0.198 0.132 0.198

Multiscale FGSD 0.146 0.096 0.096 0.072 0.122 0.264 0.264 0 0 0.332 0.466 0.066 0.2 0.198 0.266

Tab. 6.2 The Table presents the quantitative evaluation results of the k-nearest neighbor
search with and without the multiscale graph index for different graph embedding
methods. The average accuracy values for window queries of different lengths
(1-8) are depicted for each dataset. The experiment was repeated five times on
synthetically generated data and with randomly selected subsets of real-world
data. The evaluation results indicate an improved accuracy on window queries on
the listed real-world dataset.

6.5 Discussion

The Multiscale Snapshots approach consists of three steps: (1) applying temporal
summarization methods, (2) utilizing graph embedding methods to reduce the size
of the generated graph summaries, and (3) the visual analysis of the generated
snapshots. Our quantitative evaluation indicates the usefulness of the multiscale
graph embeddings, and the usage scenario shows the application of the approach to
real-world data. Overall the utility of the approach yet depends on multiple aspects
(e.g., summarization method and graph embedding), the data characteristics (e.g.,
data distribution), and the task at hand (e.g., outlier analysis).

Steps (1-2) involve multiple methods with parameters. For instance, the graph
embeddings methods require defining the number of layers and epochs. For an
analyst, such parameter choices pose a challenge as he has to determine suitable
methods and their input parameters to generate useful embeddings. We consider the
flexibility of using different temporal summarization methods and graph embeddings
as an advantage of our approach and a possibility for future work.

Another challenge for steps (1-2) is the computational scalability for the precomputa-
tion of the embeddings. For example, the computation of a dynamic graph of length
T with |V | nodes and |E| edges require for only union graphs O(log(T ) · (|V |+ |E|))
memory and time complexity. We speed up the computation of temporal summaries
by parallelizing each level’s snapshot generation and using an interval tree. Goyal
and Ferrara [123] surveyed the time complexity of graph embeddings, and scalable
embeddings run in the time complexity of O(|E|). Due to the time and memory
complexities, we suggest computing the graph embeddings for large-scale dynamic
graphs on a server.
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Step (3) aims to display the temporal dimension at multiple scales, which poses new
user-related aesthetic challenges [30]. To preserve the mental map, we compute
and use only one layout for each applied visual metaphor (e.g., global node-link
diagram layout). An analyst can change the global layout for all snapshot views, for
instance, by reordering the cells and rows of the adjacency matrix visualization. The
snapshot views can also result in adjacent snapshots displaying different dynamic
graph visualizations (e.g., node-link and matrix visualization). Consequently, the
mental map between such views cannot be preserved as it is not possible to track
and identify changes efficiently. We provide brushing and linking methods to
minimize the cognitive load of identifying nodes in different visual metaphors.
Another limitation of our approach is the fact that specific snapshots can be mistaken
for other periods (temporal aliases [30]). We aim to overcome such temporal
aliases by displaying the period in each snapshot view and the time context bar
highlighting the underlying period in the overall temporal context. We consider
these aesthetic challenges [30] as open possibilities for developing new methods for
the interactive comparison of two or more snapshots at different granularities. For
example, investigating how such mixed visual metaphors impact the overall user
experiences poses an opportunity for future work.

The applied methods during the visual analysis influence our approach’s computa-
tional and visual scalability. For instance, the live computation of displayed graph
summaries scales linearly to the number of time steps and the size of the evolving
graphs. Furthermore, the real-time analysis of snapshots can suffer based on the
algorithmic time complexities of applied methods, for example, the Clauset-Newman-
Moore community detection algorithm [78]. A possible solution to these challenges
is to investigate how graph embeddings can be utilized to guide an analyst towards
temporal changes to speed up the analysis process. Furthermore, the display space
limits the visual scalability and readability of structural properties in a snapshot view
since they depend on the number of presented snapshots. To address this, we limit
and automatically abstract the number of depicted snapshot views to provide visually
readable representations. The limit for the number of snapshots is adjustable and is,
as a heuristic, limited to six snapshot views for each level. The visual scalability can
also be increased by adapting the visual metaphors based on graph properties, such
as automatically presenting matrix-based visualization for dense graphs.

We showed the approach’s applicability through the visual analysis of similar periods
in a dynamic hyperlink graph, which required an initial starting point for the
similarity search (e.g., the election week). An analyst has to be aware of such states in
advance or apply automated analysis methods to identify them, for instance, by using
change-point detection [7] algorithms on the graph embeddings. Furthermore, the
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variety of functionality also affects the usability of the approach since the application
prototype can be challenging to use for untrained users. In general, the usage of user
guidance in combination with the potential application of more automatic analysis
methods (e.g., outlier detection algorithms), can help to set high-level snapshots in
the context of low-level snapshots, drill down the temporal hierarchy, and steer the
user towards a useful combination of data and visual transformations to highlight
specific trends. For example, the utilization of sub-queries in the temporal hierarchy
can be used to steer an analyst towards fine-grained states with particular graph
properties (e.g., motifs).

A limitation of our work is the lack of a formal comparative study to compare
Multiscale Snapshots with other visual analytics approaches. In general, such a
comparison remains challenging as our approach allows us to integrate visualization
techniques (e.g., van Elzen et al. [103]), which is a simple way to increase the
overall task coverage. Despite the shortage of a comparative study, our quantitative
evaluation and the usage scenario highlight key benefits of our approach, such
as the multiscale embedding of sequences of graphs to speed up analytical tasks
(e.g., similarity search). Graph embeddings come with the sacrifice of informa-
tion loss compared to methods such as the computation of graph editing distance
(GED) [51]. In future work, we aim to overcome shortcomings by integrating new
visual metaphors to allow analysts to examine snapshots and their graph embeddings
to understand and interpret the quality of the underlying graph embeddings.

6.6 Conclusion

In this chapter, we presented Multiscale Snapshots, a visual analytics approach, to
provide an overview of a dynamic graph. The approach consists of three steps:
creating multiscale temporal summaries, applying graph embeddings, and semi-
automatic visual analysis. The combination of the steps enables us to visually
explore how temporal and structural properties affect the overall dynamic graph. We
implemented a prototype and showed in a quantitative evaluation that the approach
helps to identify similar temporal states in artificial and real-world dynamic graphs.
We also show the applicability by a usage scenario analyzing a real-world dataset,
demonstrating that patterns in dynamic graphs can be visually analyzed over time.
The application of Multiscale Snapshots and the underlying multiscale temporal
analysis paradigm is not limited to dynamic graphs and can be extended to work
with any temporal data. For instance, the Multiscale Snapshots approach can be
adjusted to support the user-driven analysis of multivariate time-series data.

142 Chapter 6 Multiscale Visual Analysis of Temporal Summaries in Dynamic
Networks



Conclusions and Future Work 7
7.1 Conclusion

This thesis presented studies for enhancing the multiscale visual analysis of dynamic
networks. The proposed visualizations combine automated analysis methods with
interactive visualizations to provide an overview of large-scale dynamic networks
at different abstraction scales. The presented multiscale dynamic network visu-
alizations scale to larger datasets, produce less clutter, and reveal the emergence
of patterns at different abstraction scales. Moreover, the interactive visualizations
help understand the implications of abstraction methods, identify useful abstraction
scales, and present the data in a readable and scalable manner.

Overall, the thesis makes several contributions to information visualization and
visual analytics research. This thesis presents studies to improve and advance the
multiscale visual analysis of dynamic networks. The following paragraph provides an
overall picture, summarizing each chapter’s contributions. First, Chapter 2 presents a
comprehensive overview and taxonomy of multiscale visualizations. Researchers and
practitioners can use the literature analysis to understand common design practices,
trends, and research gaps to create new multiscale navigation and visualization tech-
niques. Next, Chapter 3 proposes a design study for the multiscale visual abstraction
of spatio-temporal networks in the field of collective animal behavior. The proposed
glyph designs enable domain experts to seamlessly encode relationships between
individuals and groups of movers to reveal emergent group properties over time. In
addition, the chapter presents a spatio-temporal clustering benchmark for the field of
collective animal behavior. Chapter 4 presents dg2pix, a pixel-based visualization to
provide a scalable overview of temporal and structural changes in dynamic networks.
The multiscale visualization technique reveals changes and similar temporal states in
a dynamic network. dg2pix also enables analysts to interactively adapt the temporal
analysis scale to compare high-level and fine-grained structural changes. Chapter 5
proposes two complementary pixel-based visualizations based on motif and graphlet
network analysis to provide a time-scalable overview of dynamic networks. The
proposed visualizations allow exploring significant topological motif changes to re-
veal similar temporal states, trends, and outliers in different-sized networks. Finally,
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Chapter 6 presents Multiscale Snapshots, a visual analytics approach to visually
analyze temporal and structural summaries of dynamic networks at multiple tem-
poral scales. The approach enables analysts to retrace dynamic patterns, changing
graph structures, and similar temporal summaries by exploring both structural and
temporal aggregates in a dynamic network.

"How can we enhance the multiscale visual analysis of dynamic networks?" was the
driving research question of this thesis. Thus, this thesis proposed designs and visu-
alization approaches to visually analyze large-scale dynamic networks in a readable
and scalable way. We learned valuable lessons from analyzing common design prac-
tices for multiscale visualization and developing the presented multiscale dynamic
network visualizations. First, multiscale visualizations reduce visual clutter and
enhance visual scalability. However, such multiscale visualizations are relatively
challenging to use for untrained analysts and hence require the integration of semi-
automatic analysis methods to facilitate the exploration of large-scale datasets. For
instance, the Multiscale Snapshots approach utilizes a hierarchical temporal abstrac-
tion combined with unsupervised graph learning methods to semi-automatically
explore similar temporal summaries in a dynamic network. Second, visualization
practitioners must design multiscale dynamic network visualizations based on task
and requirement analyses for particular application domains. In such applications,
the utilized abstraction methods and visual metaphors have to be adjustable based
on the analysis scale, ideally leveraging already existing domain-specific visual
metaphors. For example, the MotionGlyphs design study combines data and visual
abstraction methods to simplify and abstract dense spatio-temporal networks based
on a domain-specific requirements analysis. Third, multiscale dynamic network visu-
alizations have to abstract both the relational and temporal data aspects and display
data abstraction measurements to help analysts assess and understand the effects of
abstraction methods across different scales. For instance, in dg2pix, the multiscale
pixel visualization allows analysts to visually analyze temporal changes and similar
temporal states across different temporal scales while maintaining an overview of
the visualized temporal granularities. Finally, multiscale visualizations must present
high-level overviews with low-level details at the same time to reveal and retrace
structural changes in a dynamic network. Therefore, this thesis proposed several
dense pixel-based visualizations to display large amounts of abstracted dynamic
network data without overlap and clutter while using the whole display space. For
example, we proposed two complementary pixel-based visualizations based on motif
and graphlet network analysis methods to provide an overview and detailed view of
changing network structures over time.
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In summary, this thesis presented multiscale visualizations to analyze long sequences
of large-scale dynamic networks. The presented studies allow analysts to visualize,
navigate, and relate the relational and temporal data across multiple abstraction
scales. The main contributions are the multiscale visualization taxonomy and
the presented multiscale dynamic network visualizations, including MotionGlpyhs,
dg2pix, the motif-based pixel visualizations, and the Multiscale Snapshots approach.
The presented multiscale visualizations provide an overview of large-scale dynamic
networks and allow identifying, comparing, tracing, and interpreting similar network
structures over time. We showed the usefulness and applicability of each approach
through use cases, benchmarks, or domain expert evaluations. The presented studies
and visualization approaches are also generalizable to other application domains
with similar network analysis tasks. The proposed multiscale visualizations are
released as open-source projects and available online (see Section 1.3).

7.2 Future Perspectives

The following paragraphs highlight general promising research challenges and
future perspectives for the multiscale visual analysis of dynamic networks. Moreover,
the thesis outlines future work for each respective multiscale dynamic network
visualization at the end of each chapter.

Multiscale Comparison of Dynamic Networks A relatively unexplored task is the
comparison of multiple networks over time. The main goal of such a comparison
has to be the alignment and comparison of relational and temporal data within and
across multiple dynamic networks. For example, comparing information diffusion
over different temporal granularities is crucial for understanding how information
spreads across networks, such as fake news in social networks or information
about predators in animal swarms. Such a multiscale network comparison poses
interesting visualization and interaction challenges. Ideally, such a visualization
enables analysts to compare multiple different-sized networks while still preserving
the analyst’s mental model by providing an overview of the temporal ordering and
the relationship between the temporal granularities. A potential solution can be the
usage of hierarchical temporal aggregation and dimensionality reduction methods
comparable to the Multiscale Snapshots approach. Yet, visualization practitioners
need to develop novel multiscale comparison and interaction methods to align and
compare multiple networks over different temporal scales.
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Motifs in Dynamic Networks Various network visualizations utilize motifs to ab-
stract and present underlying similar sub-network structures. However, visualization
approaches rarely use network motifs to explore structural changes in dynamic
networks. Such dynamic network motif visualizations can help gain insight into
specific communication patterns or interaction mechanisms in dynamic networks.
For instance, this thesis presented approaches for visually analyzing structural motif
changes over time. Therefore, future dynamic network visualizations must support
the visual analysis of temporal motifs [237], i.e., a sequence of motifs in the dy-
namic network. However, visualizing temporal motifs remains challenging since
they can also occur at different temporal granularities, thus, requiring multiscale
visualizations. A potential method for visualizing temporal motifs is displaying the
patterns in a multiscale pixel visualization, displaying temporal motifs in a scalable
and readable way.

Multivariate Dynamic Networks Nodes and edges in dynamic networks often have
time-varying multivariate attributes. For example, in social hyperlink networks [188],
edge attributes can be text messages of varying lengths with more than additional
80 attributes. The primary challenge for multivariate dynamic network visualization
is encoding the node and edge attributes within a possible multiscale relational
and temporal analysis scale. A potential method for encoding multiple additional
node attributes is the usage of multiscale temporal glyphs or displaying the average
attributes over time as line charts in a hierarchy of small multiples, similar to the
Multiscale Snapshots approach. In such cases, the simultaneous visualization of
evolving network structure and changing attributes is essential for understanding
how structural shifts potentially influence node or edge attribute changes.

User Guidance for Multiscale Visualizations Visually analyzing large-scale datasets
with multiscale visualizations is often challenging for untrained analysts due to the
number of abstraction methods and scales, having numerous input parameters. For
example, analysts often need to specify the temporal discretization scales in advance
based on the application domain and the underlying user tasks. The number of
potential abstraction methods and scales, including their input parameters, affects
the usability of multiscale visualizations. Thus, developing multiscale user guidance
methods is necessary to guide analysts semi-automatically toward useful abstraction
methods, scales, and input parameters. For instance, the Multiscale Snapshots
approach helps analysts to semi-automatically search in a hierarchy of temporal
summaries to reveal similar network structures over time. Visualization practitioners
need to develop new user guidance methods to help guide analysts in the multiscale
visual exploration of large-scale datasets.
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Graph Representation Learning Recently, researchers proposed novel deep learn-
ing methods to help understand large-scale networks, such as graph representation
learning [134]. The proposed methods automatically learn relevant network features
without any feature engineering. The proposed graph representation learning meth-
ods perform better than most state-of-the-art methods for particular tasks (e.g., node
classification [126]). However, the proposed methods are mainly black-box models,
which remain difficult to explain and understand. Thus, developing novel multiscale
visual analytics systems that integrate graph representation learning methods can
help understand, explain, and debug such black-box models. A potential solution
is the visual exploration of the latent spaces, helping generate initial hypotheses
about such black box models. For instance, the visual exploration of the latent
space using dg2pix and displaying the underlying network structures can help to
understand which potential network properties have been learned in each latent
space dimension.
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