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ABSTRACT
Various spatio-temporal clustering methods have been proposed
to detect groups of jointly moving objects in space and time. How-
ever, such spatio-temporal clustering methods are rarely compared
against each other to evaluate their performance in discovering
moving clusters. Hence, in this work, we present a spatio-temporal
clustering benchmark for the �eld of collective animal behavior. Our
reproducible benchmark proposes synthetic datasets with ground
truth and scalable implementations of spatio-temporal clustering
methods. The benchmark reveals that temporal extensions of stan-
dard clustering algorithms are inherently useful for the scalable
detection of moving clusters in collective animal behavior.
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1 INTRODUCTION
Spatio-temporal clustering is crucial for analyzing groups of moving
objects in various applications, such as in transportation analysis
or the study of collective animal behavior. A central task in such
domains is it to identify moving clusters, a group of objects moving
close together in space and time [9]. However, identifying suchmov-
ing clusters remains challenging due to often large-scale datasets,
resulting in a trade-o� between computational cost and accuracy.
In addition, the performance of spatio-temporal clustering methods

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
HANIMOB’21, November 2, 2021, Beijing, China
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-9122-1/21/11. . . $15.00
https://doi.org/10.1145/3486637.3489487

is rarely compared against each other, posing a challenge for users
to select accurate and scalable methods.

Hence, in this work, we present a benchmark of spatio-temporal
clustering in the �eld of collective animal behavior. The bench-
mark proposes 3600 datasets with varying data characteristics to
compare the performance of di�erent common spatio-temporal
clustering methods. We believe that our benchmark enhances the
experimental reproducibility of spatio-temporal clustering results
within animal movement ecology. For the benchmark datasets and
implemented methods, please refer to our online project page. 1 In
summary, our main contributions are: (1) A diverse set of synthetic
collective behavior datasets with ground-truth, (2) a reproducible
benchmark of spatio-temporal clustering algorithms, and (3) scal-
able implementations of spatio-temporal clustering methods.

2 BACKGROUND
Research in collective animal behavior is focused on the interac-
tions and emergent behaviors of animal groups [12]. Much of this
research is framed from the perspective of self-organization, ex-
ploring how global patterns emerge from local rules of interaction.
Therefore, a core aspect of understanding animal collectives is un-
derstanding the spatio-temporal rules of interactions governing
group behavior. This general framework has numerous use cases,
from social insects [5], to shoals and schools of �sh [20], and groups
of primates [18]. From a biological perspective, it is essential to
know whether individuals form loose and temporary associations,
which promotes only weak recognition and social complexity, from
groups that form long-term, stable associations with familiar in-
dividuals [14]. Thus, understanding the nature and frequency of
interactions in animal collectives represents a core goal of the �eld.
Analyzing movement patterns helps to discover collectives, such as
the clustering of �ocks [11], swarms [15], or convoys [22]. Here, we
use the termmoving clusters as described by Dodge et al. [9] instead
of domain-speci�c terms, such as �ocks, swarms, or convoys.

Spatio-temporal clustering methods can be classi�ed into tech-
niques for trajectory and moving object clustering [15]. Trajectory
clustering usually uses speci�c geometric distance metrics (e.g.,
dynamic time warping or Hausdor� distance) to compute simi-
larities between the mover’s trajectories and utilizes afterward
standard clustering techniques (e.g., K-means) [21]. Moving object
clustering discovery, on the other hand, identi�es similar move-
ment behavior directly by adapting classical clustering algorithms
to spatio-temporal data, such as the spatio-temporal extension of
DBSCAN [4]. For further reading on spatio-temporal clustering, we
refer to the surveys of Kisilevich et al. [13], Yuan et al. [21], Atluri
et al. [3], and Ansari et al. [2].

1github.com/eren-ck/spatio-temporal-clustering-benchmark
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In contrast to previous work, we present a spatio-temporal clus-
tering benchmark comparing methods against each other to eval-
uate their performance. Until now, experimental studies usually
compare spatio-temporal clustering methods against baselines on
custom datasets. For instance, Agrawal et al. [1] propose ST-OPTICS
and compare the method against ST-DBSCAN [4]. As there is no
uni�ed and commonly used experimental dataset and protocol, it re-
mains challenging to compare the performance of spatio-temporal
clustering methods. Therefore, we propose a benchmark for detect-
ing moving clusters in collective animal behavior to overcome these
prevailing shortcomings, focusing on generated synthetic data with
ground truth, and presenting state-of-the-art baseline methods.

3 BENCHMARK DESIGN
3.1 Problem Statement
Spatio-temporal clustering aims to detect jointly moving objects
in space and time without having any labels. Intuitively a moving
cluster can be seen as a sequence of static spatial clusters with
the objects being spatially close to each other during the whole
sequence. Identifying such moving clusters is valuable for vari-
ous applications in animal movement ecology, such as analyzing
migrating bird �ocks. In such applications, we cannot cluster the
spatio-temporal data with standard clustering methods (e.g., DB-
SCAN [10]) due to the temporal dimension. Hence, detecting such
moving clusters requires adopting clustering methods utilizing sim-
ilarity metrics that partition both the spatial and temporal data
dimensions. Ideally, such spatio-temporal clustering methods are
scalable to large-scale datasets, handle high-dimensional data with
additional attributes, and discover arbitrary cluster shapes [1].

3.2 Dataset Design
The goal of our dataset design was to generate realistic spatio-
temporal datasets with ground truth. We used three collective be-
havior models to generate synthetic datasets with known ground
truth clusters, covering all the main features of existing models.

First, the seminal Reynolds model [17] is based on �xed speed
agents which change the direction of their movement according to
three basic concepts: if two agents are too close together, they will
repel each other, each agent has a contribution to move towards
the center of its neighbors inside an interaction radius and to align
their movement with these same neighbors. It is fundamental to
notice that from the three described models, the Reynolds model is
the only one without inertia, meaning an agent is allowed to invert
its direction of movement in one time step completely.

Second, the Couzin model [8], similarly to the Reynolds model,
has the same three behaviors, but each in a di�erent zone, which
depends on the distance of the focal agent. If an agent has one or
more neighbors at a distance' smaller than'zor, it will only present
repulsion in the opposite direction. If a focal agent has no neighbors
to which it is repelled, it will try to match the orientation of all
neighbours that are at a distance ' where 'zor � ' < 'zoo, and are
attracted to all neighbours that are in the zone 'zoo � ' < 'zoa.
Unlike the Reynolds model, here we have a limitation to a maximum
turning rate \ of how fast an agent can reorient itself, and a blind
angle U directly behind the direction of movement, where the focal
agent ignores the contribution of neighbors located there.

Third, the Gautrais-Calovi model is a data-driven model based
on the experiments by Gautrais and collaborators [6]. Movement
is described as a persistent turning walker model (PTW), meaning
that, di�erently from the previous models, all interactions act on the
turning speed of the agent instead of directly a�ecting its heading.
In this model, agents do not have a de�ned radius of interaction or
an abrupt regime change depending on the distance: agents interact
with the agents comprising the �rst shell of the Voronoi neighbors.
Each agent in this �rst shell will always contribute to the attraction
and alignment of the focal agent. The contribution is modulated by
a continuous function that goes to zero directly ahead and behind
the agent, as an analogous (but continuous) blind zone as seen in
the Couzin model. The model is the only one that does not have
a repulsion contribution since, in their original experiments, the
authors observed that agents used depth to avoid collisions.

Some of the principal results coming from these models are
phase transitions from order and disorder (seen in all three models)
and the existence of di�erent behavioral models, such as polarized
(schooling) and vortex (milling) for the Couzin and Gautrais-Calovi
models. The Gautrais-Calovi model has also investigated in detail
these behavioral modes and observed the existence of clear inter-
mittence between the polarized and vortex state, where the group
will spontaneously shift from one state to the other.

We used data generation models several times with di�erent
parameters and later concatenated them to obtain datasets with
clusters. We created 30 datasets with a length of 50,000 time steps,
varying numbers of movers, clusters, and di�erent input parameters
for each model to obtain datasets with distinct characteristics, e.g.,
di�erent cluster densities. We enclosed the exact input parameter
con�gurations for each dataset with our datasets.

Afterward, we randomly sampled from the produced 90 datasets
a variety of di�erent sized datasets, with a varying number of mov-
ing objects, clusters, and timesteps. We likewise added noise by
randomly sampling and attaching single movers from the initial 90
datasets. Furthermore, we also subsampled moving objects from
the original moving clusters randomly over time, for instance, we
randomly subsampled 20 movers from a cluster with 50 movers.
Through the sampling, we generated diverse datasets with di�erent
temporal lengths, cluster densities, uncertainty, and noise. We gen-
erated 100 datasets for the three collective behavior models with
the temporal lengths of 100, 300, 600, 900, 1200, 1500, 1800, 2100,
2400, 2700, 3000, and 3500. Every dataset has up to ten clusters with
up to 20 agents per cluster. The dataset sizes range from 1200 up to
520,000 data points. As a result, we obtained 3600 spatio-temporal
datasets with a diverse set of data characteristics.

3.3 Evaluation Metrics
We compared the performance and execution time of the spatio-
temporal clustering methods. We measured the clustering quality
using the ground truth with the adjusted mutual information (AMI)
score [19]. We employed the adjusted metric to ensure that uniform
random label assignments will result in scores close to zero. In
addition, we captured the run-time in seconds of each algorithm for
all synthetic datasets. Moreover, we limited the clustering run-time
to 120 seconds, meaning that if an algorithm takes longer than two
minutes, we canceled the respective clustering method.
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4 EXPERIMENTS
4.1 Methods
We compare two standard baseline methods against a set of tempo-
ral extensions of standard clustering algorithms. The two baselines
are ST-DBSCAN [4] and trajectory clustering using Euclidean dis-
tance as a similarity measure. 2

Our implemented clustering algorithms extend standard algo-
rithms in two ways by (1) processing large-scale datasets by split-
ting the datasets into frames and thus (2) generalizing them to
discover clusters in spatio-temporal clusters. We argue that we
can adjust most clustering algorithms to accommodate not only
spatial but also temporal features. Two approaches inspired our tem-
poral extensions of clustering algorithms. First, ST-DBSCAN [4]
uses two distance parameters to assess whether a data point is
density-reachable from another data point. Second, the splitting
and merging process for spatio-temporal data by Peca et al. [16].
Building on these ideas, we (1) split the dataset periodically into
overlapping frames, (2) �lter the distance matrix of data points
using a temporal distance parameter, (3) employ standard cluster-
ing algorithms, and afterward (4) merge the results of subsequent
frames. Only subsets of the original data are loaded into memory
by splitting the temporal dimension into frames using a �xed time
window. Two subsequent frames also always have an overlapping
period to ensure that we can merge the resulting cluster labels of
individual frames. We benchmark the outlined extension for the fol-
lowing scalable clustering methods: DBSCAN [10], agglomerative
clustering, K-Means, BIRCH, and HDBSCAN [7] using the follow-
ing implementations. 3 Moreover, we implemented spatio-temporal
extensions of spectral and a�nity propagation clustering methods.
However, even for smaller datasets, both methods required more
than two minutes of execution time.

We perform a simplistic hyperparameter search by grid search
for the 3600 datasets and each clustering method. The searched pa-
rameter space examines suitable parameter combinations, which we
speci�ed based on the generated data characteristics. For instance,
we determine the number of clusters for the temporal extension of
K-Means using the dataset ground truth. To guarantee the success-
ful merging of cluster labels across frames, we choose an overlap of
10% between two subsequent frames. In summary, we compare two
baseline approaches against a set of scalable temporal extensions of
standard clustering algorithms. We evaluate the clustering quality
and execution time in detecting moving clusters.

4.2 Experimental Setup
All experiments were computed on a server with 30 CPU cores (Intel
Xeon CPU E5-2640 v3 @ 2.60GHz) and 162 GB RAM. The setup
with so much main memory is necessary for the baseline methods.
For example, ST-DBSCAN calculates a distance matrix between all
points and thus has a quadratic memory consumption. We excluded
the parameter search in our run-time analysis. If the underlying
clustering implementations were parallelized, we employed the
parallelization functionality.

2Using implementations of: github.com/GISerWang/Spatio-temporal-Clustering and
github.com/cshjarry/trajectory_cluster.
3Using implementations of: github.com/scikit-learn/scikit-learn and github.com/scikit-
learn-contrib/hdbscan.

4.3 Results
Fig. 1 shows the respective results for grouped dataset sizes. For
instance, the �rst group 800 encompasses all data sets containing
800-3000 data points. The AMI results show that the temporal ex-
tensions of the standard algorithms and the ST-DBSCAN baseline
method achieve comparable clustering quality for small datasets,
for instance, less than 20,000 data points). However, the baseline
ST-DBSCAN method does not scale to large datasets due to the
quadratic memory consumption. Moreover, the trajectory cluster-
ing method using the Euclidean distance fails to detect moving
clusters, even for smaller datasets. In addition, we identi�ed three
scalable clustering methods, speci�cally the temporal extensions
of HDBSCAN, DBSCAN, and agglomerative clustering. For larger
datasets, the AMI decreases due to increasing cluster overlaps and
consequently growing merging errors for subsequent overlapping
frames. Our temporal extension of ST-DBSCAN scales the furthest,
up to 200,000 data points. The execution time highlights the per-
formance of each method. Some methods only scale to small data
sets, such as the baseline ST-DBSCAN or the baseline trajectory
clustering method. The standard clustering method’s temporal ex-
tensions are scaling better considering the datasets are split into
subsequent frames and then merged again, requiring no quadratic
memory consumption. However, the potential merging process also
causes defects due to possible spatial overlaps within the overlap-
ping frames. Furthermore, none of the evaluated methods detected
moving clusters in datasets larger than 200,000 points within two
minutes of run-time.

The benchmark results show the performance of our temporal
extensions of standard clustering methods is useful to detect mov-
ing clusters in collective animal behavior datasets. We recommend
using our temporal extension of ST-DBSCAN or ST-HDBSCAN to
identify moving clusters if the number of clusters is not known
in advance. If the number of clusters is available, we recommend
agglomerative clustering. Overall, the proposed methods enable
analyzing group dynamics of swarms, �ocks, and other animal col-
lectives. We believe that the implemented spatio-temporal cluster-
ing methods are crucial to detect group and sub-groups of moving
clusters in collective animal behavior. For example, one can use the
proposed methods to study evolving structures within collectives
by exploring temporally stable and changing sub-groups.

4.4 Limitations
First, we mainly focused on the generation and comparison of 2D
spatio-temporal datasets. However, our implemented clustering
methods can also be used to cluster and benchmark 3D spatio-
temporal datasets, such as the 3D movement of a �sh shoal. More-
over, the clustering methods have several parameters that need to
be speci�ed. With a simple parameter search, we tried to set the
hyperparameters for our benchmark. However, such parameters
have to be set manually by the user in real-world applications. For
example, the frame size strongly in�uences the run-time and the
clustering quality, leading to the computation of larger distance
matrices and possibly resulting in fewer merging errors. We also
decided to use a run-time constraint of two minutes to limit the
execution time of the methods. Likewise, our datasets partitioning
into groups (e.g., 800-3000 data points) resulted in di�ering dataset
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Figure 1: The results of our benchmark. The average adjusted mutual information (AMI) score and the average run-time for
di�erent dataset group sizes are displayed. For example, the group 800 includes all datasets containing 800-3000 data points.

numbers in each group due to random data generation and sam-
pling. In our benchmark, we did not investigate moving clusters
with a varying number of movers over time. As a result, movers
are not able to switch from one cluster to another. Moreover, the
synthetic datasets are not modeling speci�c animal species but
rather capture general movement patterns of collectives.

5 CONCLUSION
We presented an initial step towards practical algorithms for �nding
spatio-temporal clusters in collective animal behavior. We gener-
ated numerous synthetic datasets and compared the performance
of di�erent spatio-temporal clustering algorithms. Based on our
benchmark, we report that temporal extensions of standard cluster-
ing methods (e.g., ST-HDBSCAN) are valuable and scalable methods
to detect moving clusters in the �eld of collective animal behavior.
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