
Measure-Driven Visual Analytics
of Categorical Data

Doctoral thesis for obtaining the

academic degree of

Doctor of Natural Sciences (Dr. rer. nat.)

submitted by

Frederik Dennig

at the

Faculty of Sciences

Department of Computer and Information Science

Konstanz, 2024

Konstanzer Online-Publikations-System (KOPS) 
URL: http://nbn-resolving.de/urn:nbn:de:bsz:352-2-nj5k6k8ri1t02



Doctoral Thesis of the University of Konstanz
Day of the oral examination: July 17th, 2024

1. Referee: Prof. Dr. Daniel A. Keim, University of Konstanz
2. Referee: Prof. Dr. Tobias Schreck, Graz University of Technology



(This page intentionally left blank)



Dennig, Frederik
Measure-Driven Visual Analytics of Categorical Data
Dissertation, University of Konstanz, 2024



Abstract

Visual Analytics (VA) enables data analysts and domain experts to engage in an-
alytical reasoning through interactive visual interfaces. One type of data often
encountered in data analysis tasks is categorical data. Unlike numerical data, cate-
gorical data with nominal attributes has no inherent order or scale and, therefore,
does not lend itself to the application of common arithmetic operations. However,
many data mining and visualization techniques are predominantly based on numeri-
cal data. Notwithstanding these challenges, the analysis of categorical data is crucial
in various domains, including linguistics and software engineering. This dissertation
addresses the challenges posed by categorical data, including difficulties in establish-
ing an order of attributes for visualization and defining numerical abstractions. This
work bridges the qualitative-quantitative divide in the visual analysis of categorical
data by introducing abstractions that improve the readability of categorical data
visualizations, developing new strategies for applying methods typically designed
for numerical data, and exploring their interplay with numerical data. This thesis is
structured in three parts: The first part introduces quality measures for the Parallel
Sets visualization. In addition, we present measures that guide the exploration of
categorical data projections by suggesting attributes that differentiate groups of
data items. The second part presents measure-driven approaches for expressing
categorical data properties and deriving numerical representations for the domains
of linguistics and software engineering, demonstrating the power of measure-driven
approaches in real-world applications. The third part addresses the joint analysis of
categorical attributes and numerical data dimensions. It offers strategies for the use
of categorical data for model training and exploratory data analysis in supervised
and unsupervised frameworks. Finally, this thesis outlines the limitations and lessons
learned from the explored measure-driven approaches and suggests future directions
for more effectively integrating categorical data into VA with the goal of improv-
ing the readability of visualization, pattern quantification and user guidance. In
conclusion, this work improves the analysis and visualization of categorical data by
proposing new measure-driven approaches, improving readability and interpretabil-
ity of visualizations, providing domain-agnostic and domain-specific support for
exploratory data analysis, and their integration into supervised and unsupervised VA
frameworks.
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Zusammenfassung

Visual Analytics (VA) ermöglicht es Datenanalysten und Fachexperten, über inter-
aktive visuelle Schnittstellen analytische Überlegungen anzustellen. Eine bei der
Datenanalyse häufig anzutreffende Art von Daten sind kategoriale Daten. Im Gegen-
satz zu numerischen Daten haben kategoriale Daten mit nominalen Attributen keine
inhärente Ordnung oder Skala und eignen sich daher nicht für die Anwendung
gängiger arithmetischer Operationen. Viele Data-Mining- und Visualisierungstech-
niken beruhen jedoch überwiegend auf numerischen Daten. Trotz dieser Heraus-
forderungen ist die Analyse kategorischer Daten in verschiedenen Bereichen wie
Linguistik und Software-Engineering von entscheidender Bedeutung. Diese Dis-
sertation befasst sich mit den Herausforderungen, die kategoriale Daten mit sich
bringen, einschließlich der Schwierigkeiten bei der Festlegung einer Reihenfolge
von Attributen für die Visualisierung und der Definition numerischer Abstraktionen.
Diese Arbeit überbrückt die Lücke zwischen Qualität und Quantität in der visuellen
Analyse kategorialer Daten, indem sie Abstraktionen einführt, die die Lesbarkeit
kategorialer Datenvisualisierungen verbessern, neue Strategien für die Anwendung
von Methoden zur Analyse numerischer Daten vorstellt, und das Zusammenspiel
kategorischer und numerischen Daten untersucht. Diese Dissertation ist in drei Teile
gegliedert: Der erste Teil führt Qualitätsmaße für die Parallel Sets Visualisierung ein.
Darüber hinaus stellen wir Maße vor, die die Exploration von Projektionen kategori-
aler Daten leiten, indem wir Attribute vorschlagen, die Gruppen von Datenelementen
unterscheiden. Der zweite Teil stellt maßgetriebene Ansätze vor, um Eigenschaften
kategorialer Daten auszudrücken und numerische Darstellungen für die Bereiche
Linguistik und Software-Engineering abzuleiten und demonstriert deren Stärke in
praktischen Anwendungen. Der dritte Teil befasst sich mit der Analyse kategori-
aler Attribute in Kombination mit numerischen Datendimensionen. Er beschreibt
Strategien für die Nutzung von kategorialen Daten, für das Trainieren von Mod-
ellen und für die explorative Datenanalyse, in überwachten und unüberwachten
Frameworks. Abschließend werden in dieser Arbeit die Grenzen und Lehren aus
den untersuchten maßgetriebenen Ansätzen aufgezeigt und Vorschläge für eine
effektivere Integration kategorialer Daten in VA gemacht, mit dem Ziel, die Les-
barkeit von Visualisierungen zu verbessern sowie die Mustererkennung und User
Guidance zu optimieren. Zusammenfassend verbessert diese Arbeit die Analyse und
Visualisierung kategorialer Daten, indem sie neue maßgetriebene Ansätze vorschlägt,
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die Lesbarkeit und Interpretierbarkeit von Visualisierungen verbessert, domänenun-
abhängige und domänenspezifische Unterstützung für die explorative Datenanalyse
bietet und deren Integration in überwachte und unüberwachte VA-Frameworks
ermöglicht.
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Introduction to Visual
Analytics of Categorical Data

1
Contents

1.1 Supporting Categorical Data Analy-
sis and Research Questions . . . . . 3

1.2 Contributions and Thesis Structure . 6

1.3 Publications . . . . . . . . . . . . . . 13

1.4 Open Science and Replication Data . 18

Visual Analytics (VA) [180, 176, 303, 179,
266] facilitates analytical reasoning through
interactive visual interfaces combining the
fields of Information Visualization (InfoVis)
and Data Mining with the primary goal to
enable humans to effectively understand and analyse complex datasets. VA uses
visual representations and interaction methods of Human-Computer Interaction (HCI)
[209, 93] to help users discover patterns, correlations, and other relationships within
large and complex datasets that would be difficult to uncover using traditional ana-
lytical methods. This interdisciplinary approach leverages the cognitive processing
capabilities of humans and the computational power of computers to support de-
cision making, problem solving and discovery in diverse domains such as business
intelligence, healthcare, security and research. VA emphasizes the importance of
visualization in the analytical process, not only for presenting results, but as an
integral part of exploration, hypothesis generation, and validation. Complex datasets
often contain a wide variety of data types. These can range from qualitative and
quantitative variables found in high-dimensional datasets to other representations
such as geographic [234] and network data [51], all of which may be in a temporal
context [151, 6].

The domain of qualitative variables is defined by the term categorical data [44,
90, 5, 36], which describes non-numerical properties of a data item representing
characteristics such as gender, nationality, brand preference or type of cuisine. More
specifically, categorical data is further divided into two subtypes, nominal and or-
dinal. Nominal data describes categories that have no inherent order or ranking
among themselves. Nominal attributes are used to label or name properties of
items in a dataset. Examples include colors (e.g., “red”, “blue”, “green”) or types
of animals (e.g., “dog”, “cat”, “bird”). Ordinal data consists of categories that do
have a natural order or ranking, but the intervals between the categories are not
necessarily consistent or defined. Examples of ordinal data include educational
levels (e.g., “high school”, “undergraduate”, “graduate”), satisfaction ratings (e.g.,
“satisfied”, “neutral”, “dissatisfied”), or stages of disease (e.g., “mild”, “moderate”,
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“severe”). Categorical data is fundamental to statistical analysis and research because
it allows you to classify and compare different groups or entities based on qualitative
characteristics. It is widely used in surveys, polling, marketing research, and many
other disciplines where data needs to be categorized, analyzed, and interpreted.
Analyzing categorical data presents several challenges due to its unique characteris-
tics that differ from numerical data, mainly due to the fact that common arithmetic
operations such as addition, subtraction, multiplication, and division cannot be
applied.

Challenges in the Visual Analysis of Categorical Data

The visual analysis of categorical data faces several general challenges, particularly
related to the limitations in encoding variables. These challenges stem from the
inherent nature of categorical data and the need to convey meaningful information
visually without the aid of numerical scales. Here we describe general challenges in
categorical data analysis that also affect VA and InfoVis.

In many cases, particularly with nominal categorical data, there is no natural
ordering among the categories. For example, categories representing colors, genders,
or types of vehicles do not have a mathematical order that can be universally
agreed upon. Categorical data does not support meaningful distance or interval
measurements between its categories [5, 297]. While numerical data allows for the
calculation of difference or distance (e.g., the difference in temperature between two
days), categorical data does not provide a way to quantify the “distance” between
its categories, e.g., how much “different” or “farther away” is “blue” from “red”.
Because of the lack of order and distance, most mathematical operations that apply
to numerical data do not apply to categorical data. Operations such as addition,
subtraction, or averaging do not make sense for categorical data, limiting the types
of statistical analyses that can be applied. For ordinal data, where there is a sense of
order, the lack of a consistent scale poses a challenge in determining spacing or size
in visual representations.

Categorical variables can have a large number of categories, i.e., high cardinal-
ity [217], which makes them difficult to display in a visual format. Visualizing a
variable with many categories can lead to cluttered, confusing, or overly complex
visualizations that are difficult to read and interpret. Designing a visualization that
accommodates all categories without sacrificing readability and insight is a signifi-
cant challenge. Similarly, color is a standard way to encode categorical attributes.
However, there are limitations to the number of distinct, easily distinguishable colors
that can be used, which is particularly problematic for attributes with many cate-
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gories [137, 223, 204]. In addition, relying on color alone can make visualizations
inaccessible in certain cases, such as for color-blind users or when printed.

Visualizing multiple categorical variables at the same time can make it difficult
for viewers to compare across different categories or variables because the lack of
a common metric or scale across different categorical variables makes it difficult to
compare effectively, such as when using many small visualizations (i.e., small multi-
ples) [307]. For datasets with a large number of different category combinations,
visualizing categorical data in a single visualization can result in overplotting, where
parts of the visualization overlap, making it difficult to discern groups, relationships,
or even individual categories [228]. Thus, ensuring the interpretability of categorical
data and providing context through visual means requires careful consideration of
visualization design. Labels, legends, and annotations are critical, especially when
dealing with abstract categories that may require additional explanation for the
viewer to understand.

Finally, categorical data is often present in conjunction with quantitative data,
called mixed data [14]. However, most data mining and visualization methods are
designed for one data type only, requiring categorical data to be encoded for analysis
with numerical data methods, or vice versa. One-hot encoding, label encoding, and
other methods have different advantages and disadvantages, and their suitability
varies depending on the analysis or modeling technique used [261, 57, 134]. In
particular, designing visualizations that effectively integrate and display both types of
data without overshadowing or misrepresenting one or the other can be challenging.

1.1 Supporting Categorical Data Analysis and

Research Questions

This thesis seeks to harness the potential of categorical data within the realm of
visual data analysis, with the goal of improving the analysis of such data through
the contribution of measure-driven visual analysis techniques that address all trans-
formation steps of the InfoVis Pipeline [62] (see figure 1.1). The following is a
description of three sub-research questions addressed in this dissertation that deal
with categorical data from three different perspectives: (1) categorical data visual-
izations, (2) categorical data in domain-specific applications, and (3) categorical
data and its interactions with numerical data. However, these sub-research questions
and perspectives address one overarching research question:

R
Q

0

How can we improve the measure-driven visual analysis of categorical data?

1.1 Supporting Categorical Data Analysis and Research Questions 3



Figure 1.1: This dissertation contributes measure-driven VA approaches for categorical data,
thereby addressing the transformation steps of the visualization reference model by Card et
al. [62] (i.e. the Information Visualization (InfoVis) Pipeline) and is structured along the
topics data- and visualization-driven measures as well as measures-driven frameworks.

Contributing Measures for Quality and Patterns in Categorical

Data Visualizations

In the field of data visualization, significant progress has been made in the devel-
opment of measures for evaluating quality and identifying patterns, especially for
numerical data visualizations. Classic examples include Scagnostics [330], which are
used to identify interesting patterns in scatterplots, and Pargnostics [78], tailored
for assessing the presence of patterns in Parallel Coordinate Plots (PCPs), both
visualization techniques are designed for numeric data. These measures have proven
invaluable in guiding the design and interpretation of visualizations, facilitating a
deeper understanding of the underlying data patterns and relationships [41, 33].
However, there is a notable gap in the visualization analytics landscape: the lack
of measures specifically tailored to the evaluation of categorical data visualizations.
When visualization designers set out to create effective diagrams, they have two
main options: they can either rely on their own expertise or seek out knowledge
about visualization design [325, 228, 291, 306].

In addition, categorical data, with its unique characteristics and challenges,
requires different approaches to quality assessment and pattern detection. The lack
of such measures hinders the ability of analysts and researchers to systematically
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evaluate and optimize the design of categorical data visualizations, limiting the
effectiveness of these tools in any kind of data analysis task. We therefore focus on
these challenges, which are summarized in the following research question:

R
Q

1

How can we quantify quality and patterns in categorical data visualizations?

Demonstrating the Effectiveness of Measure-Driven

Applications for Categorical Data

Given the advances in data visualization and analysis techniques in computer sci-
ence, there is a need for their application and evaluation in real-world contexts,
especially outside the confines of theoretical or computational studies [246, 109,
169, 69]. Theoretical advances and practical implementation have limited validity
and impact unless their effectiveness is demonstrated in real-world settings. This
dissertation addresses this gap by demonstrating the effectiveness of measure-driven
VA approaches tailored for categorical data in a domain-specific context. A goal
of our work is to develop and deploy methodologies driven by measures designed
for nuanced analysis of categorical data. These measures are derived from the
unique characteristics and needs of specific domains, providing a more relevant
and impactful set of analysis tools that can directly contribute to domain-specific
challenges and goals. We summarize this goal in the following research question:

R
Q

2 How can we support domain experts in the analysis process by leveraging
domain-specific measures for categorical data?

Leveraging Measures for Categorical Data in Supervised and

Unsupervised Frameworks

In the fields of VA and InfoVis, various abstract frameworks outline how different
components interact to promote insight and knowledge generation [62, 329, 125,
178, 266]. These frameworks provide a structured approach to understanding VA
and InfoVis in an abstract and comprehensive way. In addition, some frameworks are
designed for specific purposes and are evaluated by reference implementations [34,
265]. However, the development and application of visualization- and data-driven
measures within supervised and unsupervised learning frameworks have predomi-
nantly focused on quantitative data, leaving a noticeable gap in the treatment and
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analysis of categorical data. This gap is particularly evident in the lack of gener-
alized frameworks that effectively incorporate measures for categorical data. This
dissertation presents frameworks designed to apply measures in both supervised
and unsupervised learning contexts for the combined analysis of categorical and
numerical data. We address the following research question:

R
Q

3

How can we use measures for the joint analysis categorical and numerical data?

1.2 Contributions and Thesis Structure

To address the challenges described in the previous section centered around the
primary research question (R0), we focus on the visual analysis of categorical data
through the application of measures, which involves the quantification of various
elements within the VA workflow. The structure of this thesis is organized into three
main parts (see figure 1.2) that address: (1) the visualization of categorical data,
(2) the use of categorical data in different domain-specific applications, and (3) the
exploration of how categorical data interacts with numerical data.

Part I: Visualization-Driven Measures

This part focuses on quantifying categorical data visualizations, specifically quality
and patterns, and addresses research question (R1). To address this research
question, our work introduces measures to quantify the quality of Parallel Sets
visualizations, a popular visualization technique for categorical data [35, 190]. In
chapter 2, we contribute Parsetgnostics, a set of eight quality measures to improve
the visualization of parallel sets, quantifying visual clutter. ParSetgnostics quantifies
key properties of Parallel Sets, such as overlap, orthogonality, ribbon width variance,
and mutual information. Our measures are intended to provide objective criteria
for evaluating the effectiveness of Parallel Sets visualization designs in representing
categorical data, and thereby serve as a guide for their creation and refinement. We
conducted a systematic correlation analysis between the individual ParSetgnostics
measures to ensure that each measure quantifies a unique property and, thus,
is distinct from the others. We also applied ParSetgnostics to reconstructions of
six datasets previously visualized using Parallel Sets to demonstrate the effect of
clutter reduction. By optimizing visual designs based on the proposed measures,
ParSetgnostics achieves a clutter reduction of up to 81% compared to original Parallel
Sets visualizations, improving the clarity and usability of visualizations. These
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Figure 1.2: This dissertation is structured into three parts of two chapters each. Part I
covers visualization-driven measures, while Part II focuses on data-driven measures. Part III
addresses the interplay with numerical data in measure-driven frameworks.
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measures are crucial for optimizing the ordering of categories and dimensions within
Parallel Sets, aiming to improve readability and facilitate pattern quantification.
By establishing clear quality standards, we aim to improve the interpretability and
utility of Parallel Sets, facilitating their use in communicating complex relationships
to diverse audiences.

In addition to quality assessment, we also delve into the area of pattern quan-
tification within categorical data projections [55]. Chapter 3 introduces methods
for abstracting categorical data, enabling its representation in a “map metaphor”
that facilitates easier orientation, navigation, and exploration. We contribute a
new visualization technique for categorical data that overcomes the limitations of
set-based or frequency-based analysis (e.g., Euler diagrams or Parallel Sets). The
technique uses dimensionality reduction, based on defining the distance between
two data elements as the number of different attributes, to allow for more nuanced
exploration of data. It allows users to pre-attentively identify groups of similar data
elements within the visualization. This feature is particularly valuable for exploring
and understanding the structure and clustering within large categorical datasets.
The technique allows to observe which attributes have a strong influence on the
data embedding. This aspect is crucial for analysts to understand the factors that
drive the grouping and separation of data points in the visualization. We propose
two graph-based measures to quantify the visual quality of the plot. These measures
rank attributes according to their contribution to cluster cohesion, providing metrics
for evaluating the effectiveness of the visualization in revealing meaningful relation-
ships between clusters and attributes. We evaluate our approach by comparing to
traditional methods like Euler diagrams and Parallel Sets in terms of visual scalability.
This comparison highlights the advantages of the new approach in handling large
datasets with many category combinations. In addition, the usefulness and effective-
ness of the Categorical Data Map is demonstrated by an expert study involving data
scientists analyzing complex datasets (e.g., the Titanic and Mushroom datasets).
The study confirms the advantages of the method, especially when analyzing large
datasets with a high number of category combinations.

By automatically recommending views that highlight meaningful insights, these
measures enhance the exploratory analysis process, allowing analysts to uncover
and communicate key aspects of the data more efficiently. By providing tools
for systematically evaluating and optimizing visualizations, we pave the way for
more effective and insightful exploratory analysis of categorical data, improving the
decision-making process and fostering a deeper understanding of complex datasets.
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Part II: Data-driven Measures

This part details the application of measure-driven approaches for expressing prop-
erties of categorical data by deriving numerical measures through aggregation and
domain knowledge to represent categorical items within a given application area,
addressing research question (R2) by providing data-driven measures in domain-
specific applications. Specifically, we focus on two distinct but equally complex
domains: diachronic linguistics and software engineering. Both fields are rich in
categorical data, from categorizing linguistic phenomena and language patterns to
classifying software vulnerabilities and user feedback.

In chapter 4, we present the HistoBankVis application in the field of diachronic
linguistics for the interactive analysis of large and complex categorical datasets. It is
a novel visualization method specifically designed to support the interactive analysis
of complex and multidimensional data within the context of linguistic research.
HistoBankVis is tailored to facilitate the exploration and analysis of language change.
Its design is geared towards uncovering the diachronic interactions among various
linguistic factors, such as word order and subject case, particularly demonstrated
through a case study on Icelandic. One of the technical contributions is the appli-
cation of the Parallel Sets technique within HistoBankVis. This technique models
complex interrelationships among linguistic factors, showcasing the system’s ability
to visualize and analyze multidimensional data effectively. Through the application
of HistoBankVis to Icelandic linguistic data, the tool has demonstrated its powerful
potential in aiding the understanding of the interaction among case, grammatical
relations, and word order throughout the history of the Icelandic language. By en-
abling separate annotation, extraction, and comparison of linguistic data elements in
a more streamlined and interactive manner, HistoBankVis contributes to improving
the methodology of historical linguistics research. It reduces the need for painstaking
pairwise comparisons by providing visual insights into complex data relationships.

In chapter 5, we present VulnEx (Vulnerability Explorer), a tool aimed at auditing
software development organizations for third-party security risks associated with
Open Source Software (OSS) use. VulnEx targets the crucial issue of managing
and resolving potential security risks posed by third-party OSS components. Given
the widespread use of OSS, identifying Common Vulnerabilities and Exposures
(CVEs) within large software ecosystems is a pressing need for ensuring software
security. CVEs are commonly classified into ordinal categories: “Low”, “Medium”,
“High”, and “Critical”. The proposal of VulnEx as a tool to audit entire software
development organizations represents a comprehensive approach to security analysis.
Unlike more limited tools that may only analyze individual projects or components,
VulnEx is designed to provide a holistic view of vulnerability exposures across
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the entire organization. A key contribution of VulnEx is its introduction of three
complementary table-based representations specifically designed to facilitate the
identification and assessment of OSS vulnerabilities. These representations allow
users to effectively navigate and understand the landscape of vulnerability exposures
within their organization. The design of VulnEx was conducted in close collaboration
with security analysts. This collaborative approach ensures that the tool meets the
practical needs of its users and addresses real-world challenges in software security
analysis. VulnEx enables the examination of problematic projects and applications
(repositories), third-party libraries, and specific vulnerabilities. This capability is
crucial for prioritizing security efforts and directing resources toward the most
critical areas of concern. We demonstrate the applicability of VulnEx through a use
case and includes preliminary expert feedback. This feedback highlights the tool’s
potential effectiveness and value in identifying and managing security vulnerabilities
within software organizations.

By demonstrating the effectiveness of measure-driven applications in the real-
world contexts of software engineering and linguistics, we address the critical gap in
the evaluation and application of data analysis techniques outside the domain of
computer science. The adoption and application of measure-driven methodologies
for categorical data in specific domains such as software engineering and linguistics
underscores the potential of tailored data analysis tools to provide meaningful,
real-world insights.

Part III: Measure-Driven Frameworks

This part examines how the techniques developed for categorical data can be in-
tegrated with and complement analyses involving other types of data, enhancing
overall analytical capabilities. By addressing the interaction between categorical and
numerical data, this part addresses (RQ3).

In chapter 6, the FDive approach contributes to the field of data analysis and
pattern recognition in several ways: FDive introduces a novel approach that com-
bines visual analytics with active learning. This integration assists users in creating
relevance models that are not only accurate but also visually explorable, enhanc-
ing the interpretability of high-dimensional data. By employing a pattern-based
similarity learning mechanism, FDive advances the methodology for assessing the
relevance of data points. This allows for a more nuanced differentiation between
relevant and irrelevant data based on user-provided categorical labels. Utilizing
the best-ranked similarity measure, FDive calculates an interactive Self-Organizing
Map (SOM)-based relevance model. This model classifies data according to cluster
affiliations, providing a clear, visual representation of data groupings and their
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relevance. The approach includes a mechanism for soliciting additional user feed-
back by requesting labels for data elements with uncertain relevance classification.
This feature enables the continuous refinement and improvement of the relevance
model’s accuracy based on user input. FDive identifies and highlights uncertain
areas, especially near decision boundaries within the data. This allows users to
focus their attention and refinement efforts on the most ambiguous parts of the
model, enhancing model precision through targeted feedback. We demonstrate the
effectiveness of our approach through a comparative evaluation with state-of-the-art
feature selection techniques and a practical case study involving the classification of
Electron Microscopy (EM) images of brain cells. The approach is shown to enhance
both the quality and understanding of relevance models, potentially leading to new
insights in specific research areas such as brain research.

In chapter 7, we provide a comprehensive review of existing dual analysis meth-
ods across various domains, such as medicine, crime analysis, and biology. This
review helps in understanding the current landscape of dual analysis techniques.
A major contribution is the development of a unified theoretical framework for
dual analysis. This framework integrates the diverse approaches to dual analysis
into a cohesive model, addressing the gap created by the varying definitions and
implementations of dual analysis in existing research. We formalize the interactions
between the three key components of dual analysis: the visualization of feature
summaries, the visualization of data records, and the bidirectional linking of both
visualizations through human interaction. This formalization clarifies how each
component contributes to the overall analysis process and enhances the understand-
ing of dual analysis. By categorizing existing dual analysis approaches within the
proposed framework, our approach offers a structured overview of the field. This
categorization not only helps in identifying the strengths and weaknesses of current
methods but also in understanding how they fit within the broader context of dual
analysis. Our framework reveals multiple components and processing steps in which
the analysis of feature and data space can leverage categorical data, specifically
for unsupervised learning methods where using categorical labels is less common.
We identify and outline future research directions to further advance dual analysis.
Specifically, it suggests incorporating state-of-the-art visual analysis techniques, such
as user guidance and subspace detection algorithms, to improve data exploration.
This contribution can guide subsequent research efforts and for push the boundaries
of what is currently possible with dual analysis. Through its contributions, the frame-
work aims to improve the exploration of large high-dimensional data by enabling
more effective interactions for the joint analysis of features and data.

Both frameworks underscore the versatility and necessity of incorporating cat-
egorical data-driven measures into analytical models, whether the approach is
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Computer Science Fields Ch. 2 Ch. 3 Ch. 4 Ch. 5 Ch. 6 Ch. 7

Visual Analytics •◦◦ ••◦ ••◦ ••◦ ••• •••
Information Visualization ••◦ ••• ••◦ ••◦ •◦◦ •◦◦
Evaluation ••◦ •◦◦ •◦◦ •◦◦ ••◦ ••◦
Applications •◦◦ •◦◦ ••• ••• ••◦ •◦◦

Table 1.1: The relevance of the contributions of each chapter of this thesis for different
sub-fields of computer science. Rating scale: some relevance •◦◦, medium relevance ••◦,
high relevance •••.

supervised or unsupervised. The supervised framework, with its application in
neurology, demonstrates the potential of these measures to improve the specificity
and sensitivity of classification tasks in highly specialized domains. Meanwhile, the
unsupervised framework illustrates how these measures can transform exploratory
data analysis, enabling the discovery of new insights and patterns that can inform
further research or operational strategies. The introduction of these frameworks not
only fills a critical gap in the current data analysis landscape, but also sets the stage
for future research and development.

In summary, this thesis contributes measures and frameworks for improving the vi-
sual analysis of categorical data. We demonstrate the effectiveness of our approaches
through quantitative and qualitative evaluations, while user-centered approaches
are evaluated through domain expert studies, typically conducted in pair-analytic
sessions [63, 157, 169]. This dissertation is primarily focused on VA and InfoVis.
However, it also makes significant contributions to other areas within computer
science. A comprehensive comparison between the individual chapters with regard
to the focus of the contributions can be found in table 1.1.

Citation Rules and Good Scientific Practices

This dissertation adheres to the established scientific practices and standards of
the computer science research community. The main contributions have been dis-
seminated through publications in journals, conferences and workshop proceedings
and have thus undergone the peer review process. I retain the copyright to these
publications, which form the basis of this dissertation. Sections of the dissertation
that reflect content from my publications were either directly written by me or
adapted by me in the course of writing the papers or the dissertation itself.

I am committed to maintaining complete transparency regarding the origins
of each chapter of my thesis in order to allay any concerns regarding plagiarism
and self-plagiarism. In section 1.3, I have listed all publications that I have either

12 Chapter 1 Introduction to Visual Analytics of Categorical Data



authored or co-authored. In addition, for each publication, I identify the contributors
and describe how tasks were distributed among all contributors to ensure clarity
about the collaborative nature of the work. At the beginning of each chapter,
I acknowledge the publications from which text and figures have been used or
modified. In incorporating these works, I adhere to the following principles:

1. Paragraphs in quotation marks are not authored by me, but contain contribu-
tions from other authors, and clearly indicate material that is not my original
work.

2. Certain chapters of this dissertation are taken from my own publications,
where I was the author or made significant revisions. These sections are
slightly modified in their wording to fit the overall context of the thesis, but
they emphasize my original contributions to the field of research.

3. This dissertation contains chapters based on my publications, or parts of them,
for which I was either the sole author or co-author. These sections have been
extensively rewritten and modified to fit the goals and scope of the dissertation.
Nevertheless, they represent my authentic contributions to the field of research.

I aim to strike a balance between developing a thesis that is both clear and reader-
friendly, achieved through careful editing and revision of my peer-reviewed articles,
and adhering to rigorous citation practices, namely by accurately citing all material
that comes from a publication. My decision to prioritize content, the contribu-
tions within it, and the reader experience stems from my belief that these are the
fundamental aspects of scholarly work.

1.3 Publications

In this section, I outline and clarify my specific contributions to the publications that
support this thesis. Recognizing that these publications were the result of teamwork,
I will break down my individual contributions for each. These publications and
manuscripts are the foundational elements of this dissertation:

• [87] Frederik L. Dennig, Lucas Joos, Patrick Paetzold, Daniela Blumberg, Oliver
Deussen, Daniel A. Keim, and Maximilian T. Fischer. “The Categorical Data Map:
A Multidimensional Scaling-Based Approach”. In: Proceedings of the 2024 IEEE
Visualization in Data Science Symposium (to appear). IEEE, 2024.

Contribution Clarification: I developed the idea and concepts of the manuscript.
I directed the project and formulated the overall structure and research goals.
In addition, I have outlined the fundamental research questions, outlined the
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contributions, and detailed the relevant background literature. I drafted and con-
solidated the manuscript, devising the conceptual framework, its discoveries, and
the subsequent discussions. The replication data associated with this publication
has been curated by me and is accessible in Data Repository of the University
of Stuttgart (DaRUS) [86]. Lucas Joos provided feedback on the prototype and
ideas regarding the glyph representations. Daniela Blumberg implemented an
early prototype and provided feedback on the manuscript. Patrick Paetzold and
Maximilian T. Fischer provided critiques and recommendations on the text during
several revisions of the manuscript. Oliver Deussen and Daniel A. Keim com-
mented on drafts and helped to revise the sections by providing helpful feedback.
I am the sole author of all sections, incorporating and revising the suggestions of
my co-authors several times. Thus, I reuse the text of that manuscript in chapter 3.

• [88] Frederik L. Dennig, Matthias Miller, Daniel A. Keim, and Mennatallah El-
Assady. “FS/DS: A Theoretical Framework for the Dual Analysis of Feature Space
and Data Space”. In: IEEE Transactions on Visualization and Computer Graphics
30.8 (2024), pp. 5165–5182. DOI: 10.1109/TVCG.2023.3288356.

Contribution Clarification: This paper is the result of a discussion between
Mennathallah El-Assady and myself. I took the lead on the project and created the
overall framework. In addition, I formulated the research question and delineated
the contributions. I conducted the survey, analyzed the results, and discussed the
findings. I developed the conceptual framework in its entirety, including all related
formalizations. I also evaluated our framework. Matthias Miller provided parts of
an early draft of the related work chapter and feedback on paper drafts. Daniel
A. Keim and Mennathallah El-Assady provided feedback on the general idea and
commented on paper drafts. I wrote and revised all sections myself, incorporating
feedback from the co-authors. I restructured and adapted the related work section
during the writing process. Therefore, I use this text in chapter 7.

• [84] Frederik L. Dennig, Maximilian T. Fischer, Michael Blumenschein, Johannes
Fuchs, Daniel A. Keim, and Evanthia Dimara. “ParSetgnostics: Quality Metrics
for Parallel Sets”. In: Computer Graphics Forum 40.3 (2021), pp. 375–386. DOI:
10.1111/cgf.14314.

Contribution Clarification: This project was initiated after a discussion between
Johannes Fuchs and myself. I formulated the research question, identified the
contributions, and conducted the evaluations. I developed all components, includ-
ing the quality measures and the analytical front-end, and executed all necessary
analyses. The data associated with this publication was collected or created by
me and is accessible in DaRUS [83]. I wrote the entire manuscript, with each
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paragraph going through several rounds of revision throughout the writing pro-
cess. Feedback on the development of the measures, especially their mathematical
expressions, was provided by Maximilian T. Fischer. Michael Blumenschein and
Evanthia Dimara provided guidance on the project of this paper and contributed
insights on the overall concept and design of the evaluation. Johannes Fuchs and
Daniel A. Keim also shared their perspectives on the overall concept and provided
comments on drafts of the paper. Therefore, I use this text in chapter 2.

• [82] Frederik L. Dennig, Eren Cakmak, Henrik Plate, and Daniel A. Keim. “Vul-
nEx: Exploring Open-Source Software Vulnerabilities in Large Development Orga-
nizations to Understand Risk Exposure”. In: Proceedings of the IEEE Symposium
on Visualization for Cyber Security. IEEE, 2021, pp. 79–83. DOI: 10.1109/
VizSec53666.2021.00014.

Contribution Clarification: This paper emerged from a collaboration between
Eren Cakmak, Henrik Plate, and myself. I was responsible for determining the
research question and defining the contributions. I developed the demonstrator.
I wrote the entirety of the manuscript, from structuring and initial drafting
to revising sections, while incorporating feedback from the co-authors. Eren
Cakmak prepared an initial draft of the related work section and provided critical
feedback on the draft. Henrik Plate provided a compelling use case and facilitated
discussions with several SAP domain experts to support our evaluation and provide
input on drafts of the paper. Daniel A. Keim provided feedback on the general idea
and commented on paper drafts. The evaluation process was a collaborative effort
involving Eren Cakmak, Henrik Plate and myself. I did all the writing, including
the evaluation. As a result, I incorporate this content into Chapter chapter 5.

• [89] Frederik L. Dennig, Tom Polk, Zudi Lin, Tobias Schreck, Hanspeter Pfister,
and Michael Behrisch. “FDive: Learning Relevance Models Using Pattern-based
Similarity Measures”. In: Proceedings of the 14th IEEE Conference on Visual Ana-
lytics Science and Technology. IEEE, 2019, pp. 69–80. DOI: 10.1109/VAST47406.
2019.8986940.

Contribution Clarification: This paper was a result of a close collaboration
between Michael Behrisch and myself. I wrote all the sections, identified the
contributors, and performed the evaluations. I designed and implemented a
research prototype that elaborated on a project I created during my undergraduate
studies and addressed new research questions that arose. I evaluated the results
by conducting both an expert study and a quantitative analysis. Tom Polk provided
feedback on the draft of the paper. Hanspeter Pfister and Tobias Schreck shared
their perspectives on the concept and provided feedback on several drafts. Michael
Behrisch introduced the initial research challenge and has overseen this project,
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providing guidance on conceptual direction and reviewing drafts of the paper.
Zudi Lin supplied the data used for evaluation and provided feedback on the
evaluation section regarding the domain. I was responsible for writing and
revising the paper throughout the drafting phase. Therefore, I am including this
content in chapter 6.

• [271] Christin Schätzle, Frederik L. Dennig, Michael Blumenschein, Daniel A.
Keim, and Miriam Butt. “Visualizing Linguistic Change as Dimension Interactions”.
In: Proceedings of the 1st International Workshop on Computational Approaches to
Historical Language Change. Association for Computational Linguistics, Aug. 2019,
pp. 272–278. DOI: 10.18653/v1/W19-4734.

Contribution Clarification: This publication is the result of a close collaboration
with Christin Schätzle and Michael Blumenschein. I developed the research pro-
totype, provided technical descriptions of our approach, and provided feedback
on the paper. The paper was written by Christin Schätzle. Michael Blumenschein
and I contributed to the technical explanations and provided input on the paper.
Daniel A. Keim and Miriam Butt provided feedback on the general idea and com-
mented on paper drafts. As a result, I rewrote and adapted all the sections, adding
additional content and elaborating on the technical contributions. Chapter 4
contains concepts from this publication, rephrased and expanded.

• [272] Christin Schätzle, Michael Hund, Frederik L. Dennig, Miriam Butt, and
Daniel A. Keim. “HistoBankVis: Detecting Language Change via Data Visual-
ization”. In: Proceedings of the NoDaLiDa 2017 Workshop Processing Historical
Language. NEALT Proceedings Series 32. Association for Computational Linguis-
tics, 2017, pp. 32–39.

Contribution Clarification: This work was created in close collaboration with
Christin Schätzle and Michael Blumenschein. I developed the research proto-
type, detailed the technical aspects of our methodology, and reviewed the paper.
Christin Schätzle was the main author, focusing on the historical development
of the Icelandic language. Therefore, in this dissertation, I have restructured
and rewritten all sections and integrated them with additional content. Michael
Blumenschein and I were involved in fleshing out the technical descriptions and
providing feedback on the manuscript. Daniel A. Keim and Miriam Butt provided
insight into the overall concept and critiqued several drafts. Consequently, I have
rephrased and expanded the content in chapter 4, drawing on that paper, but
with an increased emphasis on the contributions to computer science.

During my time at the Data Analysis and Visualization group, I have co-authored
and contributed to nine other publications. These papers contribute to areas and
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topics related to the research questions explored in this thesis. However, as they
do not directly contribute to the main discourse of the thesis, they have not been
included. The publications are listed below:

• [161] Mohsen Jenadeleh, Frederik L. Dennig, Rene Cutura, Quynh Quang Ngo,
Daniel A. Keim, Michael Sedlmair, and Dietmar Saupe. “An Image Quality Dataset
with Triplet Comparisons for Multi-dimensional Scaling”. In: Proceedings of the
16th International Conference on Quality of Multimedia Experience. IEEE, 2024,
pp. 278–281. DOI: 10.1109/QoMEX61742.2024.10598258.

• [45] Daniela Blumberg, Yu Wang, Alexandru Telea, Daniel A. Keim, and Frederik
L. Dennig. “Inverting Multidimensional Scaling Projections Using Data Point
Multilateration”. In: Proceedings of the 15th International EuroVis Workshop on
Visual Analytics. Eurographics, 2024. DOI: 10.2312/eurova.20241112.

• [58] Raphael Buchmüller, Bastian Jäckl, Michael Behrisch, Daniel A. Keim, and
Frederik L. Dennig. “cPro: Circular Projections Using Gradient Descent”. In:
Proceedings of the 15th International EuroVis Workshop on Visual Analytics. Euro-
graphics, 2024. DOI: 10.2312/eurova.20241111.

• [115] Johannes Fuchs, Frederik L. Dennig, Maria-Viktoria Heinle, Daniel A. Keim,
and Sara Di Bartolomeo. “Exploring the Design Space of BioFabric Visualization
for Multivariate Network Analysis”. In: Computer Graphics Forum 43.3 (2024).
DOI: 10.1111/CGF.15079.

• [255] Nils Rodrigues, Frederik L. Dennig, Vincent Brandt, Daniel A. Keim, and
Daniel Weiskopf. “Comparative Evaluation of Animated Scatter Plot Transi-
tions”. In: IEEE Transactions on Visualization and Computer Graphics 30.6 (2024),
pp. 2929–2941. DOI: 10.1109/TVCG.2024.3388558.

• [168] Lucas Joos, Karsten Klein, Maximilian T. Fischer, Frederik L. Dennig,
Daniel A. Keim, and Michael Krone. “Exploring Trajectory Data in Augmented
Reality: A Comparative Study of Interaction Modalities”. In: Proceedings of the
2023 ISMAR International Symposium on Mixed and Augmented Reality. IEEE,
2023, pp. 790–799. DOI: 10.1109/ISMAR59233.2023.00094

• [230] Quynh Quang Ngo, Frederik L. Dennig, Daniel A. Keim, and Michael Sedl-
mair. “Machine learning meets visualization – Experiences and lessons learned”.
In: it - Information Technology 64.4-5 (2022), pp. 169–180. DOI: 10.1515/itit-
2022-0034.

• [111] Maximilian T. Fischer, Frederik L. Dennig, Daniel Seebacher, Daniel A.
Keim, and Mennatallah El-Assady. “Communication Analysis through Visual
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Analytics: Current Practices, Challenges, and New Frontiers”. In: Proceedings of
the 2022 IEEE Visualization in Data Science Symposium. IEEE, Oct. 2022. DOI:
10.1109/VDS57266.2022.00006.

• [250] David Pomerenke, Frederik L. Dennig, Daniel A. Keim, Johannes Fuchs,
and Michael Blumenschein. “Slope-Dependent Rendering of Parallel Coordinates
to Reduce Density Distortion and Ghost Clusters”. In: Proceedings of the 30th IEEE
Visualization Conference. IEEE, 2019, pp. 86–90. DOI: 10.1109/VISUAL.2019.
8933706.

1.4 Open Science and Replication Data

To increase transparency, reproducibility, and trust in scientific research, I openly
share the data and code associated with my publications, wherever copyright consid-
erations permit. Replication data allows researchers to verify the results of studies by
re-analyzing the data using the original methods. This is a critical step in confirming
the reliability and validity of scientific findings, as it helps to uncover potential errors
or biases. Open science aims to make scientific research and dissemination accessible
to all levels of an inquiring society, whether amateur or professional. It fosters
collaboration and information sharing, ensuring that scientific knowledge is acces-
sible to all, accelerating discovery and innovation. Together, replication data and
open science are fundamental to building a more robust, inclusive, and democratic
scientific community, where knowledge is shared openly and credibility is ensured
through collective verification of results. Thus, I have created and contributed the
following replication data associated with the above mentioned publications:

• [86] Frederik L. Dennig, Lucas Joos, Patrick Paetzold, Daniela Blumberg, Oliver
Deussen, Daniel Keim, and Maximilian T. Fischer. The Categorical Data Map -
Replication Data. Version V1. https://osf.io/jzd46/ (alternative repository).
2024. DOI: 10.18419/darus-3372.

• [83] Frederik L. Dennig, Maximilian T. Fischer, Michael Blumenschein, Daniel
Fuchs Johannes; Keim, and Evanthia Dimara. Replication Data for: "ParSetgnos-
tics: Quality Metrics for Parallel Sets". Version V1. https://osf.io/rwhf5/
(alternative repository). 2022. DOI: 10.18419/darus-2869.

• [249] David Pomerenke, Frederik L. Dennig, Daniel A. Keim, Johannes Fuchs,
and Michael Blumenschein. Replication Data for: "Slope-Dependent Rendering of
Parallel Coordinates to Reduce Density Distortion and Ghost Clusters". Version V2.
https://osf.io/sy3dv/ (alternative repository). 2022. DOI: 10.18419/darus-
3060
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Part I

Visualization-Driven Measures

Meten is weten
(To measure is to know)

— Dutch Proverb
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While there are many visualization tech-
niques for exploring numeric data, only a
few work with categorical data. One promi-
nent example is Parallel Sets, showing data
frequencies instead of data points – analo-
gous to parallel coordinates for numerical
data. As nominal data, a subset of categor-
ical data, does not have an intrinsic order,
the design of Parallel Sets is sensitive to visual clutter due to overlaps, crossings,
and subdivision of ribbons hindering readability and pattern quantification. In this
chapter, we propose a set of quality measures, called ParSetgnostics, which aim to
improve Parallel Sets by reducing clutter. These quality measures quantify important
properties of Parallel Sets such as overlap, orthogonality, ribbon width variance, and
mutual information to optimize the attribute and category ordering. By conducting
a systematic correlation analysis between the individual measures, we ensure their
distinctiveness. Further, we evaluate the clutter reduction effect of ParSetgnostics by
reconstructing six datasets from previous publications using Parallel Sets measuring
and comparing their respective properties. Our results show that ParSetgnostics
facilitates multi-attribute analysis of categorical data by automatically providing
optimized Parallel Set designs with a clutter reduction of up to 81% compared to
the originally proposed Parallel Sets visualizations.

This chapter is taken from the following publication:

• [84] Frederik L. Dennig, Maximilian T. Fischer, Michael Blumenschein, Johannes
Fuchs, Daniel A. Keim, and Evanthia Dimara. “ParSetgnostics: Quality Metrics
for Parallel Sets”. In: Computer Graphics Forum 40.3 (2021), pp. 375–386. DOI:
10.1111/cgf.14314.

Please refer to Sections 1.2 and 1.3 for the citation rules and contribution clarification.
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Figure 2.1: Two Parallel Sets of the Titanic dataset [80]. The right visualization has less
ribbon overlap than the one on the left and, thus, is easier to read because of the less clutter.

2.1 Challenges Using Parallel Sets for Categorical

Data Visualization

Categorical data is an inherent data type in many real-world datasets. Examples
include business intelligence, when assigning personnel to tasks and resources,
or inventory data, when describing product qualities like color. However, most
multi-dimensional visualization techniques, such as scatterplot matrices [139, 74],
parallel coordinates [156], and projections [64], are designed for numerical data,
where data values come with a meaningful scale or ordering. In contrast, nominal
data, a subset of categorical data, does not have an intrinsic ordering or distance
between the values. Instead, it describes properties in name only, requiring context
for analysis. Frequency-based visualizations [148, 331, 292] are a possible solution
mapping categorical variables to their corresponding frequencies. Yet, for most
techniques, the frequency information is often not visible or imposes a hierarchical
structure. On the other hand, solutions that treat dimensions independently [261,
300, 164], mapping categories to numbers, follow a continuous design model which
deviates from the discrete mental user model of the data [190]. The Parallel Sets
visualization is a hybrid solution combining the strengths of frequency-based designs
with the independent treatment of dimensions, which is essential for multi-attribute
analysis of categorical data [35, 189].

To support multi-attribute analysis of categorical data, Parallel Sets appropriate
the layout of parallel coordinates [156]. They replace the polylines representing
numerical data points with parallelograms, called ribbons, with their sizes represent-
ing the frequency of the categories. Parallel Sets serve as an interaction framework
used in various fields that require user-driven analysis of heterogeneous and multi-
attribute categorical data. Compared to other visualization types, Parallel Sets offer
fewer degrees of freedom with respect to design considerations, making them a com-
pelling solution for the challenging representation of categorical data. In contrast,
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Sankey diagrams [181] exhibit more degrees of freedom, such as placing attribute
axes or sections of them freely on the chart, while stacked bars can present the same
data without the explicit links between the individual values of each attribute. How-
ever, as nominal data does not have an intrinsic order, the readability of Parallel Sets
depends on the chosen ordering of attributes, as well as the ordering of categories
within each attribute. Certain attribute and category orderings are more challenging
to read than others. Figure 2.1 shows two Parallel Sets of the same data. The left
Parallel Sets visualization appears is to read due to the high degree of clutter. On
the right, an alternative reordering with minimized ribbon overlap is easier to read.

Identifying the optimal data representation with Parallel Sets can be challenging.
Parallel coordinates can be applied to categorical data. However, the frequency
information is lost. For exploratory scenarios, choosing an adequate Parallel Sets
configuration for the dataset is key to the understanding and knowledge gained
in the process. Manual reordering of attributes is not always feasible due to the
large set of possible attribute and category orderings. We note that the number of
possible configurations exceeds those of parallel coordinates because the order of
categories can be chosen freely. There are |Ci|! possible category orderings of an
attribute axis, where Ci are the category values of attribute ai ∈ A. The attribute
axes themselves can be reordered and allow for |A|! orderings. Thus, there are a total
of |A|! ·

∏
ai∈A |Ci|! possible Parallel Sets visualizations. Existing approaches focus on

interaction [338], which requires user interaction and suffers from summarization
that loses information and imposes a biased first view [143] by reducing the number
of attributes and categories. Automatic solutions for designing Parallel Sets do not
sufficiently support data analysis in fully exploratory scenarios because they limit
the number of attributes for the displayed subsets [9]. Thus, these approaches often
exclude possibly relevant information beforehand. In this chapter, we contribute:
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• Eight quality measures for Parallel Sets aiding their comparison and ranking
in-terms of clutter and readability.

• A formalization of geometric properties of Parallel Sets underlying our
measures and a discussion of parameters.

• An evaluation of our measures by applying our technique to six datasets
from previous publications.

• For accessibility, we provide the ParSetgnostics Explorer at den-
nig.dbvis.de/parsetgnostics making our results interactively explorable.

• For reproducibility, we make all our statistical analysis, results, and source
code available on OSF (osf.io/rwhf5) and DaRUS [83].
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2.2 Related Work

In this section, we discuss related techniques and differentiate our approach from
other strategies and methods for the optimization, quality assessment and visualiza-
tion of categorical data.

2.2.1 Visualizations for Categorical Data

There are many visualization techniques for categorical data. In the context of flows,
sets, and subsets, Sankey diagrams are common in the analysis of categorical data
[205, 253]. Their first appearance described the optimization of steam engines,
visualizing the energy flow of a steam engine [181]. They have also been used
to visualize relations between subsets [3, 205]. However, Sankey diagrams are
very flexible in their layout and design, often requiring a visualization designer to
determine a useful visualization. In contrast, Parallel Sets, which can be classified as
a type of Sankey diagram, is more restricted in their layout, limiting the degrees of
freedom of their design space to the category- and dimension-ordering and color
choice, but still requiring manual interaction. The main focus of Parallel Sets is on
sets and subset relationships [190]. Other types of visualizations for sets and subsets
exist, such as the Icicle plot [195] and the Sunburst [294] diagram. However, they
are limited to the visualization of hierarchical or clustered data, i.e., predefined
subsets. Other visualization techniques are purely frequency-based by mapping
categorical variables to their corresponding frequencies, missing the capability for
analyzing subset relationships [148, 331, 292]. All these types of visualization
techniques are common in the visualization community [50]. Hammock Plots [275]
combine parallel coordinates with Parallel Sets to allow for the analysis of datasets
with numeric and categorical data.

2.2.2 Improvements of Parallel Sets

Parallel Sets can be improved through visual approaches. These techniques change
the representation of ribbons to make them easier to follow. A common visual
method for improving the readability of Parallel Sets in this way is to curve the
ribbons of Parallel Sets [256]. Another technique is to draw ribbons with a fixed
angle, called Common Angle Plots [150], yielding better readability. This technique
addresses the effects of a class of perceptual illusions, called Müller-Lyer illusion [81,
121], where lines appear to have a different distance or length. Our approach differs
from these techniques in that we propose a different layout of coordinate axes and
categories. Techniques changing the representation of ribbons can be applied after

24 Chapter 2 Quality Measures for Parallel Sets Visualizations



our quality measures have been used to determine a useful dimension- and category
ordering, further improving the readability. There also exist a set of dimension
ordering strategies for parallel coordinates [46], which can apply to Parallel Sets if
modified. Parallel Sets can also be improved in a semi-automatic way, using machine
learning or statistical methods. The interactive approach by Zhang et al. [338] uses
association rule mining to reduce the number of dimensions and categories, requiring
user interaction. The approach by Alsakran et al. [9] changes the layout and ordering
of dimension axes but restricts the dimensionality of the subgroups, i.e., ribbons,
to two dimensions. This approach simultaneously uses mutual information [278]
to measure the dependence of two variables. Both techniques remove dimension
information or data from the visualization. Our approach differs in that it does not
remove any data and does not restrict the dimensionality of the displayed ribbons
but tries to optimize a set of target properties.

2.2.3 Quality Measures for Visualization Techniques

Screen-space quality measures describe a set of measures specifically designed
measures or features that measure the quality of visualization and can be used
to optimize them for readability or quantify the appearance of specific patterns
[33]. They do not remove any information from the visualization. They rather
measure properties of the visualization, which can be used to compare and rank
them. Examples of those approaches are: Magnostics for matrix visualizations [31],
Scagnostics for scatterplots [330], Pargnostics for parallel coordinate plots [78],
Visualgnostics projections of high-dimensional data [197], and Pixgnostics for pixel-
based visualizations [274]. We contribute to this area of information visualization
by providing a set of eight measures for the quantification of visual properties of
Parallel Sets. In this way, we improve the quality of Parallel Sets without performing
any sampling or dimensionality reduction of the underlying data.

2.3 Parameters of Parallel Sets

In this section, we provide the necessary definitions to describe the properties of
Parallel Sets formally. We also discuss the parameters of Parallel Sets in light of
semi-automatic and fully automatic reordering of attributes and categories.

2.3.1 Background

Parallel Sets are a visualization type for categorical data. An example of a Parallel
Sets visualization is shown in figure 2.2. Parallel Sets show flow-paths that divide
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Figure 2.2: A Parallel Sets visualization of a generic dataset with four attributes (A-D) and
their respective categories (of cardinality two for attributes A-C and four for attribute D).

the flow into smaller and smaller subsets at each category if an attribute splits the
subset into multiple categories. This introduces a direction or flow, in the case of
figure 2.2 from top to bottom, while also increasing granularity with each attribute
axis splitting the dataset into smaller subsets. Every attribute is represented by an
axis and a set of ribbons. Each ribbon represents a subset defined by the categories
above and the one category connected to the following attribute axis. Compared to
parallel coordinates, the individual categories on the attribute axis are not discrete
points. Instead, the axis and the width of the ribbon are proportional in size to their
flow, i.e., the number of data items with the corresponding categories they represent.
They can be compared to stacked bars. However, stacked bars only display attributes
that can show the same data without the explicit links between. Sankey diagrams
exhibit more degrees of freedom, such as placing attribute axes or sections of them
freely on the chart.

2.3.2 Definitions

This work aims to optimize a Parallel Sets visualization by ordering the attributes
and categories to conform better to the design considerations described in the
following. We developed our measures with the general idea of quality measures
for information visualization described by Behrisch et al. [33] in mind. With the
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definition of a quality criterion (see equation (2.1)) provided in their work, the
problem is described formally:

arg min
max

ϕ∈Φ
q(ϕ|D,U, T ) (2.1)

D denotes the data, U the user, and T the task. ϕ denotes a specific configuration of
a visualization of the set of all possible configurations of a given visualization type
Φ. q describes a quality criterion and arg max/minϕ∈Φ optimization strategy. In this
work, we focus on defining quality criteria q for Parallel Sets visualizations, i.e., a
set of objective functions (see section 2.4). We test our quality measures with six
datasets, which in this definition corresponds to D (see section 2.5.1). The measures
can be task and user-dependent. The user can choose which quality measures he
aims to minimize or maximize or even how to weight them. It is also possible to
limit Φ by choosing a set of constraints, e.g., filtering or sampling. In our work,
we consider the task T to be an exploration task with no prior knowledge of the
specifics of the dataset. The result is ϕ, in our case, the configuration of a Parallel
Sets visualization, defined by the order of attributes A and the order of categories
Ci of all attributes ai ∈ A. We define Aord as the tuple of all attributes of a purely
categorical dataset:

Aord := (a1, a2, . . . , ai) (2.2)

Similarly, we define the ordering of the category values Ci of the i-th element ai of
Aord as:

Cord(i) := (c1
i , c

2
i , . . . , c

j
i ) (2.3)

where each element is a single category of a specific attribute. This is consistent
with the tree-like structure of Parallel Sets [189], separating the dataset into smaller
subsets while descending the tree levels, where each level represents an attribute
axis defined by the order of elements of tuple A. Ribbons are representatives of
edges between two levels, i.e., connections between two adjacent attribute axes
an and an+1. Thus, we can define the possible ribbons R∗

n between two adjacent
attributes for n ∈ [1, |A| − 1] as:

R∗
n :=

n+1×
i=1

Cord(i) (2.4)

Since R∗
n denotes all possible ribbons between two attributes, it includes empty

subsets. Parallel Sets do not visualize empty or non-existent subsets. Thus, we
remove such ribbons by verifying that at least one entry exists that belongs to a
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subset defined by a ribbon r, i.e., |r| > 0. This yields the set of all existing ribbons
between two attribute axes, which we define as:

Rn := {r | r ∈ R∗
n ∧ |r| > 0} (2.5)

Finally, we can define the set of all existing ribbons R and analogous the set of all
possible ribbons R∗ as:

R :=
|A|−1⋃
i=1

Rn R∗ :=
|A|−1⋃
i=1

R∗
n (2.6)

2.3.3 Parameter Space

In the next section, we will discuss the specific parameters and caveats of Parallel
Sets related to the choice of the category and attribute ordering, dataset-dependent
properties, and ribbon parameters. We will use those parameters to explain our
measures described in section 2.4.

Selection of the First Attribute: The analysis task is the determining factor for
the axes ordering. The first attribute and its categories determine the ribbon color,
and thus the main aspects the analysis focuses on. In case there exists a formulated
analysis question or hypothesis, we suggest determining this attribute beforehand
or interactively. A partial ordering is possible. The user with domain knowledge
can decide best which attributes are more important than others. In the case of an
exploratory scenario, we suggest a fully automatic approach, generating multiple
clutter reduced and readability improved versions with different axes orderings
to allow for an overview of the dataset. We suggest choosing the first attribute
based on the attribute with the highest entropy for a fully automatic approach, thus
focusing on the attribute with the most significant amount of information. Thus, it
is a attribute with balanced category sizes. Attributes with low entropy will contain
more categories of less size, making them hard to read.

Ordering of Remaining Attributes: The following axes split the ribbons into
increasingly fine-grained subsets, each split according to a attribute’s categories.
With the increasing amount of ribbons, clutter is likely to increase. The strength
of this effect is ultimately dependent on the dataset. We identified two effects on
the ribbons linked to this parameter: the number of ribbons and the ribbon widths.
Firstly, the number of ribbons should be kept as low as possible to avoid premature
splitting into subsets. Secondly, the ribbon widths should be kept as large as possible
to keep them easy to follow. This properties is also influenced by the slope of the
ribbon, dependent on the ordering of categories. In a fully automatic approach, the
order can be determined by three strategies: (1) Order the attributes by ascending
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number of categories, minimizing the number of ribbons. (2) Maximize the ribbon
width, lowering the number of thin ribbons, which are hard to perceive. (3) Ordering
the attribute based on a information-theoretic property, such as mutual information
[278].

Ordering of Categories: While there is no natural order among nominal values
and the order of categories on each attribute can be chosen freely [35], not every
category ordering is intuitive, useful, or supportive for exploratory or confirmatory
data analysis. Some category orderings lead to a high degree of clutter by increasing
the slope and overlap of ribbons. Therefore, the category ordering can be optimized
such that the Parallel Sets visualization is readable and shows patterns inside the
data, even with an increasing amount of ribbons caused by splits according to
attribute axes. Since this parameter offers the most potential for improvement,
five of the eight measures we define are sensitive to category reordering and are
designed to help analysts in their choice of attribute and category ordering. However,
given that some categorical data is ordinal, e.g., time, the sequence is fixed by the
inherent order and should not be changed.

Impact of Number and Size of Categories: Attributes with many categories split
the data into many small ribbons that are hard to follow. Additionally, since the
number of ribbons monotonously increases with every attribute axis, this leads to an
increased number of ribbons in every following attribute. The data distribution is
the determining factor, i.e., attributes having a few categories of equal size, or the
many small categories or a mixture thereof. The issue can be addressed by delaying
splits yielding thin ribbons to later attributes, i.e., prioritizing attributes with large
equal-sized categories. Such an attribute should be placed at the beginning of the
attribute ordering.

Influence of the Distance Between Attribute Axes: A short distance increases the
slope of diagonal ribbons, which increases the overlap of ribbons and clutter. Since
ribbons are parallelograms, this reduces the perceived width [250]. In contrast,
an excessively large distance makes ribbons, especially thin ones, hard to follow
since they are visually less prominent due to their small surface area. Additionally,
it decreases the crossing angle of ribbons, which makes them also harder to follow
[155, 326]. This parameter is ultimately dependent on the available screen-space
and its aspect ratio. Four category ordering-dependent measures, namely Overlap,
Slope, Orthogonality, Crossing Angle are sensitive to this parameter. We fixed the
distance between the attributes for all our measurements.

Impact of Ribbon Width and Plot Width: The width of the ribbons is dependent
on the available plot space. In the case of a vertical ribbon flow, it depends on the
plot width. For a horizontal ribbon flow, it will depend on the plot height. The width
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of all ribbons remains relative, as with the number of ribbons, the ribbons width
decreases. The plot size should be chosen accordingly. All ribbons, especially those
representing small subsets, should have a large enough width such that they can
be visually compared and easy to follow. With increasing plot size, the distance
between the attribute axes also increases. Four of our category ordering-dependent
measures are sensitive to this parameter. Thus, we also choose a constant plot size
for all our measurements.

Selection of Ribbon Colors: The ribbon color is not considered by our measures.
However, we suggest choosing colors according to common criteria, i.e., easy to
differentiate colors [223, 54]. Since the number of colors is equal to the number
of categories of the first attribute, it is beneficial to reduce the number of colors by
selecting an attribute with a low number of categories that is still pertaining to the
analysis question. In exploratory tasks, we suggest an attribute with a category count
no larger than nine based on Miller’s Law [218, 219]. Parallel Sets are intrinsically
"2.5D," meaning that the ribbons can have an ordering along the depth direction.
The typical solution to avoid occlusion is to use transparency to show the path and
area of overlapping ribbons. In this case, the colors of ribbons need to be chosen
such that the mixtures of colors produce a distinguishable color that still implies
which ribbons are crossing. If no transparency is used, we suggest ordering the
ribbon, such that the thinner ribbons are on top to minimize occlusion.

2.4 Quality Measures

This section describes and discusses a set of eight quality measures that measure
different properties of Parallel Sets. These properties are dependent on the attribute
and category ordering. These properties are either desirable or undesirable, and
thus, our measures can be used to compare Parallel Sets and help adjust them to
be more readable and interpretable. For explanation and comparability, we use the
Titanic dataset [80] to show-case their effects.

2.4.1 Category Ordering-Dependent Measures

We present five category ordering-dependent measures, which means that they are
sensitive to the reordering of attributes and individual categories of an attribute.
Small changes in the order of categories can already have a large impact on the
appearance of a Parallel Sets visualization.
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Figure 2.3: This figure shows the geometric variables required for our measures. It shows
two ribbons r1 and r2 between two attribute axes. overlap(r1, r2) defines as their shared
area. The angle α denotes the slope of a ribbon. An orthogonal ribbon has a slope of α = 0.
δ describes the crossing angle of r1 and r2. The width of a ribbon is the distance of the
intersections with an attribute axis.

Three category ordering-dependent measures consider the relationships of pairs
of ribbons between two attribute axes. We describe this set as follows:

Pi := {(r1, r2)|(r1, r2) ∈ Ri ×Ri ∧ r1 ̸= r2} (2.7)

The set Pi describes all possible pairs of ribbons between the attributes ai and ai+1

and is required for the Overlap and Number of Crossings and Crossing Angle measures.

Overlap measures the overlapping area of all ribbons. A high overlap is indicative
of clutter since overlapping areas are harder to interpret, since crossing ribbons are
harder to follow [155, 326]. Furthermore, there is a connection to the slope of a
ribbon as only sloped ribbons contribute to overlap. The overlap is especially high
if large subsets overlap in their ribbon representation. We formally describe this
measure in equation (2.8).

Definition: Overlap Measure

OVERLAP := 1
S

|A|−1∑
i=1

∑
(r1,r2)∈Pi

overlap(r1, r2) (2.8)

The set of tuples Pi defines all possible pairs of ribbons between two neighboring
attribute axes of the Parallel Sets. S denotes the area of the Parallel Sets visualization.
The factor 1

S allows for the comparability of different Parallel Sets visualizations on
different resolutions. overlap(r1, r2) with r1, r2 ∈ R defines the overlapping area of
two ribbons as described in figure 2.3. The examples shown in figure 2.4 show the
effects of reducing the overlap of ribbons yielding a Parallel Sets visualization with a
low degree of clutter.
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Overlap

0.07 0.12 0.18
Slope

28.99 41.60 51.77
Orthogonality

0.83 0.87 0.93
Number of Crossings

30 38 43
Crossing Angle

4.01 6.49 11.11
Lowest Median Highest

Figure 2.4: We show three Parallel Sets visualizations for each of the five category ordering-
dependent measures: Overlap , Slope , Orthogonality , Number of Crossings , and
Crossing Angle . We show the Parallel Sets corresponding to the lowest, median, and highest
measure value. Lower values signify less clutter and thus improved readability, presenting a
good starting point for exploratory data analysis.
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Slope measures the average slope of all ribbons. A low average slope is preferable
since ribbons that have a high angle to the attribute axes are easier to follow
[155, 326]. This is grounded in the area preserving geometrical properties of
parallelograms. Highly sloped ribbons get thinner and longer [250]. Only sloped
ribbons contribute to overlap. The Slope measure differs from the Overlap measure
in that it is not affected by the ribbon width, meaning that the Slope measure is not
weighting the slope by the size of the subset that the ribbon represents. We formally
describe this measure in equation (2.9).

Definition: Slope Measure

SLOPE := 1
|R|

∑
r∈R

α(r) (2.9)

In this equation, the slope of a ribbon is denoted by angle α, which is geometri-
cally defined as depicted in figure 2.3. The effects of minimizing the Slope measure
can be observed in figure 2.4. A low average slope reduces clutter, while high Slope
introduces a noticeable zigzag pattern which is hard to interpret.

Orthogonality leverages the concept to the Slope measure but explicitly focuses
on the orthogonality of ribbons. This focus restricts the layout of ribbons to enforce a
close to a perpendicular angle to the attribute axis. This property increases readabilty
[155, 326]. It measures the average number of ribbons with a slope α smaller than
a threshold value τ . We formally describe this measure in equation (2.10).

Definition: Orthogonality Measure

ORTHOGONALITY := 1
|R|

∑
r∈R

forthogonal(r1, r2)

where forthogonal(r1, r2) :=

1 : α(r) > τ

0 : α(r) ≤ τ

(2.10)

A group of ribbons that is perpendicular to the attribute axes shows a categorical
correlation. Therefore, we choose τ = 0. However, τ can be chosen with respect to
the target orthogonality, such that slightly sloped ribbons are also considered. In
figure 2.4, we can see that enforcement of perpendicular ribbons, forming rectangles,
reduces clutter. In the example of the Titanic dataset [80] it improves the Parallel
Sets visualization even more than the Slope measure, significantly differing from it.

Number of Crossings measures the number of ribbon crossings. This measure is
analogous to the Number of Line Crossings measure of the Pargnostics [78] measure
set for parallel coordinates. A high number of crossing produces similar patterns
like dissimilarity orderings for parallel coordinates, which can be used to detect

2.4 Quality Measures 33



patterns [46]. In Parallel Sets visualizations a high degree of ribbon crossings can
lead to visual clutter, making ribbons hard to follow. This effect has been observed
for parallel coordinates [100]. Thus, a very high and very low value for Number of
Crossings can indicate an interesting Parallel Sets for exploratory analysis. The value
C in equation (2.12) describes the absolute number of crossings.

fcrossing(r1, r2) :=

1 : overlap(r1, r2) > 0

0 : overlap(r1, r2) ≤ 0
(2.11)

C :=
|A|−1∑
i=1

∑
(r1,r2)∈Pi

fcrossing(r1, r2) (2.12)

We formally describe this measure in equation (2.13), which provides a relative
number of crossing proportional to the number of ribbons contained in a Parallel
Sets visualization.

Definition: Number of Crossings Measure

CROSSINGS := C

|R|
(2.13)

The examples depicted in figure 2.4 show that a minimization of the number of
crossings progressively reduces the amount of clutter. A Parallel Sets visualization
with a maximum number of is likely to exhibit zigzag patterns.

Crossing Angle quantifies the average crossing angle of crossing ribbons of a
Parallel Sets visualization. This measure is motivated by the Angels of Crossing
measure of the Pargnostics [78] measure set for parallel coordinates. A very high or
very low angle of crossing benefits the readability of the Parallel Sets visualization.
Ribbons crossing at a flat angle are hard to follow compered to ribbons crossing at
close to right angles. This effect has already been observed for lines [155, 326]. We
formally describe this measure in equation (2.14).

Definition: Crossing Angle Measure

CROSSINGANGLE := 1
C

|A|−1∑
i=1

∑
(r1,r2)∈Pi

δ(r1, r2) (2.14)

In this equation, the crossing angle of two ribbons is denoted by angle δ. The
factor 1

C based on equation (2.13) provides a value relative to the total number of
crossings. The concept of a crossing angle and how it is described by δ is depicted
in figure 2.3. In the examples shown in in figure 2.4 this measure offers Parallel
Sets visualizations with a low amount of clutter for a high and low value, while the
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median exhibits a zigzag pattern and clutter. In general, a high crossing angle is
preferred since it supports readability.

2.4.2 Attribute Ordering-Dependent Measures

This section describes three attribute ordering-dependent measures, which means
that they are only sensitive to the reordering of attributes and are not affected by
changes in the order of categories of any attribute axes. These measures can be used
to limit the search space by fixing the order of attribute axes.

Number of Ribbons

0.77 0.82 0.86
Ribbon Width Variance

1.16 1.52 1.81
Mutual Information

0.02 0.07 0.11
Lowest Median Highest

Figure 2.5: We show three Parallel Sets visualizations for each of the three attribute
ordering-dependent measures: Number of Ribbons , Ribbon Width Variance , and Mu-
tual Information . The results shows a reduction of clutter for a reordering of the attributes,
which can serve as a basis for further improvements.

Number of Ribbons measures the number of ribbons. The number of ribbons
determine the number of ribbon splits according to the categories of attribute axes.
In general, a low number of splits is preferable since a high number of ribbons
increase the likelihood of sloped and overlapping ribbons. Furthermore, splits
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reduce the ribbon width, creating thin ribbons, which are hard to follow. Thus, splits
into subcategories should be avoided and only occur where the analysis question
requires it. The only exception is when the analyst wants to determine the number
of subsets created by a specific category or attribute.

Definition: Number of Ribbons Measure

RIBBONS := |R|
|R∗|

(2.15)

The equation measures the ratio of all exiting ribbons to all possible ribbons,
allowing for comparability between different attribute orderings. The effects of
minimizing the number of ribbons is shown in figure 2.5. A low amount of ribbons
reduces clutter and improves readability.

Ribbon Width Variance measures the variance of ribbon widths. A low ribbon
width variance is preferable, splits that create very small categories should be
delayed. Very broad ribbons hide smaller ones. We calculate the standard deviation
σ of the ribbons widths, allowing for comparability of different Parallel Sets. To
avoid absolute widths, we define maxWidth = max({width(r) | r ∈ R}), which
we use to normalize the ribbons widths. We formally describe this measure in
equation (2.16).

Definition: Width Variance Measure

WIDTHVARIANCE := σ({width(r)/maxWidth | r ∈ R}) (2.16)

The effect is shown in figure 2.5. We found that a ribbon with variance can reduce
clutter of Parallel Sets, showing that a uniform ribbon width improves readability.

Mutual Information measures the average mutual information of neighboring
attribute axes. It was first proposed by Shannon [278]. Mutual information measures
the dependence between two variables, in the case of Parallel Sets, two neighboring
attributes. It measures the amount of information gained about one variable by
observing another variable. Mutual information is formally defined as:

Definition: Mutual Information Measure

MUTUALINFO := 1
|A| − 1

|A|−1∑
i=1

I(Ci, Ci+1)

where I(X,Y ) :=
∑
x∈X

∑
y∈Y

p(x, y) log2
p(x, y)
p(x)p(y)

(2.17)

In this equation, p(x, y) is the probability of the values x ∈ X and y ∈ Y

occurring together. Since mutual information only measures the distribution of
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categories between two attributes without considering the category ordering, it
does not change by reordering categories. Thus, it can only be used to determine
an ordering of the attributes axes. It is used by Dasgupta and Kosara [78] in
the reordering of parallel coordinate axes and by Alsakran et al. [9] where it is
combined with binning or dimensionality reduction. In figure 2.5, this measure
shows an improvement of readability for high and low values. In general, it should
be maximized to improve Parallel Sets visualizations.

2.4.3 Combining Quality Measures

Our measures can be combined since they measure different aspects of Parallel Sets.
Two or more measures can be minimized or maximized simultaneously, or they can
be optimized successively. This especially applies to the combination of a attribute
ordering dependent-measure and a category ordering-dependent measure. The order
of categories of an axis in Parallel Sets is the most flexible parameter. Therefore, we
are free to maximize or minimize the category ordering for one or multiple of the
category ordering-dependent measures, each reducing different artifacts. They can
also be combined in frameworks for the weighting of features [239]. The ordering
of attributes is not as flexible as the ordering of categories because of the following
reasons: (1) The number of attributes is usually lower than the number of categories.
(2) The categories of the first attribute axis determine the ribbon colors, and thus,
the primary target of analysis. (3) All remaining axes split the ribbons into finer and
finer subcategories according to their ordering. We suggest minimizing the number
of ribbons to reduce the possibility of crossings and overlap. However, this may lead
to thin ribbons in the visualization. Alternatively, we propose to reduce the ribbon
width variance to avoid excessively thin or broad ribbons, which does not enforce
the minimum amount of ribbons. The mutual information measure tries to place
related attributes close to each other, independent of ribbon sizes. We propose the
use of those types of measures as a filtering step.

2.5 Evaluation

To show the effectiveness of our approach, we perform a quantitative evaluation
based on visualizations used in previous publications. We perform single-measure
and multi-measure optimizations of the Parallel Sets visualizations and conduct a
correlation analysis to validate the distinctiveness of our measures.
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Source Description Type Num. Attr.

Hassan et al. [140] Cyber-security Application 4
Koh et al. [186] Property sales Design study 3
Kosara et al. [190] Titanic dataset [80] Technique 4
Rodgers et al. [256] HCI study; 2 datasets Application 3
Schätzle et al. [271] Linguistics Application 2

Table 2.1: We found five papers from different domains using Parallel Sets yielding six
datasets for our evaluation of ParSetgnostics.

2.5.1 Reconstruction of Datasets from Parallel Set

Visualizations

To evaluate our approach, we performed a literature search with the terms “Parallel
Sets” and “ParSets.” Additionally, we performed a forward search on the foundational
publication on Parallel Sets by Bendix et al. [35], and Kosara et al. [190]. Both
searches were performed using the digital libraries of ACM, IEEE, and Eurographics.
This yields a set of five publications using Parallel Sets listed in table 2.1. The Titanic
dataset is available online [80]. We reconstructed the other remaining five datasets
manually. To this end, we measured the width of the ribbons in the lowest level to
get the size of the subset and traced the ribbon from top to bottom to determine the
categories determining the subset. After a visual comparison to the original Parallel
Sets visualization, we estimate the reconstructions to be mostly accurate. The most
challenging to reconstruct was the dataset by Koh et al. [186] since it contains many
small ribbons only one to five pixels wide and a high slope. We choose these datasets
because they have published Parallel Sets, implying that they are suitable targets for
comparison. To determine the optimized values of our measures, we calculated all
measures for all possible configurations.

2.5.2 Single-Measure Optimization

To show the usefulness of each measure, we perform a single-measure optimization
on two visualizations using visualizations provided by Hassan et al. [140] and Rogers
et al. [256]. Firstly, one by Hassan et al. [140], which is a regular Parallel Sets
visualization. Secondly, a visualization by Rogers et al. [256] with curved ribbons.

Hassan et al.: In figure 2.6, we perform an optimization using all measures individ-
ually on the Parallel Sets published by Hassan et al. [140]. This visualization aims to
analyze the security and cost of data storage, determining the location where data
storage should be bought with a high security level. We can see that all category
ordering-dependent measures produce visualizations with lower clutter. The Overlap
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Hassan et al. (Original)

0.1 24.81
0.7 21
3.7 0.31
1.12 1.08

0.02 (80.7%) 10.03 (59.6%)

0.59 (15.7%) 16 (23.8%)

1.08 (70.8%) 0.09 (71.0%)

1.12 (0%) 1.22 (13.0%)

Figure 2.6: We show the optimization results for the visualizations provided by Hassan et
al. [140]. The original Parallel Sets visualization is shown at the top along with measure
values. All single-measure optimizations are shown below with the percentage improvement
compared to the original. All category ordering-dependent measures have lower clutter. All
measures are lower in comparison to the original Parallel Sets visualization. The Ribbon
Width Variance measure yields the worst result.
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Rogers et al. (1)
(Original)

0.12 32.13
0.76 16
9.79 0.88
1.57 0.34

0.06 (51.5%) 21.43 (33.3%)

0.76 (0%) 16 (0%)

4.08 (58.3%) 0.88 (0%)

1.04 (33.8%) 0.34 (0%)

Figure 2.7: We show the optimization results for Rogers et al. (1) [256] with curved ribbons.
The original Parallel Sets visualizations are shown at the top along with measure values. All
single-measure optimizations are shown below with the percentage improvement compared
to the original. All category ordering-dependent measures have lower clutter and are lower
in comparison to the original Parallel Sets visualization. The Number of Ribbons measure
performs worst.

40 Chapter 2 Quality Measures for Parallel Sets Visualizations



measure reduces the overlap of ribbons by 80.7% compared to the original. If
we assume the overlap as an objective measure of clutter [337] the Slope and
Crossing Angle measure reduce overlap by 70.8%. These measures improve by
59.6% and 70.8%. The attribute ordering-dependent measures reduce clutter as
well, with the exception of the Ribbon Width Variance measure. All measures
are lower in comparison to the original Parallel Sets, showing that the original
visualization was not optimized according to any property of the Parallel Sets. We
note that Slope and Crossing Angle create the same visualizations, as well as
Orthogonality and Number of Crossings .

Rogers et al. (1): We perform an optimization using all measures individually on
the Parallel Sets published by Rogers et al. [256] showing the more complex dataset
of this publication’s datasets with curved ribbons. We determine the angles of the
ribbons based on the underlying straight ribbons. The task for this visualization is to
present the result of a Human-Computer Interaction (HCI) study. The optimization
results are shown in figure 2.7. Orthogonality , Number of Crossings , and
Number of Ribbons are already optimized in the original visualization. Thus,
there is no improvement by these measures. We can see that the Slope measure
produces large contiguous ribbons and focuses the smaller ribbons in the center.
Considering the overlap as a measure of the degree of clutter [337], the Slope ,
measure reduces clutter by 50.9% and the Crossing Angle measure by 45.1%.
The attribute ordering-dependent measures yield the same ordering for Number
of Ribbons and Mutual Information than the original visualization and thus
optimal in those aspects.

2.5.3 Multi-Measure Optimization

We evaluate the multi-measure optimization capabilities by selecting the attribute
ordering that two out of three attribute ordering-dependent measures agree on.
Based on this ordering, we choose a Parallel Sets visualization according to the
measure that improved the most compared to the original visualization.

Koh et al.: We perform this optimization using the visualization in the publication
by Koh et al. [186] dealing with property sales analysis. Each step is shown in
figure 2.8. First, we analyze the attribute ordering. The Number of Ribbons and
Ribbon Width Variance yield the same attribute ordering, while Ribbon Width
Variance is reduced by 12.4%. For the category ordering we fix the attribute
ordering accordingly. We apply all category ordering-dependent measures to the
visualization. We can observe that the Orthogonality and Number of Crossings

yield the identical visualization. By assessing the Crossing Angle , reducing its
value by 15.0% and choosing the overlap as an objective measure for clutter [337]
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we can see that clutter is reduced by 0.8%. Observing the result, we can also see a
cleared-up top level compared to the original.

Koh et al. (Original)

0.17 34.1
0.95 58
7.83 0.86
1.38 0.08

0.86 (0%) 1.21 (12.3%)

0.93 (2.1%) 56 (3.4%) 6.5 (15.0%)

Figure 2.8: We optimize the dataset supplied by Koh et al. [186]. In this case, the
optimization is based on the attribute ordering derived from the Number of Ribbons and
Ribbon Width Variance measures.

Rogers et al. (2): The visualization presented by Rogers et al. [256] describes
the result of an HCI study with curved ribbons. We determine the ribbon angles
based on the underlying straight ribbon. The steps are shown in figure 2.9. The
Number of Ribbons and Ribbon Width Variance provide the same attribute
ordering. Thus, we only consider layout with this ordering. To determine the order
of categories, which influences the appearance of the ribbons. We find that optimum
of Overlap and Slope have the attribute ordering as suggests by the attribute
ordering-dependent measures. The visualization suggested by the Slope measure
reduces the clutter by 53.2% considering overlap as an objective measure [337]. This
visualization focuses all splits and crossings on one the left half of the visualization.
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Rogers et al. (2)
(Original)

0.08 20.78
0.67 8
5.16 0.75
1.19 0.18

0.67 (0%) 0.95 (20.2%)

0.04 (54.5%) 16.67 (19.8%)

Figure 2.9: We apply our measures to improve the second visualization of Rogers et al. [256].
In this case, the optimization is also based on the attribute ordering derived from the Number
of Ribbons and Ribbon Width Variance measures.

2.5.4 Correlation Analysis

In order to evaluate that our measures quantify different properties of Parallel Sets
we performed a Pearson correlation analysis [183] of the measures. We calculated
the value of all measures for all attribute and category layouts for all available
datasets. The results of the analysis are summarized in figure 2.10. The measure
Crossing Angle shows a weak negative correlation for the Koh et al. [186] dataset
and Mutual Information shows a weak negative correlation for the Rogers et
al. (1) [256] dataset. The Number of Ribbons measure could not be analyzed
for the data by Schätzle et al. [271] because it only has two attributes and thus a
fixed number of ribbons for all configurations. The correlation analysis shows that
the correlations between measures is dependent on the dataset. This is shown by
the differing Pearson correlations. Figure 2.10 provides the correlations between
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the measures for all datasets. We found that no measure correlates with any other
measure for all analyzed datasets. This shows that all measures are independent
and measure distinct properties, and are mutually independent.

Hassan et al. Koh et al. Kosara et al.

Rogers et al. (1) Rogers et al. (2) Schätzle et al.

Figure 2.10: The results of the correlation analysis of the measures for all reconstructed
datasets. We found that no measure correlates with any other measure for all analyzed
datasets. This shows that all measures are independent and measure distinct properties.

2.6 Discussion and Future Work

The calculation of all quality measures is dependent on the number of ribbons of a
Parallel Sets visualization. All measures are described in terms of vector graphics.
Our measures can be applied before the ribbons are curved since the straight ribbons
approximate the properties of the curved ribbons. All attribute ordering-dependent
measures are directly applicable since they are not dependent on the ribbon shape.
All category ordering-dependent measures, except the Number of Crossings measure,
will provide an approximate result, which can improve the visualization. All quality
measures, except the angle-related measures (i.e., Slope, Orthogonality, and Crossing
Angle) can be directly applied to Common Angle Plots since they enforce the angle a
ribbon has in-between two attribute axes. Our measures can be used to measure
the quality increase or decrease in cases where the underlying data changes. This
is also true for streaming scenarios, where new categories might be encountered.
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However, determining an optimal ordering of attributes and categories would require
a more efficient optimization strategy, other than calculating the measures for all
possible configurations. The measures are calculated reasonably fast, such that in an
interactive design process, they can be used to compare and rank different manually
created Parallel Sets visualizations instantly. Our correlation analysis shows that all
measures quantify distinct properties and thus are mutually independent. We derive
the set of measures from our discussion on parameters of Parallel Sets related to the
choice of the category and attribute ordering, dataset-dependent properties, and
ribbon parameters. Our measures address all parameters, and thus, we argue for
completeness in terms of geometric properties. We plan a user study as an additional
validation of completeness.

Guidelines: We found the following design guidelines for the layout of attributes
and categories of Parallel Sets visualizations: (1) Choose the first attribute according
to the analysis question or well-known categories. In exploratory tasks, choose a
attribute with a category count no larger than nine. We suggest following Miller’s
Law, which states to limit the number of shown items to seven plus or minus two
[218, 219]. We also suggest choosing a attribute with a high entropy leading to
equal-sized categories. (2) Filter the set of all configurations by attribute ordering-
dependent measures. These measures can be used in a voting system as we do in
section 2.5.3. (3) Minimize/Maximize a category ordering-dependent measure. In
our experiments, we found some suggestions: Parallel Sets with a low number of
ribbon splits, i.e., a low number of ribbons in the lower levels of Parallel Sets show
better results when optimized with the Overlap and Slope measures. Parallel Sets
with a high number of ribbons are optimized with the Orthogonality, Number of
Crossings and Crossing Angle. Curved ribbons are easier to read. This is based on
the fact that curved lines have a larger crossing angle, which makes lines easier to
follow [155, 326].

Limitations and Future Work: Our measures quantify the visual appearance of
Parallel Sets. They do not provide a reordering strategy. The next step is to assess
the properties of our measures and derive a reordering algorithm. Another possible
direction is an extension towards local measures since our measures only describe
Parallel Sets globally. We plan to study the connection between specific measures
with general tasks and data set characteristics through a user-study. A user study
would also verify whether the set of measures is exhaustive. This work does not
describe an efficient strategy to determine the minimum and maximum value of a
measure. Additionally, we plan to study the effects of the measures in the interactive
design of Parallel Sets suggesting and validating user choices. One drawback of our
approach is that the measures need to be recalculated if the aspect ratio of the plot
changes. In the case of simple zooming with a fixed aspect ratio, the values can be
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reused. Our quality measures could potentially be transferred to the quantification
of properties of Sankey diagrams since many desirable proprieties of Parallel Sets
are also desirable for Sankey diagrams, e.g., a low overlap of ribbons.

2.7 Conclusion

Determining a useful attribute and category ordering for Parallel Sets is challeng-
ing. We propose a set of eight distinct quality measures for Parallel Sets, called
ParSetgnostics. They provide a new model for quantifying properties of Parallel Sets
visualizations, which can be used as a quality criterion as described by Behrisch et
al. [33]. Our measures allow us to improve the readability of Parallel Sets visualiza-
tions by optimizing a specific measure or a combination thereof or even determining
the presence of undesirable patterns. We argue for our measures’ effectiveness by
applying them to Parallel Sets in previous publications, showing their applicability
in a single- and multi-measure optimization approach. We perform a correlation
analysis on all datasets and quality measures combinations and validate that no
measure correlates with any other measure for all datasets, showing each measure’s
distinctiveness. We published the results online where users can explore our re-
sults and test the quality measures’ properties interactively. Our work provides a
more meaningful way to analyze categorical data with Parallel Sets, especially in
exploratory scenarios.
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Categorical data does not have an intrin-
sic definition of distance or order, and thus,
established visualization techniques for cat-
egorical data only allow for a set-based or
frequency-based analysis, e.g., through Eu-
ler diagrams or Parallel Sets, and do not sup-
port a similarity-based analysis. We present
a dimensionality reduction-based visualiza-
tion for categorical data based on defining the distance of two data items as the
number of varying attributes. Our technique enables users to pre-attentively detect
groups of similar data items and observe the properties of the projection, such as
attributes strongly influencing the embedding. Our prototype visually encodes data
properties in an enhanced scatterplot-like visualization, visualizing attributes in the
background to show the distribution of categories. We propose two graph-based
measures to quantify the plot’s visual quality for ranking attributes according to their
contribution to cluster cohesion. To demonstrate the capabilities of our method,
we compare it to Euler diagrams and Parallel Sets regarding visual scalability and
evaluate it quantitatively on seven real-world datasets using a range of common
quality measures. We conducted an expert study with five data scientists analyzing
the Titanic and Mushroom datasets with up to 23 attributes and 8124 category
combinations. Our results indicate that our Categorical Data Map is an effective
analysis method for large datasets with a high number of category combinations.

This chapter is taken from the following manuscript:

• [87] Frederik L. Dennig, Lucas Joos, Patrick Paetzold, Daniela Blumberg, Oliver
Deussen, Daniel A. Keim, and Maximilian T. Fischer. “The Categorical Data Map:
A Multidimensional Scaling-Based Approach”. In: Proceedings of the 2024 IEEE
Visualization in Data Science Symposium (to appear). IEEE, 2024.

Please refer to Sections 1.2 and 1.3 for the citation rules and contribution clarification.
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3.1 The Need for Similarity-Based Analysis of

Categorical Data

Categorical data can be encountered in numerous domains, such as representing
inventory data describing product properties like color in sales or bioinformatics,
encoding the genes formed by nucleotide sequences [5]. In contrast to numeric
and ordinal data, categorical data does not have an intrinsic order or distance
associated with each value pair. The visual analysis of categorical data is challenging
since categorical data describes an attribute by name only, with the only supported
operators being equality, set membership, and mode.

Currently, there are two widespread methods of visualizing categorical data:
(1) Frequency-based visualizations [149, 331, 292] map the categorical values to
their frequencies, for example, through bar charts, pie charts, or enhanced variants,
such as stacked bar charts. In contrast, (2) set visualizations solely focus on the
set nature of categorical data items, specifically their intersections [10]. Examples
include such as Euler diagrams [237] and UpSet plots [200]. Set visualizations
like Euler diagrams do not scale well for sets with many intersections because
visual clutter is detrimental to their readability. Other, less common solutions treat
dimensions independently and map data to a continuous design model [300, 164,
261], leveraging visualization types that initially have been designed for numerical
data, such as scatterplots or parallel coordinate plots. However, these approaches
deviate from the discrete nature of categorical data and suffer from visual clutter and
overplotting, limiting their readability [190]. Approaches, such as Parallel Sets [35]
and Sankey diagrams [181], follow the frequency and set-based paradigms. These
approaches trade effectiveness in visualizing the presence of small subsets for the
presentation of frequency information. These approaches require additional design
considerations since they tend to emphasize preselected attributes over others [85].

None of the previously described techniques support the similarity-based analysis
of categorical data, i.e., deriving the similarity of categorical data items as distances
such that similar data items are placed close to each other while differing data
items are positioned far apart. Analyzing categorical data based on a group or
subset similarity is useful, e.g., visually clustering data items only differing in a
few attributes can help us better understand important characteristics of the group.
Generally, this would allow us to apply methods from cluster analysis to categorical
data.

We follow the suggestion by Broeksema et al. [55] to investigate multidimen-
sional scaling to generate visual mappings that enable the interpretation of distances
and simultaneously convey the properties of data items, i.e., effectively visualizing an
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item’s attributes by using color and position to visually encode attributes. Through
this, we address the combinatorial problem of categorical data, i.e., that with the
increasing number of attributes and categories, the number of required colors to rep-
resent a category with distinguishable colors becomes increasingly difficult. Tackling
these challenges, we contribute the following:

C
on

tr
ib

u
ti

on
s

• A technique applying multidimensional scaling to categorical data while
visually encoding the category distribution into the background. Through
layout enrichment, we enable the exploration of the category distribution,
enhancing orientation and navigation. Additionally, we contribute four
glyph designs to represent categorical subsets.

• Quality measures based on subset distribution to guide the analysis, rec-
ommending layout enriched views on attributes contributing strongly to
clusters and subset separation.

• A quantitative comparison to multiple correspondence analysis-based pro-
jections and a qualitative expert study validating the effectiveness of our
approach.

• An online demonstrator (https://dennig.dbvis.de/categorical-data-map)
making the acquired results accessible. To further aid reproducibility, we
openly publish all our datasets and source code via OSF (osf.io/jzd46) and
DaRUS [86].

3.2 Related Work

Our approach is related to visualization and dimensionality reduction methods for
categorical data. Furthermore, we propose a layout enrichment for multidimensional
projections and contribute visual quality measures for categorical data projections.

3.2.1 Visualization Techniques for Categorical Data

Set visualization is one of the core techniques for categorical data. To visualize the
members of sets and their intersections, Venn and Euler diagrams are the two most
prevalent representations [28]. Multiple adaptations of both techniques mitigate
challenges, e.g., to preserve semantics [174], draw area-proportional diagrams
[243], or incorporate glyphs to show additional information [216]. Other set
visualization techniques use lines to indicate set intersections [254] and matrices
to show the cardinality of intersection sets [200], or include the semantic context
to visualize sets [215]. Alsallakh et al. presented a comprehensive survey on set
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visualizations [10]. There are also frequency-based visualization methods that focus
on attribute frequencies, such as Mosaic plots [149] and Parallel Bargrams [331]
by mapping data item occurrences to one or multiple attributes, e.g., a rectangle’s
area. Other methods map data to a continuous design model, such that they are
compatible with visualization for numeric data, e.g., Rosario et al. [261] describe
the mapping of categorical data to numeric values for the visualization in Parallel
Coordinates [156]. Hybrid methods consider both aspects, e.g., Parallel Sets [35,
190] and Sankey diagrams [181]. However, Parallel Sets and Sankey diagrams
can suffer from the Müller-Lyer and Sine illusions [81, 316] where lines seem to
vary in distance or length, affecting the accurate interpretation of frequencies and
proportions.

While plenty of approaches visualize categorical data, to the best of our knowl-
edge, none allows identifying groups of similar data items. Thus, we propose a
visualization that focuses on similarity.

3.2.2 Dimensionality Reduction for Categorical Data

Our approach makes use of Dimensionality Reduction (DR). However, there exist DR
methods for categorical data that do not focus on similarity but rather describe the
central oppositions in the data [126]. When needing to reduce the dimensionality
of categorical data, Correspondence Analysis (CA), similar to Principal Component
Analysis (PCA) [166] for numerical data, extracts the standard coordinates, yielding
a Biplot [118] of the reduced space. In case of more than two categorical variables,
Multiple Correspondence Analysis (MCA) can be used to reduce the number of
dimensions showing the central oppositions [126]. Factor Analysis of Mixed Data
(FAMD) is a principal component technique for continuous and categorical variables
[238]. The continuous variables are scaled to unit variance, and the categorical
variables are transformed into a disjunctive data table and then scaled using the
specific scaling of MCA to balance the influence of both continuous and categorical
variables in the analysis. Multiple Factor Analysis (MFA) combines these methods
for mixed data: It uses PCA when variables are quantitative, MCA when variables
are qualitative, and FAMD when the active variables belong to both of the two
types. The Data Context Map [71] visualizes mixed-data using an Multidimensional
Scaling (MDS)-based plot and displays categorical attributes on top of the projec-
tion while also coloring points and regions according to the predominant category.
The approach by Thane et al. [301] uses force-directed graph layouts to visualize
categorical datasets representing categories as nodes while edges represent their
co-occurrence.
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MCA can embed categorical data but, like PCA, is a linear dimensionality re-
duction technique and thus not able to detect non-linear relationships [126, 55].
We propose using MDS to visualize the similarity of categorical data points in a
scatterplot-like layout.

3.2.3 Layout Enrichment for 2-Dimensional Data Projections

The idea to enrich scatterplot layouts by encoding additional information in the
background of a projection is not new [235]. The main usage occurs for the
visualization of distortions in the topology of the embedding resulting from DR [19].
The following approaches make use of Voronoi diagrams [22] to encode additional
information in the background of a projection. Lespinats and Aupetit proposed
CheckViz [199], visualizing the presence of tears (i.e., missing neighborhood) and
shuffled data (i.e., wrong neighborhood). Broeksema et al. explored the visualization
of categorical data, combining MCA with an enhanced treeview to integrate data
record information visualizing user-selected categories. However, they did not
address the high redundancy of categorical datasets [55]. Sohns et al. followed
a similar approach; however, they used non-linear DR methods to project mixed
data while using categorical attributes to highlight areas of the embedding space.
However, this approach excludes all categorical attributes from the DR process
altogether [285]. DICON enables the analysis of multidimensional clusters with an
interactive icon-based visualization that encodes additional statistical information
visually using space-filling methods, including Voronoi diagrams [61]. Aside from
using Voronoi diagrams, other methods for layout enrichment exist [45]. Morariu et
al. encode the projection’s quality into the plot’s background using contours showing
the embedding of projections called the metamap [225].

Layout enrichment methods largely focus on visualizing distortions of the pro-
jection. The approach by Broeksema et al. [55] does not address the analysis of a
single attribute, so we propose a new enrichment that encodes the category of an
attribute using color.

3.2.4 Measures for Quality and Patterns in Visualizations

Quality measures for visualizations describe a set of measurements designed to
optimize visualizations in terms of readability and clutter reduction [33]. Other
measures quantify the presence of patterns in a visualization. Instead of measuring
quality, pattern measures can be used to compare and rank different visualizations
based on specific properties. Examples are: Magnostics for matrix visualizations
[31], Scagnostics for general patterns and trends on scatterplots of numeric data
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[330], Pargnostics for parallel coordinate plots [78], Visualgnostics for projections of
high-dimensional data [197], Pixgnostics for pixel-based visualizations [274], and
ParSetgnostics for Parallel Sets [85]. SepMe is a machine-learning-based approach
to quantify the presence of clusters in scatterplots [21], while ClustMe quantifies the
visual separation of classes in scatterplots [1]. Aupetit and Catz [20] addressed the
analysis of high-dimensional labeled data using graphs, including Voronoi diagrams.
However, this approach does not address categorical data analysis, i.e., where no
numerical attributes are present.

We contribute two novel measures for quantifying visual quality for 2-dimensional
projections of categorical data. In this way, we improve the exploration of categorical
data by recommending layout-enriched views according to their visual structure.

3.3 Constructing the Categorical Data Map

Typically, categorical datasets exhibit inherent sparsity, i.e., only a fraction of all
possible category combinations is present in a dataset, e.g., for the Mushroom
dataset, only 8124 out of 243.799.621.632.000 possible combinations. Thus, we
assume that there are relationships among the existing categories restricting their
combinations. Additionally, categorical datasets can be highly redundant, e.g., the
Titanic dataset contains 2201 data items but only 24 unique entries, i.e., all data
items can be assigned to one of 24 subsets. Thus, we focus on categorical subsets
as subsets of unique attribute values. These subsets are our main representations,
enabling us to assign a frequency. We leverage these properties in the design of the
Categorical Data Map as an analytical approach for the similarity-based analysis of
categorical subsets with the following constraints:

R
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(C1) Distances of categorical subsets in a scatterplot should indicate similar-
ity, i.e., subsets with a smaller distance should differ in fewer attributes
than subsets with a larger distance.

(C2) Allow analysts to find groups of subsets by clustering similar categorical
subsets and separating outliers.

(C3) Highlight attributes contributing to the clustering of subsets enabling
navigation and orientation in the projection.

(C4) Provide a recommendation for attributes to explore first, linked to the
distribution of categories in the plot.

An example of our approach is shown in figure 3.1. (C1) and (C2) are described
further in section 3.3.1. We address (C3) by evaluating different glyph designs and
layout enrichments for subsets of categorical data (see section 3.3.2). We address
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Figure 3.1: The Categorical Data Map enables projection-based analysis of categorical data
here exemplified by the Property Sales dataset [186] with MDS [194] using the Jaccard
coefficient [159]: (1) shows 10 groups without layout enrichment. Our method reveals the
patterns annotated in (1) in plots (2)-(4). (2) shows a clear separation between Private
Property vs Public Property. (3) indicates boundaries and symmetries for the Location of
Purchased Property attribute, while in (4), the Property Type Purchased contributes the least
to the clusters. The glyph sizes encode the subset sizes, revealing that categories Private
Propriety and Central often occur together.
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(C4) in section 3.3.3, describing measures to rank attributes according to their degree
of splitting the embedding into connected areas. In the following, we describe how
we derive distance relations of categorical data and how a projection-based approach,
i.e., the Categorical Data Map, is constructed.

3.3.1 Projecting Categorical Data

The Categorical Data Map enables the visual clustering of similar categorical subsets
and separating outliers, addressing (C1) and (C2). At the core, we rely on DR to
create a scatterplot-like visualization. In general, we describe encoding E, distance
measure M , DR method P , and overlap reduction method O to project a categorical
dataset x by applying O(P (M(E(x)))).

Encoding (E): We convert all data items into a set representing their categorical
data values. We define the set of all attributes as A := {a1, a2, . . . , a|A|} and the
possible categories associated with attribute ai as the set Ci := {c1

i , c
2
i , . . . , c

|Ci|
i } with

i ∈ N. |A| is the cardinality of a set representing a data item, i.e., the number of
attributes since a data item has one category associated with each attribute. We
denote a data item as xn = (cn1

1 , cn2
2 , ..., c

n|A|
|A| ). From a practical point of view, we

make sure that all categories have a unique descriptor across all attributes. We then
create a representation compatible with the distance measure. We explored the set
representation and two variants of one-hot encoding [57, 134].

Distance Measure (M): With the set representation, we can describe the categories
of a data item to define similarity. Based on surveys on distance measures for
categorical data [65, 48, 297], we chose and evaluated three set-based distance
measures: Overlap coefficient [318], Jaccard Similarity Index [159], and Sørenson-
Dice coefficient [288]. By including one-hot encoding, converting each categorical
value to a new binary dimension enables us to use classical distance measures, such
as Euclidean or Manhattan distance, to describe a dissimilarity relationship.

Projection Method (P): DR techniques are a set of non-/linear transformation
methods with which a dataset’s dimensionality can be reduced. We compared the
following two DR methods.

Multiple Correspondence Analysis (MCA): This method is the categorical equivalent
of PCA. MCA creates groups of items that are similar according to their categories.
Objects sharing the same categories are placed close together, and objects with
differing categories are placed far apart [126]. To our knowledge, MCA is the only
existing technique that directly uses the set representation of categorical data.

Multidimensional Scaling (MDS): This method describes a set of linear and nonlinear
DR techniques that attempt to preserve pairwise distances. Multiple criteria are
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possible; Kruskal’s stress optimization criterion is usually used [194]. We create a
dissimilarity matrix to compute the projection given one of the described distance
measures.

We chose the two methods based on their popularity and common usage in
visual data analysis [55, 88] and compared MDS and MCA as DR methods for
categorical data. However, a key difference between both methods is that MCA
reduces the number of projected points to the number of unique subsets, while
MDS, applied naively, would result in a number of projected points equal to the
number of categorial data items. Since categorical datasets can contain many
duplicates, projecting each data point individually and using a DR method for
numeric data (e.g., MDS) could lead to multiple data points being projected to the
same position. The main reason is that the distance of identical points is zero. To
achieve a comparable result, i.e., the same number of projected points, we remove
all duplicates and project one data point for each unique combination of attribute
values, i.e., for each categorical subset, describing the prototype of the represented
data subset. A second reason is that we want to show the subsets represented by
a point irrespective of the method (e.g., MCA or MDS). We visually represent a
subset’s size (see section 3.3.2). Reducing the number of data points also improves
the runtime of projection algorithms for datasets with duplicate items.

Overlap Reduction (O): Given that some subsets in the categorical data may differ in
only one or a few attributes, these subsets will be projected close to each other. This
property is desirable in the design of a map by keeping the distances representing
similarity coherent. However, it may also introduce overlap if the projected point
visually encodes the subset categories through a glyph representation. Additionally,
points that are close together will yield small or narrow-shaped Voronoi cells. Thus,
we allow users to reduce the overlap after projecting the data using a method based
on force-directed graph drawing. This type of layout applies forces to the nodes and
edges of a graph [185]. We add a repulsive force to all points with a strength equal
to the radius of the glyph while all points are vertices of a fully connected graph,
forcing all points into a configuration without overlap but with minimal space in
between the glyphs.

3.3.2 Representing Categorical Data Subsets in Scatterplots

We implemented the visual components of the Categorical Data Map using D3 [50].
To represent categorical subsets, we developed four glyph representations and the
layout enrichment based on experiences gained during the design phase, addressing
(C3). To visualize individual categories, we use the d3.schemeCategory10 color
scale, a well-established color scale for categorical data.
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(a) Area square (b) Bar square (c) Area circle (d) Arc circle

Figure 3.2: Representation of subsets for a dataset with eight attributes. (a) shows the eight
attributes in four segments with the same area while the size encodes the overall subset size.
(b) shows a similar glyph, but instead, the size is encoded by a bar at the top, and all glyphs
have the same size. (c) Encodes the attributes similar to the area square but is circle-shaped.
(d) encodes the size by an arc filled according to the subset size.

Glyph Representation: To represent categorical subsets, we developed four glyph
representations. All glyphs visualize the attributes and their respective values by
dividing a square or circle into segments of equal size, such that each segment
represents one attribute. This square-based glyph is inspired by pixel visualizations
pioneered by Keim et al. [175]. In figure 3.2, this is represented by the categories a1

to a8 for the case of a dataset with eight attributes. For all glyphs, the segments are
colored according to the respective category of the attribute. However, we discuss
some limitations in section 6.8. The area-based glyphs represent the relative size
of a subset s ∈ N by the area (see figure 3.2 (a) and (c)). Thus, we calculate
the width and height accordingly. The bar- and arc-based glyphs have a fixed size
to minimize space requirements and overlap issues with neighboring glyphs (see
figure 3.2 (b) and (d)). To reduce overlap while preserving the relative proximity
of the projected points, we decided to map a subset’s size s ∈ N to a bar at the
top or an arc surrounding the glyph as an alternative encoding for the subset size.
Hence, each unique subset is represented by a square or circle sized relative to the
percentage of data points the subset represents or an indicator filled accordingly.
This enables users to perceive similar subsets and assess the size of each group.

Layout Enrichment: To enable the observation of cluster characteristics and explore
attributes in the projected space, we show a Voronoi diagram [22] for a selected
attribute (see figure 3.1). The Voronoi diagram automatically partitions the map
into polygons such that each polygon contains exactly one subset. By selecting one
attribute of interest, the partition for the selected attribute gets displayed in the
background of the projection. The color of the polygon then encodes the category
of the selected attribute. Thereby, it is possible to directly spot cluster regions for
the selected attribute and to identify cluster boundaries and outlying data points.
The appearance of the background can differ a lot across attributes (see figure 3.3).
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Fedge(a1) = 0.17
Fcomp(a1) = 0

Fedge(a2) = 0.17
Fcomp(a2) = 0

Fedge(a3) = 0.42
Fcomp(a3) = 0

Fedge(a4) = 0.79
Fcomp(a4) = 0.69

Figure 3.3: The fracturedness of attributes differs a lot and can imply an order, i.e., increasing
from left to right. The examples are derived from the Titanic dataset [80]. The edge-based
(i.e., Fedge) and component-based fracturedness (i.e., Fcomp) values are provided below for
each attribute.

Attributes form distinct contiguous areas of different sizes, indicating a neighborhood
or larger area of subsets of the same category. We added detail-on-demand using
tooltips, allowing users to see the respective category for each polygon directly.

3.3.3 Measuring Fracturedness

We quantify fracturedness, generally defined as the strength with which the Voronoi
partitioning of an attribute appears disjointed and fractured (see figure 3.3). We use
fracturedness to suggest attributes for analysis, e.g., the lower the fracturedness value,
the larger the contiguous areas of categories and thus the more straightforward to
orient along, addressing (C4). We use the Delaunay triangulation of the Voronoi
diagram [22] as a basis for our measures. In contrast to Aupetit and Catz [20], we
describe measures for purely categorical datasets. Before describing the measures,
we define the common notations following established notations [73, 20]. Let
G := (V,E) be the Delaunay triangulation of the discrete set of points P resulting
from the projection (see section 3.3.1). Thus, G is an undirected graph and the dual
graph of the Voronoi diagram of the points P . Therefore, there exists exactly one
v ∈ V for every p ∈ P defining its x,y-location and categories. Each vertex v ∈ V

has exactly one associated category Cn(v) ∈ Cn for each attribute an ∈ A.

Edge-based Fracturedness: We measure the number of edges in G that connect
cells with different associated attributes. This concept is shown in figure 3.4.
We define an edge e ∈ E as {v1, v2} with v1, v2 ∈ V and v1 ̸= v2. An edge
contributes to fracturedness, if the category for the analyzed attribute an and its
associated categories in Cn differ for the connected vertices, i.e., Cn(v1) ̸= Cn(v2) for
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Figure 3.4: We illustrate edge-based fracturedness with a Delaunay triangulation shown
in black, and a Voronoi partitioning with cell borders shown in red. The cells are colored
according to the categories of an attribute. v1, v2 and v3 are vertices of the Delaunay
triangulation. The edge v1, v2 will not contribute to edge-based fracturedness, since it
connects cells representing the same category of a given attribute. Edge v2, v3 contributes to
edge-based fracturedness because it connects cells representing different categories.

{v1, v2} ∈ E. Edge-based fracturedness is defined as Fedge : A 7→ [0, 1] and calculated
using equation (3.1).

Fedge(an) := |{v1, v2} ∈ E : Cn(v1) ̸= Cn(v2)|
|E|

with an ∈ A (3.1)

Component-based Fracturedness: This measure quantifies the number of contin-
uous areas an attribute produces in the plot through its categories. We show the
concept of component-based fracturedness in figure 3.5. Each category c ∈ Cn defines
an induced subgraph G[S(c)] of G, with S(c) ⊂ V for all c ∈ Cn of an attribute
an ∈ A. The induced subgraph G[S(c)] is a graph with the vertices S(c) and the
edges in E with both of its vertices in S(c). We formally define S(c) for a category
c ∈ Cn in equation (3.2).

S(c) := {v | v ∈ V,Cn(v) = c} for c ∈ Cn of an ∈ A (3.2)

With this definition, a category defines a partition of V , i.e.,
⋃
c∈Cn

S(c) = V and
a vertex v ∈ V can only have one category Cn(v), thus

⋂
c∈Cn

S(c) = ∅ for a given
attribute an. Therefore, there exits |Cn| subgraphs of G for attribute an ∈ A. Let
ω(G) be the number of connected components of any graph G. The component-based
fracturedness is dependent on the number of connected components of all subgraphs
ω(G[S(c)]) for each c ∈ Cn (see s1 to s6 in figure 3.5). We define the sum of the
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Figure 3.5: We describe component-based fracturedness with a Voronoi partitioning with cell
borders shown in red. The associated Delaunay triangulation is shown in black. The cells
are colored according to the categories of an attribute. s1 to s6 are six components induced
by an attribute through the subgraphs associated with a category. Solid lines connect
each subgraph, while dashed lines are not part of any subgraph. With six components
Fcomp = 0.33 for the attribute (see equation (3.5)).

number of components of all induced subgraphs as Ω(an) for an attribute an ∈ A.
Ω(an) is formally defined in equation (3.3):

Ω(an) :=
∑
c∈Cn

ω(G[S(c)]) with an ∈ A (3.3)

We can also quantify the fracturedness a single category contributes to the overall
measure. This allows us to differentiate categories forming contiguous areas and
highly fractured ones. The fracturedness fcomp(c) of a single category c ∈ Cn is
defined in equation (3.4):

fcomp(c) := ω(G[S(c)]) − 1
Ω(an) with c ∈ Cn of an ∈ A (3.4)

Component-based fracturedness is defined as Fcomp : A 7→ [0, 1] and calculated using
equation (3.5). It allows us to compare different attributes and is an alternative
measure to Fedge(an).

Fcomp(an) := 1 − |Cn|
Ω(an) with an ∈ A (3.5)
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Figure 3.6: Through user selection, the borders of a second attribute can be added to the
foreground of the plot, e.g., Purchaser Currently Living In is shown in the background as the
primary attribute, and Location of Purchased Property is shown in the foreground.

The sum of all component-based fracturedness values of individual categories c ∈ Cn
is equal to the fracturedness of the attribute an ∈ A. We express this relationship in
equation (3.6):

Fcomp(an) =
∑
c∈Cn

fcomp(c) with an ∈ A (3.6)

We proof of the equivalence described in equation (3.6).

Proposition: For any an ∈ A, Fcomp(an) =
∑
c∈Cn

fcomp(c).

Proof:
∑

c∈Cn

fcomp(c) =
∑

c∈Cn

ω(G[S(c)]) − 1
Ω(an)

=
∑

c∈Cn

ω(G[S(c)])
Ω(an) −

∑
c∈Cn

1
Ω(an)

=
∑

c∈Cn
ω(G[S(c)])

Ω(an) − |Cn|
Ω(an) use eq. 3.3

= 1 − |Cn|
Ω(an)

= Fcomp(an)

Hence, Fcomp(an) =
∑

c∈Ci

fcomp(c) for any an ∈ A. ■

60 Chapter 3 Measures for 2-Dimensional Categorical Data Projections



3.3.4 Interacting with Attributes and Subsets

Our prototype allows interactions on the attributes of the dataset shown in the side
panel and projected subsets.

Attribute Selection: Users can change the attribute visualized through layout
enrichment. We also show the outline for categories of a second selected attribute
(see figure 3.6). We add the borders of categories to the foreground if another
attribute is already selected and visualized in the background. This visual cue does
allow for the observation of one main attribute and a second attribute, similar to the
outline of MosaicSets [262]. This introduces less clutter and thus requires less effort
to perceive. We initially used textures with different colors to represent different
categories. However, using textures of different colors to fill each cell in the Voronoi
portioning introduced excessive clutter, and the interpretation of common regions
was difficult.

Subset Selection: We allow for the selection and highlighting of groups of subsets.
Once the user has selected data items, we show the common categories of the
selection using Lasso selection and highlight all data items outside of the selection
with the same combination of categories in the side panel on the left, similar to
the proximity visualization for continuous data proposed by Aupetit and Catz [19].
This interaction enables cluster analysis since all common categories among the
selected items are highlighted (see side panel in figure 3.6). Thus, visual groupings
can be compared with respect to the categories and attributes contributing to cluster
cohesion. Additionally, all subsets matching the common categories of the selection
are also highlighted (see plot in figure 3.6). Together, this allows analysts to observe
and judge group cohesion along with the contributing attributes.

Attribute and Category Ordering: A user can select attributes of the dataset listed
on the side panel to change the attribute encoded in the foreground and background
of the plot. By default, attributes are sorted by their edge-based fracturedness in
ascending order, and categories are ordered by their individual contributions to
component-based fracturedness in ascending order, allowing for a focus on attributes
forming clear splits in the projection space. When selecting subsets (see previous
paragraph), the lists of common attributes and distinct attributes are also ordered
similarly.

3.4 Interpreting the Categorical Data Map

In the following, we perform a case study on cluster and attribute analysis, using
the Property Sales dataset [186] (see figure 3.1) to show how to interpret emerging
patterns for cluster, outlier, and similarity analysis. We chose this dataset because of
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its relative simplicity. However, it lacks the complexity of large categorical datasets,
which we will address in an expert study (see section 6.7).

Cluster Analysis: There exist a total of Πn∈{1,...,|A|} |Cn| possible data items, given
that all combinations of attributes are allowed, resulting in an exponential growth
in the number of possible and unique data items. Hence, we can assume that there
are dependencies and relationships among the categories contained in a dataset
impacting their distribution. This means that groups of subsets that share a set of
attributes should form perceivable structures (i.e., clusters) when projected using DR
methods. Thus, our approach benefits from and leverages the sparsity of categorical
data.

For the Property Sales dataset, there are ten clusters (see figure 3.1 (1)). There
is a symmetric split along the center of the projection. Given the size of this dataset,
we can observe that the two attributes Purchaser Currently Living In and Location
of Purchased Property dominate the appearance of the projection. The glyph sizes
indicate that the categories Private Propriety and Central often occur together while
{Private Propriety, Central, Condominium} is the largest unique subset. Thus, we can
see that most private property is purchased in the central areas, and in this general
group, the large majority are condominiums.

Attribute Analysis: By encoding the attribute values in the background, we enable
users to analyze the distribution of subsets in the projection with respect to one or
two attributes. For the Property Sales dataset, we found that the attribute Purchaser
Currently Living In creates a clear and straight division between subsets (see figure 3.1
(2)). We can also see a second level of grouping by the Location of Purchased Property
attribute forming a close to orthogonal split in the projection, which can be spotted
with our visualizations (see figure 3.1 (3) and figure 3.6). Thus, Purchaser Currently
Living In and Location of Purchased Property are the primary attributes. This finding
is substantiated when checking the side panel entry of the attribute Property Type
Purchased, which has three categories with low frequency. The appearance of the
partitioning depends a lot on the selected attributes. When observing the layout
enrichment, attributes present themselves on a spectrum from a few clearly separated
groups to intermingled and highly fractured appearances. Property Type Purchased
does not contribute to elements’ clustering (or cluster cohesion) since most groups
contain subsets of the majority of its categories. Thus, the areas of the categories are
disjointed, which reflects the fact that most property types are sold as both private
and public property, as well as most of the geographic locations.
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Figure 3.7: Two visualizations of the Titanic dataset [80]. A split Euler diagram without
the Age attribute (left) and an overlap reduced Parallel Sets visualization (right) with very
thin ribbons. Both have drawbacks with a small dataset and do not scale with an increasing
number of attributes.

3.5 Evaluation

We qualitatively compare our Categorical Data Map to existing visualizations for
categorical data and quantitatively compare our approach to MCA used by Broeksema
et al. [55]. Additionally, we performed an expert study on two representative
datasets with five data scientists.

3.5.1 Comparison to Euler Diagrams and Parallel Sets

For categorical data, each data point has exactly one category for each attribute,
while in Euler diagrams, the number of sets an element is included in is not restricted,
i.e., it could be in less. Thus, to truthfully represent categorical data in Euler
diagrams, there need to be Σai∈A |Ci| sets, i.e., one set for each category of all
attributes. Euler diagrams may require the selection of specific subsets of attributes
and, therefore, are less suitable for exploratory data analysis. For highly intersecting
sets, automatic layout methods might not create a single diagram [237]. We
show an example of an automatically generated split Euler diagram for the Titanic
dataset in figure 3.7 (left). The attribute Age was removed to reduce the diagram’s
complexity. The Titanic dataset requires ten sets. However, even with eight sets, the
visualization is disjointed. Parallel Sets are alternative categorical sets visualization,
combining principles from stacked bars and parallel coordinate plots [35, 190].
Figure 3.7 (right) shows the Titanic dataset in a Parallel Sets visualization, where
the readability is improved through overlap reduction. Small subsets are represented
as very thin ribbons on the lowest level, which can be hard to perceive. Visualizing
the Mushroom dataset with classical Parallel Sets is not visually feasible since it
will have 22 ribbon layers and 8123 subsets on the lowest level (see figure 3.8).
Alsakran et al. [9] addressed this issue by only visualizing 2-dimensional subsets in
a modified Parallel Sets visualization. However, the relation between 2-dimensional
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Figure 3.8: A basic Parallel Sets visualization of the Mushroom dataset. The visualization
exhibits a high ribbon overlap, with many thin ribbons, especially in the lower levels,
contributing to low readability [85].
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Source Description Num. Attr.

Bareiss et al. [27] Audiology 70
Lincoff et al. [202] Mushrooms 23
Dawson et al. [80] Titanic dataset 4
Hassan et al. [140] Cyber-security 4
Koh et al. [186] Property sales 3
Rodgers et al. [256] HCI study; 2 datasets 3

Table 3.1: The original sources of the seven datasets we used for evaluation, a description,
and the number of attributes.

subsets is lost. Thus, we argue that Euler diagrams and Parallel Sets, as examples
of established visualizations for categorical data, do not scale with an increasing
number of attributes.

3.5.2 Quantitative Evaluation of Projection Quality

We use five quality measures commonly used in related work for DR to evaluate
and compare the quality of our categorical data projections [104]. The result of
comparing MDS with Overlap coefficient (MDS+O) and Jaccard distance (MDS+J)
to MCA are shown in table 3.2. We briefly describe each measure below and use
them to compare our MDS-based method to MCA using seven real-world categorical
datasets (see table 3.1).

Trustworthiness (TW) [317] quantifies the proportion of points that remain close
in the lower-dimensional representation to assess how accurately local patterns in
the projection represent the data patterns. This is linked to the occurrence of "false
neighbors" in the protection. The TW quality measures, as presented by Venna and
Kaski, is defined as:

TW(k) = 1 − 2
Nk(2N − 3k − 1)

N∑
i=1

∑
j∈Uk(i)

(r(i, j) − k) (3.7)

In the definition given by Equation 3.7, Uk(i) denotes the k nearest neighbors of a
point i in the 2D projection that are not neighboring in the original space. r(i, j)
represents the rank of the 2D point j within the ordered nearest neighbors of i in 2D
(i.e., projection space).
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Continuity (CT) [317] measures the ratio of points in the projection that remain
close in the original space. This is related to the "missing neighbors" of a projected
point. The CT measure, as defined by Venna and Kaski, is formulated as:

CT(k) = 1 − 2
Nk(2N − 3k − 1)

N∑
i=1

∑
j∈Vk(i)

(r̂(i, j) − k) (3.8)

In Equation 3.8, Vk(i) represents the set of points that are nearest neighbors in the
original space but not among the k nearest neighbors in the 2D projection. r̂(i, j) is
point j’s rank in the ordered set of nearest neighbors of point i in the original space.

Normalized Stress (NS) [165] quantifies how well the distances between pairs of
points are preserved when mapping from the original space to the projected space.
This measure should be as low as possible. The NS, as presented by Joia et al., is
formulated as:

NS(x) =
∑
i,j(d(xi, xj) − d(P (xi), P (xj)))2∑

i,j d(xi, xj)2 (3.9)

The function d denotes the Euclidean distance. P denotes the transformation of xi
and xj into the projection space (here 2D) and using MDS or MCA.

Shepard Diagram Correlation (SC) [103] measures the rank correlation of all
distances of the original and the projected space, assessing the quality of distance
preservation globally using Spearman’s ρ [290]. The correlation coefficient of the
Shepard diagram, as presented by Espadoto et al., is formulated as:

SC(x) = ρ(R({d(xi, xj)|xi, xj ∈ x}),

R({d(P (xi), P (xj))|xi, xj ∈ x}))
(3.10)

This definition uses Spearman’s ρ for calculating the rank correlation. The rank of
distances is denoted by R, while the distances are all pairwise distances xi, xj of
dataset x. As for NS, P denotes the transformation of a data point into the projection
space.

Neighborhood Hit (NH) [241] measures the proportion of a point’s neighbors in
the projection space that share the same label as the point itself, averaged across all
points in its neighborhood. This measure is related to the separation of labeled data
in the projection. In our case, we evaluate every attribute as a set of labels. Thus,
we calculate the mean and median values of NH across all attributes of a dataset.
Paulovich et al. define NH as:

NH(k) =
N∑
i=1

∣∣∣j ∈ Nk
i : lj = li

∣∣∣
Nk

(3.11)
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This measure quantifies the proportion of a point’s k neighbors Nk
i in the projection

space that shares the same label l as the point itself, averaged across all points in
Nk
i (see Equation 3.11). This measure is related to the separation of labeled data in

the projection.

TW, CT, NH require a parameter k defining a neighborhood size. We set k = 7,
a commonly used value [103]. We found that our approach generally outperforms
MCA quantitatively.

3.5.3 Qualitative Expert User Study

To evaluate the Categorical Data Map we performed a paired analytics study [169].
We conducted an expert study with five data scientists, E1–E5, with varying back-
grounds. All participants were Ph.D. candidates and students. All were male, and
the age range was 25 to 30 years. All experts had experience in the area of infor-
mation visualization and visual analytics. During the study, we asked the experts to
verbalize their thought process to capture it. The following studies are set up using
MDS projections of the Mushroom and Titanic dataset using the Overlap coefficient
(MDS+O). Table 3.2 shows that these projections are higher quality than MCA-based
ones regarding most quality measures.

All trials followed a predefined structure and took between 43 and 57 minutes.
The study was conducted in German. The study started with an introduction to the
Categorical Data Map using the Property Sales dataset by Hassan et al. [140] shown
in figure 3.1 and included a description of the square area glyph, layout enrichment,
and interactions to introduce the expert to the prototype. After the introduction, the
experts had the opportunity to ask questions regarding our approach.

Titanic Dataset: The experts had to analyze the Titanic dataset [80] using the
Categorical Data Map shown in figure 3.9. E1–E5 were able to locate the largest
subset {Male, Perished, Adult, Crew} by looking at the visualization without any
additional interaction (figure 3.9 (1)). E1–E5 used Lasso selection to find and
validate that the largest subset regarding three attributes is {Male, Perished, Adult}
(figure 3.9 (2)). Additionally, E1–E5 were able to find six clusters and two outliers.
E1, E3, and E4 found that the outliers represent the subsets defined by the categories
{Perished, Child, Crew} (figure 3.9 (3)). E1, E3, and E5 commented on the high
number of perished males and the large number of casualties among the {Male,
Crew}. E1–E5 used the layout enrichment to navigate and reason about the location
of subsets, including the Class attribute (figure 3.9 (4)). E2 commented on the close
to orthogonal split in the projection between Sex and Survived shown in figure 3.9
(1) and (2).
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Figure 3.9: Categorical Data Map visualizations of the Titanic dataset [80] using MDS [194]
and Overlap coefficient [298]. (1) The visualization shows six clusters and two outliers.
The largest cluster is the subset of Adult, Male, Perished (at the bottom). The background
encoding shows that the Survived and Sex attributes are relevant for this dataset, clearly
separating the data items. For Sex, the separation is left and right. (2) For Survived, the
separation is bottom-right/top-left. (3) The Age dimension also yields a separation, while
(4) Class shows no clear structure.
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Figure 3.10: Categorical Data Map visualizations of the Mushroom dataset [202] using the
MDS [194] and Overlap coefficient [298]. (1) Two poisonous mushrooms very similar to edible
mushrooms. (2) Comparing class and odor reveals that the poisonous outlier has a pungent
odor. Continued analysis reveals that mushrooms with an unpleasant smell are poisonous.
(3) After the selection of a cluster, the ring-type is identified as a defining characteristic for
the cohesion of visible clusters and is used as a property for the classification of mushrooms.
(4) Selecting two poisonous clusters, reveals that the vast amount of poisonous mushrooms
are silky at the stalk-surface-below-ring, while there exist very few silky mushrooms that are
edible.
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Mushroom Dataset: E1–E5 had the opportunity to perform an open exploration
task and were only given the information that the dataset is about mushrooms and
that the class attribute indicates their poisonousness. The glyph was replaced with a
simple black dot to reduce the visual complexity. E1–E5 perceived five clusters right
at the outset. E2 and E3 used the Lasso selection together with layout enrichment
to determine differentiating categories for cluster separation, e.g., evanescent, large,
and pendent for the ring-type attribute (figure 3.10 (3)). E1–E5 found the poisonous
outliers nested in the group representing edible mushrooms (figure 3.10 (1)) being
poisonous mushrooms very similar to edible ones. E1–E5 found the general rule
that mushrooms with an fishy foul, musty, spicy or other unpleasant smells indicate a
poisonous mushroom (figure 3.10 (2)). During the open exploration task, E1, E2,
and E3 found the rule without additional information. E4 and E5 needed help to
find the class and odor combination. However, E4 and E5 could deduce the rule
by only interpreting the plot. E3, quickest in exploring the dataset, found that
stalk-surface-below-ring is silky for the majority of poisonous mushrooms and the
stalk-surface-below-ring is mostly smooth for edible ones (figure 3.10 (4)).

General Comments: Before concluding the study, the participants were asked to
comment on their preferences for the available glyph designs. E1, E2, and E4
preferred a circular glyph design (figure 3.2 (c) and (d)) over a square design. E3
and E5 preferred square glyph designs (figure 3.2 (a) and (b)). E1 and E3 found
that the area-based glyphs are inferior to the alternative designs for reading off
precise subset sizes. E1 mentioned as a drawback that the glyphs are not rotation
invariant. E1 commented that the layout enrichment is very useful for navigation
and orientation and helps to perceive the impact on category groups. However, E1
also noted that the layout enrichment does not reflect the ratio of data items with a
given category. E3 mentioned a general preference for the map metaphor by being
helpful for orientation among different subsets. E2 mentioned potential scalability
issues with the glyph for large datasets, e.g., for a high number of attributes, and
proposed semantic zoom as a potential option. E1–E5 commented that ordering
attributes according to their fracturedness was understandable and useful. During
the general questions at the end, E2–E4 freely explored plots created with other
distance measures and DR methods. E3 commented that the result of MCA-based
plots was hard to interpret, noticing the disjointed layout enrichment and thus
having larger fracturedness. E1 mentioned issues with the encoding of categories,
such as the category North not being located north of the plot or the category brown
not having the color brown, and suggested being able to select the color of a category
manually.
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3.6 Discussion and Future Work

In this section, we discuss the lessons-learned, reflect on the design decisions, and
discuss computational complexity and future work.

Visualizing Attributes and Categories: We initially used circular glyphs as shown in
figure 3.2 (c) and (d), which had the benefit of using the available space effectively
since overlap minimization relative to the radius is straightforward to implement.
The subset size encoding by the arc around the circle enables finer-grained distinc-
tion of sizes since it offers more space. However, during the design phase, users
misinterpreted the circle segments as pie charts, a common method for displaying
categorical data. Thus, we decided to circumvent this common misconception by
using square-based representation for the categorical subsets. However, three out of
five experts preferred a circular glyph design.

There are visual limitations to the number of dimensions and categories that our
approach is able to support. The number of visually distinguishable categories is
limited by the number of square segments that fit into the glyph, which is limited by
the screen space. The number of attributes is limited by the number of colors, which
have to be distinguishable and memorizable. Thus, we suggest following Miller’s
Law [220] for the number of dimensions and attributes, which proposes a maximum
of seven plus or minus two. Alternatively, we suggest interactions such as semantic
zoom, e.g., removing attributes for which all subsets have the same category after
zooming in on a specific area.

Encoding of Subset Sizes: We evaluated four different visual encodings for the size
of a categorical data subset (see figure 3.2). The area-based glyph makes it easier
to perceive subset sizes at a glance, and thus, a user can spot the distribution of
the dataset directly. Still, it suffers from overlap, especially for tight clusters. Thus,
there is a benefit to applying methods to reduce overlap. We are able to mitigate
the overlap problem with the force-directed overlap reduction largely. Simplifying
the representation of a dot requires less space, but the assessment of subset sizes
requires interaction. It is possible to remove the subset size information altogether.
However, this may limit analysis tasks where the subset sizes it not important, e.g.,
the Mushroom dataset. All glyph designs benefit from a mouse-over mechanism that
moves the currently selected glyph to the top so that all attributes can be observed.

Encoding of Attributes Into the Background: Figure 3.9 shows that encoding an
attribute into the visualization gives insight into the topology of the projection. We
could also show the benefit of encoding multiple attributes into the background to
allow for a more complex representation of the topology. We found that the number
of categories of an attribute weakly influences the fracturedness of an attribute.
However, the main factor is the number of subsets containing the attribute, i.e., an
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attribute with two categories and an occurrence roughly equal among all subsets
will yield a low fracturedness for that attribute. With increased imbalance between
the categories, the fracturedness may increase if other more balanced attributes are
present.

We discussed the use of weighted Voronoi diagrams [17] to better reflect the
subset size in the background encoding. The use of a weighted Voronoi diagram
will conflict with local cluster patterns; more specifically, for imbalanced datasets,
the area of one Voronoi cell extends below the point of its neighbors, requiring
restrictions on the range weights. This behavior makes the layout enrichment hard
to interpret since points are placed inside or close to an area representing a category
they do not belong to. For datasets with only unique entries, the weight Voronoi
diagram will be identical to the regular Voronoi diagram. To organize subsets,
we also considered Voronoi Treemaps [24]. However, Voronoi Treemaps require a
hierarchical structure, just like regular Tree Maps [280] and, thus, cannot be applied
to categorical data without additional information to derive a hierarchy of attributes.

Computational Complexity: The number of data records n poses potential limi-
tations. The time complexity of projecting data is determined by the DR methods.
However, since categorical data sets are sparse, as discussed in section 3.4, the
number of projected subsets is significantly lower than that of data records. The
Voronoi diagram calculation and the corresponding Delaunay triangulation are both
in O(n log(n)) [22]. The time complexity of calculating the fracturedness measures
depends on the number of vertices and edges of the Delaunay triangulation, which
will have n vertices and 3n− 3 − h edges, where h is the number of vertices on the
convex hull. The time complexity of calculating edge-based fracturedness is based
on enumerating all edges of the Delaunay triangulation and has a time complex-
ity of O(|E|). The time complexity of calculating component-based fracturedness is
dependent on the algorithm for determining the number of components. We use a
depth-first search-based approach with time complexity of O(|V | + |E|). Thus, the
dimensionality reduction method employed poses the highest contribution to the
time complexity, i.e., O(n3) for MDS.

Future Work: We found that Voronoi cells can overrepresent the amount of data
associated with a specific category. Thus, there is a need for a new layout enrichment
method following these constraints: (1) The global area associated with one category
should be relative to the occurrence in the dataset (data-ink ratio), (2) the extent
of individual category areas should remain close to their projected data point
positions, (3) where meaningful (e.g., among clusters), the layout enrichment
should visually enclose the data points with the same category if the data-ink ratio
allows. The expert study showed that the color assignment for foreground and
background colors could be improved. We suggest assigning attributes to a few
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sets of colors based on an exploration phase. Later in the analysis, we require
one color set for the attribute used in the background, one for the foreground
using a distinctive palette, and one for the attribute under focus by the user. All
the other attributes would be assigned a neutral color (e.g., grey). In this paper,
we studied the use of MDS for categorical data analysis. However, following the
approach of encoding categorical data into distances, other DR methods could be
used (e.g., t-Distributed Stochastic Neighbor Embedding (t-SNE) [208] or Uniform
Manifold Approximation and Projection (UMAP) [213]). These can be evaluated
and compared quantitatively, following the evaluation presented in this paper. We
think that the concept of fracturedness can be transferred to high-dimensional space
when analyzing categorical data. Such a measure can be used to compare the low-
and high-dimensional representations and provide a quality measure for projections
of categorical data.

3.7 Conclusion

We presented a novel projection-based visualization method to address the need
for similarity-based analysis techniques for categorical data. We leverage distance
relations based on set intersections to create enhanced and interactive glyph-based
scatterplot-like visualizations called the Categorical Data Map. We visualized at-
tributes and categories by calculating a Voronoi partitioning and coloring the cells
according to the category of the associated attribute. Our method allows for ex-
ploring the categorical data space through segmentation, enabling the orientation
along an automatic or user-selected attribute. For automatic selection, we rank-
order attributes along a visual property we defined as fracturedness measures. We
quantitively evaluated different distance measures for the projection of categorical
data with MDS, suggesting that the Overlap coefficient and Jaccard distance yield
results outperforming MCA. Through a case study, we showed that our Categorical
Data Map can support the identification of similar subsets and clusters, as well as
the detection of attributes with a strong influence on the topology of the embedding.
In an expert study, we were able to confirm that our approach facilitates the analysis
of categorical data, especially for large datasets, by grouping similar subsets while,
through layout enrichment, visualizing the distribution of categories of an attribute.
We published a demonstrator and our results online so that users can interactively
experiment with our approach and build upon our results. We conclude that the
Categorical Data Map effectively analyzes large categorical datasets, especially in
exploratory scenarios.
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Part II

Data-Driven Measures

The purpose of computing is insight, not numbers.

— Richard Hamming, Mathematician
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The focus of diachronic linguistics is on un-
derstanding the development and evolution
of language over time. This chapter presents
HistoBankVis, a Visual Analytics (VA) ap-
proach developed for diachronic linguistics,
aiming to explore and examine relationships
found within complex categorical datasets
generated from large text corpora. We tackle the challenge of various factors affect-
ing linguistic change over time, necessitating rigorous annotation and exhaustive
analysis. HistoBankVis, with its multilayered visual analysis system, allows for
an interactive exploration of annotated Penn TreeBank datasets, providing visual
overviews through easy-to-interpret histogram and matrix visualizations. Addi-
tionally, HistoBankVis enables the analysis of multi-attribute interactions between
different linguistic structures that can be analyzed using Parallel Sets visualizations.
Through a case study on the evolution of Icelandic, we demonstrate the system’s
capacity to help generate and validate new hypotheses by visualizing the interplay
of multiple linguistic elements across several time periods, revealing a previously
unknown link between word order, subject case, and voice.

This chapter is based on the following publications:

• [271] Christin Schätzle, Frederik L. Dennig, Michael Blumenschein, Daniel A. Keim,
and Miriam Butt. “Visualizing Linguistic Change as Dimension Interactions”. In:
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DOI: 10.18653/v1/W19-4734.
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Proceedings Series 32. Association for Computational Linguistics, 2017, pp. 32–39.
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4.1 The Benefit of Visualizing Language Change

Quantitative methods have become more popular in diachronic linguistics as more
data from historical texts have been digitized, for example the Bibliotheca Augustana
[138], TITUS [305], and GRETIL [128]. In addition, more advanced statistical meth-
ods are used to analyze these datasets, including the calculation of co-occurrences,
correlations, and other techniques [211, 23, 146]. The methods above lend them-
selves more for hypothesis validation and less for exploratory data analysis. Studying
diachronic linguistics requires understanding the complex interactions of many lin-
guistic and non-linguistic factors and structures. Datasets for studying language
change are so complex that purely statistical methods may miss important patterns
and trends. To explore how historical change can be visualized, we developed His-
toBankVis, a new system that combines visual and analytical methods [178]. With
HistoBankVis, a researcher can interact with the data and discover the relationships
between linguistic attributes and structures. Our system eliminates the need for
tedious manual work of searching for patterns in various tables of attributes and
statistical significances. Instead, our system allows the researcher to select specific
attributes to study and get a visual overview that shows if there are any interesting
patterns across attributes over time. The researcher can then examine the relevant
patterns more closely by focusing on individual linguistic structures and generating
new hypotheses. These hypotheses can then be retested with a new view of the data,
taking into account related attributes. Since historical data often presents a data
scarcity problem, we also offer several ways to replace statistical significance, such
as Euclidean distance, to deal with the small number of data points.

We demonstrate the effectiveness of HistoBankVis by applying it to a specific
case study: a syntactic analysis of the Icelandic Parsed Historical Corpus (IcePaHC)
[320]. The visualization helps to detect and explore syntactic changes in IcePaHC
in a systematic and interactive way, allowing linguists to form and test hypotheses.
Furthermore, the visualization connects the annotated values, the statistical analyses
and the actual data by allowing the researcher to access the original sentences from
IcePaHC during a data filtering and selection process. In summary, we contribute:

C
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s

• The interactive HistoBankVis tool to interactively explore language change
in annotated Penn TreeBank datasets.

• An evaluation with domain experts, yielding uncovering insights into
Icelandic concerning word order and the presence of dative subjects.

• For accessibility, the HistoBankVis tool and the preprocessed IcePaHC are
publicly available at https://dennig.dbvis.de/histobankvis/.
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Figure 4.1: The workflow of our updated visual analysis application is as follows: Based
on the specific analysis task, the user segments documents into sentences and extracts, and
filters for relevant linguistic elements (called attributes), along with either customized or
predefined time periods. The visualization provides different levels of detail that the user
can switch between as needed. Crucially, the system includes a feedback loop that allows
the user to go back and refine the filters or change the data used in the analysis.

4.2 Related Work

Visualizations and VA approaches addressing the analysis of historical linguistic data
cover a large diverse set of topics. Lyding et al. [207] researched the evolution
on modal verbs in historical academic discourse. Rohrdantz et al. visualized the
cross-linguistic spread of new suffixes through mass media [260] and the semantic
change of word meaning [259] Theron and Fontanillo [302] visually analyzed
the diachronic development of different meanings of as describe in subsequent
versions dictionaries. In previous work on Icelandic using IcePaHC, Butt et al. [60]
as well as Schätzle and Sacha [273] used glyph visualization to analyze different
linguistic factors for syntactic change. HistoBankVis addresses the challenges and
shortcomings found when working with glyph visualizations. In general, we found
that, the glyph visualizations had difficulties to handle the potentially large amounts
of interacting attributes that are relevant to various historical linguistic research
questions. The system was also based on certain assumptions regarding the nature of
the data and the research questions being addressed. The objective of HistoBankVis
is to offer a broadly applicable system for historical linguistic research, as well as a
more adaptable approach to the study of linguistic attributes, allowing exploratory
access to a wide range of factors. The system allows you to analyze individual factors
separately or examine the interplay between related factors as needed.

4.3 The HistoBankVis Application

HistoBankVis is based on an iterative workflow as shown in figure 4.1. Textual data is
analyzed by extracting linguistic factors that the researcher considers relevant to the
research question. These factors are derived from a careful review of the theoretical
literature. We call these factors attributes and their possible values categories
because they describe nominal properties of linguistic structures, usually sentences.
For example, voice is an attribute that has the categories active, passive, and middle.
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The user can filter the data according to the research question (e.g., by selecting
certain attributes/categories or sentences from certain genres or time periods). The
user must also define time periods to compare the historical development of the
attributes. The visualization allows the user to interactively compare the distribution
of the selected attributes and categories across the specified time periods. The
user can also access further details of the visualization using mouse interaction
techniques. The user can then use the insights from the visualization to test new
hypotheses by interacting with the system. This may include changing the selected
data by adjusting the filter, changing the time periods, or selecting a different set of
attributes or categories to visualize.

4.3.1 Data Processing

We are working with HistoBankVis to study the relation between subject case and
word order as part of a specific case study. Icelandic is generally considered to
have little change in syntax and morphology of words [304, 258], but some word
order changes have been reported on the shift from OV (Object-Verb) to VO (Verb-
Object) [182, 257, 153] and on the decline of V1 (i.e., direct verbs) [114, 281].
Our two main linguistic questions about Icelandic based on the existing literature
are: How are grammatical relations represented? Do these representations change
over time in Icelandic? In linguistics, these expressions are called markers and
describe the functions of words in a phase or sentence. We extracted relevant
linguistic attributes from the theoretical literature and used Perl scripts to assign
the corresponding categories from the IcePaHC annotation. In this chapter, we
look at the historical changes in word order, which we represent by codes such as
SVO1 (Subject-Verb-Direct Object), VSO1 (Verb-Subject-Direct Object), or VO1S
(Verb-Direct Object-Subject). In the same way, we added information about verb
type, voice, case, and valence. We also linked these attributes to the sentence IDs in
IcePaHC. These sentence IDs give information about the year, the name of the work,
and the genre in which the sentence is found. We used this information to create a
well-structured database that HistoBankVis can use as part of our preprocessing.

4.3.2 Category Filter and Attribute Selection

After processing the data, the researcher can filter the records with relevant proper-
ties. In addition to filtering by time period, the researcher can interactively create
filters for the categorical attributes in the database. The attributes and individual
categories can be combined with logical AND or OR functions, depending on the
analysis task. For example, we filtered for sentences with any OVS word order,
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Figure 4.2: The researcher can filter the sentences by selecting specific years and specific
attributes and categories to create a dataset for visualization and export.
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i.e. (direct) object, verb, subject, in texts from 1750 to 1900 Common Era (CE) in
figure 4.2. The researcher can then select the attributes to analyze, such as subject
case, voice, word order, and verb used. The researcher can analyze any sentence that
matches the filter by viewing it and its Penn Treebank annotation [212], along with
any extracted attributes available on demand. Therefore, the filtering component
of HistoBankVis is itself a preprocessing system that allows the researcher to have
a finer view of the data by selecting only some attributes and/or records. This
helps the researcher become familiar with and explore the data set, as well as better
understand the data quality by accessing detailed information about each data point.
In addition, the researcher can download the filtered data set as a CSV file and
process it with another tool.

4.3.3 Time Period Definition

The researcher must first define relevant time periods to visualize and analyze the se-
lected attributes over time. Our system automatically supports two common time pe-
riod divisions for Icelandic: (1) Old and Modern Icelandic, i.e., 1150–1550 and 1550–
2008 CE [304] and (2) finer periods as per suggested by Haugen [141], i.e., 1150–
1350, 1350–1550, 1550–1750, 1750–1900, and 1900–2008 CE. Additionally, the
user can define custom time ranges of arbitrary size or split the available range into

Figure 4.3:
Sentence frequency
histogram

a variable number of evenly sized ranges, allowing for the
exploration of periods independent of historically predefined
ranges while also enabling the analysis of other languages. To
verify the availability of data for each time period, we show
a histogram (see figure 4.3) allowing for a comparison of
sentence counts for each time period after applying the user-
defined filter, giving researchers insight into the distribution
of sentences fitting their filter criteria while also verifying that
a large enough sample size is available for further analysis.

4.3.4 Visualization

In HistoBankVis we offer three visualizations to explore linguistic attributes and their
evolution over defined time periods. Each visualization offers a different perspective
on the data, with a different level of aggregation, allowing researchers to get an
overview of the current view, while also allowing them to drill down for more detail.

Compact Matrix Visualization: Our tool includes a Compact Matrix Visualization
that shows how the selected attributes change with respect to the defined time
periods. Each row and column of the matrix represents a period. This makes it easy
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(a) X 2-based distance matrix (b) Euclidean distance matrix

Figure 4.4: In (a), the matrix visualization shows statistically significant differences between
data distributions from different time periods. In (b), the relative changes are shown,
visualizing a rapid change between 1750-1899 and 1900-2008.

to compare the first period to the rest, and each period to the one before (the entries
along the diagonal of the matrix). HistoBankVis shows the difference between two
periods using two methods: statistical significance and distance based. In both meth-
ods we use a color map (red means high and white means low significance/distance)
to show the difference. For statistical significance, we use a χ2 test and map the
p-value to the color map: red for p = 0 and white for p ≥ 0.2. In the of the χ2 test, a
dot • in the cell of the matrix shows if the difference is statistically significant (with
a = 0.05) and a crossed-out cell (×) that there is no sufficient data to perform a
χ2-test (see figure 4.4a). If the X 2 test is not appropriate, we can use the Euclidean
distance instead. A high Euclidean distance means a large difference. This measures
how much the frequency of a catagory differs, allowing for a more fine-grained
comparison (see figure 4.4b). In general, the matrix view helps us to see the quality
and interest of the data regarding the current filter. We can quickly find the periods
that have a big difference and interesting patterns in the matrix that indicate the
need for more detailed analysis.

Difference Histograms: The Compact Matrix Visualization provides a quick overview,
but the difference histograms show more detail on how individual characteristics
change over time. Each time period is displayed as a histogram, as in figure 4.5.
Each attribute has a different color, e.g., blue for subject case and orange for word
order. The height of a bar indicates the percentage of sentences with the given
category. The user can also get more information, such as the sentences, the exact
percentages and the relative size of the feature, by using interaction techniques. The
user can compare bar heights across time periods to see which attributes and/or
category combinations change over time. We also calculate the difference between
two adjacent time periods and display it as another histogram below the category
percentages in the histograms to provide an indicator of change. The color green
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Figure 4.5: To examine the differences in more detail, users can visualize the frequency
distribution of each category over different time periods, and can focus on aspects such
as word order and case. Blue bars indicate the overall distribution of subject cases within
the data set, which includes sentences with a subject, direct object, and verb. Orange bars
indicate the different patterns of word order observed in the data. Over time, there is a
consistent increase in the SVO pattern (indicated by a green bar), while the VSO pattern
shows a decrease (indicated by a red bar). The overall distribution of subject case remains
relatively stable until the last period, where there is a noticeable increase in the occurrence
of dative subjects.
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Figure 4.6: Attribute interactions in dative subject sentences from 1750–1899 for the
attributes voice and word order.

means that a category has increased in frequency compared to the previous period
and red means that it has decreased, e.g. SVO increased in figure 4.5 while VSO
decreased. The system also has other comparison modes, such as comparing each
period to the first or last period, to the average of all periods, or to the average of
previous periods, to highlight different attributes and observe trends.

Attribute Interaction Visualization: We added a Attribute Interaction Visualiza-
tion to the HistoBankVis system to help us understand how different categories of
attributes interact. This visualization uses the Parallel Sets technique [35, 190],
which is a way of displaying categorical data dimensions as frequency-based parallel
lines, similar to Parallel Coordinate Plot (PCP) [156]. PCPs show how data points
from a high-dimensional dataset are related by connecting points on parallel axes
arranged on a 2D plane and representing each dimension as a vertical axis. In this
way, each data point is represented as a polyline. This helps us see the patterns and
trends in neighboring dimensions. Structured Parallel Coordinates [76] are a special
kind of PCP for studying language data. They have been used to look at how words
appear together and to explore the meanings of words that express possibility or
necessity in old academic texts [207]. The Diachronlex diagrams by Theron and
Fontanillo [302] also use PCP to show how meanings change over time, based on
historical dictionaries. Parallel Sets is a visualization technique that displays the
frequency of each attribute as equally spaced axes like the dimensions axes of PCPs.
Through ribbons connecting the axes, they also show how categories of different
attributes interact with each other, something PCPs cannot do. For example, in
figure 4.6, we can see the relationship between voice and word order. The width of a
ribbon indicates how much a category from one attribute corresponds to a category
from another attribute. In figure 4.6 we can see that VSO1 is mostly used with
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the active voice, while SVO1 is mostly used with the middle voice. Our Parallel
Sets implementation allows users to reorder dimensions by dragging and dropping,
and to sort categories by size or alphabetically. Users can also get more detail
about a category interaction using mouse-over techniques, as shown in figure 4.6.
Parallel Sets have not yet been used for linguistic research, but we will show that our
Attribute Interaction Visualization is a very useful and powerful tool for historical
linguistic analysis, helping us to discover and understand how different categories
in a dataset with many attributes influence each other.

4.3.5 Feedback and Hypothesis Generation

The researcher can use the knowledge gained from exploring the data and testing
hypotheses to modify any part of the previous configuration system. The researcher
can change the filters, try different time periods, or go back to the data processing
step and include different or more categories. This creates an iterative analysis
process that combines knowledge-based and data-driven hypothesis testing. In
addition, each filter and visualization configuration is identified by a unique URL,
making it easy to share results in a collaborative environment.

4.4 Evaluation

In the visualization community, we use case studies to evaluate how useful a visual-
ization is for finding significant and novel insights about the data [63, 157]. This
section presents two case studies of how HistoBankVis can be used to explore syntac-
tic change in Icelandic, focusing on how subject case and word order interact [257,
26]. Previous studies looking at changes in these phenomena do not consider how
they affect each other. By visualizing the data, we discovered multiple phenomena
are strongly related. We analyze a real-world dataset of Icelandic in the annotated
IcePaHC format with texts from 1550 to 2008 covering different types of text genres.

4.4.1 Case Study: Exploring Correlations Between Word Order

and Dative Subjects

We used the visualizations above to study how word order and dative subjects
are related. First, we looked at the word order of all subjects in Old and Modern
Icelandic by selecting sentences with a subject (S), a verb (V) and a direct object
(O/O1). We then looked at the subject case and word order dimensions. The
Difference Histograms show that SVO is the most common order for both time
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Figure 4.7: We show word order patterns for dative subjects. Initially, VSO was the
predominant word order until the final time stage, at which point SVO emerged as the
dominant order after consistently increasing throughout the corpus. Additionally, the OVS
word order is notably prominent in the penultimate time period.
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Figure 4.8: We show the word order trends for nominative subjects. The evolution of word
order patterns mirrors those observed across all subjects, with VSO decreasing and SVO
increasing over the various time periods.
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periods, and that it is increasing over time, while VSO is decreasing (see figure 4.5).
They also show that most subjects are nominative and some are dative. After this
general overview, the Compact Matrix Visualization (see figure 4.4) showed us that
there is a big change in the last two time periods. Comparing each range with the
previous one, we saw a large increase in SVO in the last time stage (see the green
bar under SVO1 in figure 4.7) and a decrease in VSO, as shown by the red bar
under VSO1. Dative subjects also increased slightly in the last range (see figure 4.5).
Based on these results, we decided to analyze word order separately for dative and
nominative subjects. We did this by changing the filter settings to include only dative
or nominative subjects. The word order histograms for nominative subjects (see
Figure figure 4.8) matched the overall word order trends for all subjects, but dative
subjects were different. The Difference Histograms in figure 4.7 show that VSO was
the most common word order for dative subject clauses until about 1900, when SVO
became more common than VSO.

We found that O1VS was very different in the penultimate period compared
to the other periods (see figure 4.8 and figure 4.8). Therefore, we filtered the
data again for O1VS only and noticed that the verbs in this period were mostly
experiencer verbs, such as líka (to like, to please) as in “I like sunny days”. We
think that these experiencer verbs changed over time from a structure where the
experiencer/goal was an object to a structure where the experiencer/goal was a
subject. For example, “that pleases me,” where the experiencer is an object, is
changed to “I like that,” where the experiencer is a subject. This is a common
phenomenon in many languages [129], and there are also linguistic principles that
explain why experiencers/goal participants tend to be subjects [96]. We believe
that the Icelandic pattern is an example of a historical change in which experiencers
became more often dative subjects. Our findings are also consistent with recent
research by Schätzle et al. [270] on how middle morphology and dative subjects
interact.

Remember that we also found a general shift towards SVO word order. We think
that this means that Icelandic developed a fixed position for subjects before the verb
in its history, and that the 19th century was a key moment for this change. Dative
subjects followed this change more slowly. We explain this slower change by the
fact that experiencer/goal arguments were not typical subjects and many of them
changed from object to subject first. Other changes in Icelandic word order occurred
around the same time, such as the decline of V1 [281, 60] and the loss of OV [153].
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4.4.2 Case Study: Analyzing Subject Case, Word Order and

Voice

We used the Difference Histograms to examine how word order and subject case
changed over time in transitive sentences, i.e., sentences with a subject (S), a finite
verb (V), and a direct object (O1). The Compact Matrix Visualization showed that
the distribution of word order and subject case changed a lot after 1900, as seen in
figure 4.4. Figure 4.5 shows the difference histogram distributions for subject case
and word order in the periods before and after 1900. The most noticeable change
in word order is that SVO1 became more common between 1900 and 2008 (green
bar), while VSO1 became less common (red bar). At the same time, dative subjects
increased slightly. We hypothesized that these two changes were related.

The Attribute Interaction Visualization shows the correlations between the char-
acteristics of any selected attribute to explore possible interactions. Figure 4.9b
shows the interaction between subject case and word order in the period 1900–2008.
The attributes are sorted by the size of their category, with the largest category at
the bottom. The subject case proportions on the left are mapped to the word order
proportions on the right. The interaction shows that SVO1 is the most common word
order overall. Most nominative subjects go with SVO1, while the share of SVO1 for
dative subjects is much smaller. The interactions in the period from 1900 to 2008
are different from the ones in an earlier period (1150–1350), as seen in the top left
of figure 4.9a. In contrast to the period after 1900, the proportions of SVO1 and
VSO1 are similar for nominative subjects. Dative subjects are also more likely to use
VSO1. This means that word order changes over time depending on the subject case.
The Difference Histograms in figure 4.5 show that subjects are more often placed
before the verb, but the attribute interaction shows that dative subjects are behind
this change.

Voice is known to affect the frequency of dative subjects in Icelandic [335, 282].
But the relationship between voice, subject case, and word order has not been
studied. HistoBankVis makes it possible to study this relationship by adding the
attribute of voice to the analysis of the interactions between subject case, word
order, and voice. Figure 4.9c shows the interactions for the period 1900-2008 and
shows that nominative subjects mostly go with SVO1 in active constructions. But
dative subjects mostly go with SVO1 in middle constructions. We can also look at
the interaction between voice and word order for dative subjects separately, as in
figure 4.9d for 1900–2008. Dative subjects are more common with middle voice,
and SVO1 is the most common word order for both active and middle constructions.
However, in earlier stages of the language, voice and word order had different
patterns, as shown in figure 4.6 for the interaction from 1750 to 1899. First, dative
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(a) Subject case and word order from 1150 to 1350

(b) Subject case and word order from 1900 to 2008

(c) Word order, subject case, and voice from 1900 to 2008

(d) Voice and word order with dative subjects from 1900 to 2008

Figure 4.9: The top figure shows the interplay between case and word order from 1150 to
1350. The second shows subject case and word order from 1900 to 2008. The third figure
shows the interactions between word order, subject case, and voice from 1900 to 2008, and
the last figure shows the relationship between voice and word order in sentences with dative
subjects on the right.
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subjects were more common in active clauses than in middle clauses. Also, SVO1
was already the dominant word order for middles, but not for active constructions
where VSO1 was more common.

In summary, these results show that dative subjects are more often placed before
the verb because they are more often used with middle voice. HistoBankVis helped
us to easily discover this new relationship between word order, dative subjects and
voice in a few minutes using the dimensional interactions.

4.5 Discussion and Future Work

HistoBankVis streamlines the process of identifying and analyzing complex patterns
in historical linguistic data. The tool allows researchers to interactively explore data
and quickly identify interesting linguistic patterns across time periods. Through
a case study using IcePaHC, the tool demonstrated its ability to help generate
findings for changes in word order and subject case over time. We identified
specific shifts from older word order forms to more modern configurations, in
particular tracing the evolution from object-verb (OV) to verb-object (VO) structures
in Icelandic. Since these changes in Icelandic have occurred relatively recently,
we can hypothesize that the relatively isolated Icelandic language is experiencing
changes due to globalization. The tool supports dynamic hypothesis testing and
generation. Researchers can drill down from broad patterns of change to specific
category interactions to test new hypotheses and efficiently iterate through the
analysis process. By introducing Parallel Sets, we have enhanced the tool’s ability to
explore and analyze interactions between different linguistic factors in more depth,
such as the relationship between word order, case, and grammatical relations in
Icelandic. Using the Dimension Interaction Visualization, researchers were able to
observe and document specific trends and shifts in linguistic structures over time,
providing a more nuanced understanding of how certain linguistic features evolve
together. Researchers were able to observe and document specific trends and shifts
in linguistic structures over time, providing a more nuanced understanding of how
certain linguistic features evolve together. We conclude that HistoBankVis is an
effective tool for studying lexical-semantic change and, in principle, is applicable
to any type of language change, facilitating the identification of complex feature
interactions over time.

Future Work: In computer science terms, HistoBankVis is a VA approach for analyz-
ing large categorical datasets with a segmentable temporal component, and thus
could be generalized and applied to other domains. In the field of linguistics, further
evaluations, including other languages, could lead to new linguistic insights and
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further demonstrate the power of HistoBankVis. Currently focused on Icelandic,
the system could be adapted to other languages and linguistic corpora, providing a
broader tool for comparative historical linguistics, since HistoBankVis relies only on
a categorical description of linguistic structures. For the study of language structure
in terms of semantic change, graph-based approaches offer a promising direction.
The integration of graph visualizations could broaden the scope of HistoBankVis
from lexical change to semantic drift.

4.6 Conclusion

We presented HistoBankVis, a novel visualization tool for linguistic research that
allows users to explore and analyze language change in annotated corpora. Histo-
BankVis provides multiple perspectives of the data at different levels of detail on
demand, enabling an iterative process of hypothesis testing and generation. One of
the key features of HistoBankVis is the use of parallel sets, a visualization technique
that shows complex interactions across different dimensions of data. This is the first
application of Parallel Sets in linguistic visualization, and we demonstrate its use-
fulness and flexibility on a case study of changing linguistic categories in Icelandic.
HistoBankVis can also be used as a preprocessing and filtering tool, allowing users to
export filtered data sets according to their specifications. In addition, HistoBankVis
supports collaborative research by allowing users to share their analyses and per-
spectives on the data through unique identification URLs. HistoBankVis is a powerful
and effective tool that can be applied to any Penn Treebank-style annotated corpus
or well-structured dataset, facilitating the study of historical language change.
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The prevalent usage of Open Source Soft-
ware (OSS) has led to an increased inter-
est in resolving potential third-party security
risks by fixing Common Vulnerabilities and
Exposures (CVEs). However, even with auto-
mated code analysis tools in place, security
analysts often lack the means to obtain an
overview of vulnerable OSS reuse in large software organizations. In this design
study, we propose VulnEx (Vulnerability Explorer), a tool to audit entire software
development organizations leveraging the ordinal classification of CVEs into differ-
ent risk classes. We introduce three complementary table-based representations
to identify and assess vulnerability exposures due to OSS, which we designed in
collaboration with security analysts. The presented tool allows examining problem-
atic projects and applications (repositories), third-party libraries, and vulnerabilities
across a software organization. We show the applicability of our tool through a use
case and expert feedback.

This chapter is taken from the following publication:

• [82] Frederik L. Dennig, Eren Cakmak, Henrik Plate, and Daniel A. Keim. “VulnEx:
Exploring Open-Source Software Vulnerabilities in Large Development Organizations
to Understand Risk Exposure”. In: Proceedings of the IEEE Symposium on Visualization
for Cyber Security. IEEE, 2021, pp. 79–83. DOI: 10.1109/VizSec53666.2021.00014.

Please refer to Sections 1.2 and 1.3 for the citation rules and contribution clarification.
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5.1 The Impact of Vulnerabilities in Open Source

Software

The extensive usage of OSS nowadays promotes a straightforward integration of
common software features into existing applications [245, 287]. However, software
reuse also poses a significant risk as software with disclosed vulnerabilities is often
extensively reused, affecting various applications across whole organizations [59].
For instance, the Equifax data breach in 2017 resulted from a missed OSS package
update and led to the disclosure of the private data of over 145 million U.S. citizens
[224]. Hence, an organization’s governance or audit system must identify the
organization’s overall exposure to OSS vulnerabilities.

Developers and security analysts regularly utilize automated code analysis tools
to identify vulnerabilities and investigate the mitigation of OSS security risks. For
example, static [286] and dynamic code analysis [247, 251] are applied to execute
the developed code and detect inherent vulnerabilities. However, such code analysis
tools heavily differ in their detection capabilities. They often only store the vulnera-
bility metadata as text files that do not meet software developers’ basic requirements,
such as prioritizing the most severe vulnerabilities. Assessing the impact of software
vulnerabilities is essential for organizations since the effects of exposures can vary
significantly. Code analysis tools are usually used for single software applications
and do not show the impact of OSS vulnerabilities across multiple applications in
whole software organizations. Additionally, it is crucial to evaluate the quality of
libraries and other dependencies if they originate from another source, such as that
the source can be trusted [284], and that OSS developers are swift in addressing
vulnerabilities [7]. The mentioned points are crucial for deciding whether a software
development organization should use an OSS library.

We propose VulnEx (Vulnerability Explorer), a new tailored design to explore
and assess the mitigation of OSS vulnerabilities for auditing and governance of
whole software development organizations looking beyond individual applications
and teams. In our user-centered design study, we designed three complementary
table-based representations to identify and assess vulnerabilities across various ap-
plications. We demonstrate the applicability of our approach through use cases and
initial expert feedback. VulnEx is open-source and accessible online. We present a
first study to improve the analysis and mitigation of software vulnerabilities, espe-
cially from an organization-wide perspective. In summary, the primary contributions
of this chapter are:
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• A design study with problem characterization, findings, and lessons learned
for the visual analysis of OSS vulnerabilities.

• The interactive VulnEx analysis tool to interactively explore critical vulnera-
bilities and their impact on dependent projects.

• For accessibility, a demonstrator of the VulnEx tool is available
online (https://dennig.dbvis.de/vulnex) and VulnEx is open-source
(https://github.com/dbvis-ukon/vulnex).

With this work, we hope to improve the analysis and mitigation of software
vulnerabilities by addressing the need for an analysis tool for auditing entire software
development organizations.

5.2 Related Work

Software visualizations provide a comprehensive overview of complex systems, such
as program structures, execution behavior, and the development process [91]. These
visualizations are also useful to investigate security aspects, e.g., SecSTAR [107]
automatically generates execution diagrams to examine, debug, and test software
applications. For an overview of software visualization research, refer to the reviews
of Wagner et al. [319], and Chotisarn et al. [72].

In software security visualization, some approaches for vulnerability exploration
have been proposed. Harrison et al. [136] proposed the Nessus vulnerability visual-
ization (NV) to discover and analyze network vulnerabilities of Nessus scans. The
system simplifies and displays vulnerability assessment results to support security
analysts, using zoomable treemap visualization with linked histograms. In a similar
context, Angelini et al. [12] proposed Vulnus, which aims to increase situational
awareness of security managers by visually analyzing vulnerability spreads in com-
puter networks. Furthermore, CVExplorer [244] is a visual analytics system for
analyzing vulnerability reports and enhancing network security using three linked
views. These vulnerability systems differ from our approach since they primarily
focus on exposing computer network vulnerabilities. Moreover, Goodall et al. [122]
proposed a system to explore vulnerabilities and code weaknesses in software de-
velopment. The goal is to help users understand their code’s security status by
displaying code vulnerabilities using an aggregated block metaphor for each file.
Goodall et al. [122] approach focuses on identifying false positives, which we reduce
in our application by checking whether third-party vulnerabilities are reachable.
Assal et al. [18] presented Cesar, a collaborative code analysis system to reduce
vulnerabilities and improve code security. The authors utilize a treemap visualization
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to help security experts and developers collaboratively explore static-code analy-
sis methods’ results. The treemap visualization displays a software package, and
each leaf node shows a class file. Angelini et al. [11] presented a visual analytics
approach to assist users in exploring program execution, describing in a use case
of the detection of single vulnerabilities. However, the system is mainly targeted to
investigate symbolic execution engine data. Recently, Alperin et al. [8] presented a
study for the interpretable visual assessment of vulnerabilities. In their study, the
authors focus on local explanations for predictive vulnerability analysis.

In summary, the listed approaches focus on exploring network vulnerabilities and
improving the code security of individual software packages, such as investigating
potential false positives. In contrast, we propose an initial approach that provides an
overview of entire software development organizations. Our design study focuses
mainly on the visual analysis of OSS vulnerabilities by supporting auditing teams in
assessing OSS dependencies through table-based views to evaluate vulnerabilities in
large software organizations.

5.3 Table-Based Vulnerability Exploration

The main goal of this work is to design visualizations to explore security risks in
large software organizations. We gathered knowledge about the domain and user
requirements in three interviews with two security analysts and a software developer
from SAP. The interviews provided valuable insight into the daily workflows and
challenges faced by security analysts regarding vulnerability assessment.

Application Background: The essential user task is to understand the overall risk
exposure of large development organizations, e.g., commercial software vendors
or open-source foundations, due to the consumption of open-source components
in a considerable number of development projects or applications. During soft-
ware development, projects are regularly scanned with code analysis tools. At SAP,
the developers regularly utilize Eclipse Steady (https://github.com/eclipse/steady)
[251], which supports static and dynamic analysis to detect and assess vulnera-
bilities. Eclipse Steady scans projects for CVE, which have a unique identifier in
the National Vulnerability Database. Eclipse Steady displays the Common Vulner-
ability Scoring System (CVSS) score to indicate the severity of identified security
vulnerabilities. However, the CVSS score only captures the vulnerability severity.
Organizations require complementary information from other sources to evaluate
the general software quality of the most-used libraries and determine whether they
have sufficient quality. The identification of low-quality libraries is a prerequisite
for follow-up decisions. However, the visual exploration of applications, consumed
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Figure 5.1: VulnEx is a tool for the investigation of exposure to open-source software
vulnerabilities on an organization-wide level. The tool shows repositories, modules, libraries,
vulnerabilities in a tree representation (A), and meta-information about each entry (B),
such as the CVSS score. We can see that the "low-marmoset" repository is exposed to severe
vulnerabilities, three critical and seven high. Two of the critical vulnerabilities are originating
from the activemq-all indicating that the library should be updated swiftly.

libraries, and related vulnerabilities on an organizational level are not supported by
any of the tools available to date. From the interviews and further discussions with
domain experts, we derived the following requirements for our tool aimed at the
organization-wide analysis of software vulnerabilities.
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(R1) The tool should provide views to detect vulnerable repositories and
projects to apply countermeasures, such as training weaker teams and
reallocating resources. For this, repositories need to be represented
in a comparable way to estimate relevance and understand how they
compare against each other.

(R2) Software projects potentially depend on vulnerable libraries, which
have to be updated. Thus, the tool needs to convey the overall exposure
and allow for the inspection of specific bugs.

(R3) Vulnerabilities need to be explored to address specific exploited known
vulnerabilities, e.g., OSS vulnerabilities prominently discussed in main-
stream media, where organizations may be required or expected to
make a statement whether and which of their applications are affected.
Thus, the tool needs to enable users to find specific bugs with a high-
security risk.

(R4) Vulnerabilities can have different effects depending on the severity
and how many projects the origin is, and thus need to be prioritized
accordingly. Therefore, the tool needs to show the impact of specific
bugs on the organization’s codebase.
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In a two-year process, we applied the guidelines by Chen et al. [69] to perform
our design study. Our tool covers the pipeline from scanning to repairing or mitigat-
ing a vulnerability. The overall workflow of VulnEx follows the Knowledge Discovery
in Databases (KDD) pipeline [108]. The workflow of VulnEx: (1) The security analyst
starts a scan of the source code of all software projects. (2) He then selects a type
of analysis target, i.e., repositories, libraries, or vulnerabilities, choosing between
overviews. (3) Then, the analyst defines criteria he is interested in, i.e., the number
or severity of a bug allowing for filtering. (4) The analyst observes the findings and
determines their relevance by drilling down to the specific issue. (5) In case of a
relevant finding, the analyst can start a repair or mitigation process; this is supported
by the detailed report of Eclipse Steady. Thus, we follow Shneidermans’ mantra:
Overview first, zoom and filter, then details-on-demand [279]. In figure 5.1 we show
the dependency tree (A), allowing users to explore the hierarchy of the software
project and the vulnerability information (B) to give insight into the exposure to
vulnerabilities.

5.3.1 Dependency Tree

The dependency tree representation in figure 5.1 (A) shows the relationship of all
repositories , modules , libraries , and bugs . VulnEx is inspired by
the tree+table approach by Nobre et al. [232, 233]. We choose this because tree
structures are common and known by domain experts and allow us to leverage the
hierarchy inherent in software projects while supplying additional information about
vulnerabilities, keeping a high level of detail. The tree representation allows for the
analysis of vulnerabilities in three ways.

Repository-Centered: → → →
This order of levels allows for a repository-focused analysis. Starting with a reposi-
tory, then showing information about modules and sub-modules, enabling analysts
to locate severe vulnerabilities. If a module uses a vulnerable library, this can be
quickly detected. Finally, we show the vulnerabilities caused by a library, allowing
for detailed analysis and estimation of the impact.

Library-Centered: → → →
Beginning with a library, displaying its vulnerabilities allows analysts to estimate the
risk associated with a library. If a repository uses a vulnerable library, this repository
is shown on the next level. Finally, we present the associated module or sub-module
exposed to the CVE of that library, allowing for inspecting it in detail.

Bug-Centered: → → →
Starting with a CVE, then showing the affected library allows analysts to find specific
bugs quickly. If a repository uses a vulnerable library, this repository is shown on the
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next level. Finally, we display the associated module or sub-module impacted by the
CVE of that library, allowing for detailed analysis.

5.3.2 Vulnerability Information

We provide additional information about the vulnerabilities of a repository, module,
and libraries, shown in figure 5.1 (B), through which we support the detection and
analysis of critical vulnerabilities, as well as the assessment of the quality of OSS
dependencies, e.g., Looks Good To Me (LGTM) grade and score. The column
shows the number of entities on the next level of the tree, indicating the number of
related entities on the following hierarchy level. The column shows the number
of vulnerabilities a repository, module, or library is exposed to. The absence of an
element indicates that the information is not available or applicable to the entity of
the row.

CVSS Score: The CVSS score column shows the number of CVEs
with a given score. We use the common ordinal classification: Low
(0.1 - 3.9), Medium (4.0 - 6.9), High (7.0 - 8.9), Critical (9.0 -
10.0), which is also mirrored in the coloring from the National
Security Database (https://nvd.nist.gov/). The number in each square encodes the
number of occurrences in the given range.

To inspect the distribution of CVSS scores in a more
finely-grained way, we offer a representing of each
CVE and its CVSS score with its precise numerical value. It also indicates the range
of CVSS scores.

CVE Matrix: The CVE matrix indicates the presence of a spe-
cific vulnerability. Each column shows the presence of a CVE
with dark gray squares, while a light gray square indicates the
absence of the CVE. We adopted this encoding from Nobre et
al. [233]. Columns can be added and removed to highlight
specific CVEs dependent on the user. The CVE matrix allows
users to get an overview of the presence of specific vulnerabilities in repositories,
modules, and libraries. It also enables the analysis of the co-occurrence of CVEs.

Meta-Information: We provide additional information
from LGTM (https://lgtm.com/), a code analysis platform,
and GitHub (https://github.com/). The columns describe
the LGTM grade, LGTM score, GitHub issues, GitHub stars,
GitHub watchers. The LGTM grade and score provide an
additional measure for the quality of software artifacts. The number of GitHub issues
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provides an indicator for active development, while the GitHub stars and watchers
provide an indicator for the popularity of a repository.

Dependency Graph: The user can view the structure of a
software project by clicking . The repository is shown
at the top, its modules and libraries in the middle, and
the bugs at the bottom.

5.3.3 Filter and View Options

Based on expert feedback, we offer filter options to reduce the number of entries
in the table and allow for a focused analysis. The user can search for a name of a
given repository, library, or bug. We enable users to filter by the minimum and the
maximum number of dependencies, vulnerabilities, and the CVSS score. Users can
hide all repositories and modules that do not contain any vulnerability, as well as
CVEs without a CVSS score.

5.4 Evaluation

We analyze all public GitHub repositories of the Eclipse Foundation (https://git-
hub.com/eclipse) that are Apache Maven (https://maven.apache.org/) projects in
the Java programming language. All projects are scanned using the Eclipse Steady
tool. We scanned these repositories from January 21 to February 4, 2020. This yields
a total of 295 projects that we analyze for common libraries and vulnerabilities. We
replace the original repository and module names with pseudonyms not to blame
the individual projects. At SAP, the analysis of an individual application follows a
defined process, starting from the automated scanning with tools like Eclipse Steady
to discover vulnerable open-source dependencies, the assessment of findings by a
security expert, and finally, depending on the assessment result, the remediation
of the vulnerability or the dismissal of the finding. However, open-source software
analysis across multiple applications for an entire organization does not follow
a defined process. To show the usefulness of VulnEx we analyze the gathered
data to answer the following four questions. Questions (Q1-Q3) are examples for
exploratory analysis, while (Q4) addresses a need when vulnerabilities in open-
source components get a lot of public attention, even in mainstream media. In such
cases, commercial vendors like SAP are expected to state to what extent and which
of their applications are affected by a given vulnerability. Thus, we include (Q4) as
a search task.
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Figure 5.2: The analyst detects the most vulnerable libraries. activemq-all contains one low,
14 medium, three high, and two critical severity vulnerabilities, affecting 20 repositories.

(Q1) Which repositories contain most severe vulnerabilities?
Security analysts utilize the Repository Table to analyze all repositories, depicted in
figure 5.1. They find the “low-marmose” repository, which has three critical bugs.
We can see that all critical vulnerabilities are in the “satisfactory-haddock” module
by expanding the entry. They inspect the module and see that the tomcat-embed-core
library contains CVE-2018-8014 and activemq-all contains CVE-2018-1270 and CVE-
2018-1270. They find that all three CVEs are critical, which should be addressed
promptly.

(Q2) Which dependencies contain severe vulnerabilities and are often used
across different applications?
The security analysts use the Library Table (see figure 5.2). They sort the table by the
most severe vulnerability. The libraries activemq-all, org.apache.lucene.queryparser,
spring-data-commons, jgroups, groovy-all, and tomcat-embed-core all contain critical
bugs.

(Q3) Which severe vulnerabilities are present?
Using the Bug Table, the analysts find that eight critical bugs (see figure 5.3) are
present, one in activemq-all affecting 20 repositories, one in org.apache.lucene.query-
parser affecting 14 repositories, one in spring-data-commons affecting seven repos-
itories, one in jgroups affecting five repositories, two in groovy-all affecting seven
repositories, and one in tomcat-embed-core affecting eight repositories. They remark
that these six libraries should be updated and fixed or replaced swiftly since they
contain critical vulnerabilities.

(Q4) Are specific vulnerabilities present in any of the projects?
Analysts searched for the oldest bug for the severities medium, high, and critical. For
this task, they use the Bug Table. CVEs encode the years that they were detected. To
find the oldest unfixed bug, they searched for the different years before 2019. They
found CVE-2009-2625, a medium severity bug, present in org.apache.xerces, which
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affects 27 repositories. The oldest high severity bug they found was CVE-2013-1768
in openjpa-asm-shaded, affecting three repositories and CVE-2015-3253, a critical
bug, affecting seven repositories.

Preliminary User Feedback

We conducted an initial preliminary user feedback session with three software
security analysts from SAP. All three participants (P1–P3) have five to ten years
of experience in software security and work in dedicated security teams. Two
participants support developers of mature applications regarding software security,
including assessing the relevance and severity of vulnerabilities in open-source
components. One participant acted as program manager for open-source security
and Development, Security, and Operations (DevSecOps), determining requirements,
developing tools, and standardizing the secure consumption and publication of open-
source components at SAP managing the Software Development Lifecycle (SDLC).
We adopted the pair analytics guidelines of Kaastra and Fisher [169] to structure our
interviews conceptually. During the one-hour interviews, we gathered regular user
tasks, related employed visual interfaces, familiarity with information visualization
for cyber-security, and afterward reviewed and compared in a live session their
initial expectations to the proposed VulnEx tool. All three participants approved
the usefulness of VulnEx to visually explore the use of open-source libraries in large
software organizations. P1 and P2 appreciated that the tool displays how often
libraries and their potential vulnerabilities are used in the whole organization. P3
liked that the CVE matrix displays the top five bugs in the organization as it highlights
the affected packages, including other prevalent vulnerabilities with their CVSS
scores. Overall, all participants believed that VulnEx tool helps explore software
organizations’ vulnerabilities from different perspectives, such as in repository,
library, and bug table views.

The participants expressed some concerns and outlined some shortcomings of
our tool. P1 suggested adding additional information about the open-source libraries
to the tool, such as short descriptions of the main functionality and purpose of the
library. The participant argued that keeping track of each library’s functionality
without such additional information remains challenging due to the sheer number
of 3rd party libraries. P2 emphasized that the current visual representations might
not scale to large-scale organizations, e.g., organizations with more than 1000
repositories. P2 also proposed to enable the annotation of individual repositories,
libraries, and bugs. Such annotations let analysts search for particular vulnerabilities
and guide the auditing team to potential known solutions. P3 emphasized that
his focus is heavily on vulnerabilities with critical CVSS scores above 9.0 that need
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to be resolved within several hours. Therefore, P3 suggested focusing on such
vulnerabilities and recommending appropriate counter-measures. All participants
suggested including potential solutions to resolve the vulnerabilities.

Figure 5.3: The analyst found eight critical vulnerabilities. CVE-2018-1270 affects 20
repositories and has a critical severity.

5.5 Discussion and Future Work

We found that three security experts approved the usefulness of VulnEx. The
experts found the different task-focused views useful. We learned that more detailed
representations were less preferred. The domain experts had an easier time working
with the categories low, medium, high and critical, rather than the precise values
of the heatmap visualization. The CVE matrix gives a helpful overview of specific
vulnerabilities. All vulnerability analysis tools at SAP focus on individual applications.
Thus, we present VulnEx supporting organization- and enterprise-wide decision
making. In terms of scalability, we performed our analyses on all public GitHub
repositories of Eclipse Foundation. Therefore, we argue that VulnEx can be used for
large software organizations since few organizations have more projects than the
Eclipse Foundation.

Future Work: We plan to address the feedback from the security experts by including
a method to annotate repositories, modules, libraries, vulnerabilities and provide
additional information for each item which could be taken from libraries.io or com-
parable online services. We also plan to include the temporal component, analyzing
multiple “snapshots” to compare projects and understand how the organization’s risk
exposure develops over time. Another goal is to extend VulnEx for the assessment of
libraries before choosing a specific one and provide a feedback loop to inform the
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open-source community and add the vulnerability information to the original reposi-
tory. We also plan to evaluate VulnEx with experts external to the design process.
Our approach is transferable to other organizations and open-source vulnerability
analysis tools, but VulnEx is currently limited to the import and processing of scan
results from Eclipse Steady allowing for the analysis of Java and Python code.

5.6 Conclusion

Determining the impact of vulnerabilities on software organizations is challenging
due to the missing aggregation of software analysis results. As a solution, we propose
the VulnEx (Vulnerability Explorer) tool, which we designed in a user-focused design
process, which allows analysts to detect severe and relevant vulnerabilities and
determine impacted libraries, modules, and repositories. Three security experts
confirmed the effectiveness of VulnEx, appreciating its task-oriented views and
finding the ordinal ratings (low, medium, high, critical) more user-friendly than
detailed heatmap values. The CVE matrix provided a concise overview of specific
vulnerabilities, highlighting the utility of VulnEx for enterprise-wide decision making
beyond individual applications, as is typical at SAP. Our scalability tests on all of the
Eclipse Foundation’s public GitHub repositories demonstrate that VulnEx is suitable
for large software organizations like SAP, as few have more active projects than the
Eclipse Foundation.
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Part III

Measure-Driven Frameworks

All models are wrong, but some are useful.

— George E. P. Box, Statistician





A Framework for Relevance
Model Building Using
Pattern-based Similarity
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Data analysts require automated support for
the extraction of relevant patterns. In this
chapter, we present FDive, a visual active
learning approach that helps to create visu-
ally explorable relevance models, assisted by
learning a pattern-based similarity. We use
a sparse set of user-provided categorical la-
bels to rank similarity measures, consisting
of feature descriptor and distance function
combinations, by their ability to distinguish
relevant from irrelevant data. Based on the best-ranked similarity measure, we
calculate an interactive Self-Organizing Map (SOM)-based relevance model, which
classifies data according to the cluster affiliation. It also automatically prompts
further relevance feedback to improve its accuracy. Uncertain areas, especially near
the decision boundaries, are highlighted and can be refined by the user. We evaluate
our approach by comparison to state-of-the-art feature selection techniques and
demonstrate the usefulness of our approach by a case study classifying electron
microscopy images of brain cells. The results show that FDive enhances both the
quality and understanding of relevance models and can thus lead to new insights for
brain research.

This chapter is taken from the following publication:

• [89] Frederik L. Dennig, Tom Polk, Zudi Lin, Tobias Schreck, Hanspeter Pfister, and
Michael Behrisch. “FDive: Learning Relevance Models Using Pattern-based Similarity
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Technology. IEEE, 2019, pp. 69–80. DOI: 10.1109/VAST47406.2019.8986940.

Please refer to Sections 1.2 and 1.3 for the citation rules and contribution clarification.

109

https://doi.org/10.1109/VAST47406.2019.8986940


6.1 The Benefit of Feedback-Driven Relevance

Model Building

A primary challenge when analyzing collected data is to distinguish relevant from
irrelevant data items. Large and high-dimensional datasets are not easily analyzed,
because of their size, dimensionality, and possible complex patterns. Therefore,
analysts need automated support. This support is realized in the form of a relevance
model that can help them to make this distinction. Its task is the retrieval of relevant
data items from large high-dimensional datasets that are often associated with many
types of analysis scenarios. Similarity models are key to effective data clustering and
classification. It is crucial that the model reflects the notion of relevance as it pertains
to the analysis task. More generally, when we are dealing with high-dimensional
datasets, we need to automatically and adaptively assess the relevance of data items.
Although analysts interact with data for analysis and exploration purposes, their
primary goal is to quickly generate new insights and results. All interactions, such
as labeling or relevance feedback, should be focused on yielding insights and need
to be as impactful as possible.

The fully automatic creation of relevance models is non-trivial. Deep learning
approaches, such as Convolutional Neural Networks (CNNs), have been applied suc-
cessfully, but typically require a large number of labeled training data to distinguish
relevant from irrelevant data [193]. Classic machine learning techniques depend on
a predefined set of features and a given distance function, chosen or even designed
by experts based on their experience. In most real-world scenarios, these labels
do not exist and the manual assignment of labels is time consuming, tedious, and
expensive. In many analysis scenarios, this is not a viable solution. Transfer learning
could be an alternative solution. These methods reapply a previously learned model
for a different task then that for which they were originally trained [240]. While the
idea seems intriguing, these models are unable to transfer the complex user under-
standing between datasets. One reason is that the problem and task definition in
exploratory scenarios, particularly the pattern space, is highly specific and non-static.
Users’ mental model of what makes up relevance evolves throughout an analysis, thus
requiring adaptive methods for the process. Additionally, the created model needs
to be understandable, explorable, and refinable in areas where it is inaccurate.

The feedback-driven view exploration pipeline by Behrisch et al. [34] was an
early approach towards a relevance model-guided exploration of large multidi-
mensional datasets using Feature Descriptors (FDs). Complex data items can be
abstracted using feature descriptors. The resulting features ideally express the
properties of the data items concerning the analysis objective. Features reduce
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the complexity of comparing data items but are limited in their ability to express
all properties of a data item. The approach by Behrisch et al. [34] only uses one
fixed FD, namely Scagnostics [330], limiting the set of described properties and
introducing biases into the analysis process. In this work, we tackle the question of
choosing an appropriate FD that models the given dataset, analysis domain, and
analysis task. We claim that FDs alone do not express the relationship between data
items. We also need a distance function that describes their relationships. Depending
on the analysis scenario, other measures than the ubiquitous Euclidean distance
may perform significantly better [127], which reflects on the performance of the
relevance model learning component, too. In this work, we expand on Behrisch et
al.’s static decision tree model, in which exploration decisions are irreversible, with
a more flexible and adaptive approach to guide the user through the data space. Our
classification results and feature abstraction can be visually explained, making the
quality of the model easier to capture and more trustworthy.

In this work, we present FDive, a visual analytics approach for the creation of
relevance models. In FDive, we model relevance as a binary classification problem.
Since the quality of the underlying classification or ranking model depends on the
usefulness of the employed FDs and distance function, we introduce the concept
of the Similarity Advisor engine, which ranks FD-distance function pairs, according
to their ability to distinguish relevant from irrelevant data. This removes the need
for an expert choosing an FD and distance function manually. The system uses
the best-ranked similarity measure for the creation of the relevance model. To
learn fine-grained differences between relevant and irrelevant data, we introduce
a SOM-based relevance model that classifies data items according to their cluster
membership. To allow the judgment of the model quality and model refinement,
the SOM-based model is visually explorable and guides the user towards areas of
uncertainty. We embed the Similarity Advisor and the model learning process into
an iterative framework, to allow for convergence towards the optimal similarity
measure and relevance model. In summary, we contribute the following:
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• The general FDive framework using the Similarity Advisor to determine an
effective pattern-based similarity measure.

• An instantiation of FDive learning the relevance of Electron Microscopy
(EM) images of mouse brain cells.

• An expert study in the domain of computer vision for neurology.

• A quantitative evaluation comparing FDive to state-of-the-art feature selec-
tion techniques.
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6.2 Related Work

In this section, we delineate FDive from other approaches. FDive is a relevance
model builder, in contrast to image retrieval tools like PixSearcher [231] which
enables users to retrieve images through query by example. In the following, we
discuss related concepts such as feature selection, visual active learning, and distance
function learning. We also discuss similarities and differences in the area of model
visualization and understanding.

6.2.1 Feature Selection for Dimensionality Reduction

Feature selection algorithms typically try to approximate the usefulness of a given
feature. These techniques determine a subset of relevant feature dimensions based
on feature-ranking and feature-weighting [160, 130]. Although prior studies show
how visualizations can support feature selection and optimization in 3D models [276]
or exploration of chemical compounds [296, 53], the feature evaluation procedure
is reoccurring and potentially exhausting for the user. Thus, we decided to use two
purely automatic statistical feature selection algorithms in the evaluation of FDive.
First, ReliefF [188, 323] is a state-of-the-art extension of the Relief algorithm for
multi-class problems [214]. It ranks features based on how well they distinguish
an instance from its k-nearest neighbors. If a neighbor is from a different class, the
weights of features that separate both instances are increased, and all others are
decreased accordingly. In case the neighbor is from the same class, the weights of
features that separate both instances are decreased, and all others increased. Second,
Linear Ranking Ensembles combine multiple ranking classifiers, such as the Recursive
Elimination Support Vector Machine Support Vector Machine (SVM), into one ranking
ensemble. They are, thus, more stable than other approaches [268]. Recursive
Elimination SVMs iteratively reduce the feature dimensions size using linear SVMs
[201]. Attributes are ranked, and the worst performing dimension is removed. This
process, including the SVM training, continues until only one feature dimension
remains.

The quality of a feature selection depends on the number of available labels and
is computationally expensive in scenarios that require continuous reevaluation. With
FDive, we provide a solution for this scenario by keeping the feature descriptions
while ranking a set of similarity measures, consisting of an FD and a distance
function combination, based on how well it separates relevant from irrelevant data.
We embed this technique in an iterative process, allowing for an adaptation to the
best-suited similarity measure.
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6.2.2 Visual Active and Interactive Machine Learning

In a visual Active Learning (AL) approach, users are provided with auxiliary infor-
mation about the learning process and model state, specifically decision boundaries
of the classification model, query choice, and learned instances. Bernard et al. [39]
present a visual AL method to assess the well-being of prostate cancer patients from
the patient’s history, describing interesting biological and therapy events. The tool
suggests a set of candidates to label, as well as allowing for the visual verification of
the validity of learned instances. Heimerl et al. [145] present a visual AL system
as an SVM classifier for text. The tool supports the visualization of the decision
boundary, including instances on it, and user-based instance selection for labeling.
Eaton et al. [99] adjust the underlying data space by describing it with manifold
geometry, allowing users to label data items, serving as control points leading to
improved learning performance.

In contrast to AL, the sample selection in Interactive Machine Learning (IML) is
driven by the user. Dudley et al. [97] describe a general approach to interface design
for IML providing an overview of challenges and common guiding principles. Arendt
et al. [15] present an IML interface with model feedback after every interaction by
updating the items shown for each class. The users can drag misplace data items
to the appropriate class and, if needed, create a new one. Both actions update and
improve the model.

FDive is a visual active learning approach that learns a relevance model based on
the user’s notion of relevance. We propose a SOM-based model, which is interactively
explorable, guiding the user to areas of uncertainty and decision boundaries. The
model creation and inspection are combined in an iterative workflow that allows
the user to observe and judge model change, leading to a more understandable
relevance model and learning process.

6.2.3 Distance Function Learning

Another requirement to represent the relationship of data items is a distance function.
A distance function can include a feature weighting. The Mahalanobis metric [210]
measures the standardized distance of a data point to the estimated mean of its
population. Relevant Component Analysis [25] uses a parameterized Mahalanobis
distance. This technique adapts the feature space by assigning large weights to
relevant dimensions and low weights to irrelevant dimensions through equivalency
constraints, describing the similarity of data items. As opposed to purely algorithmic
approaches, there are also visual and interactive approaches to the generation of
suitable distance functions. Brown et al. [56] learn a distance function from a
2-dimensional projection of the data space where the user drags the data point to
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the desired position, thus describing similarity relations. The underlying distance
function is updated accordingly by the adaptation of feature weights. The work
by Gleicher [120] demonstrates the learning of multiple distance functions, each
describing the relationship of the data based on different features, capable of
describing abstract concepts, such as socio-cultural properties of cities. Fogarty et
al. [113] present an image retrieval system that determines the weights of a distance
metric based on user-supplied feedback to learn concepts.

In contrast, FDive unifies many concepts mentioned above. It ranks arbitrary
feature descriptors and similarity measure combinations by their ability to discrimi-
nate relevant from irrelevant data. FDive removes the limitation on a pre-defined
set of features through the comparison of multiple FDs describing a diverse set of
data properties. Also, a set of similarity coefficients is used, thus removing the
limitation of a single similarity coefficient or feature weighting. This makes FDive a
generalized relevance model builder for different types of data.

6.2.4 Model Visualization and Understanding

Visual Analytics (VA) aims to provide the analyst with visual user interfaces that
tightly integrate automatically obtained results with user feedback [179]. The
knowledge generation model [266] describes an iterative process of exploration
and verification activities of both human and machine. Results are presented
visually to analysts, who interpret obtained patterns and provide feedback to steer
the exploration process or form and refine hypotheses. The understanding and
interpretation of machine-learned models is key for the effective incorporation of user
feedback in such scenarios. Several prior works have studied model visualizations
and interactions. BaobabView [101] presents a model where the structure of a
decision tree is augmented with data distributions and data flows. Liu and Salvendy
[203] and Ankerst et al. [13] use icicle plots [195, 184] to visualize decision
trees. Visual interactive approaches for cluster evaluation and understanding were
presented by Nam et al. for general high-dimensional data [229] and by Ruppert et
al. [264] for the clustering of text documents. Sacha et al. present SOMFlow [265],
an exploration system that uses SOM to guide the user through an iterative cluster
refinement task, leveraging the proximity-preserving property of SOMs [315, 38] for
clustering and data partitioning tasks.

In a model creation task, the user needs to be guided towards areas of high un-
certainty. Thus, FDive steers the data exploration to specific parts of the model, such
as the decision boundaries. The SOM-based model of FDive is capable of providing
the necessary information about uncertain areas and automatic refinement.
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6.3 Similarity Advised Model Learning

The key idea of our approach is to iteratively and interactively create relevance
models, where a useful feature description is unknown, and no or only few labels
are available. Our proposed Similarity Advisor allows approaching the question
which feature descriptor and similarity measure combination is useful to distinguish
relevant from irrelevant data items. In a scenario where labels are sparse, the quanti-
tative validation of classification models with performance measures is inexpressive.
Thus, there is a need for techniques that allow for model assessment without test
data. Classifiers, such as SVMs, have been used in visual active learning approaches
[145]. However, the representation of the data space created by SVMs does not
allow the user to judge the quality of a classifier visually. Decision trees are more
intuitively interpretable.

We propose a SOM-based classification model which is embedded in an iterative
workflow to allow for observable learning steps. In each step, the model is explorable
and refinable to judge and improve its quality. Both, the Similarity Advisor and the
SOM-based classification model constitute FDive, a generalized model builder. In
the following, we provide an introduction to SOMs.

Self-Organizing Map (SOM): FDive relies on a neural network architecture, called
SOM or Kohonen Network. SOMs are the basic building block of our relevance
model and are one of the classical neural network structures, created by Kohonen to
derive topologically coherent feature maps [187]. SOMs can be visualized as a grid
of cells representing the neurons of the network. The cells contain prototype vectors
representing data clusters. In the learning phase of the network, the most similar
prototype vector (best-matching-unit) to the training input is identified and adjusted
towards the input vector. Spatially close neighbors are also adapted, depending on
a learning rate and radius parameter. The latter gives rise to the self-organization
property of the map. The final result is a topology, where data items are clustered.
Clusters can consist of single or multiple cells, and cluster similarity can be captured
by spatial proximity of clusters on the SOM grid [38, 265].

We extend this algorithm into a tree-like classifier to allow for the representation
of fine-grained similarity differences. This concept is based on the idea that items can
“flow” from a parent SOM node into a child SOM for further analysis, as presented
by Sacha et al. [265]. In our work, we extend this idea to create a classification
model that automatically partitions the high-dimensional data space into relevant
and irrelevant data item clusters. We will detail this approach in section 6.6. We use
an interactive SOM visualization to allow for the visual inspection of the currently
learned model, e.g., where groups of relevant or irrelevant data elements are located,
and how well decision boundaries can distinguish known groups.

6.3 Similarity Advised Model Learning 115



Figure 6.1: (1) Users provide categorical labels (relevant, neutral, irrelevant) to express
their idea of relevance. (2) This selection is used to automatically determine the best-fitting
similarity measure, which distinguishes relevant from irrelevant data. (3) The system adapts
the model using the relevance labels and similarity measure. The model is explorable and
refinable by the users, to improve its accuracy.

Workflow for Iterative Relevance Model Learning

FDive is inspired by the feedback-driven interactive exploration tool by Behrisch
et al. [34], which propose an iterative and FD-based exploration framework. A
central principle is to represent an arbitrary dataset with the help of visualizations
to make it accessible for an analyst. This visualization needs to be translated into
a language understood by a computer, which uses this proxy to guide through the
information- and pattern space which is achieved by a single fixed FD introducing
bias into the analysis process. We expand this body of work by changing the focus
from an exploratory approach to a model building technique. The validation of
relevance models, though, is a challenging task, due to the following reasons. We
need to define a useful definition of similarity, but a metric for separating classes
can only be determined during the learning process. What is needed are flexible and
adaptive strategies for determining a useful metric defining similarity. FDive allows
for arbitrary data modeling through the Similarity Advisor, which ranks a set of FDs
and distance functions by their usefulness concerning the current analysis domain
and dataset properties. The FD, representing the data modeling, is subsequently
used to create a relevance model. Additionally, the model needs to be explorable
and refinable to convince an analyst of its usefulness and accuracy.
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In FDive, we leverage an iterative workflow to continuously revalidate the
similarity measure and improve the relevance model. In the following, we describe
each iteration step and its impact. Figure 6.1 shows each step accordingly.

(1) Relevance Feedback: The system prompts the user to label a subset of data
items of the dataset (DS) using the categories relevant or irrelevant, representing
relevance as a binary classification problem. Those data items labeled as relevant
are referred to as L+ and all labeled as irrelevant as L−. Unlabeled data items
are considered neutral. In the first iterations, this step is replaced by a query
generated through a representative data sample. In all following iterations, the
query is determined by the SOM-based model. FDive supports the user by visual
feedback allowing the validity assessment of a currently used similarity measure and
classification through visual feedback. This step is described in detail in section 6.4.

(2) Similarity Advisor: The system evaluates all possible pair-wise combinations of
FDs and distance functions by their ability to separate relevant (L+) from irrelevant
(L−) data items. A ranking shows the evaluation result, giving an intuition about the
similarity measures. The user can follow the recommendation or choose a different
similarity measure. The system uses the FD and distance function for the creation
of the relevance model. We describe the algorithmic background of the Similarity
Advisor in section 6.5.

(3) Model Learning and Steering: The system creates a classification model based
on the selected similarity measure and available labeled data (L+ and L−). The
model can be explored to asses its properties and viability for its classification task.
The classification result is referred to with C + describing all data items classified
as relevant and all irrelevant as C −. The SOM-model creation and interactions are
described in section 6.6. Subsequently, the system determines a set of query items
which are labeled by the user in the first step of the next iteration.

In the following, we describe the design, user interaction and algorithmic support in
FDive.

6.4 Context-Aware Relevance Feedback

Data labeling is the first and reoccurring step in our relevance model learning process
from section 6.3. During start-up, this essential bootstrapping step helps us to form
a decision basis for the subsequent application of our Similarity Advisor. Throughout
the learning process the classifier queries relevance labels through this interface to
improve its accuracy. We describe this step of FDive in section 6.6.
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Figure 6.2: Context-aware Relevance Feedback: (1) Status display showing the current
analysis state. (2) Scatter plot highlighting newly labeled data. (3) Scatter plot of the
current classification result. Both allow judging the impact of new labels. (5) Queried
neutral data items. (4) Data items labeled as relevant and irrelevant (6).

Relevance Feedback of Representatives

We sample data items in the first iteration for an initial user labeling. The sampling
method can be chosen from the following options: Minimum-Maximum-, Quantile
Sampling, Normal-, Stratified Normal Bootstrapping, Normal- or Stratified Subsam-
pling [34]. In all following iterations, the request for labeling is determined by the
relevance model, in our case a SOM-based model (see section 6.6). The user can
apply three types of labels: relevant, irrelevant and neutral. While the relevant
and irrelevant labels express a user preference and have an impact on all steps of
FDive, neutral represents an uncertain item. The model may prompt a label for
the given element at a later iteration. The user labels a subset of displayed data
items by clicking on the mouse-over menu or using a keyboard-shortcut. For visual
clarity, all elements are assigned to specific panels (relevant, neutral, irrelevant,
from top to bottom in figure 6.2 (3-5), according to their label type, which also
allows comparing items with the same relevance label.

Visual Assessment of Labeling Impact

A status display (figure 6.2 (1)) provides information about the current analysis
state, such as the current FD and distance function, the number of supplied relevant
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(a) Computational model (b) User interface

Figure 6.3: The Similarity Advisor uses a set of FDs and distance functions. FDs model
the data based on perceptible patterns in the data or image space. Distance functions
describe the relationship between two points in the FDs space. In FDive, we consider all
pair-wise combinations as potentially useful measures. We call a combination of an FD
and a distance function a pattern-based similarity measure (see (a)). The Similarity Advisor
ranks all pair-wise combinations of FDs and distance functions according to their ability to
distinguish relevant from irrelevant data. A bar indicates the score and a scatter plot shows
the topology of implied data distribution allowing users to judge its usefulness (see (b)).

and irrelevant labels, as well as the number of remaining neutral items. A scatter
plot (figure 6.2 (2)) of the dataset using the currently chosen FD and distance
function depicts the possible impact of new labels when compared to the projection
of the classification result (figure 6.2 (3)). We create both 2D projections with
Multidimensional Scaling (MDS). MDS projects the data in a distance-preserving
way without the need for additional parameters. The annotation view is also used to
refine the labels in the SOM-based model and explore elements assigned to a SOM-
neuron (section 6.6). Chegini et al. explored the idea of showing the classification
result in a scatter plot [68], while the visual feedback on data labeling was evaluated
by Bernard et al. [37]. Combining both approaches allows assessing the impact of
newly assigned labels in a natural form. The comparison of both scatter plots shows
the effect of new labels, e.g., a relevant label in an area of irrelevant classifications
hints at an incomplete reflection of the user’s notion of relevance, a matching label
hints at a convergence.

6.5 Assessing Pattern-Based Similarity Measures

The goal of the Similarity Advisor is to select the most expressive FD and distance
function combination from a predefined set of FDs and distance measures to improve

6.5 Assessing Pattern-Based Similarity Measures 119



the relevance model creation. We claim that a combination of FD and distance
measure can define a pattern-based similarity measure. To describe the discriminative
ability, we need a quality metric that reflects the similarity measure’s ability to
distinguish between our relevant and irrelevant items. We consider a useful similarity
measure one that maximizes the distance between both sets L+ and L−. We
considered other quality metrics, such as metrics that measure distances between
elements of a cluster, but found them lacking in performance. We propose the
Similarity Advisor for the selection of a suitable distance metric; this includes the
choice of an FD and a distance function. For this, we require a set of diverse FDs.
We use various FDs from the Image Processing and Computer Vision Community
because these algorithms are designed to match the human perceptual system.

In essence, the application scenario determines the usefulness of a feature
description and distance function. However, the selection of a useful distance
function is hard. Thus, we introduce the concept of continuously evaluating a set of
pattern-based similarity measures for their applicability to the current analysis task,
allowing for the convergence to the most useful one. To describe the algorithmic
basis of the Similarity Advisor, we define all relevant terms.

Feature Descriptor (FD): FDs are modeling specific characteristics of a data item.
Examples for low-level FDs are color histogram descriptors, modeling the color
distribution, or edge histograms describing edge orientations of an image [263]. Low-
level FDs are typically inexpensive to compute and may work robustly. Depending
on the type of data at hand, many FDs are applicable. Mathematically, an FD can
be described as a function FD : DS → Rn, where DS denotes the dataset and Rn

the implied vector space. The dimensionality n depends on the Feature Space (FS).
Table 6.1 lists all FDs used by FDive. These FDs describe a variety of different image
features, such as color, layout, structure, and shape [32].

Feature Vector (FV): An FV is an instantiation of an FD for a specific data item. An
FV contains one or multiple components, called feature dimensions or features. A
feature vector FD(x) ∈ Rn represents a description of a data item x ∈ DS, w.r.t.
the properties described by the applied FD.

Feature Space (FS): A feature space describes the set of all feature vectors created
by an individual feature descriptor. Additionally, a feature descriptor implies a vector
space, called feature space. Thus, each feature descriptor has an associated vector
space.

Pattern-based Similarity Measure: We define a pattern-based similarity measure as
a combination of one feature descriptor and a single distance function (figure 6.3a).
The Similarity Advisor evaluates the usefulness all possible combinations of an FD
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Color Color Layout

AUTO COLOR CORRELOGRAM [154] CEDD [66]
FUZZY HISTOGRAM [133] FCTH [67]
FUZZY OPPONENT HISTOGRAM [269] JCD [66]
GLOBAL COLOR HISTOGRAM [263] LUMINANCE LAYOUT [206]
OPPONENT HISTOGRAM [269] MPEG7 COLOR LAYOUT [173]

Edge Structure

EDGEHIST [32] JPEG COEFFICIENT HISTOGRAM [206]
MPEG7 EDGE HISTOGRAM [226] PHOG [49]
HOUGH [152] PROFILE [32]

Texture Other

GABOR [206] BLOCKS [32]
HARALICK [135] COMPACTNESS [226]
LOCAL BINARY PATTERN [144] MAGNOSTICS [32]
TAMURA [299] STATISTICAL NOISE [32]

Table 6.1: FDive uses 24 feature descriptors. These FDs describe a variety of different image
features, such as color, layout, structure and shape [32] allowing for a description of a
diverse set of properties.

and a distance function in their ability to separate the clusters of relevant (L+) and
irrelevant (L−) data items.

In FDive, we use a set of norms as distance functions because the FD learning
algorithm requires a similarity measure that can describe a vector space allowing
for an adaptation of the cluster prototypes “towards” an input vector. FDive uses
the following norms: Euclidean L2, Manhattan L1, L1.25-norm, L1.5-norm and L1.75-
norm, which are all Lp-norms with ||x||p = (

∑d
i=1 |xi|p)1/p and the implied metric

d(x, y) = ||x− y|| as a similarity measure.

Comparability of Pattern-based Similarity Measures

Every FD describes a different set of data properties by mapping a data item to a
vector representation. To derive useful similarity relations, we need to use a distance
function that applies to the vector. We limit ourselves to Lp-norms. However,
this approach is extendable to other distance functions and similarity coefficients,
including those which do not satisfy the metric axioms.

We leverage the definition of normed vector spaces, which is defined as (V, || · ||)
where V is a vector space and || · || a norm on V . We use this definition and apply
it to the combination of an FD and its FS along with an Lp-norm with p ∈ [1,∞).
Throughout this chapter, the term distance function refers to the induced metric
d(x, y) = ||x − y||. In FDive, we define a pattern-based dissimilarity measure, a
combination of a single FD and a distance function, formally as distFDd : (x, y) →
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[0,∞) with distFDd (x, y) = d(FD(x), FD(y)) and x, y ∈ DS data items of the
dataset.

We apply a non-standard normalization to transfer a feature space FS and the
associated norm into a comparable format. To achieve this outcome, we center
the set of all feature vectors x ∈ FS on the origin, such that the center of each
dimension range is located at the origin. This translation does not change vector
distances. For this we create a translation vector t ∈ Rn. The components of t are
defined for each dimension i as

ti = 1
2 · (maxv∈FS(vi) +minv∈FS(vi)) (6.1)

With this, we can formalize the necessary normalization step to transform the
feature space into a comparable state as described by the following function.

normalize(x) = (x− t)/maxv∈FS(||v − t||) with x ∈ FS (6.2)

The normalization needs to be performed for all elements x of feature space
to convert it into a comparable format. This normalization can be implemented
with a complexity of O(N ·M) for the full dataset of size N and M pattern-based
similarity measures implied by the similarity measures, leveraging the mathematical
definition of a norm. In essence, this transformation translates all vectors such that
the center of each dimension range is located at the origin and scales all vectors
such that ||x|| ∈ [0, 1] for all vectors x, while preserving relative distances between
all vectors according to the norm. This normalization allows us to compare the
different topologies created by different feature descriptor and norm combinations.

This approach can extend to non-norm similarity coefficients, under the following
implications. (1) Ideally, the subsequently applied classification model is compatible
with the similarity coefficient, e.g., SOMs require a norm as an internal distance
function since prototype vectors need to be updated “towards” an input vector. (2)
With non-norm similarity coefficients, the following non-standard normalization
needs to be performed. Non-norm similarity coefficients define the difference purely
by the distance of data items. This requires the normalization of the full distance
matrix of the feature space. This leads to a significant complexity increase since all
pair-wise distances need to be computed in O(N2 ·M).

Quality of Pattern-based Similarity Measures

In this section, we discuss a set of heuristic quality metrics that we designed to
estimate the applicability of a similarity measure for a given analysis task. All quality
metrics are calculated based on the transformed features space and the associated
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distance function, according to the previous section. We measure two concepts,
Inter-Group-Distance, and Intra-Group-Distance. A group is defined as a set data
items sharing an identical label, i.e., relevant or irrelevant. Thus one group is formed
by all elements in L+ and another by L+. An intuition is given in figure 6.4.

Inter-Group-Distance measures the similarity of the groups, by calculating synthetic
centroids of L+ and L−, and subsequently determining the distance between both
centroids or short Qinter(L+,L−) = dist(L+

c ,L−
c ). A large Inter-Group-Distance is

highly desirable.

Intra-Group-Distance measures the maximum distance between distinct elements
one of label, i.e. L+ and L−. Thus, we can say Qintra(L) = maxi,j∈L(dist(Li,Lj)),
where i ̸= j. We will apply the above heuristic for every dissimilarity measure.

We experimented with different combinations of Inter- and Intra-Group-Distance
and variants also involving mean and median values instead of the maximum for
the Intra-group-distance. We also combined both measures into Qcomb(L+,L−) =
Qinter(L+,L−) − w · (Qintra(L+) +Qintra(L−)), with a weighting w. In general, we
found that the Inter-Group-Distance performed the best on its own, i.e., with w = 0.

Other metrics in the context of internal cluster quality metrics use similar notions
to Inter- and Intra-Group-Distance. Cutting et al. [77] describe internal cluster
metrics such as the cluster self-similarity defined as the average distance of all
cluster members or the average distance of all cluster members to the centroid.
We found that this measure did not describe the group separation very well since
the ideal case describes a cluster concentrated on a small region. This case rarely
occurs in real-world scenarios, without all points of both L+ and L− clusters being
concentrated at the same location. We looked at internal cluster quality metrics such
as the Dunn Index [98] which measures the ratio of minimum cluster distance to
the maximum cluster extent. Another measure is the Davies-Bouldin index [79]
describing the sum of cluster extents to the centroid distances. Both approaches
include the notion similar to the Intra-Group-Distance. We found that both measures
were sensitive to outliers and thus where not as useful as the Inter-Group-Distance
heuristic.

We use and suggest the Inter-Group-Distance on its own in all applications and
evaluations of FDive. This distance-based score is used to rank the set of similarity in
descending order, as shown in figure 6.3b. The Similarity Advisor shows the score as
bar. Additionally, we display the topology of the associated features space. Labeled
data items are highlighted, allowing users to verify the separation of relevant and
irrelevant data items. With the Inter-Group-Distance we found a heuristic that is
intuitive, easy to calculate and performs well, as we will show in section 6.7.2.
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Figure 6.4: We propose two quality measures. Inter-Group-Distance describes the distance
between the centroids of the relevant and irrelevant data, measuring how well a similarity
measure separates both groups. The Intra-Group-Distance is defined as the maximum
distance in the relevant or irrelevant data, measuring whether a similarity measure describes
elements of the same group to be dissimilar.

6.6 Learning Relevance of Data Points with

Self-Organizing Maps

FDive features a SOM-based classifier, which is used to classify data items by their
assignment to a SOM-neuron, and to learn decision planes in the high-dimensional
space discriminating L+ and L−. We introduce a set of visual encodings to guide
the user to potentially interesting data subsets, or regions of classifier uncertainty.

6.6.1 Self-Organizing Maps as Visual Classifier

SOMs cluster similar items in cells, which provides users with an intuition about the
classification process. SOMs preserve distance relations between cells allowing for
orientation in the data space. The tree-structure and SOM cell exploration allow
for a drill-down from the data space to clusters and individual data items. SOM
cells are arranged in a grid which is directly visualizable, which also applies and our
tree-like classifier model. Additionally, our SOM classifier conveys areas of uncertain
classifications by highlighting cells with mixed labeling and cells with a low amount
of labeled data items. Additional labels improve the classification. Labels can be
added in those specific areas. The grid size is a user parameter, and 3 × 3 is the
default setting.

We use SOMs as a basis for our model because it is visually explorable; it
partitions the feature space and the data space, which provides the user with
analyzable chunks. The supplied relevance labels and the selected dissimilarity
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Figure 6.5: Visual Exploration of SOM Model: 1) Classifier tree. 1a) Parent of the currently
observed SOM. 1b) Children of the current SOM. 2) Detailed SOM Display. 3) Scatter plot
highlighting data of the SOM node.

definition are used to calculate a SOM-based relevance model that separates relevant
and irrelevant data items. The model can be explored for visual model understanding.
Moreover, the model visually conveys areas of uncertainty. The user is then able to
refine the relevance feedback in areas of uncertainty, namely the decision boundary.
Since our approach is focused on the creation of a relevance model reflecting the
user’s notion of relevance and thus in essence, not for exploratory analysis, we limit
our approach to the representation of a user’s fixed notion of relevance.

Classifier Training: A regular SOM is likely to create cells in which relevant and
irrelevant items are mixed. We resolve this by proposing a hierarchical SOMs that
allows for the expression of fine-grained differences in the user’s notion of relevance.
For this reason, we merge the concept of a tree with the concept of child SOMs
presented by Sacha et al. [265], where a new SOM is calculated only with a subset
of the dataset determined by the cell selection of a parent SOM. However, our
algorithm creates a classifier automatically without any user interaction other than
supplied labels. We automatically calculate a child SOM only from the data items
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assigned to the given cell c if this cell exhibits a mixture of relevant of irrelevant
greater then a threshold mt, i.e., MixRatio(c) > mt with

MixRatio(c) = min(|L+
c |/|Lc|, |L−

c |/|Lc|) (6.3)

The cell needs to contain enough data items in order for a child SOM to be useful.
We model this circumstance by another threshold value ct, such that the number
of items in a cell |Ec| must exceed ct. Thus ct determines the split criterion. In
FDive, the creation of SOM models is based on the supplied similarity measure,
as determined by the Similarity Advisor, and the relevance labels. The resulting
SOM-based model can exhibit a tree structure (figure 6.5 (1)). We limit the layout
to 3 × 3 to leverage the projection of a SOM into 2D but not handle an excessive
amount of children for a given parent in the classification tree.

Classification of Data Items: A classification of a given data item is performed
recursively, similar to a decision tree. (1) Find the most similar neuron in the
root SOM; (2) If the node has a child, perform the same action recursively on the
child SOM; (3) If the SOM node has no child, classify the item as the predominant
label of the respective cell, i.e., the categories relevant or irrelevant; (4) If no label
information is available for this node, use the next most similar cell with label
information in that specific SOM.

6.6.2 Classifier Exploration and Refinement

Our SOM-based visual classifier is visually explorable. It conveys its relevance
decisions through multiple visual and interactive techniques. The main navigation
happens in the visual classifier tree (figure 6.5 (1)). Each SOM can be selected to
examine it in detail. The currently active SOM is marked with a purple border. A
purple dot highlights the parent SOM of the selected child SOM. The color coding of
the grid in each SOM is intuitive, green signals a predominance of relevant items,
red a predominance of irrelevant items. Yellow signals a mixture of relevant and
irrelevant items, according to the MixRatio of a cell. Such cells are likely to be
recursively refined, as described in the previous section. We deliberately chose this
encoding since it intuitively signals the relevance of data items from green over
yellow to red gradient. Figure 6.5 (3) shows the classification outcome for data
items assigned to a child SOM or individual cell. This allows us to detect whether a
cell is on decision boundary.

To provide insight into the data items assigned to each node, we provide a range
of stackable cell visualizations that can be selected in a user-defined order.
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Relevance Label Quality: The label quality is depicted as colored
squares on top of each node. We use the MixRatio to determine
the color and create a gradient from red over yellow to green; red
is representing only irrelevant, green only relevant items within the
cell and yellow implies an uncertain cell, i.e., decision boundary.

A white dot signalizes that the cell contains not enough categorically labeled data
items, visually prompting users for more labels.

Feature Histogram: This layer displays the trained vector of
the node. It can be used to judge the differences of SOM cells
according to the currently recommended feature description. If
the currently active FD is interpretable, like an FD derived from a
color histogram, describing the color spectrum of an image, it can

also hint at the properties of the contained data items.

The user can also utilize two other layers, the Quantization Error (QE) [248]
and the U-Matrix [315], to explore clusters of nodes that should be treated similarly
by the model. Also, we support the user with detailed information about the
number of assigned data items, relevant, irrelevant, and neutral data items. This
information allows the user to judge the importance of a given node and the amount
of information available to the model.

Visual Active Learning with SOMs

Cells with a low amount of labeled data items are uncertain. We measure this
uncertainty with the LabelRatio of a cell c. |Ec| defines the number of items in a
cell. Thus, we define the LabelRatio as

LabelRatio(c) = (|L+
c | + |L−

c |)/|Ec| (6.4)

The model marks cells that do not have a child SOM with a white dot if LabelRatio(c) <
qt, where qt defines a threshold. A white dot signals uncertain neurons with a low
label count to prompt the user to supply additional labels in these uncertain data
regions. If the user does not supply an additional label by the suggested SOM node,
the query formulated by an active learning system is generated from those marked
nodes. For every node, the user can request details-on-demand in the form of a
model-refinement dialog, similar to the annotation view, presented in section 6.4.
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Figure 6.6: FDive learns to differentiate EM images containing synapses from images that do
not. The domain expert found the classification model to be satisfactory after nine iterations.
We show four key events in the model learning process. (1) The initial model is classifying
the data very poorly, as presented by the scatter plot (1a) being very noisy and mixed. (2)
The scatter plot shows a cleaner decision boundary (2a) and the model gets more complex,
while the expert labels requested data items. (3) In the seventh iteration, the domain expert
noticed that the HARALICK [135] FD combined with the Euclidean distance is recommended
for the third time in a row, hinting at convergence for the similarity measure. (4) The last
two iterations were spent exploring the model, observing and refining decision boundaries.

6.7 Evaluation

Approaches involving relevance feedback are not straightforward to evaluate, as the
results depend on both hidden and explicit user preferences and the definition of
the learning components [246]. Therefore, we show its usefulness by applying it to
a real-world use-case. We evaluate the general workflow, including the Similarity
Advisor, through a comparison to multiple feature selection techniques.

6.7.1 Case Study: Synapse Detection

The goal of connectomics is to reconstruct the neural wiring diagram from EM images
of the animal brain to improve the understanding of neuropathology and intelligence.
A synapse is a functional structure that enables signal transfer from one neuron
to the other, which connects individual neurons into a complex network. Manual
labeling of synapses can be extremely hard because (1) there are approximately one
billion synapses in a 1mm3 cube of a mouse brain, and (2) the labeling of synapses
requires expertise and cannot be crowdsourced. Therefore, a good labeling system
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of synapses should be semi-automatic and only provide informative samples to the
domain experts to improve the labeling efficiency. To showcase the effectiveness
of our proposed approach, we applied the annotation system to a high-resolution
EM image dataset generated by a multi-beam scanning electron microscope In total,
there are 4,000 image patches, half of them containing a synapse at the center of
the image, while the other half do not contain synapses. In this study, we show how
our system helps experts classify synapse images and non-synapse images without
any labeled training set and pre-specified domain knowledge.

CNN-based approaches have achieved state-of-the-art performance on image
classification tasks [193, 142]. However, there are still two main shortcomings of
CNN-based methods. First, because the model space of CNNs can be huge, the model
can easily overfit the training set and have poor performance on the test set, which
requires a large training set. Second, the features extracted over convolutional
layers are hard to interpret, which restricts the understanding of the discriminative
features, especially for scientific applications where the expert wants to have a full
understanding of the model.

Thus, we perform a case study involving the classification of EM images of brain
cells. A domain expert is tasked with the creation of a relevance model able to
distinguish images depicting neuronal synapses. The domain expert has experience
in the area of connectomics and the interpretation of EM images, including the
identification of cell structures such as cell organelles and neuronal synapses. The
study was conducted as a semi-structured interview. The case-study was performed
after a training period. The expert performed a total of nine iterations to teach
our relevance model the difference between EM images containing synapses and
those which do not. Figure 6.6 shows four key events in the model learning process.
After the initial annotation of 40 data items, the system suggested the EDGEHIST FD.
The expert finished the first iteration by labeling data items in cells with a white
dot. A total of 95 images were annotated as relevant and 65 as irrelevant. In the
second iteration, the system suggested the TAMURA FD. The expert labeled 63 images
as relevant and 57 as irrelevant. In the third iteration, the system suggested the
TAMURA FD again. In the fourth and fifth iteration, the MPEG7 EDGE HISTOGRAM

FD was suggested. In iteration six to nine the system consistently suggested the
HARALICK FD point at convergence on this specific FD. The expert followed the
recommendations of the Similarity Advisor in every iteration, finishing after the
ninth iteration.

In the first three iterations, the system indicated uncertain cells. In later iterations,
we are able to check the distribution of samples in a SOM on the scatter plots to see
if they are still mixed up. In the end, it notified the expert that it has enough labels,
such that no further inspection or labeling is necessary. After several iterations of
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labeling, the expert noticed that samples are separated in the classification scatter
plot, and, when inspecting the individual nodes pertaining to a data region, the
labels of similar data items were matching. From the root node to the leaf nodes, he
was able to see a trend towards purity. Therefore, when the uncertainty indicators
(i.e., white dot) disappears, the nodes with mixed colors are more appealing to
be labeled. The inspection of nodes was helpful to the expert to validate whether
a set of samples spread out on the scatter plots and thus do not form a coherent
cluster. When inspecting a cell colored in yellow, the expert was able to see decision
boundaries. Subsequently, the expert labeled ten queried samples to refine the
decision boundary. After labeling one node, the color of the node itself and its sibling
nodes may change, and the expert was able to verify the impact. The expert noted
that the appearance of the scatter plot changed several times at the initial iteration
and that the relevant and irrelevant samples on the scatter plots were mixed and not
forming a coherent cluster. However, after several iterations, the model converges
to a specific similarity measure, and samples become more separable on the scatter
plots.

With FDive we can learn to distinguish and extract relevant data items, in this
case, EM images depicting synapses, using a sparse amount of categorical labels.
Whenever a new label is applied, the system conveys its impact visually. The
relevance model is visually explorable and refinable such that the expert was able to
assess the model quality and the convergence towards a useful relevance model.

6.7.2 Quantitative Framework Evaluation

This evaluation compares the best best-breed-competitor generated by 3 algorithms
and 4 different FD sizes against our “one-shot” Similarity Advisor result. Comparing
a recombination of all features with the Similarity Advisor using only the predefined
feature descriptors make this evaluation biased against our approach. However, we
were still able to outperform the best best-breed-competitor in 36 out of 75 cases.
We evaluate FDive on the following options and parameter settings with the central
goal to show the usefulness of ranking pattern-based similarity measures for model
learning. We provide a comprehensive overview of the results in Table 6.2. The
basis for all experiments is the Quick, Draw! dataset [167]. We reduced the dataset
to 4500 images consisting of 150 sketches for each of the 30 labels, describing the
depicted objects. We choose the labels square, circle, banana, crayon, and monkey.
These labels cover a variety of shapes with different complexity. We assume each
label as a specific analysis target. For each of the target labels, we label progressively
more items as relevant and irrelevant. The progression is 25/25, 50/50, 75/75,
100/100, and 125/125 for L+ / L−. This sequence represents an increase in the
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Labeling Results (larger is better)

Target
Example

#Labels Best Selected FD Best Ranked Original FD
L+ / L− Baseline FDive

each k = 1 k = 3 k = 5 k = 1 k = 3 k = 5

25 .359 .397 .410 .268 .317 .312

50 .398 .464 .449 .238 .330 .330

75 .326 .436 .490 .215 .295 .328

100 .350 .407 .465 .239 .321 .347

125 .437 .516 .494 .250 .328 .368

25 .363 .368 .320 .272 .264 .239

50 .399 .444 .426 .296 .292 .279

75 .461 .533 .542 .286 .309 .292

100 .539 .611 .567 .306 .338 .323

125 .507 .600 .602 .304 .357 .345

25 .212 .222 .224 .556 .566 .490

50 .303 .310 .306 .561 .574 .578

75 .323 .351 .362 .605 .619 .626

100 .473 .526 .507 .529 .595 .586

125 .363 .447 .469 .522 .585 .606

25 .152 .170 .187 .166 .174 .153

50 .175 .157 .171 .192 .216 .222

75 .180 .192 .184 .197 .205 .202

100 .160 .179 .186 .192 .203 .194

125 .173 .186 .181 .135 .142 .145

25 .179 .169 .173 .096 .105 .101

50 .162 .165 .176 .183 .247 .253

75 .197 .201 .215 .180 .222 .254

100 .180 .176 .191 .186 .245 .273

125 .193 .209 .210 .180 .235 .262

Table 6.2: We compare the F1 scores for different k-Nearest Neighbors (k-NN) classifiers.
Our heuristic approach performs better for analysis targets with a higher complexity (i.e.
banana, crayon and monkey) than state-of-art feature selection algorithms that can draw
features from all available feature descriptors (4694 features). It performs worse for less
complex patterns (i.e. square and circle).
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available labels through the iteration cycle. To verify the validity of the similarity
measure ranking, we train a k-NN classification model. We chose k-NN, because it
is fully automatic and represents an intuitive classification model. We select three
parameters for k, namely 1, 3, and 5. To make our results invariant to the feature
selection technique, we conducted our experiments using the ReliefF algorithm,
a Linear Ranking Ensemble consisting of ten Recursive Elimination SVMs, and a
regular Recursive Elimination SVM. These techniques are described in Section 6.2.1.
Those algorithms rank features according to their significance. We choose subsets
of different lengths, namely 5, 10, 15, and 20. We perform a feature selection on
the concatenation of all FDs (4694 features), resulting in recombination of different
features, according to the significance assigned by the feature selection algorithm.
This approach creates 12 (= 3 algorithms × 4 sizes) recombined FDs for each label
and label count (i.e., table row). We determine the F1 score of the trained k-NN
for each k with all recombined FDs and all distance functions, yielding 60 (= 12
selected FD × 5 similarity coefficients) F1 scores for each k parameter of the k-NN
classifier. Table 6.2 shows the best score out of 60 for a given k in the three columns
titled “Best Selected FD”, serving as the benchmark. We compare this score to the
single one resulting from a classification based on the best-ranked similarity measure
according to the Similarity Advisor. All FDs are in their original state and combined
with all available distance functions. The Similarity Advisor ranks the similarity
measures based on the same label information as available to the feature selection.
Table 6.2 shows the F1 score for a given k for the best ranked similarity measure in
the three rightmost columns titled “Best Ranked Original FD”.

Generally, we found that our the suggested similarity measure performs on
a similar level than the best feature selection created by the feature selection
algorithms. It outperforms the feature selected FD in all scenarios involving the
banana label and in 11 out of 15 scenarios pertaining to the crayon label. The
best-ranked Similarity Measure is outperformed in scenarios where the analysis
target is a less complex shape (i.e., square and circle. In case of the monkey label, our
ranked FD can achieve similar result than the selected FD with 50 or more labeled
instance for each of L+ / L−. Given that we compare 60 feature selection-based
similarity measures to our single best ranked fixed-FD similarity measure, we can
say that the similarity advisor is an efficient and effective method for the evaluation
of similarity measures and that the best-ranked measure helps in the creation of a
relevance model.
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6.8 Discussion and Future Work

With FDive, we provide a technique which allows for the iterative learning of a
relevance model, including the definition of a useful similarity measure. In the
case of FDive, a similarity measure comprised of a feature descriptor and a distance
function. The visual guidance of the SOM-based relevance model to uncertain
classification near decision boundaries improved the understanding and quality
of the model. We show that the continuous evaluation of the similarity measure
benefits the iterative creation of relevance models, helping them to converge towards
increasingly useful results.

One area of improvement noted by the expert was that, upon change of the
similarity measure, the relevance model changes its layout, requiring the analyst
to relearn it. For this reason, the mapping of different model representations into
various feature spaces would allow us to explore the impact of a changed feature
space on the model. Making this effect accessible would further the understanding
of the feature space and underlying data distribution.

We plan to extend the general concept of the Similarity Advisor to other types
of distance functions, removing the limitation to vector spaces implied by the Lp

Minkowski family of distance measures. This extension would allow us to use
other distance functions, such as Cosine, Canberra, or Clark distance. Analysts
apply these measures often in specific scenarios and domains. The automatic
detection of a distance function would replace the need for an expert, removing
the bias introduced through the single fixed distance function. Additionally, we
want to explore the application of the Similarity Advisor in different contexts, such
as the validation of feature weightings or the design of feature descriptors based
on prototypical representations of the described properties. In this instance, the
Similarity Advisor could serve as a concept validator. Feature descriptors can be linked
to visualization types. Through a technique similar to the Similarity Advisor, it should
be possible to suggest other data representations, such as switching from a scatter
plot representation to a parallel coordinate plot. An automatic suggestion of a useful
visualization would add another step to a generalized analysis workflow, where many
choices an analyst or even system designer can make is automatically assessed and
supported. We layout the SOM-based relevance model in a tree structure, because it
is explainable and an intuitive way of reading a classifier. Techniques introduced
by Sacha et al. [265] can be used to enhance its descriptive ability. This addition
can lead to novel SOM interactions focused on classification rather than exploratory
cluster analysis.
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We discuss scalability on two levels. First, we discuss the computational effort of
Similarity Advisor. The main computational effort lies in the required preprocessing
to transform the feature spaces and distance functions into a comparable format.
The transformations are parallelizable. The complexity is determined by the dataset
size. The complexity of the Inter-Group-Distance calculation is determined by the
number of supplied labels. However, this relationship is linear. Second, we discuss
the scalability limit of the complete FDive approach. The main limit approach is
the creation of the SOM-based relevance model. However, the results of a previous
iteration cycle can be reused in the subsequent cycles. One issue that we found was
that the tree representation of the SOM-based model can become very wide. Here
we have to consider a tradeoff between the size of the SOM and the associated data
partitioning properties and the number of child SOMs leading to a broad tree. We
found that a 3 × 3 SOM is an acceptable size for the SOMs since it is a size where
the 2D projection property has a notable effect.

6.9 Conclusion

The extraction of interesting patterns from large high-dimensional datasets is a
challenging task. With FDive, we present a workflow for the creation of relevance
models based on pattern-based similarity measures. The system ranks similarity
measures according to how well they separate relevant from irrelevant data. Our
SOM-based relevance model is interactively explorable and guides the user to
uncertain areas, i.e., decision boundaries. We evaluated our technique with a real-
world case study in which we show that FDive can reflect the complex differences
between electron microscopy images showing synapses of neurons or other brain cell
structures. Our comparison to feature selection shows that FDive’s Similarity Advisor
serves as a useful metric to evaluate the discriminative ability of feature descriptor
and distance function combinations. With FDive, we introduce the concept of
continuous Similarity Advisor assessment during the learning process of a relevance
model. The Similarity Advisor concept is applicable to areas where the user expresses
his relevance for specific data items and can improve the results of the given task.
The full FDive approach allows the creation of relevance models for a complex task
while providing the user with valuable insights about the learning process, such as
the underlying similarity measure and the model properties, including the judgment
of classification results in areas of high uncertainty.
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With the surge of data-driven analysis
techniques, there is a rising demand for
enhancing the exploration of large high-
dimensional data by enabling interactions
for the joint analysis of features (i.e., dimen-
sions or categorical attributes). Such a dual
analysis of the feature space and data space
is characterized by three components, (1) a
view visualizing feature summaries, (2) a view that visualizes the data records, and
(3) a bidirectional linking of both plots triggered by human interaction in one of
both visualizations, e.g., Linking & Brushing. Dual analysis approaches span many
domains, e.g., medicine, crime analysis, and biology. The proposed solutions encap-
sulate various techniques, such as feature selection or statistical analysis. However,
each approach establishes a new definition of dual analysis. To address this gap, we
systematically reviewed published dual analysis methods to investigate and formalize
the key elements, such as the techniques used to visualize the feature space and data
space, as well as the interaction between both spaces. From the information elicited
during our review, we propose a unified theoretical framework for dual analysis,
encompassing all existing approaches extending the field. We apply our proposed
formalization describing the interactions between each component and relate them
to the addressed tasks. Additionally, we categorize the existing approaches using
our framework and derive future research directions to advance dual analysis by
including state-of-the-art visual analysis techniques for data exploration.

This chapter is taken from the following publication:

• [88] Frederik L. Dennig, Matthias Miller, Daniel A. Keim, and Mennatallah El-Assady.
“FS/DS: A Theoretical Framework for the Dual Analysis of Feature Space and Data
Space”. In: IEEE Transactions on Visualization and Computer Graphics 30.8 (2024),
pp. 5165–5182. DOI: 10.1109/TVCG.2023.3288356.

Please refer to Sections 1.2 and 1.3 for the citation rules and contribution clarification.

135

https://doi.org/10.1109/TVCG.2023.3288356


Figure 7.1: Dual analysis leverages the interactions on the feature space and data space by
linking the visualizations of both spaces. Both spaces are tightly coupled, allowing for joint
analysis with an immediate response.

7.1 The Need for a Generalized Model of Dual

Analysis

One of the major challenges faced by data analysts when exploring and analyzing
collected data is the detection of interesting patterns and relationships among data
items and features (i.e., dimensions). This is due to multiple reasons. Firstly, the
sheer size of the datasets, and secondly, the complexity of patterns that analysts are
facing during the investigation. A popular way to explore large high-dimensional
datasets is dual analysis. Dual analysis is a technique first introduced by Turkay
et al. [308] for the analysis of Deoxyribonucleic Acid (DNA) microarrays. This
first instantiation enabled users to perform correlation exploration and hypothesis
generation utilizing interactive visual analysis. Turkay et al.’s approach employed
three key components: (1) A view visualizing summaries of features, i.e., scatterplots
of summary statistics, (2) a view that visualizes the data points, here, a projection
based on Principal Component Analysis (PCA) [166], and (3) a bidirectional linkage
of both visualizations, in this case, through Linking & Brushing. With those three
components, dual analysis allows for simultaneous visual investigation and manipu-
lation of features and data items (see figure 7.1). In recent years, approaches solved
problems in other domains, such as medicine [311, 252, 158, 119, 227, 312], crime
analysis [191, 162, 117, 289], and finance [334, 309, 289]. Other approaches ex-
changed the visualizations for feature and data space, e.g., Parallel Coordinate Plots
(PCPs) [156], and also used different interaction techniques on these visualizations,
such as Drag & Drop interactions [277, 95] or subspace selection [110, 334, 191,
162, 227, 309], which necessitates adaptation of the linkage between features and
data space. Implementations using the dual analysis paradigm are mainly geared
toward specific use cases, while only some are designed for multiple domains.
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The strength of dual analysis is that the link between the feature and data space
visualization allows for an immediate response, which in turn allows for a fast hy-
pothesis generation and validation, ultimately enhancing the knowledge generation
process [266]. The visualization of feature and data space symmetrically leverages
the preference of humans for symmetry [106]. Since the available approaches are
domain-specific, tackling a specific problem, transferring these approaches to solve
new problems in other domains is non-trivial. Additionally, many previous works
popularized dual analysis for multivariate data analysis, where the data items and
attributes are simultaneously shown in two adjacent and symmetric views [308, 75,
95], e.g., two scatterplots using the same dimensionality reduction technique and
interaction for feature and data space. These approaches only focus on detecting
similarities among data items and features, or analyzing the impact of a feature on
the topology of the dataset. Approaches that do not employ a symmetric design are
more flexible. However, the linkage of both visualizations is less straightforward,
since both views have other benefits and limitations. Additionally, the number of
conceivable combinations is vast. Thus, we provide a formal model that can help
structure the development of new dual analysis approaches. Generally, dual analysis
approaches lack the capabilities of visual analytics frameworks that employ more
sophisticated techniques. For example, machine learning tools, such as interesting
subspace recommendation [30] and feature selection algorithms [188, 214], lay-
out enrichment for scatterplots [235], analytical provenance [147], and guidance
mechanisms [242]. We argue that the introduction of those techniques into the
dual analysis framework to explore, reduce, and transform the data will improve its
usefulness since these techniques already improve other visual analytics frameworks.
However, the addition of those algorithms is challenging since dual analysis de-
pends on a meaningful interplay between the feature and data space visualizations.
Thus, interfaces enabling the integration of machine-learning techniques need to be
well-defined.

A comprehensive overview of existing dual analysis approaches is missing in
the current literature. Thus, we performed a systematic literature review to get a
comprehensive and well-grounded understanding of the area. We present seven
scenarios describing ways of applying the dual analysis approaches in addition to
their fundamental properties, goals, and use cases, including which techniques
have been used to create meaningful feature and data space visualizations and
interactions. One challenge faced for future applications is that the state of the
feature and data space view need to stay coherent, even with more complex and
sophisticated algorithms and interactions. Thus, our FS/DS model presents a unified
framework incorporating previously disjunct approaches for dual analysis. Our key
contributions include the following:
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s • A systematic literature review describing fundamental properties, goals, and

use cases of existing dual analysis approaches.

• A theoretical model for dual analysis describing the key components, yield-
ing a formal description of the design space for dual analysis approaches.

• Validation of our formal framework through descriptive and generative use.

Our contributions enable researchers and developers to include additional analyt-
ical capabilities, such as machine learning algorithms and visualization techniques.
Finally, we discuss the limitations of our work and present promising research
directions.

7.2 Related Work

This work is related to previous publications in several ways: It is concerned with
general theoretical models for visual analytics, specifically proposing one for dual
analysis, and it is related to interaction and task taxonomies. Thus, we will cover
how they relate to dual analysis and what they are lacking regarding dual analysis
interactions. We will briefly describe how our proposed framework will address
these shortcomings.

7.2.1 Theoretical Models in Visual Analytics

Before proposing a formal and theoretical framework for dual analysis, we relate to
formal and theoretical models in Visual Analytics (VA) and information visualization.

Jarke J. van Wijk proposed a formal model for visualization [329], which models
visualization as a function of data and its specification. The specification can be
changed by the user based on the knowledge gained after the perception of the
visualization through an exploration process. These interactions are represented
as processes or functions (i.e., visualization, perception, and exploration), while
the data, the visualization, and its specification are denoted as parameters for the
processes. This model was adapted by Green et al. [125, 124] adding interaction
between the perception and exploration, as well as the exploration and the users’
knowledge. This update highlights that perception directly impacts exploration, and
knowledge is also gained through exploration and interaction.

Another high-level model for general VA approaches was published by Keim et
al. [179]. It describes the visual analytics process as characterized via interactions
between data, visualizations, models about data, and the user to discover knowledge.
It defines VA as a combination of automatic and visual analysis techniques with a
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tight coupling through human interactions, with the primary goal of gaining new
insights from data. Thus, the first step in the model is to transform the data to derive
different representations for subsequent exploration through automatic or visual
analysis. This model makes a clear distinction between automatic and visual analysis
and keeps them separated. Also, all transformations are framed as preprocessing.
The model describes automated analysis as data mining methods that are used
to create models of the data. With these models, the analyst can evaluate and
refine the model by interacting with the data through visualization. Visualizations
can also allow analysts to parameterize automatic methods. Model visualizations
are described as tools for the evaluation of the model itself and the validation
of the generated findings. The interplay of automatic and visual techniques is a
hallmark of VA. Thus, this model allows for the continuous refinement and adaption
of hypotheses.

An extension of this model is the Knowledge Generation Model by Sacha et
al. [266]. It takes the model by Keim et al. and extends it with three loops, namely
exploration, verification, and knowledge generation. This model places these three
loops in the domain of the users, while the model by Keim et al. represents the
computation domain. The exploration loop is described with two steps: Action
and finding. The verification loop with hypothesis and insight. Most importantly,
it describes these steps as nested, e.g., a finding can lead to new insights, which
can help create a new hypothesis, which can be tested through an action using a
VA approach. Finally, through the exploration and verification of the action, the
user can gain new knowledge about the data by verifying the explored hypothesis
through multiple perspectives and insights. Thus, the model by Sacha et al. focuses
on the user rather than the algorithmic or computer side.

Our work contributes a theoretical and formal framework for the dual analysis
of feature and data space. One of the benefits of formalization is the systematization
of core operations on the data while describing what tasks are achievable or not
with which techniques, such as visualization and interaction techniques. Thus, it
provides a more detailed model by focusing on specific properties of dual analysis
and is designed explicitly to abstract key properties. Yet, it remains at a high level
such that we present our contribution in a way that corresponds to these existing
models focusing on the core operations.

7.2.2 Interaction Techniques and Taxonomies

Dual analysis approaches leverage interaction techniques to enhance opportunities
to extract relevant information from the visual representation of the feature and

7.2 Related Work 139



data space. Various taxonomies and generic frameworks explore the design space of
visual interaction.

Yi et al. [333] present a framework and taxonomy for information visualization
interaction techniques, which categorizes lower-level interactions into seven groups,
namely (1) Select: mark something as interesting, (2) Explore: show something
else, (3) Reconfigure: show a different arrangement, (4) Encode: show a different
representation, (5) Abstract/Elaborate: show more or less detail, (6) Filter: show
something conditionally, and (7) Connect: show related items. These categories
are focused on the user intent rather than the users’ low-level actions. For instance,
Lekschas et al. [198] introduced the technique “Interactive Piling” to facilitate the
visual organization, exploration, and comparison of numerous small multiple using
the pile metaphor to provide visual aggregations.

The taxonomy by Brehmer and Munzner [52] extends the ideas by Yi et al. [333].
It describes a multi-level typology for information visualization tasks. The authors
specifically differentiate the ends (i.e., user intent) from the means (i.e., user action),
with the primary goal of describing why and how a task is performed. Additionally,
Brehmer and Munzner address the inputs and outputs of a given task to create a
comprehensive taxonomy. It allows for the expression of complex tasks as sequences
of simple, interdependent tasks. All intents, interactions, inputs, and outputs
are described in an abstract rather than a domain-specific way, allowing for an
application of the taxonomy to a large set of VA systems. Nonato and Aupetit [235]
applied the taxonomy by Brehmer and Munzner [52] to dimensionality reduction,
formalizing tasks specific for dimensionality reduction.

Landesberger et al. [196] present a new taxonomy for user interaction in VA
applications by comparing existing interaction taxonomies. This approach covers
three high-level areas, i.e., visualization, reasoning, and data processing. Each area
consists of two subcategories, i.e., of data changes and changes in the respective
representation. In this taxonomy, changes in the data impact the visualized dataset,
and changes in visualizations refer to different forms of interaction. Changes in the
dataset are categorized into two subcategories. The first reflects changes that impact
the data selection, such as filtering, while the second comprises changes that affect
the dataset, such as editing or annotation. The visualization changes are subdivided
into changes in the visualization parameters and changes in visualization type or
scheme, as described by Bertini et al. [42].

Endert et al. [102] specifically focus on the semantic interaction, introducing
a visual analytics prototype called ForceSPIRE designed to support diverse forms
of semantic interaction. They propose a new design space for interaction in visual
analytics, enabling analysts to interact with a visual metaphor leveraging interactions
derived from the analytic process, such as searching, repositioning, or highlighting.
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Figure 7.2: Paper Selection Process: 1.) Landmark papers 2.) Forward and Backward Search
3.) Automated Keyword-based Filtering, 4.) Paper Filtering, and 5.) Sample Validation. The
numbers in the arrows describe the number of papers retained after each step.

Dimara and Perin [92] published a paper about the general concept of interaction
for data visualization providing a clear definition that helps to improve understand-
ing of the opportunities that interaction opens to users. Their evaluation identified
several crucial factors, such as the computer being a mediator between humans
and data, the visualization should invite users to construct a mental model of data
concepts, and there can be different intents of why visualization is used at play.
Thus, they argue that interaction allows for iterative steps to approach an analysis
goal by supporting user intentions while maintaining a high level of flexibility in an
application.

Our framework for dual analysis covers interaction in its design by linking them
to common analysis scenarios, which internally are connected to a step in the data
processing pipeline. Thus, it provides a detailed description of possible interactions
linking them to the underlying components facilitating dual analysis.

7.3 Literature Survey Methodology

At the outset of this literature review, we present our definition of dual analysis that
we use throughout this work.

Defintion of Dual Analysis

Dual analysis facilitates the joint visual analysis of feature and data space through

(1) a view visualizing the features (i.e., feature space)

(2) a view that shows data points (i.e., data space)

(3) a mechanism to link both views in a bidirectional way

meaning that the interaction with one visualization, e.g., the features space, changes the
other visualization, i.e., the data space (see figure 7.1). The linkage mechanism can be
symmetric, but this is not a requirement.

To present an overview of dual analysis approaches, we performed a systematic
literature review. The general process is described in figure 7.2. First, we manually
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identified a small subset of four publications [308, 334, 75, 95] from the TVCG and
Eurographics journals, which we use as landmark papers. From these publications,
we found other relevant publications based on a forward- and backward search
following the citations (see section 7.3.2). Then, we performed a detailed qualitative
analysis of the selected papers, extracting and refining dual analysis characteristics,
yielding a set of keywords (see section 7.3.3). Finally, to ensure our understanding
of dual analysis is comprehensive, we executed a keyword-based search for publica-
tions that were not found by following the citation of the landmarks forwards and
backward (see section 7.3.2). In general, we follow a methodology described by
Snyder [283] as a systematic review to create a theoretical model or framework.

7.3.1 Landmark Papers

Before making a contribution towards the topic of dual analysis, i.e., a formal model
of the dual analysis paradigm, we started with a few landmark papers that were
foundational for this technique (see papers marked with ∗ in table 7.1), for the
primary goal of identifying existing dual analysis approaches implemented by the
VA and visualization community. These publications are: The first approach by
Turkay et al. [308]. IF , F I -Tables [75], SIRUS [95], and the Dimensions Projection
Matrix/Tree [334]. We chose these publications since they are referenced by other
publications in table 7.1 and were published in journals with high visibility, more
specifically, TVCG and CGF. We also verified later whether they are referenced by
other publications in table 7.1. Turkay et al.’s publications [308, 311, 310, 312, 309,
313] can be viewed as fundamental to dual analysis, as they introduced the concept
and established the foundation for this approach.

7.3.2 Forward and Backward Search

We initiated a forward and backward search of reviewed publications to provide an
extensive overview of the existing dual analysis approaches. We reviewed literature
citing one of the landmark papers, as well as literature that is cited by landmark
papers. This process yields 15 papers (see figure 7.2) from the IEEE, Eurographics,
ACM digital libraries, as well as from Elsevier and other literature (i.e., Information
Visualization, and The Visual Computer). However, since we also found dual analysis
approaches outside the citations of and from the landmark papers, we decided to
extend our search range by performing an automated keyword-based search.
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7.3.3 Automated Keyword-Based Filtering

From the set of papers that resulted from the forward and backward search, we
created a list of relevant keywords by extracting key terms in the papers referencing
dual analysis or its components. We combined and cross-referenced the terms to
ensure that we did not overlook any relevant terms in the field. We selected the
keywords: Dual analysis, dual-analysis, dual visual analysis, dual-visual analysis, dual
views, dual space, dual projections, dual scatterplots, feature space, dimension space,
dimensions space, data space, item space, and items space. We used these keywords
for our subsequent automated search.

To gain an overview of approaches incorporating dual analysis and also related
approaches, we scanned all the available literature (see figure 7.2). We utilized
a plain text scanner to accomplish this task, which extracted the plain text from
each publication and verified the presence of a given keyword within the paper. The
program also generates a frequency count with which single or multiple keywords
appear, which provides us with an indication of their relevance. We adjusted
our chosen keywords to guarantee that they included all approaches that could
be considered dual analysis without any accidental exclusions. We verified that
all publications of the previous step also appeared in the result of the automatic
keyword-based filtering. This fully automatic scanning resulted in 197 papers (see
figure 7.2). We encountered a limitation where the final list of keywords also yielded
matches with numerous publications that did not pertain to a dual analysis approach.
However, we continued to screen this resulting set of publications.

Additionally, from these papers, we extracted core concepts to gain an overview
of the used visualizations, techniques, and interactions by stemming all text from
all the previously extracted plain text using CoreNLP. figure 7.3 shows the top 25
concepts (i.e., word stems) we extracted from the 197 publications. It shows the
number of occurrences on the x-axis. We grouped the concepts into five thematically
related groups. This overview helped us create our categorizations and formal
framework by highlighting essential topics, such as subspace analysis.

7.3.4 Paper Coding

We checked the resulting 197 papers manually using the following criteria. Since
this is a rather large set to prune, we had to define clear exclusion criteria. First,
we checked the paper type. We excluded theory and evaluation papers and papers
covering unrelated or tangential areas, such as rendering techniques or physical flow
visualizations. Through this filtering, we focus on application or technique papers
that analyze high-dimensional data in a domain-specific context. Meaning that these
techniques can be applied in very distinct domains.
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Figure 7.3: The frequency of the top 25 concepts we extracted from the 197 automatically
selected papers (see section 7.3.3). Five colors contextualize each concept: • Interaction, •
Dimensionality Reduction (DR), • Visualization, • Statistics, • Analysis Space.

Second, we checked whether the paper addresses the core components of dual
analysis, i.e., a view visualizing summaries of features, a view that visualizes the
data records, and linkage of both plots, e.g., through Linking & Brushing. For
example, the IXVC pipeline [43] presents an interesting technique for explaining
the link between clusters present in lower-dimensional space and the original high-
dimensional space with a decision tree missing a dedicated view for the feature
space. Based on this, we obtained a candidate set of 34 relevant papers, which we
subsequently surveyed in detail.

We open-coded the relevant aspects of the components described in each paper,
orienting ourselves along the three key components and their interactions. For each
paper, we extracted a brief description of the feature space visualization, data space
visualization, feature space transformation, data space transformation, interactions
between feature and data space, user tasks, and application domains. Additionally,
we iteratively refined the criteria and definition for dual analysis approaches. The
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general model figure 7.1 and the three key components of dual analysis served as
initial criteria to encode which parts are affected by the analysts’ feedback.

However, we had to adapt and refine the definition several times. During our
study, we discarded several aspects we initially deemed interesting. For example, we
classified whether an expert or novice uses a system. Most systems are geared toward
domain experts. Thus, we removed this categorization from the review and our
model. As a result, we arrived at seven scenarios for dual analysis or, encoding “how
the dual analysis approaches can be interacted with” (see section 7.4.2). We include
the used visualizations, the underlying transformations, and the interaction with
the components. We describe transformations in the context of lossy and lossless
operations describing whether the information is lost during the transformation step.

7.3.5 Sample Validation

In this final step, we targeted a more fine-grained analysis of edge cases and removed
11 samples, in this case, publications that did not match our definition of dual
analysis in section 7.3. The general reason for their removal was the lack of a
bidirectional linkage, which is an integral part of our definition of dual analysis. The
technique by Zhang et al. [339] presents a feature space visualization but is not
linking it with the data space. The approach by Wei et al. [328] allows interaction
with a view representing cluster prototypes of particle trajectory. However, there
is no second interactive view described. Approaches enabling users to design a
transfer function for volume rendering frequently visualize the features space [322,
321]. However, there is no description of direct interaction with the feature or data
space visualization. We also exclude approaches that show dimensionality-reduced
views of the data alongside other representations [314, 94, 70, 327], since both
views constitute a data space visualization. Our final set consists of 23 relevant
publications, which we present in table 7.1. We transformed the table into a set of
feature vectors to present similarities (see figure 7.4). We cleaned the encoding and
grouped the identified approaches into high-level scenarios (see section 7.4.2).
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7.4 Existing Dual Analysis Approaches

This section covers all dual analysis approaches, which we selected following the
definition and criteria we described in section 7.3. All approaches are listed in
table 7.1, categorizing each approach according to the key components. Thus,
each approach is characterized by a feature space visualization and a feature space
transformation. Symmetrically, the data space has a visualization and associated data
space transformation. The feature and data space transformations are categorized
into lossy and lossless representations to reflect that some transformations, such as
multidimensional projections, are inherently lossy and cannot be inverted [235]. We
proposed seven descriptive scenarios in section 7.4.2 to categorize different tasks
for dual analysis structure along the three questions Why, What, and How proposed
by Brehmer and Munzner [52]. Our descriptive scenarios describe goals and tasks
addressed by dual analysis approaches similar to those described by Sacha et al.’s
literature review on visual interaction for dimensionality reduction [267]. We also
list the evaluation and application domain to give an overview of the addressed
areas.

7.4.1 Visualizations and Transformations

We categorize all dual analysis approaches by their individual representations of
feature space and data space (see table 7.1). These representations are formed by a
visualization type and a transformation method. However, these techniques do not
need to be identical for both spaces.
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Feature Space Visualizations: By far, the most common technique to visualize the
feature space is scatterplots SP , which are used in ten approaches for representing
the feature space [308, 311, 334, 312, 313, 162, 252, 95, 16, 227]. Most approaches
encode information by using the visual variables color and size [40] in their glyph
representations. However, this encoding is limited. The glyphs visualize only one or
two attributes, e.g., feature weight, relevance, and category. The position of a glyph
often describes the result of a DR method, particularly Multidimensional Scaling
(MDS) [194], while some approaches encode statistical properties of the features.
Scatterplots are most often used in a symmetric configuration, where the data space
is also visualized with a scatterplot.

Small multiples SM are also used more than one time [310, 191, 117]. The
features are visualized with a heatmap (i.e., feature thumbnail), where the color
of a pixel represents the feature values of data items. An alternative is line charts
representing the feature values. The small multiples are ordered by feature weight
and feature relevance.

Other visualizations and representation techniques are also used. Parallel co-
ordinates plots PCP [156] visualize data by plotting a polyline crossing parallel
coordinate axis [110, 119]. Zanabria et al. [336] use Star Coordinates SC [172] to
visualize features. Corput et al. [75] use a Data Table DT to show the feature and
data space. Line Graphs LG visualize the data by connecting individual points in a
plot [277]. A Graph GRA visualizes a network with a node link-diagram. Itoh et
al. [158] visualize dimensions and their relations using a graph. Histograms HG
[309, 340] are used to display statistical analysis results [309] and results of features
selection. Miller et al. [221] use a Pixel visualization PIX [177] to display feature
values in a matrix configuration.

Feature Space Transformations: We distinguish between lossy and lossless transfor-
mations. In contrast to lossless transformations, lossy transformations aggregate and
reduce that data such that original values are lost. The most common lossy methods
used are DR techniques. Seven approaches [334, 110, 313, 162, 252, 95] use the
Multidimensional Scaling MDS technique [194], or derivatives thereof, to create
a 2-dimensional projection of the feature space. The well-known combination of
visualizing the result of DR with scatterplots is used six times as described for feature
space visualizations. The main purpose of dimensionality reduction in dual analysis
is to create a two-dimensional representation of the data that can be displayed in
a single scatterplot. MDS offers projections where high-dimensional distances are
projected into lower-dimensional spaces while trying to preserve global distance
relations [47]. For the feature space, this is often a measure of correlation [95,
110]. A particular case is Weighted Multidimensional Scaling (WMDS), which allows
the weighting of individual features and the estimation of the weight of features
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according to their position in the reduced space [95]. RadViz RAD [236] offers an
alternative approach through a radial layout that presents features as points, i.e.,
dimensional anchors, which are distributed equally around the perimeter of a circle
[16]. The data items are placed according to the influence of each dimensional
anchor. For the feature space, the distance is defined as the correlation between
pairs of features.

The second most common lossy method is the usage of statistical measures,
which represent feature summaries as on the axes of a scatterplot. Values are the
mean and standard deviation µ, σ [308] of all values of a feature. The approaches
by Garrison et al. [119] and Müller et al. [227] deal with mixed data and, thus,
employ statistical measures for categorical data, like factor analysis for mixed data
FAMD [238] and the coefficient of unalikeability and a definition for standard
deviation thereof µ, σ [227]. Three approaches use more than five values, i.e.,
mean, median, standard deviation, variance, skewness, and kurtosis N in table 7.1
shows the number of measures) [311, 110, 312]. The approach by Sariano-Vargas et
al. [289] uses clustering Clu to transform the feature space by aggregating features
using the K-means or X-means algorithm, which are also lossy after the aggregation
of clusters into prototypes, i.e., centroids.

We also found lossless ways of structuring the feature space, such as domain-
specific orderings Ord to order features based on a summary in a row or column
[310, 191, 75, 336, 277, 340, 221]. No reduction or change to the data is marked
as identity Id [117], e.g., for a Data Table DT and Parallel Coordinate Plot PCP all
feature values of a data item are displayed. One approach allows for manual selection
Sel of the visualized features [313], which reflects the user’s selection interaction
directly.

Data Space Visualizations: Similar to the feature space visualization, the most used
technique to visualize the data space are Scatterplots SP . A total of 17 publications
use scatterplots for the data space and combine them with DR techniques [308, 311,
334, 110, 191, 75, 336, 277, 309, 162, 252, 95, 16, 340, 117, 289, 221]. Another
way of visualizing the data space is Parallel Coordinates Plots PCP , which are only
used in four approaches to represent the data space [110, 191, 158]. PCPs are used
as an auxiliary view to show the dataset. The approach by Itho et al. [158] uses
PCPs to select subspaces manually. Three approaches by Turkay at al. use a glyph
and geographical Map MAP [312, 309, 313] combination, which deal with social
and census data. In the case of Corput et al. [75], a Data Table DT is used.

Data Space Transformations: We categorize all data space transformations into
lossy and lossless transformations. All 15 approaches that use scatterplots to visualize
the data space also employ lossy dimensionallity reduction techniques. Principal
Component Analysis PCA [166] is used six approaches [308, 110, 191, 309, 162,
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117]. Six approaches [311, 334, 277, 162, 95, 221] use Multidimensional Scaling
MDS [194]. The t-Distributed Stochastic Neighborhood Embedding t-SNE [208]
is employed twice [252, 162], including the approach by Jentner et al., which
allows the user to choose between PCA , MDS , and t-SNE denoted by 3 . Another
approach for dimensionality reduction is RadViz RAD [236], which we already
described as a feature space transformation. It is used by Artur and Minghim [16] to
create a symmetric dual analysis approach for aggregating features and data items.
The iStar [336] embeds data values relative to star coordinate axes offering an
alternative to RadViz. Another lossy way of transforming the data space is the use of
statistical measures. The approach by Turkay et al. (4) [312] uses statistical methods
to transform the data space by using the difference to the mean and standard
deviation of a data point ∆µ,∆σ . This application of statistics is possible because
features are homogeneous, like frequency for the genes, words in a text document,
or intensity of pixels in an image. The approach by Miller et al. [221] applies a
DBSCAN clustering [105] on the projected data items using a lossy operation on top
of the already lossy MDS projection.

Similarly to the feature space transformations, the data space can be transformed
using lossless methods. The data table and parallel coordinate plots often show
all data items. We this represent by the identity Id . In this case, it is combined
with a geographical Map MAP or RadViz RAD . It is also possible to select Sel the
visualized data items, i.e., manually select or to order Ord them in rows or columns.

7.4.2 Analysis Scenarios

In this section, we describe the seven scenarios addressed with dual analysis that we
found during our literature review. We also assigned each publication in the area
of dual analysis to one or more of the identified scenarios (see table 7.1). These
scenarios are also linked to our formal framework (see figure 7.5), where each
scenario is addressed by a specific component of the dual analysis workflow. We
structured each description along the three main questions, i.e., Why, What, and
How by Brehmer and Munzner [52].

S1 Feature Selection: The purpose of this scenario is the selection of features
for identifying and comparing a set of features relevant to the analyst. In contrast
to other scenarios, it is concerned with the original feature values. The primary
mechanism for this scenario is to modify the set of active features. The main
interaction method is a straightforward selection of the desired features, e.g., by
a category of an attribute (i.e., categorical feature) or interactively using a Lasso
selector. The selected features are then available for further analysis. This scenario
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Figure 7.4: Similarity-based projection of the 23 papers in table 7.1. The similarity is
defined by one-hot encoding the columns of table 7.1, excluding name, year, and domain
using the Manhattan distance to create an MDS projection. We weight the scenarios three
times higher, yielding a scenario-based grouping. Glyphs are colored according to their
scenarios (see section 7.4.2) and grouped showing the relation between them.

never occurs alone since it would only correspond to changes in the data space
visualization. A common partner is S7 Data Selection [191, 158, 252, 16].

We find this scenario for many different visualization types, as for dual analysis in
general, scatterplots are most prevalent. One example is the approach by Jentner et
al. [162], where specific features can be selected from a feature space dimensionality
reduction-based scatterplot.

S2 Feature Aggregation and Weighting: The goal of this scenario is to create
different feature summaries. For this purpose, features are aggregated, meaning
that a prototype represents groups. Additionally, a feature or feature prototype
can be weighted to emphasize or deemphasize it. There are multiple ways dual
analysis approaches create feature aggregations. Most dual analysis approaches
make use of dimensionality reduction techniques for the visualization of feature
space. For example, Turkay et al. (2) [311] use multidimensional scaling. However,
some dual analysis systems allow users to create new features with the primary
goal of reducing the number of features of the dataset. This is realized by either
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combing existing features into a new feature or replacing the original dimensions
[110]. This is achieved via the summation of the weighted values or by removing
variables that are highly correlated to a representative dimension. In both cases,
dual analysis allows for observing the relations of the new features relative to the
original dimensions [311]. Dual analysis also supports the creation and validation
of classifiers [252]. Generally, dual analysis approaches allow for the creation and
subsequent validation of the created features in an iterative loop.

As a secondary way, features can be weighted to give a specific emphasis. The
approach by Dowling et al. [95] does this by adjusting the weights of the WMDS
for the feature projection. This scenario can require a definition of similarity or
dissimilarity for dimensions. The most common way is to define the similarity of
features based on a statistical measure (e.g., correlation) [162]. Alternatively, the
dimension is condensed to a single numeric statistical value where the difference is
meaningful, such as skewness. These measures are adapted to represent distance
relations, which can subsequently be used by dimensionality reduction methods to
create scatterplot visualizations through projection techniques. Commonly, Drag &
Drop interactions change the underlying feature weights [95]. With these interac-
tions, the user can add emphasis to a specific dimension and reduce the impact of
dimensions considered less significant. They allow users to observe the effect on the
data space, e.g., a change in the general data space patterns.

S3 Statistical Analysis: This scenario is focused on different types of statistical
analysis. Generally, it allows users to analyze groups of features and data items
statistically. For a feature-focused analysis, we found that correlation exploration
is the most common type of statistical analysis among all dual analysis approaches.
One such approach is the system by Turkay et al. (1) [308]. It has a focus on
describing features by their statistical properties, such as the mean and standard
deviation. Dual analysis also addresses data-focused statistical analysis, meaning
the analysis of data item groups. One such example is the approach by Müller et
al. [227], which analyzes variance and attribute variability using Factor Analysis
of Mixed Data (FAMD). In general, this type of analysis focuses on the variance of
a subpopulation of the data, with the goal of finding subsets in the data that have
either a low variance (i.e., clusters) or high variance (i.e., because of outliers) in
their attribute values. The statistical values are used in the feature and data space
visualizations, either as a determinant of position (e.g., in a scatterplot) [308], or as
a dimension in a PCP.

In terms of interaction, statistical analysis is facilitated by selecting features in
the feature space to modify the set of features relevant to the data items in the
data space. Similarly, the set of data items is determined through selection by the
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user determining which values are taken into account for the summary statistics of
features.

S4 Similarity Search: The goal of this scenario is to find similar features of data
items while allowing to change the definition of similarity through parameterization
or redefining of similarity functions. A prime example is the approach by Corput
et al. [75], which allows for the order-based analysis of features and data items.
Generally, dual analysis facilitates similarity search by ordering features and data
items or representing dissimilarity as the distance between features or data items
[277]. This idea applies to the feature and data space symmetrically.

For this scenario, the selection interaction is most common, either selecting an
individual feature or item or a group of both. Through this selection, the definition
of similarity is parametrized, yielding updated feature and data space visualizations.
More specifically, we find a rerendering of tables, parallel coordinate plots, and
scatterplots with updated distance relations.

S5 Subspace Cluster Analysis: One main interest of analysts is the detection of
subspace structures, e.g., clusters. A subspace cluster is a group of similar data
items concerning the subspace dimensions (i.e., features). There are two types of
subspaces, axis-parallel subspaces, defined as true subsets of the original data dimen-
sions. In contrast, arbitrarily oriented subspaces are created by freely transforming
the data into lower dimensional space, for example, using a dimensionality reduction
technique [192]. In this case, the new dimensions are harder to interpret since they
can result from a complex transformation (i.e., non-linear projection techniques).
Dual analysis supports the interactive user-driven analysis of axis-parallel subspaces
and arbitrarily oriented subspaces of linear and non-linear subspaces. For example,
the approach by Yuan et al. [334] is purely concerned with the manual analysis of
axis-parallel subspaces and subspace clusters. This approach uses MDS to project the
analyzed subspaces into 2-dimensional representations, while subspaces are created
by selection on the scatter plot or toggled specifically. The approach by Jentner et
al. [162] allows for exploring subspace clusters, specifically enabling analysts to
understand cluster characteristics, develop alternative clusterings and verify cluster
robustness. Turkay et al. (4) [312] visualize statistical properties and enable analysts
to select clusters (i.e., groups of data points) and observe their distribution in other
subspaces.

In all approaches, selecting subspaces in the feature space visualization plays a
key role. The selection of groups and clusters in the data space visualization is less
often addressed but needs to be equally covered [334].

S6 Data Aggregation and Weighting: Another straightforward scenario is data
aggregation and weighting. This scenario describes the data space variant of scenario
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S2 Feature Aggregation and Weighting. This scenario aims to create synthetic and
representative group summaries or prototypes of the found groups. Additionally, it
is concerned with weighting data items to emphasize or deemphasize them, e.g., for
outlier detection and removal.

Since this scenario is linked to scenario S2 , the interactions associated with
it are identical. Primarily, selection is used to interactively determine groups of
data items to aggregate, while the weighting of data items can also be established
through Drag & Drop.

S7 Data Selection: A basic but essential scenario that is addressed by dual analysis
is data selection [310, 191, 252]. This scenario aims to select data items for further
analysis. This scenario describes the data space counterpart of scenario S1 Feature
Selection. This scenario addresses the unconstrained selection of data, as opposed to
finding groups and clusters of data items, addressed by S6 Data Aggregation and
Weighting.

Approaches address this scenario through selection interaction, such as Lasso
selection, in the data space or by selecting a category of an attribute (i.e., a categori-
cal feature) in the feature space. The only data manipulation process we found in
the set of works is labeling data items with a classification algorithm [252]. This
technique focuses on the design of classification systems allowing for the observation
of feature and data space in dedicated views while allowing for the inspection of
different machine learning techniques and their impact on the classification result.

To provide an overview over we also created a similarity-based projection of the
23 papers in table 7.1 (see figure 7.4). We transformed the entries of table 7.1 into
binary vectors with one-hot encoding the columns and excluded name, year, and
domain. We used MDS with the Manhattan distance to create an embedding of the
approaches. The glyphs representing each approach are colored according to their
scenarios. We can observe the highest overlap between S1 Feature Selection and
S7 Data Selection, as well as S1 Feature Selection and S6 Data Aggregation and
Weighting, due to many approaches allowing the selection of features. Scenario S5
Subspace Cluster Analysis always appears with S3 Statistical Analysis, except for the
approach by Yuan et al. [334]. Also, S4 Similarity Search appears to be aspected by
the fact that all these approaches use different visualizations for feature and data
space compared to the other approaches, mostly using scatterplots.

7.4.3 Application and Evaluation Domains

Dual analysis has found application in many domains, most notably in Medicine
( ), where we found seven approaches [311, 312, 158, 252, 16, 119, 227], ranging
from the analysis of cell abnormalities (e.g., benign or malignant tumor cells) to
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the results of magnetic resonance imaging (MRI) scans. Next is Biology ( ) [110,
277, 309, 252, 95, 340] and Genomics ( ) [308, 312], where we found seven
approaches combined. Crime Analysis ( ) with five approaches [191, 162, 95, 117,
289], focuses largely on the analysis of police reports by transforming the data into
a high-dimensional feature space. Dual analysis is also applied in the Social Domain,
( ) [310, 75, 313] analyzing different aspects of society, such as the comparison of
households in different geographic regions. Three publications address the analysis
of Nutrition ( )[334, 191, 117], by analyzing the nutritional contents of food items.
Two papers deal with problems in Finance ( ) [309, 289]. Physics and Chemistry
( ) [334, 289], Engineering ( ) [158], Sports [336] ( ), and Musicology ( )
[221] are each addressed once.

7.5 Theory and Formalization

Our formalization encompasses all previous work (see table 7.1) and offers opportu-
nities for future research directions by revealing new and interesting combinations
of methods and analysis scenarios. It serves as a guide for the implementation of
dual analysis approaches by formally defining the components and their interac-
tions. Most existing approaches do not include any data manipulations but instead,
transform the feature and data space views to reveal patterns through the changed
perspective.

Our data model is based on the interpretation of the dataset as one large matrix
D ∈ Rr×f where r ∈ N is the number of data records (i.e., rows), and f ∈ N the
number of attributes or features (i.e., columns). This provides a clear distinction
between feature and data space and is representative of the two views present
in all dual analysis approaches by taking either a column-focused or row-focused
perspective. All processing steps that produce additional information (e.g., user
interactions or results of a clustering algorithm) can be stored in a data matrix D
as a new column or row. New features, e.g., aggregated and weighted features,
are stored as a new column. Symmetrically, a new row is added if synthetic data
is created, e.g., a cluster prototype of K-means. Thus, newly created data will also
be present in all processing steps of the pipeline. To differentiate functions and
operands of the feature and data space, we use the subscript F for the feature space
and I for the data space, as this naming is also used by Corput et al. [75]. When
referring to a count unrelated to the original dataset matrix, we use n,m ∈ N. In
the following, M ∈ Rm×n denotes a matrix with n row and m columns, describing
a subselection and aggregation of rows and columns of the dataset matrix D. The
matrix M is D if no selection step exists. Additionally, we use J1..nK ⊂ N to denote
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sets of index numbers relative to n, where n is defined in the local context as the
number of rows of columns of a matrix.

7.5.1 Feature and Data Types

Dual analysis has been applied to quantitative and qualitative variables, i.e., mixed
data [227, 119]. Thus, our formalization has to describe data analysis for all
common features and data types, e.g., numeric and categorical data [228]. To
represent each type, the values of column f of the matrix D denoted by D∗,f ∈ Rr

are restricted by one of the following definitions to reflect specific properties of
feature and data types allowing for the expression of all feature and data types as
numeric values.

Categorical Values: This data type can also be represented in two ways. Firstly,
nominal, which describes a label, and ordinal, describing a label with an order.
Statistical measures designed for nominal and ordinal data were used in dual
analysis [119, 227].

Binary Value: These features are defined by the value set {0, 1}, reflecting two
categories or a binary label. This type is either present in the original dataset or is
created through one-hot encoding. This allows for limited analysis with algorithms
for numeric data [57, 134].

Discrete Values: This data type describes a simple count as values in N0. Ordinal
data dimensions can be converted into this data type by considering their ranked
order [57]. This data type is common in social science [313, 309].

Numeric Values: This feature type can be divided into two subcategories. Firstly,
bipolar, which is defined as [−x, x] for x ∈ R+. Secondly, continuous is simply
defined as R (interval and ratio).

7.5.2 Feature Space

The feature space is a representation of feature or dimensions, i.e., columns of a data
table. Features or attributes require different transformations and representations,
e.g., showing the distribution of a feature instead of a single value. Even though the
formalization of the feature space is symmetric to the data space, the purpose and
effect are different by focusing on the columns of the dataset matrix D.

Feature Selection: Many dual analysis approaches allow users to select a subset
of features for subsequent analysis. We describe this step in equation (7.1).

selF : (M,F ) → Rr×|F | (7.1)
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where M is the dataset matrix D and F is defined as the set of selected features
concerning the rows of M . The parameter F is supplied through interactions of
the scenarios S1 Feature Selection, S3 Statistical Analysis, S5 Subspace Cluster
Analysis.

Feature Aggregation: This step aggregates features items to representatives.
Additionally, it allows for the application of an ordering through the definition of the
grouping. The aggregation of features supports dimensionality reduction based on
the existing features and the calculation of summary statistics. M is the result of the
selection step selF . To aggregate features, the groups of features are expressed in the
tuples of ψF with each e ∈ ψF a set of column indices, i.e., features. As for the data
space, all existing approaches constrain this step, such that ψF is a partition of the of
column indices of M . To aggregate groups, we denote the aggregation function with
θF , which reduces a matrix of selected columns defined by e ∈ ψF by aggregating
these columns and reducing the number of rows to d values using dimensionality
reduction. Now, ψF defines which features (i.e, columns) to aggregate, and θF

defines the aggregation and reduction which we formalize in equation (7.2).

aggF : (M,ψF , θF ) → Rd×|ψF |

where M ∈ Rm×n, ψF a partition of J1..nK

with e ∈ ψF a set of column indices of M ,

and θF : Rm×|e| → Rd with e ∈ ψF and d ∈ N

(7.2)

These sets in ψF can be created with a clustering algorithm. For example, k-
Means can be used to perform a clustering based on the columns of M . The resulting
clusters describe a partitioning of the column indices of M and can be used as ψF .
Subsequently, the centroids of each cluster could be calculated by defining θF as a
function that averages all rows of a matrix. To reduce the dimensionality to two
dimensions (i.e., d = 2), MDS is could be used. However, through the application of
aggF , the original data values are lost. Thus, approaches with an aggregation step
are lossy. If a similarity or distance measure is required, e.g., for projection, this is
modeled by θF .

Techniques combine features by summation and weighting [95, 110]. The
parameters ψF and θF are supplied through interactions of the scenarios S2 Feature
Aggregation and Weighting and S5 Similarity Search.

Feature Visualization: The feature space is visualized using any method that
matches the task, as shown in equation (7.3). For example, to detect large groups of
features in S5 Subspace Analysis Yuan et al. [334] use scatterplots, while for a more
fine-grained analysis of relatedness between a few features Garrison et al. [119]
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use parallel coordinate plots. To describe the visualization of the feature space, we
define visF in equation (7.3).

visF : M → FS (7.3)

The most frequently used method for visualizing feature space is scatterplots. There-
fore, we describe the scatterplot as a combination of a glyph drawing function
glyphF and a function posF determining the glyph’s position in the plot. For a
scatterplot, we have equation (7.4).

glyphF : Rm → GF (7.4)

One example of GF is a pixel-based visualization [289]. The position of the glyph is
determined in equation (7.5).

posF : Rm → (x, y) ∈ R2 (7.5)

posF usually works by selecting two value form the input vector as x,y-coordinates.
Subsequently, we can define the appearance and position for glyphs ρi in the feature
space scatterplot in equation (7.6), which gives a complete definition of the feature
space scatterplot.

visF := ∀i ∈ J1..nK.

ρi = (glyphF (M∗,i), posF (M∗,i)) with M ∈ Rm×n
(7.6)

Most approaches that use a scatterplot to visualize the feature space relying on a
dimensionality reduction method utilize MDS or variations thereof (see table 7.1).
However, not just dimensionality reduction techniques can be used to determine a
position of a feature in the feature space scatterplot. The position of a feature is
also determined by statistical properties, such as mean, standard deviation, variance,
and skewness, by using them to create scatterplot axes. We do not assign specific
scenarios since, for all dual analysis approaches, the visualization type of the feature
space does not change during the analysis.

7.5.3 Data Space

The data space represents data items, i.e., rows of a data table D. It focuses on the
analysis of individual data items or aggregations thereof. We define the following
functions to formalize the processing and relation of steps to create a data space
visualization.
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Data Selection: Many dual analysis approaches reduce the dataset to a subset
of data items. We formalize this mechanic with equation (7.7), yielding a reduced
data set or, ultimately, a smaller matrix by reducing the number of rows.

selI : (M, I) → R|I|×f (7.7)

where M is the dataset matrix D and I is defined as the set of selected data items
concerning the rows of M . The mechanism for determining the subset of row
indices I can be implemented in different ways. Common techniques are linking
& brushing [324] or selecting a category of an attribute that defines a subset
of the dataset. However, other methods are possible, such as the selection of
data items based on class labels, cluster affiliation, filtering, sampling [132, 4] or
grouping instances [198, 2]. The parameter I is supplied through interactions of
the scenarios S3 Statistical Analysis, S5 Subspace Cluster Analysis, and S7 Data
Selection.

Data Aggregation and Weighting: This step aggregates data items to repre-
sentatives and allows for the application of an ordering through the definition of
the grouping ψI (see equation (7.8)). ψI is defined as a tuple of sets with e ∈ ψI

describing row indices of the matrix M that are aggregated. θI aggregates a selection
of rows defined by e ∈ ψI and reduces the dimensionality by reducing the number of
columns to d columns. We formalize these functions and operands in equation (7.8).

aggI : (M,ψI , θI) → R|ψI |×d

where M ∈ Rm×n, ψI a partition of J1..mK

with e ∈ ψI a set of row indices of M ,

and θI : R|e|×n → Rd with e ∈ ψI and d ∈ N

(7.8)

For example, to calculate the centroids of clusters, we can apply K-means on the
full dataset. K-means is an example algorithm generating ψI yielding a partition of
the row indices of M with e ∈ ψI corresponding to the data instances assigned to
each cluster. ψI can also be determined by selecting data items that share common
properties, such as one or more categories in their attributes (i.e., categorical
features). The function θI can be a method to calculate the centroid of a set.
By applying aggI , information is lost, meaning the original data values are not
recoverable. In cases where a similarity or distance measure is used, e.g., for MDS,
we express it as a property or parameter of θI . Thus, this prototype can represent
the dataset or a synthetic data item. Most commonly, ψI is a partition of the row
indices of M . However, by defining the groups without this constraint, this function
can also show the underlying data “as is” after the selection step in the context of
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their prototype. The parameters ψI and θI are supplied through interactions of the
scenarios S4 Similarity Search and S6 Data Aggregation.

Data Visualization: Scatterplots are the prevailing data visualization technique
in dual analysis. This step involves creating a visual display of data items or
aggregations. This is commonly accomplished by utilizing a scatterplot to display
a simple glyph, which is then positioned on the screen. Thus, we give it a specific
focus in our formalization. However, we also generally address visualizations like
parallel coordinate plots and small multiples.

Generally, the visualization DS, is generated from a dataset described as a matrix
M . Thus, we define this overarching function in equation (7.9).

visI : M → DS (7.9)

When we deal with scatterplots, we can further specify the generation of the data
space visualization by defining how a glyph of the scatterplot will be drawn. Data
glyphs can show more information than a simple glyph. [116]. We define a glyph of
a scatterplot as a glyph since we do not want to apply unnecessary restrictions on
the design of the data point representation (see equation (7.10)).

glyphI : Rn → GI (7.10)

Second, we also define a function to determine the position of the glyph in the
scatterplot in equation (7.11).

posI : Rn → (x, y) ∈ R2 (7.11)

Thus, with these two functions, we can cover the scatterplot-based visualization of
the data space in equation (7.12), such that the future system can make use of glyphs
designed for the given task. The following equation describes the application of these
functions to the matrix M by generating a glyph ρi for each row and determining
the position on the plot.

visI := ∀i ∈ J1..nK.

ρi = (glyphI(Mi,∗, posI(Mi,∗)) with M ∈ Rm×n
(7.12)

To determine a position (see equation (7.11)), many approaches employ projec-
tion techniques, i.e., dimensionality reduction to two dimensions. We found the
following set of commonly used methods in our literature research. They all fit
the requirements for equation (7.11). We found that PCA [166], MDS [194], t-
Distributed Stochastic Neighbor Embedding (t-SNE) [208], or Interactive Document
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Map (IDMAP) [222] are commonly used as a function to determine the position.
We refrain from assigning a particular scenario because all dual analysis methods
employ a single visualization type for the data space, which remains unchanged
throughout the analysis.

7.5.4 Feature and Data Space Interaction

During our review, we identified Selection, Drag & Drop, and Focus+Context as
interaction paradigms of existing dual analysis approaches. We will describe how
they facilitate dual analysis by explaining their impact on the feature and data space.

Selection: The most common technique is the selection of data items or features. In
general, selection is a common interaction technique [228, 112]. Even techniques
that allow for other ways of interaction support this method. Other approaches
allow for selecting groups in the feature or data space. Generally, the selection is
an interaction component of the feature or data space visualization. Dual analysis
approaches realize it through a rectangle or lasso selection on the visualization
in scatterplots or axis selection and brushing on parallel coordinate plots [227].
The interaction of feature and data space constitutes a form of Linking & Brushing
[308, 334] since selection is used to update feature and data space according to the
selection on one view. In our framework, selection parameterizes the selF and selI
functions through their parameters F and I. We refer to selection on one space by
the scenarios S1 Feature Selection and S7 Data Selection. If both parameters are
used simultaneously, we enter the realm of S3 Statistical Analysis and S5 Subspace
Cluster Analysis.

Since selection is a very general technique for interaction with dual analysis
systems, it also applies to S2 Feature Aggregation and Weighting, as well as, S6 Data
Aggregation and Weighting scenarios. For both scenarios, it determines which features
or data items to aggregate. This is expressed by the tuples ψF and ψI , which hold
the selected groups for each space and aggregate them, as formalized by aggF and
aggI . Thus, we can see that selection is the most applied interaction method in dual
analysis.

Drag & Drop: The Drag & Drop interaction is an instance of a direct semantic
manipulation [102]. The user modifies the visual-spatial mapping by rearranging
elements in the visualization. Drag & Drop is coupled with the weighting of features
and data items [277, 95]. Approaches utilizing this interaction modify the underlying
definition of similarity. In our framework, we express the similarity of features and
data items in the θF and θI of aggF and aggI by parameterizing the dimensionality
reduction. Similarly, it can parameterize the ordering implicit in the tuples ψF and
ψI . We refer to the interaction on a single space with the scenarios S2 Feature
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Aggregation and Weighting and S6 Data Aggregation and Weighting. If both spaces
are used to parameterize aggF and aggI simultaneously, users do a S4 Similarity
Search [75] reflecting the different goals.

Focus+Context: Another concept in the dual analysis is Focus+Context [62].
The analyst can interact with visualization via panning and zooming, allowing for
navigation through the visualization. In dual analysis, feature and data space are
visualized, and Focus+Context is applicable to both visualizations. The main point
is to show a selected region in higher detail (Focus), while preserving the global
point of view in a reduced form (Context). Focus+Context predominantly involves a
single view, and it does not alter the state of a dual analysis system beyond this scope.
Turkay et al. [308] state a modified definition of Focus+Context, which describes
a subset of dual analysis fully covered by our selection interactions definition (see
above). We state the difference here for the sake of completeness.

7.6 Evaluation

To evaluate our approach, we apply an evaluation strategy inspired by Sacha et
al. [267]. We apply our model to existing approaches to show that it offers a
consistent method to understand and categorize these systems and analyze their
usefulness for the given scenarios (i.e., descriptive use). The presented approaches
were either landmark papers or resulted from our literature search and thus also
used in the creation process of the model. However, we found the selected four
approaches [95, 334, 110, 252] to be representative of the set of papers described
in table 7.1 covering all components of the pipeline. Additionally, we show and
discuss gaps that our model revealed that are not addressed in the current research
literature (i.e., generative use).

7.6.1 Descriptive Use: Examples

In this section, we describe four representative approaches.

Dowling et al.: The system by Dowling et al. [95] addresses the need for feature and
data exploration based on similarity to understand the impact of specific domains
on the similarity of data items, as well as the impact of data items on the similarity
of features. Their publication discusses the technique in terms of feature importance.
Thus, we assigned S2 Feature Aggregation and Weighting as a suitable scenario.
Likewise, the paper describes the analysis of data items in terms of finding similar
data items after selecting features as less or more important. Here, we also categorize
the approach as S4 Similarity Search. This approach does not support analyzing
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feature or data subsets, except the dataset is pre-processed. Our model expresses
this with the identity Id for selF and selI , since there is no feature or data selection.

A feature and data space Scatterplot SP are created using WMDS, which allows
weighting dimensions of the projected data but also allows the estimation of the
weight once the user alters the scatterplot through drag and drop. The Drag &
Drop interactions of the users modify the position of the data and features on their
respective scatterplots to modify the perceived similarity to match the user’s mental
model. This mapping of difference in the perceived distances are realized using
WMDS. The reduction of the vectors describing features and data items to two
values is established by the aggregation functions θI and θF , respectively, which
can accommodate dimensionality reduction methods, such as WMDS. The key
interaction technique is dragging and dropping of points of feature and data items
in the respective scatterplots which parameterizes the functions θI and θF .

Yuan et al.: [334] present an approach for the interactive exploration of subspaces
to detect subspace clusters. More generally, the goal of this approach is the detection
of interesting structures in subsets of the data. Thus, we assigned the scenario S5
Subspace Cluster Analysis. This scenario deals with feature and data item subset
selection in a coordinated way. Our framework can express this with selF and selI ,
which select feature and data item subsets. Feature and data space visualizations are
visualized using MDS projections with Scatterplots SP . In the case of the feature
space, this can be multiple views, which are determined interactively by the user
through selection on the data space visualization. Distances for features are defined
using the Pearson correlation, and distances between data items are calculated
using the Euclidean distance. In our model, we express both dimensionality re-
duction methods through θI and θF defining each dimensionality reduction. These
steps remain static during the analysis process., i.e., they do not have user-steered
parameters. The selection interaction of this approach is realized with a Lasso
Selector on the feature and data space projection. A selection on both views directly
parametrizes the selection expressed by F for selF and I for selI . This approach
allows for creating multiple features and data space visualizations, enabling the
comparison of different spaces.

Fernstad et al. The approach by Fernstad et al. [110] addresses the need for statisti-
cal analysis of features and subgroups of data items. Thus, we assign the scenarios
S2 Statistical Analysis and S7 Data Aggregation. The approach is focused on di-
mensionality reduction using “quality measures,” which are five statistical measures
such as variance and skewness denoted by 5 . The feature space visualization is a
parallel coordinate plot showing these five values plus two measures derived from
Pearson correlation. All measures remain static throughout the analysis. We express
them in our model through θF , which, in this case, comprises all five statistical
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measures. The approach by Fernstad et al. [110] is one approach that offers two
data space visualization to address both scenarios. All views are linked views. The
data space is visualized with a scatterplot SP . The approach covers the selection of
specific data items, which parametrizes the selection function selI using I. For the
scatterplot visualization, the data items’ dimensionality is further reduced using Prin-
cipal Component Analysis PCA , denoted as the aggregation function θI . Alongside
the scatterplot, another Parallel Coordinate Plot PCP shows the selected data items
without further reduction. The selections on each visualization provide parameters
for our selection function, i.e., selF and selI .

Rauber et al.: The approach by Rauber et al. [252] focuses on the design of
classification systems using projections. In this case, the components related to dual
analysis are embedded in a larger system, where not all parts feedback into the dual
analysis components. The approach supports the interactive selection of features,
thus enabling S1 Feature Selection. Additionally, it allows the selection of data items
to be used in the classification process. Thus, we also assign scenario S7 Data
Selection. Feature and data space are both visualized using scatterplots SP . However,
they differ in the transformation to determine the x and y-coordinates for each view.
The feature space uses Multidimensional Scaling MDS using the Pearson correlation
as distance measure. We map this property to our framework with the function θF of
aggrF . The data space uses t-distributed Stochastic Neighborhood Embedding t-SNE .
We express this within our framework by using the two functions θI of aggrI . Both
functions are not further parameterized since no user interaction influences them.
However, the feature and data item selection is part of our approach. The selection
of features is expressed using parameter F of selF and I of selI for data items.
The selection interaction on both views of the user directly determines these two
parameters.

7.6.2 Generative Use: Opportunities

In this section, we highlight and describe future research opportunities which extend
components of our proposed framework. We deliberately designed our formalization
to encompass these improvements to dual analysis.

Glyph Design and Adaptation: In our review, we found that most approaches use
straightforward scatterplots, where a dot visually encodes two data item properties
through color and size. Thus, the next logical step, supported by our formalization,
is the integration of glyphs into the scatterplots of the feature and data space
visualizations. This allows for the representation of more properties of the data [116].
These glyphs can also be adaptive to the data types of the analyzed dataset. This
improvement is derived from our definition of feature and data space visualizations,
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i.e, FS and DS, (see figure 7.5), which we already extend by defining specific
functions for glyph-based visualizations glyphI and glyphF (see equation (7.10) and
equation (7.4)).

Scatterplot Layout Enrichment: Our formalization revealed that the visualization
of feature and data space remains straightforward, i.e., primarily based on MDS
or PCA projections. The remaining task is to expand visualizations using methods
encoding manifold properties in the plot [235]. Since dual analysis approaches
make extensive use of dimensionality reduction and scatterplot visualizations, even
manipulating parameters of the dimensionality reduction [277, 95], we see a clear
need for additional visual feedback. An example of this idea is uPCA [123] and
uMDS [131], where uncertainty is visualized. We can adapt how the feature and data
space are visualized to integrate such a technique. We propose this in the context of
the visualization steps visI and visF (see equation (7.9) and equation (7.3)).

Subspace Detection Algorithms: Four approaches we found during our review
mainly address the analysis of subspaces and subspace clusters [334, 309, 312,
309]. However, all techniques provide a purely interactive and user-driven way of
subspace cluster analysis. Our formalization allows for an integration of machine
learning algorithms for the detection of relevant subspace [192]. In particular,
SURFING [30], SUBCLU [170], and RIS [171]. They detect potentially interesting
subspaces based on data distribution density. These algorithms can be integrated
as parameterizations for the steps of our pipeline to support the realization of
scenario S5 Subspace Cluster Analysis (see figure 7.5). For example, SURFING can
be integrated to facilitate the detection of interesting subspaces by suggesting a
selection of features represented by parameter F of selF in our framework. Similarly,
subspace clusters can be detected beforehand determining parameters F of selF and
I of selI , while dual analysis allows for the exploration of the involved features and
data items.

Analytical Provenance: The representation of the dataset as a matrix (i.e., SF , SI ,
AF , and AI in figure 7.5) at each step of the dual analysis pipeline allows for a
nuanced tracking of the analysis state. Steinparz et al. [295] and Hinterreiter et
al. [147] systematized the comparison of matrices for analytical provenance allowing
for the comparison and visualizations of different analysis paths. Thus, we support
the integration of tracking analysis states by formalizing the matrix representations
at every step of our framework.

User Guidance: We also found that no approach involves user guidance. Similarly
to analytical provenance, our formalization allows for integrating guidance methods
since each step’s data selection and layout is well-defined. The next logical step is
to contrast each stage of the pipeline (see figure 7.5) with guidance scenarios to

7.6 Evaluation 167



find interesting ways to help analysts in their analysis tasks through guidance[242].
Practical guidance frameworks such as Lotse by Sperrle et al. [293] require clearly
defined data sources and conditions for their guidance strategies, which our frame-
work enables. For example, suggesting the feature selection F of selF , based on
what the user has already observed.

7.7 Discussion and Future Work

During our work, we found that the space of dual analysis approaches is vast. We
identified two papers providing model sketches for their dual analysis approaches.
When comparing them to our framework, we find that both allow for only a subset
of scenarios and interactions, i.e., the dual analysis approach by Corput et al. [75]
focuses on ordering data table entries according to relevance or similarity metrics of
features and data items. This only covers the scenarios S4 Similarity Search and
S6 Data Aggregation and Weighting. The approach by Turkay at al. [308] focuses
on S3 Statistical Analysis through linking and brushing.

In both publications, the theory behind each approach states the specifics of the
approach, i.e., which metrics are used; a generalization allowing for creating a dual
analysis toolbox is missing. Although both approaches describe a model of dual
analysis, both publications describe dual analysis differently and only converge if
generalized to an abstract definition of dual analysis (see figure 7.1). Hence, both
publications do not propose a generalized framework. In our work, we provide a
formalized framework that offers well-defined interfaces for each described com-
ponent used in the dual analysis, which covers 23 approaches and thus unifying
frameworks of dual analysis. Our work comes with limitations resulting from the
approach we adopted. To keep the study focused on dual analysis, we had to define
dual analysis in section 7.5, limiting the literature analysis to a representative set
of examples, explicitly excluding other approaches, such as VA dashboards. We
aimed to identify papers that contribute a dual analysis approach for a given analysis
problem, offering interactions beyond filtering. We primarily aimed at results with
practical relevance, transparency, and reproducibility.

We thoroughly described our method and decision-making process. Thus, we
are confident that we analyzed a representative set of publications and that our
framework and formalization contribute to future research. It would be interesting
to evaluate the stability of our results in the future by performing an expanded
“cross-validation” study that would add papers published in the future. We initially
started our analysis with landmark publications from all domains and had to limit
the number of papers to keep the work manageable. Our literature analysis identified
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several contributions that offer valuable interactions to explore datasets and validate
hypotheses with dual analysis. We had long discussions about which interactions
to include as scenarios, but we finally decided on the seven descriptive scenarios,
which cover all 23 approaches listed in table 7.1. Other aspects may be included in
the interactive dual analysis, which can be integrated into many VA frameworks in
general. An interesting opportunity, for example, is visualization quality measures,
which was a primary concern when we began this study [84]. The framework by
Bertini et al. [41], later extended by Behrisch et al. [33], describes an enriched VA
pipeline with quality-measure-driven automation. Quality can be measured at each
analysis step (i.e., upon a view update) while the analyst steers the process. Quality
measures can aid user interactions with automatic configurations or recommenda-
tions at each step. However, quality measures do not interact with the underlying
data, selection, or aggregation but rather the visualizations themselves and can be
seen as an add-on to our proposed formal framework. We also described machine
learning algorithms for dimensionality reduction and relevant subspace detection.
Yet, incorporating other machine learning techniques, e.g., for classification, might
be a worthwhile pursuit as well [252, 89]. Still, as we established the framework,
we focused exclusively on analysis scenarios with dual analysis and its three key
components with a bidirectional linking of feature and data space.

In future work, we want to implement a framework based on the presented
model derived from the existing literature, while focusing on incorporating visual
analysis methods for categorical data, which is currently only addressed by two
approaches based on mixed data. As a general finding, we can state that all dual
analysis approaches, indeed, fit into a generalized model, which can be used to
categorize existing analysis systems and show other possibilities for combining
different components. We also found that even a specific analysis approach, in this
case, dual analysis, is challenging to define. First, to find relevant literature amid
all visual analytics approaches. Second, to arrange, condense, and organize the
different approaches into a coherent and comprehensive overview.

7.8 Conclusion

Enabling users to explore and analyze the data and feature space of a dataset
while maintaining the ability for the user to apply their knowledge about the data,
task, and domain provide a great benefit. To achieve this, a comprehensive link
between the two spaces needs to be established, which often depends on domain
specificities. In this study, we systematically analyzed the visual analytics literature to
identify and categorize approaches using dual analysis, i.e., the simultaneous analysis
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of feature and data space. We presented our findings through seven descriptive
scenarios, which we contextualize with a formalized dual analysis framework. Our
analysis revealed several ways that dual analysis can be enriched by incorporating
other techniques, such as layout-enrichment of the 2-dimensional projections and
suggestions for interesting subspaces. We presented how current VA systems and
points support existing strategies for future research directions. We hope our
contributions help other researchers investigate, design, and evaluate dual analysis
approaches. In future work, we plan to develop a system capable of inferring
and adapting its settings in a larger design space than current systems for dual
analysis. We aim to leverage existing techniques from related domains, such as
machine learning and human-computer interaction, to improve dual analysis for
more efficient and effective data analysis.
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This thesis explored the fields of Visual An-
alytics (VA) and Information Visualization
(InfoVis), focusing on the analysis of cate-
gorical data in multiple measure-driven ap-
proaches and frameworks. In this final chapter, we look back at our contributions
to the field and their broader implications. By reflecting on our work, we aim to
summarize the advances we’ve made, while positioning and contextualizing them
within the larger framework of VA. We also highlight potential avenues for future
research and offer perspectives on methods for analyzing categorical data using
measure-driven approaches.

8.1 Summary

This dissertation explored the power of VA to facilitate analytical reasoning through
interactive visual interfaces, specifically addressing the complexities associated with
analyzing categorical data. VA combines the innate strengths of humans, such as
domain expertise and cognitive pattern recognition, with the computational power
of computers. This integration is especially critical in the context of big data analytics
and addressing complex societal challenges. Societal challenges such as public health
crises, environmental sustainability, and urban planning often involve complex
systems with interdependent variables and vast amounts of data. Visual analytics
plays a critical role in unraveling this complexity by enabling the visualization of
social phenomena in an accessible and compelling way. In public health, for example,
VA can be used to track the spread of disease in real time, identify risk factors, and
optimize resource allocation [163]. The ability to integrate and visualize data from
diverse sources-social media, satellite imagery, census data-allows policymakers,
researchers, and the public to engage directly with the data, fostering a collaborative
approach to problem solving. In addition, by highlighting trends, disparities, and
outcomes, VA supports the development of targeted interventions and policies that
address the root causes of social problems and promote equity and sustainability.

In this context, categorical data, including nominal attributes with no inherent
order or measurable distance, presented significant challenges to traditional data
mining and visualization techniques tailored for numerical data. These challenges,
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which arise from the arbitrary order of attributes and categories, hinder the applica-
tion of traditional analysis methods. Yet categorical data analysis is essential in fields
as diverse as business intelligence, financial risk assessment, software engineering,
and linguistics. Aiming to bridge the gap between qualitative and quantitative
analysis, this research introduced novel approaches for categorical data. These
approaches improved the quality of visualizations for categorical data, provided
methods for applying numerical analysis techniques, and facilitated the study of
their interaction with numerical data dimensions.

The contributions of this dissertation are as follows: The first part focused on
quality improvement and pattern quantification in categorical data visualizations.
In chapter 2 we introduced quality measures for Parallel Sets visualizations. We
were able to define measures for properties such as ribbon overlap and crossings,
which create visual clutter and reduce readability. We also found that published
visualizations of Parallel Sets could be improved by optimizing their properties along
our measures. In chapter 3, we were able to apply projection methods to numerical
data by abstracting from categorical data. In addition, we contributed two measures
to support orientation, navigation, and exploration by quantifying the property of
fracturedness.

The second part explored measure-driven methods for articulating the properties
of real-world data and deriving numerical measures for categorical entities, with
a focus on linguistics and software engineering. More specifically, in chapter 4 we
presented an approach to studying language change. Where we have been able to
help linguists to find periods of relevant change with overviews that show drift in
language structure as expressed by categorical attributes. In chapter 5, we provided
an approach for investigating the risk that vulnerable open source software poses to
software products from large development organizations such as SAP. By aggregating
information from a set of categorical properties, we were able to find several serious
vulnerabilities affecting the Eclipse Foundation’s open source projects.

The third part broadened the scope to include the integration of categorical
data into supervised and unsupervised analysis frameworks, suggesting effective
strategies for model development and exploratory analysis. This part also explored
the interactions between categorical and numerical data to provide a comprehensive
view of integrating categorical data into VA workflows. In chapter 6, we introduced
a supervised process for developing models that use categorical data to derive a
descriptive abstraction of data item properties. In addition, our classification model
based on Self-Organizing Maps (SOMs) provides insight into the learning mechanism,
highlighting measures that are similar across the dataset and pinpointing areas
where classification uncertainty is particularly high. In chapter 7, we conducted a
systematic review of the visual analytics literature to identify and classify methods
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that employ dual analysis, a method for simultaneously examining feature and
data space. We found that most approaches only address the analysis of numerical
data. We have included categorical data in our framework, thereby extending
its applicability to interactive data exploration tasks and addressing unsupervised
techniques such as clustering algorithms. Our findings were presented through
seven descriptive scenarios, contextualized within a formally established framework
for dual analysis.

8.2 Future Research

Throughout this thesis, the concluding sections of each chapter have already pre-
sented challenges and suggested directions for future research, focusing primarily
on the techniques and methods explored in each respective chapter. Throughout
this body of work, specific recurring themes and broad challenges emerge that are
relevant to the entire field of study. In the following paragraphs, we will highlight
the overarching research challenges and the potential of measure-driven approaches
in the visual analysis of categorical data.

Local and Global Measures for Quality and Patterns in Categorical Data Vi-
sualizations: There is an ongoing need to measure the quality and patterns in
categorical data visualizations. In general, quantifying the quality of visualizations
establishes objective evaluation criteria that are essential for systematically assessing
the effectiveness of different visualization techniques [41]. This enables a standard-
ized approach to comparing visualizations, ensuring that they accurately convey the
intended data insights. With Parsetgnostics, we addressed one of many categorical
data visualizations. Other categorical data visualizations, such as Sankey diagrams,
could be improved using measures derived from Parsetgnostics. Mosaic plots [148,
149], however, follow a different paradigm and require new, tailored measures for
quality qualification. Additionally, Parsetgnotics provides a set of global measures
that consider the entire visualization to quantify quality in visualizations. However,
measures that provide specific feedback on visual quality and patterns locally, i.e.,
within a particular visualization area, could guide designers to make targeted im-
provements and alleviate problems by pinpointing areas where the visualization
may lack clarity or fail to effectively represent data, leading to more impactful
visualizations.

Improved Methods for Automatic Optimization of Categorical Data Visualiza-
tions: By automating the visualization design process, non-expert users gain access
to high-quality visualizations without requiring deep knowledge of visualization
techniques. However, visualization optimization tools require robust algorithms
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capable of generating or suggesting optimal visualizations. These algorithms guide
these tools in selecting the most appropriate visualization types and configurations,
tailored to the underlying data and analysis objectives [33]. However, using mea-
sures and brute force optimization is not feasible because there can be more than an
exponential number of visualization configurations, i.e., as in the case of Parallel
Sets factorial many. Thus, for purely automatic optimization, it is crucial to develop
algorithms that optimize a specific type of visualization. Parallel Sets are layered
graphs for which efficient algorithms exist to reduce edge crossings [29]. This
allows Parallel Sets to be optimized without having to try every possible combina-
tion. While Parallel Sets are just one example, the same principle applies to other
categorical data visualizations. A fast, automated optimization process reduces the
time required to produce effective visualizations. This speed is essential in dynamic
environments where timely data analysis and decision making are critical.

Guiding Categorical and Mixed Data Analysis using Quantitative Measures:
Quantitative measures can guide exploratory data analysis by highlighting areas of
interest or concern within the visualization. They help analysts prioritize their areas
of focus by directing attention to a portion of a dataset or visualization that exhibits
a quantitative property or pattern [242, 293]. Unlike using measures to design a
visualization, they can reveal subtle patterns and relationships within the data that
may not be immediately apparent through manual analysis and inspection alone.
In this thesis, we contributed measures to guide the analysis of categorical data by
providing a quantification for the degree to which an attribute differentiates groups
of observations in a domain-agnostic approach. However, this approach is limited
to this type of visualization and also only captures a property of a single attribute.
Therefore, extending to other visualizations while supporting multiple attributes
is a worthwhile goal by defining new measures and extending the visualization to
support multiple attributes. This is a viable approach, as we have also explored
domain-specific approaches, using measures for multiple categorical attributes to
guide users to relevant time periods, in the case of HistoBankVis, and guide to
high-impact software vulnerabilities with VulnEx.

Adapting Numerical Data Analysis Methods and Visualizations to Categorical
Data: In this dissertation, we presented an approach that specifically adapts methods
for numerical data analysis to categorical data. By adapting numerical methods for
categorical data, analysts gain access to a broader set of analytical tools that enable
more sophisticated and nuanced examination of datasets that contain qualitative
information [261]. However, work in this area remains limited due to challenges
in processing categorical data to be compatible with existing techniques. Common
methods like One-Hot Encoding (OHE) can create artifacts in the analysis and
visualization if not handled correctly [48, 57]. Therefore, one research direction we
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propose is to systematically explore the limitations of numerical analysis methods
and to determine what kind of biases occur under which conditions. As we have
shown in this thesis, aggregation can be an effective basis to transform categorical
data into a numerical representation. This adaptation enhances the scope and depth
of data analysis, leading to richer insights and more effective decision-making across
various domains.

8.3 Closing

In this thesis, we addressed the challenges in the field of VA posed by categorical
data, focusing in particular on ways to bridge the qualitative-quantitative divide
through measure-driven methods, summarized by the overarching research question
(R0, see page 4). Our work has been guided by three sub-questions that have guided
our exploration and contributions to the field to more precisely capture the esence
of (R0). By tackling (R1), we have successfully developed and implemented a
set of measures designed to evaluate and optimize Parallel Sets visualizations for
categorical data. These measures not only allow for a more objective assessment of
visualization quality, but also provide a basis for creating optimized Parallel Sets of
visualizations. We also contributed a visualization method for exploring categorical
data in a “map metaphor” made possible by transforming categorical data into nu-
merical representations and quantifying patterns in the categorical data projection.
In addition, exploration is aided by measures that quantify visualization properties,
guide users in analyzing attributes, and differentiate groups of observations. By
addressing (R2), our research has illustrated the practical application and utility
of these measure-driven methodologies in the fields of linguistics and software
engineering. By applying the measures we have developed for real-world problems
and datasets, we have demonstrated their ability to systematically uncover insights
and patterns that traditional analytical methods might miss. This not only validates
the effectiveness of our approach, but also highlights the versatility and potential of
our approaches to contribute to domain-specific challenges, foster a deeper under-
standing of complex datasets, and improve the decision-making process. Finally, in
tackling (R3), we have introduced novel frameworks that integrate these measures
into supervised and unsupervised learning contexts. These frameworks improve
the classification and exploration of mixed data by leveraging categorical data and
providing interfaces for custom measures that improve model accuracy, interpretabil-
ity, and exploratory analysis capabilities. In conclusion, this thesis contributes to
the advancement of visual analytics by addressing the unique challenges posed
by categorical data through the development of measure-driven methodologies
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and frameworks. Our work not only enhances the analytical capabilities available
to researchers and practitioners, but also opens new avenues for future research,
promising to increase the usefulness of categorical data and improve our ability to
communicate complex insights effectively.
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Association for Computational Linguistics, Apr. 2012, pp. 44–48 (cit. on pp. 79, 85).

[208] Laurens van der Maaten and Geoffrey Hinton. “Visualizing Data using t-SNE”. In:
Journal of Machine Learning Research 9.86 (2008), pp. 2579–2605 (cit. on pp. 74,
150, 161).

[209] Frank Maddix. Human-computer Interaction: Theory and Practice. Ellis Horwood
series in computers and their applications. Ellis Horwood, 1990. ISBN: 978-0-13-
446220-2 (cit. on p. 1).

Bibliography 203

https://doi.org/10.1016/j.jchromb.2012.05.020
https://doi.org/10.1016/j.jchromb.2012.05.020
https://doi.org/10.1016/j.ijhcs.2006.07.005
https://doi.org/10.1145/3544548.3580734
https://doi.org/https://doi.org/10.1016/j.resconrec.2017.05.002
https://doi.org/https://doi.org/10.1016/j.resconrec.2017.05.002
https://doi.org/10.1145/1459359.1459577


[210] Prasanta Chandra Mahalanobis. “On the generalized distance in statistics”. In:
Proceedings of the National Institute of Sciences 2 (1936), pp. 49–55 (cit. on p. 113).

[211] Christopher D. Manning and Hinrich Schütze. Foundations of statistical natural
language processing. MIT Press, 2001. ISBN: 978-0-262-13360-9 (cit. on p. 78).

[212] Mitchell P. Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. “Building
a Large Annotated Corpus of English: The Penn Treebank”. In: Computational
Linguistics 19.2 (1993), pp. 313–330 (cit. on p. 82).

[213] Leland McInnes, John Healy, and James Melville. UMAP: Uniform Manifold Approxi-
mation and Projection for Dimension Reduction. 2020. arXiv: 1802.03426 [stat.ML]
(cit. on p. 74).

[214] Maroua Mehri, Ramzi Chaieb, Karim Kalti, Pierre Héroux, Rémy Mullot, and Na-
joua Essoukri Ben Amara. “A Comparative Study of Two State-of-the-Art Feature
Selection Algorithms for Texture-Based Pixel-Labeling Task of Ancient Documents”.
In: Journal of Imaging 4.8 (2018), p. 97. DOI: 10.3390/jimaging4080097 (cit. on
pp. 112, 137).

[215] Wouter Meulemans, Nathalie Henry Riche, Bettina Speckmann, Basak Alper, and
Tim Dwyer. “KelpFusion: A Hybrid Set Visualization Technique”. In: IEEE Transac-
tions on Visualization and Computer Graphics 19.11 (2013), pp. 1846–1858. DOI:
10.1109/TVCG.2013.76 (cit. on p. 49).

[216] Luana Micallef, Pierre Dragicevic, and Jean-Daniel Fekete. “Assessing the Effect of
Visualizations on Bayesian Reasoning through Crowdsourcing”. In: IEEE Transactions
on Visualization and Computer Graphics 18.12 (2012), pp. 2536–2545. DOI: 10.
1109/TVCG.2012.199 (cit. on p. 49).

[217] Daniele Micci-Barreca. “A Preprocessing Scheme for High-Cardinality Categorical
Attributes in Classification and Prediction Problems”. In: ACM SIGKDD Explorations
Newsletter 3.1 (2001), pp. 27–32. DOI: 10.1145/507533.507538 (cit. on p. 2).

[218] George A. Miller. “Human memory and the storage of information”. In: IRE Trans-
actions on Information Theory 2.3 (1956), pp. 129–137. DOI: 10.1109/TIT.1956.
1056815 (cit. on pp. 30, 45).

[219] George A. Miller. “The magical number seven, plus or minus two: Some limits on
our capacity for processing information”. In: Psychological Review (1956), pp. 81–97.
DOI: 10.1037/h0043158 (cit. on pp. 30, 45).

[220] George A. Miller. “The magical number seven, plus or minus two: Some limits on
our capacity for processing information”. In: Psychological Review (1956), pp. 81–97
(cit. on p. 72).

204 Bibliography

https://arxiv.org/abs/1802.03426
https://doi.org/10.3390/jimaging4080097
https://doi.org/10.1109/TVCG.2013.76
https://doi.org/10.1109/TVCG.2012.199
https://doi.org/10.1109/TVCG.2012.199
https://doi.org/10.1145/507533.507538
https://doi.org/10.1109/TIT.1956.1056815
https://doi.org/10.1109/TIT.1956.1056815
https://doi.org/10.1037/h0043158


[221] Matthias Miller, Julius Rauscher, Daniel A. Keim, and Mennatallah El-Assady. “Cor-
pusVis: Visual Analysis of Digital Sheet Music Collections”. In: Computer Graphics
Forum 41.3 (2022), pp. 283–294. DOI: 10.1111/cgf.14540 (cit. on pp. 146, 148–
151, 155).

[222] Rosane Minghim, Fernando Vieira Paulovich, and Alneu de Andrade Lopes. “Content-
based text mapping using multi-dimensional projections for exploration of docu-
ment collections”. In: Visualization and Data Analysis. Vol. 6060. SPIE Proceedings.
2006, 60600S. DOI: 10.1117/12.650880 (cit. on p. 162).

[223] Sebastian Mittelstädt, Dominik Jäckle, Florian Stoffel, and Daniel A. Keim. “Color-
CAT: Guided Design of Colormaps for Combined Analysis Tasks”. In: Proceedings of
the 17th Eurographics Conference on Visualization. Eurographics, 2015, pp. 115–119.
DOI: 10.2312/eurovisshort.20151135 (cit. on pp. 3, 30).

[224] Tyler Moore. “On the harms arising from the Equifax data breach of 2017”. In:
International Journal of Critical Infrastructure Protection 19 (2017), pp. 47–48. DOI:
10.1016/j.ijcip.2017.10.004 (cit. on p. 96).

[225] Cristina Morariu, Adrien Bibal, Rene Cutura, Benoît Frénay, and Michael Sedlmair.
“Predicting User Preferences of Dimensionality Reduction Embedding Quality”.
In: IEEE Transactions on Visualization and Computer Graphics 29.1 (Jan. 2023),
pp. 745–755. DOI: 10.1109/TVCG.2022.3209449 (cit. on p. 51).

[226] Bryan S. Morse. Lecture 9: Shape Description (Regions). http://homepages.inf.ed.
ac.uk/rbf/CVonline/LOCAL_COPIES/MORSE/region-props-and-moments.pdf,
last accessed 2023-11-14. Brigham Young University (cit. on p. 121).

[227] Juliane Müller, Laura Garrison, Philipp Ulbrich, Stefanie Schreiber, Stefan Bruckner,
Helwig Hauser, and Steffen Oeltze-Jafra. “Integrated Dual Analysis of Quantitative
and Qualitative High-Dimensional Data”. In: IEEE Transactions on Visualization
and Computer Graphics 27.6 (2021), pp. 2953–2966. DOI: 10.1109/TVCG.2021.
3056424 (cit. on pp. 136, 146, 148, 149, 151, 152, 154, 157, 162).

[228] Tamara Munzner. Visualization Analysis and Design. AK Peters Visualization Series.
A K Peters, 2014. ISBN: 978-1-466-50891-0 (cit. on pp. 3, 4, 157, 162).

[229] Eun Ju Nam, Yiping Han, Klaus Mueller, Alla Zelenyuk, and Dan Imre. “Cluster-
Sculptor: A Visual Analytics Tool for High-Dimensional Data”. In: Proceedings of
the 2nd IEEE Symposium on Visual Analytics Science and Technology. IEEE, 2007,
pp. 75–82. DOI: 10.1109/VAST.2007.4388999 (cit. on p. 114).

[230] Quynh Quang Ngo, Frederik L. Dennig, Daniel A. Keim, and Michael Sedlmair.
“Machine learning meets visualization – Experiences and lessons learned”. In: it
- Information Technology 64.4-5 (2022), pp. 169–180. DOI: 10.1515/itit-2022-
0034 (cit. on p. 17).

Bibliography 205

https://doi.org/10.1111/cgf.14540
https://doi.org/10.1117/12.650880
https://doi.org/10.2312/eurovisshort.20151135
https://doi.org/10.1016/j.ijcip.2017.10.004
https://doi.org/10.1109/TVCG.2022.3209449
http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/MORSE/region-props-and-moments.pdf
http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/MORSE/region-props-and-moments.pdf
https://doi.org/10.1109/TVCG.2021.3056424
https://doi.org/10.1109/TVCG.2021.3056424
https://doi.org/10.1109/VAST.2007.4388999
https://doi.org/10.1515/itit-2022-0034
https://doi.org/10.1515/itit-2022-0034


[231] Dang Tuan Nhon and Leland Wilkinson. “PixSearcher: Searching Similar Images
in Large Image Collections through Pixel Descriptors”. In: Proceedings of Advances
in Visual Computing - 10th International Symposium. Springer, 2014, pp. 726–735.
ISBN: 978-3-319-14364-4. DOI: 10.1007/978-3-319-14364-4_70 (cit. on p. 112).

[232] Carolina Nobre, Nils Gehlenborg, Hilary Coon, and Alexander Lex. “Lineage: Visu-
alizing Multivariate Clinical Data in Genealogy Graphs”. In: IEEE Transactions on
Visualization and Computer Graphics 25.3 (2019), pp. 1543–1558. DOI: 10.1109/
TVCG.2018.2811488 (cit. on p. 100).

[233] Carolina Nobre, Marc Streit, and Alexander Lex. “Juniper: A Tree+Table Approach
to Multivariate Graph Visualization”. In: IEEE Transactions on Visualization and
Computer Graphics 25.1 (2019), pp. 544–554. DOI: 10.1109/TVCG.2018.2865149
(cit. on pp. 100, 101).

[234] Martin Nöllenburg. “Geographic Visualization”. In: Human-Centered Visualization
Environments. Springer, 2007, pp. 257–294. ISBN: 978-3-540-71949-6. DOI: 10.
1007/978-3-540-71949-6_6 (cit. on p. 1).

[235] Luis Gustavo Nonato and Michaël Aupetit. “Multidimensional Projection for Visual
Analytics: Linking Techniques with Distortions, Tasks, and Layout Enrichment”. In:
IEEE Transactions on Visualization and Computer Graphics 25.8 (2019), pp. 2650–
2673. DOI: 10.1109/TVCG.2018.2846735 (cit. on pp. 51, 137, 140, 147, 167).
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