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Figure 1: The ModelSpeX workflow: (1) Begins with the user task (problem formulation); (2) The user extracts semi-automatically rules
using visual analytics interfaces and XAI methods for rule extraction. (3) The user iteratively refines the rule sets to generate a model
specification, which (4) enables to evaluate and verify trained models by comparing them to the formulated problem.

Abstract
Explainable artificial intelligence (XAI) methods aim to reveal the non-transparent decision-making mechanisms of black-box
models. The evaluation of insight generated by such XAI methods remains challenging as the applied techniques depend on
many factors (e.g., parameters and human interpretation). We propose ModelSpeX, a visual analytics workflow to interactively
extract human-centered rule-sets to generate model specifications from black-box models (e.g., neural networks). The workflow
enables to reason about the underlying problem, to extract decision rule sets, and to evaluate the suitability of the model for a
particular task. An exemplary usage scenario walks an analyst trough the steps of the workflow to show the applicability.

CCS Concepts
• Computing methodologies → Artificial intelligence; • Human-centered computing → HCI theory, concepts and models;

1. Introduction

Artificial intelligence (AI) efficiently solves previously challeng-
ing problems (e.g., machine translation [WSC∗16], autonomous
driving [CSKX15]) due to recently developed machine learning
(ML) methods. These ML methods are, however, often criticized
for being black-box models (e.g., neural networks) with non-
transparent decision-making, impractical for critical domains (e.g.,
medicine) [Rud18] leading to the development of explainable AI
(XAI) [GMR∗18]. The primary goals of XAI are to reveal the un-
derlying non-transparent decision-making mechanisms of black-
box models [AB18], to understand, to debug, to optimize mod-
els [LWLZ17], to build trust [GMR∗18], to increase transparency,
fairness, as well as privacy [DK17]. Explanations extracted by
XAI methods (e.g., LIME [RSG16]) require human interpretation,
which can lead to potentially wrong insights [RTC18]. Such ex-
planations, therefore, require additional context information and

new methods to quantify as well as verify the extracted insight
about the underlying decision-making process [HMKL18]. For in-
stance, feature importance or attributions (e.g., LIME [RSG16])
can be misleading (biased) due to unbalanced data (e.g., showing
only the describing feature for the majority class) [SHJ∗19]. As a
result of such biases, the number of explanations required to un-
veil the internal decision-making processes of a black-box model,
e.g., deep neural networks, remains unanswered [MZR18]. The hu-
man inspection of complicated decision rules sets in the context
of the data, model, and the underlying problem allows to adjust
(e.g., prune) and to evaluate the extracted explanations and knowl-
edge. For example, decision rule extraction methods produce com-
prehensible explanations (rules) for humans, which help to reveal
the decision-making process and potential biases [Hai16]. To eval-
uate and verify the quality of generated explanations, we propose a
workflow to interactively create machine-readable descriptions that
aim to summarize the set of tasks trained models to solve.
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We propose ModelSpeX, a workflow that uses XAI methods
(e.g., decision rule extraction techniques) to generate an under-
standable model specification (a machine-readable description) for
comparison, evaluation, and verification of complex models such
as deep neural networks. The main goal of the proposed work-
flow is to combine rule extraction XAI methods with interactive
visualizations to highlight the decision-making process of black-
box models and to generate descriptive model specifications. Such
model specifications allow us to evaluate models and verify the
suitability to the underlying problem enabling humans to compare
the trained model with the underlying task (problem). Overall, the
model specification aims to divide complex formulated problems
into sub-problems to enable domain experts to find transparent and
straightforward solutions for the original problem. In summary, the
main contributions of this paper are: (1) A conceptual workflow
to extract model specifications from XAI methods to facilitate hu-
man users to understand and assess whether a model is suitable for
particular tasks. (2) An exemplary real-world use case to highlight
suitable XAI techniques for our workflow.

2. Related Approaches

Depending on the research field, the definitions for the term ex-
plainability differ, for example, in machine learning [Lip18] and
visual analytics [SSSE19]. However, most definitions have similar
motivations, such as fairness, privacy, reliability, and trust build-
ing [DK17, GMR∗18]. The post-hoc application of XAI methods
onto black-box models (after training steps) produces explanations
for predictions [AB18]. In recent years, the number of XAI meth-
ods increased heavily intending to achieve explainability, especially
in computer vision, helping XAI to advance [SAE∗19].

Workflows conceptualize the general task of discovering and
extracting knowledge from data. Prominent workflows are, for
instance, the knowledge discovery in databases (KDD) pro-
cess [PF91] and the visual analytics model [KAF∗08]. Further,
Sacha et al. [SSZ∗17] introduced interactions for the various steps
of a machine learning pipeline to supplement an analyst to, e.g. sup-
port direct model manipulation. However, many of the proposed in-
teractions cannot be applied as the training of deep neural networks
are often time-consuming (days to weeks). Focusing on exploratory
model analysis, Cashman et al. [CHH∗19] present a workflow to in-
corporate visual analytics principles in the model selection process.
The workflow, however, lacks methods to investigate the behavior
of black-box models. Spinner et al. [SSSE19] proposed a frame-
work and pipeline for XAI to incorporate various concepts, such as
understanding, diagnosis, and refinement [LWLZ17]. However, the
proposed framework does not describe the evaluation and verifica-
tion of explanations in the context of user tasks at hand (problem).

In summary, many visual analytics workflows lack the extension
to explain decisions of black-box models in a comprehensive way.
Most workflows miss a user-centered evaluation of XAI explana-
tions in the context of the problem formulation. We, therefore, pro-
pose a workflow that incorporates decision rule explanations for
specifying as well as evaluating models and their underlying for-
mulated problems (user tasks).

3. ModelSpeX Workflow for Model Specifications

We propose a ModelSpex, a model specification workflow that de-
scribes the required steps to compare and assess the relationships
between the problem (task) and the learned model approximations.
The workflow (see Fig. 1) consists of four steps and ties together
visual analytics with XAI methods to extract human-centered ex-
planations and evaluate the black-box solution. The overall goal of
the workflow is to interactively generate a model specification to
reason about the underlying user-defined task (problem). We de-
fine a model specification as a machine-readable description, for
instance, a decision rule set that describes a solution for a problem.
A model specification can be used to
- evaluate models (e.g., comparison to formulated problems);
- refine problem formulations (e.g., add new classes);
- generate new knowledge about a specific application domain (e.g.,
identification of decision boundaries around certain data samples);
- and to interactively align the user task with the model (e.g., iden-
tify the model that meets the expectations of a domain expert).

In the following section, we will further detail the steps and in-
teractions involved to generate a model specification on a use case
and discuss potential methods for each step using the real-world ex-
ample of a recurrent neural network (RNN) for anomaly detection
in time series sensor data for predictive maintenance [Mob02].

3.1. Generate Problem Formulation

Machine learning starts with an analytical task (formulated prob-
lem) about a dataset in a particular application domain (problem
domain) [PF91]. The analysis of data involves multiple steps and
can be among others described by Norman’s Stages of Action cy-
cle [Nor88]. The first step in the execution phase of the model is a
problem formulation, that aims to form an intention to solve tasks.
A correct problem formulation is a critical part of every ML ap-
proach as a faulty formulation results in flawed models [Lip18].
Therefore, Lipton [Lip18] pleads for new research aiming to solve
the issue of general problem formulation for machine learning
models. In general, such problem formulations can be generated
by a domain expert through a visual exploration of the underly-
ing data [CHH∗19]. In contrast to earlier work (e.g., Cashman et
al. [CHH∗19]), we propose to interactively generate a model spec-
ification for selecting and evaluating relevant black-box models in
the visual analytics process.

In our anomaly detection use case, the problem is formulated
(Fig. 2 (1)) twofold regarding the questions of the analyst:

- Is the anomaly detection (RNN) robust enough for deployment?
- Does the RNN model match domain knowledge?

The first task introduces our problem of anomaly detection with a
complex model (RNN) and is answerable with a metric score com-
parison to a baseline and a first test run on real-world data. How-
ever, the complex model could learn some proxy to improve per-
formance. Thus, the second task evaluates model predictions based
on the inner workings to foster understanding and trust-building for
maintenance engineers.
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Figure 2: The ModelSpeX workflow applied on an example anomaly detection use case: The formulated problem (1) consists of building
trust for domain experts. The model (2) consists of an RNN with accuracy as metric and RxREN as XAI method. The extracted rules (3) are
basic if-then clauses to prune. The model specification (4) consists of the model performance and a rule that represents domain knowledge.

3.2. Applying Explainable AI

A visual analytics system ideally provides feedback for users and
incorporates the analyst in the generation, debugging, and refine-
ment of models [LWLZ17]. The execution phase of Norman’s
stages of interaction [Nor88] was used by Sacha et al. [SSZ∗17] to
describe a human-centered model generation using interactive visu-
alization. In contrast, our workflow describes the evaluation phase
of Norman’s stages of interaction for black-box models using XAI
methods and helps to compare and evaluate the specification of the
model with the initial problem. As a foundation of our workflow,
we extend visual analytics model by Keim et al. [KAF∗08]. We en-
hance the model by applying XAI methods to the data, model, and
output of the model to reveal learned relationships and structures
in the underlying dataset to generate rule sets. The extraction of
many rules as possible requires to iteratively apply the XAI meth-
ods on multiple non-deterministic trained black-box models, which
allows understanding the individual local optimum of learned mod-
els. The successive rule set extraction also enables to extract tempo-
rary learned rules from the training process to reveal critical mem-
orizing moments for the model (e.g., overfitting, learning biases of
the data). In the following, we describe explainable AI methods to
extract rules sets from the data, model, and output of the model.

The goal of information visualization is to present data to gain
knowledge about the real world [BBSS03]. For this purpose, often,
models are trained to approximate the underlying problem (e.g.,
classification) and to identify patterns in the data (e.g., decision
boundaries) [KKEM10]. The incremental training process (super-
vised, semi-supervised, or unsupervised) of such models aims to
minimize a metric and capture the complexity of the formulated
real-world problem [PF91]. The training of such models poses
many challenges due to data bias, unbalanced datasets, overfitting,
underfitting, etc. The output of a model (predictions) allows an an-
alyst to assess the performance of a trained model (e.g., accuracy,
recall). For instance, examining the output and the loss over time
may enable the identification of overfitting as well as underfitting.
Decision rules can be extracted from the data, the model, and the
output of the model. However, the consideration of only one evalu-
ation metric is not sufficient as there are specific trade-offs between
them (e.g., accuracy is sensitive to imbalanced datasets).

XAI Methods – In general, extracting decision rules from data
can be achieved by decision rule list algorithms, for instance, in-
terpretable decision rule sets [LBL16]. However, such algorithms

have NP-hard complexities [Gol96] and often overfit fast without
being able to generalize on large datasets [Hai16]. Post-hoc XAI
methods can use a trained model to extract rules based on the inner
workings. For instance, DeepRED [ZMJ16] creates decision rules
based on the weights and hidden states of neurons in complex neu-
ral networks. Such rule extraction algorithms for models often do
not incorporate data, and thus are often hard to interpret [Hai16].
Furthermore, the analysis of the output can allow the model to be
discarded at an early stage or to be optimized by steering the model
into another direction. TREPAN [CS96], for instance, enables to
extract decision trees on the basis of sampling the output of a multi-
layer perceptron model. As such extraction algorithms work on the
data, they are easier to interpret. RxREN [GAK12] improves a sam-
pling approach like TREPAN [CS96] with a decomposition of neu-
ron weights to extract better decision rules on the cost of complex-
ity. However, such algorithms have a high complexity [Gol96] due
to sampling input data and use the underlying model sampling only
to extract rules [Hai16].

Explainable AI Visualization – The visualization of explain-
able AI methods allows to relate data, model, and output to each
other. Ideally, an analyst visually explores and interprets the model
training, data, and output to interactively extract rule sets from all
components individually. Especially, such visual analysis allows
to analyze subsets of the model space as well as the underlying
data and helps to identify essential complex hidden relationships
(e.g., multilinear dependencies) in the data. A particular visual find-
ing allows an analyst to extract and increase the trust in specific
rules. These rules can be verified by visually investigating further
trained models and the underlying data. The interpretation and ver-
ification of hidden relationships in the data always require domain
knowledge. The fully automated extraction and analysis of such
rule sets are hardly possible as the training of most of the gener-
ated black-box models is non-deterministic. Meaning the rule sets
for different models will have a particular overlap, yet not all rules
the models learn are reflections of the modeled real-world problem
(false positives). For instance, the extraction of linear models using
LIME [RSG16] enables to further select and prune rule sets into a
reliable subset of rules [RTC18].

In our exemplary use case, we got to the XAI step (Fig. 2 (2)).
We first train a decision rule set [LBL16] (XAI methods) classi-
fier on the time series (data) to get a basic rule set of the data.
Next, we train our k-Nearest baseline on the data and get an F1-
Score (metric) of 0.75 on real-world data. Next, we train our chosen
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RNN (model) on the anomaly detection task. Our first architecture
does not achieve our desired performance on the metric after 40
epochs due to overfitting and a large capacity. After shrinking the
architecture, our RNN improves at ten epochs and has a favorable
performance after 40 epochs due to better generalizability. We use
RxREN [GAK12] (XAI methods) to extract rules from the model at
epochs 10 and 40 about the anomaly prediction (output). The deci-
sion rule set of the data and extracted RxREN rules of both epochs
formulate together our extracted rules for the next step.

3.3. Adjusting Extracted Rule Sets

Decision rule sets are the most promising coverage of data and
model in general as they formulate a comprehensible and inter-
pretable abstraction for humans [LBL16]. However, the rigorous
extraction of rule sets from real-world problems is challenging as
the task requires correct as well as complete data, an unbiased and
stable model, and reliable extraction of rule sets. Often in real-
world environments, the input data does not capture all the required
information, the model has some errors, and the extracted rule sets
are often hard to obtain. Therefore, a domain expert has to interac-
tively verify as well as adjust the rule sets to confirm the extracted
rules with several models. The extracted rule sets are nested and
complex if-else statements, which are also machine-readable.

Our use case has three kinds of decision sets extracted from
the data and the models with specific algorithms mentioned be-
fore. Based on these extracted rules, we can start to compare rules
from the data and the models. Through iterative and interactively
inspecting, pruning, and changing rules, we can verify rules based
on our domain knowledge about the data and task (see Fig.2 (3)).
We first deep dive into the extracted rules of the second RNN while
training to analyze overlapping rules. These rules are the core of
the prediction of most of the samples as our RNN has an F1-Score
of 0.8 on real-world data after ten epochs. By further inspection of
these rules, we find a certain periodicity in one of the attributes to
classify one class. Two rules describe such a periodicity by stating
two neighboring time ranges and a particular attribute value.

3.4. Resulting Model Specification

The model specification is a machine-readable description and de-
scribes how the model solves a particular problem, behaves for par-
ticular inputs, and can be used to compare the generated knowledge
about the model with the initial formulated problem. Generated rule
sets contain parts of a model specification as the selection of rules
for the specification heavily depends on the underlying data, appli-
cation domain, and domain expert. A model specification should
also be verified collaboratively from multiple persons to enable
feedback for refinements and to minimize the bias influenced by
single domain experts. The primary purpose of the approach is to
describe and examine the solution of the problem by investigat-
ing the automatically learned subproblems. The model specifica-
tion can be used to confirm assumptions about a specific domain
problem, compare the generated rules with domain expert knowl-
edge, and to evaluate the usefulness of a model. Overall, the model
specification aims to divide complex formulated problems into sub-
problems to enable domain experts to find transparent and straight-
forward solutions for the original problem.

Our use case example results with a model specification based on
the rules our analyst left after the last step. The extracted rules from
the model show that the model learned some domain knowledge by
detecting certain periodicity and specific frequencies significant for
the anomaly. Our extracted model specification now answers our
twofold problem formulation (forecasts failures by self-extracted
domain knowledge) with:
- F1-Score: 0.75 (baseline) - 0.95 (RNN) on real-world data
- If the time attribute is larger equal to 50, smaller equal to 55, and

the att1 attribute is larger equal to 0.95, than there is an anomaly.
The second rule is one of the selected rules of the domain expert to
show an example of the domain knowledge.

4. Discussion and Opportunities

ModelSpeX is a workflow that characterizes the human-in-the-loop
and XAI concepts for the evaluation and verification in the visual
analytics process. The workflow specifies XAI methods for the rule
set extraction as an important subprocess in the visual analysis of
black-box models and facilitates to tackle multiple challenges: the
extracting knowledge from non-deterministic methods, evaluation
of models, and the integration of a human user in the knowledge
generation process. The application of non-deterministic meth-
ods (e.g., LIME [RSG16], Anchors [RTC18]) on non-deterministic
black-box models poses some difficulties. For example, the com-
pleteness of extracted rules, the extraction of false-positive rules,
the granularity of the extracted rules, and the evaluation of the qual-
ity of the rule sets. In our workflow, the human-in-the-loop has to
deal with such challenges and verify extracted rules. A possible
solution for such challenges is to guide users in the sense-making
process, for instance, making suggestions based on the current ex-
tracted rules can help analysts to automate the extraction of rules
sets. Another question that arises is, if a list of rules as a model
specification is valuable, and thus if the extracted rule sets are able
to be mapped directly to gained knowledge. We argue that such
specifications are useful as they can help to identify problems with
the model, highlight differences to the mental model of the user,
and also evaluate the quality of the extracted explanations. How-
ever, due to the potential bias of the user, models of different users
will likely include different rule sets. We see distinct model spec-
ifications as an advantage of our workflow as the comparison and
evaluation of different rule sets allows discussions and further anal-
ysis of the potential disambiguity of analytical problems.

We want to demonstrate the applicability of the workflow on var-
ious real-world example ranging from trajectory forecasting to an-
imal behaviour modeling. Especially, methods for the rule extrac-
tion of special applications and interactive visualizations for large
decision rule sets are planned to be worked on. These rule extrac-
tion algorithms will focus on critical domains like healthcare to
introduce a methodology to use complex models in such domains.
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