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Abstract— In this work we address the problem of retrieving potentially interesting matrix views to support the exploration of networks.
We introduce Matrix Diagnostics (or MAGNOSTICS), following in spirit related approaches for rating and ranking other visualization
techniques, such as Scagnostics for scatter plots. Our approach ranks matrix views according to the appearance of specific visual
patterns, such as blocks and lines, indicating the existence of topological motifs in the data, such as clusters, bi-graphs, or central
nodes. MAGNOSTICS can be used to analyze, query, or search for visually similar matrices in large collections, or to assess the quality
of matrix reordering algorithms. While many feature descriptors for image analyzes exist, there is no evidence how they perform for
detecting patterns in matrices. In order to make an informed choice of feature descriptors for matrix diagnostics, we evaluate 30 feature
descriptors—27 existing ones and three new descriptors that we designed specifically for MAGNOSTICS—with respect to four criteria:
pattern response, pattern variability, pattern sensibility, and pattern discrimination. We conclude with an informed set of six descriptors
as most appropriate for MAGNOSTICS and demonstrate their application in two scenarios; exploring a large collection of matrices and

analyzing temporal networks.

Index Terms—Matrix Visualization, Visual Quality Measures, Quality Metrics, Feature Detection/Selection, Relational Data

1 INTRODUCTION

In this article, we focus on finding interesting adjacency matrix visu-
alizations for relational data, i.e., networks. Searching and analyzing
are key tasks in the process of making sense of large data sets. A
widely used approach to implement search and analysis for data relies
on so-called feature descriptors (FDs), capturing certain relevant data
properties to compute similarity scores between data elements accord-
ing to these features. Descriptor-based similarity functions are hence a
basis for many important exploration tasks, e.g., ranking data elements
by similarity or for computing data clusters according to features.

Yet, the choice of feature vectors and similarity functions is a main
research challenge; it often requires knowledge of the application con-
text, and sometimes even the user. To date, a large number of feature
extraction methods have been proposed for different types of structured
data [31,37]. However, the descriptors these methods use are often
defined in a heuristic way, and yield rather abstract information, which
are difficult to interpret and leverage by non-expert users in search
and analysis tasks. Consequently, it remains difficult to decide which
descriptor to choose for a retrieval and analysis problem at hand.

Recently, image-based features have been used to characterize the
visual representation of data [10, 22] with the goal to guide the user
in the exploration based on the visual representation. Influential for
this field is the work of Tukey who formulates the problem that —as
the number of plots to interactively inspect increase— exploratory data
analysis becomes difficult and time consuming [46]. Tukey proposes to
automatically find the “interesting” plots and to investigate those first.
To that end, Wilkinson et. al. [46] present a set of 14 measures for the
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quantification of distribution of points in scatter plots, called Scagnos-
tics. Each measure describes a different characteristic of the data and
helps, for example, to filter the views with different Scagnostics mea-
sures than the majority. The underlying scatter plots are likely to exhibit
informative relations between the two data dimensions. Besides static
ranking tasks, image-based data descriptions can also form a basis for
dynamic training of classifiers to identify potentially relevant views [5].
This is particularly useful for cases in which a given (static) description
and selection heuristic may not fit some user’s requirements.

We propose a set of six FDs, called MAGNOSTICS features, which
quantify the presence and salience of six common visual patterns in a
matrix plot, which are the result of a particular matrix ordering (Fig. 2).
Each pattern refers to a topological graph motif, such as clusters, central
nodes, or bigraphs. MAGNOSTICS are similar to Scagnostics features
describing e.g., the degree of stringyness, clumpiness and outlyingness
as relevant patterns in Scatterplots.

Unlike statistical graph measures, which allow describing global
graph characteristics, such as density and clustering coefficient, MAG-
NOSTICS represent interpretable visual features for matrix displays.
This is of great importance, because the order or rows and columns in
the matrix influences which type of information is visible or hidden
from the viewer [4], just like in a 2D layout for node-link representa-
tions. Quantifying for one given ordering how well the information is
represented in terms of visual patterns helps to assess the visual quality.

MAGNOSTICS can be used for a large variety of tasks, such as
finding good orderings for visual exploration, finding matrices with
specific patterns in a large network data set, analyzing a collection of
varied networks, or series of stages in an evolving network (e.g., brain
functional connectivity data).

While many FDs for image analysis exist, there is no evidence how
they perform for detecting patterns in matrices. In order to make an in-
formed choice of FDs for MAGNOSTICS, we evaluate 30 FDs, including
three new descriptors that we specifically designed for detecting matrix
patterns. Using a set of 5,570 generated matrix images, we evaluated
each FD with respect to four criteria: pattern response, pattern variabil-
ity, pattern sensibility, and pattern discrimination. For each of the FDs
that are part of MAGNOSTICS, we provide a more detailed description,
showcasing its performance on real-world data sets. We demonstrate
MAGNOSTICS on two application scenarios (Sect. 7). Firstly, query-
ing a large database by example (query-by-example) and via a sketch
interface (query-by-sketch). The second scenario analyses a network
evolving over time based on time-series of MAGNOSTICS.
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Fig. 1: Different matrix orderings for the same matrix data.

2 RELATED WORK
2.1 Finding Relevant Views in Large Data Spaces

Visual data analysis methods need to be able to handle increasingly
large data sets. However, not only the data size grows, but also the
possible visualization space for this data. This problem gets even worse
when the number of view parameters is taken into consideration. In
the case of the analysis of an n-dimensional data set with scatter plots,
(nx (n—1))/2 two dimensional projections can be produced [40]. If
the same data set is visualized with a Parallel Coordinates Plot even
n! possible column orderings exist [10]. Similar problems arise in
visualization of adjacency matrices, which comprise (n!xn!) valid
row/column orderings. However, all of these visualization approaches
have in common that only few view configurations lead to relevant or
non-redundant information. Hence, intelligent methods for compress-
ing and filtering data for potential patterns of interest are researched.

General approaches to support the identification of relevant views in
large view spaces include clutter reduction [11,29] and dimensionality
reduction [20,41]. Besides fully-automated approaches, others explore
interactivity, empowering the user. For example, in [5] an interactive
scatter plot exploration approach using a classifier to learn the notion
of interestingness from user feedback is proposed. A visual query
interface for multivariate data using regressional features is presented
in [32]. Alternatively, sketching can be used to express patterns of
interest in a large scatter plot space [35]. MAGNOSTICS is meant to be
used in similar interactive interfaces, while focusing on quantifying the
view relevancy.

2.2 Methods Based on View Quality

Quantifying the interestingness of visualizations typically requires
heuristic feature-based approaches that respond to the (potentially) in-
teresting structural characteristics of a visualization. These methods try
to mimic human perception in that they distinguish one or more visual
patterns from noise. Several previous works exist, tailored towards
specific patterns for certain visualization techniques.

For scatter plots, Wilkinson et al. [46] introduce Scagnostics (scat-
ter plot diagnostics), using graph-theoretic measures to describe point
distributions. Their feature vector consists of nine interpretable charac-
teristics which are important in the analysis of scatter plots. By using
one of these measures, an analyst could make assumptions about in-
herent information of the described scatter plot. Scagnostics features
are global features, describing a whole scatter plot at once. Recently,
Shao et al. [36] proposed usage of local features to rank scatter plots.
The approach first applies a density-based segmentation of local scatter
plot patterns, and then identifies relevant views by an interest measure
defined over local patterns.

Similarly, Dasgupta et al. [10] propose Pargnostics for Parallel Co-
ordinate Plots with the goal to optimize the axis layout so that user’s
preferences are met. Pargnostics introduces several statistical and
image-space measures to quantify e.g., the number of line crossings,
crossing angles, convergence, or overplotting measures, all being can-
didates to rank relevant or informative views. For dense pixel displays,
Schneidewind et al. proposed Pixnostics [33], a set of statistical mea-
sures in pixel-oriented visualizations. The entropy of an image is mea-
sured and shows to be useful to distinguish structured views from noisy
ones, reducing the interactive search time for pattern retrieval tasks. In
line of this work, Albuquerque et al. present the Noise-Dissimilarity
measure for Jigsaw Maps [1], which we also adapted and tested for our
matrix pattern analysis scenario. For high-dimensional data analysis,
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Fig. 2: A Selection of Patterns and Anti-patterns in Matrices.

Bertini et al. [6] proposed a conceptual model for assessing the quality
in image spaces and to integrate view quality into the visual exploration
process. Finally, Seo et al.’s [34] rank-by-feature framework makes use
of correlation and entropy measures to find an appropriate order within
histograms, boxplots and scatter plot views.

MAGNOSTICS follows a line of previous works applying view quality
selection based on visual view properties. We extend this methodology
to matrix visualizations and their visual patterns. Our approach is based
on image features extracted for ordered matrices, which are used as a
selection or ranking measure to identify relevant views.

3 MATRICES AND VISUAL PATTERNS IN MATRICES

An adjacency matrix M = (n X n) is a two-dimensional vector with
n = |N| with N being the nodes in an undirected network. A matrix cell
¢ij; 0 <1, j < ndenotes the existence of a link between node i and j. In
the most simple case ¢;; = 1 if i and j are connected, otherwise ¢;; = 0.
Depending on the type of data, ¢;; can carry particular attributes, such
as a strength (e.g., degree of friendship in a social network), or relation
type (e.g., friend vs. college) resulting in a weighted adjacency matrix.
Here, we focus on symmetric binary matrices.

A visualization of a matrix is an n X n plot with each cell represent-
ing the underlying value in the matrix using shades, color, or glyphs.
Crucial in using matrix visualization and to extract meaningful informa-
tion is a good ordering of rows and columns, indicating the presence of
topological structure in the data. Fig. 1 shows the same data (matrix),
using different orderings for rows and columns.

3.1 Matrix Ordering

The problem of finding a good matrix ordering is similar to the problem
of finding a layout in node-link diagrams that makes, e.g., clusters and
outliers visible pre-attentively. In matrices, visual patterns emerge by
re-ordering rows and columns, so that neighboring rows and columns
are visually similar. Matrix reordering surveys have been presented by
Liiv [23] and more recently, by Behrisch et al. [4].

For a single data set, multiple orderings can be created, but not all or-
dering algorithms may be equally well suited to make certain structures
in the data visible. Little research has been conducted to understand,
which algorithm is best suited to reveal certain data characteristics.
Hence, it appears useful to generate several matrix orderings and chose
the ordering with the most suited results, for the task at hand.

3.2 Visual Patterns in Matrices

A visual pattern is visual structure in the matrix that reveals information
about the underlying graph topology. Some work has been conducted [4,
27,45] to collect the main visual patterns in matrix plots, along with
their graph-theoretic interpretations. While there is an infinite amount
of visual patterns, for MAGNOSTICS we refer to the selection detailed
in [4] (Blocks, Off-Diag. Blocks, Star/Lines, Band), where the used
visual patterns are also related to user tasks.
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Visual patterns are of importance, for example, to biologists search-
ing for cycles in biological process networks, or to sociologists studying
social interactions and how people form and connect to groups.

Fig. 2 summarizes the patterns we want to retrieve in matrices. For
each of these patterns as shown in Fig. 2, we assume an optimal ordering
of matrix rows and columns; permuting rows and columns in these
examples can make the pattern less evident, though the topological
information in the network, i.e. the motif, is still there.

¢ Block-Diagonal Pattern: A Block-diagonal pattern consists of a
block (at least 2 x 2 cells) on the diagonal of the matrix. A diagonal
block refers to a densely connected clique in a graph where every
node is connected to every other node. Clique motifs can be found
in social networks representing groups of mutual friends. A slightly
weaker version of a clique, i.e., not every node is connected to every
other node, is called a cluster and appears as a block with holes or
less sharp boundaries.

« Off-Diagonal Block Pattern: An off-diagonal block is visually
similar to a diagonal block, but placed at the corners of the matrix not
touching the main diagonal (top-left/bottom right in our definition).
Off-diagonal blocks refer to bi-cliques in the networks that consist
of two sets of nodes where each node from the one set is connected
to each node of the second set. Bi-cliques can be found in 2-mode
networks, e.g. persons related to cities they have visited.

 Star Pattern: Star patterns in matrices consist of one horizontal and
one vertical closed line. However, a line does not have to span the
entire matrix. A star pattern corresponds to the star graph motif, i.e.,
a highly connected node in the network, such as an important airport
in a traffic network, or a famous person in a friendship network.

* Band Pattern: A band pattern consists of lines parallel to the matrix
diagonal, but not being placed on the diagonal. A band indicates a
path in the network, i.e., a sequence of links from one to another node.
Paths can represent a possible way of information transmission in a
social network or a sequence of reactions in a biological networks.

While patterns indicate motifs and hence information in the network,
we are also interested in patterns conveying algorithm artifacts. Detect-
ing artifacts can help to assess the appropriateness of matrix ordering
algorithms and to explicitly hide matrices from the user.

« Bandwidth Anti-pattern: The bandwidth pattern is a typical artifact
of graph-based matrix reordering algorithms, such as the Cuthill-
McKee algorithm. While these algorithms are generally fast, their
visual performance greatly depends on the existing/salient ordering
within the formed envelope. See [4] for more information.

« Noise Anti-pattern: By noise we refer to a random distribution of
black cells in the matrix. The more noise a matrix contains, the less
information it shows. Throughout the paper we use noise matrices as
base-line patterns to assess the quality of a feature descriptor.

4 FEATURE DESCRIPTOR ANALYSIS METHODOLOGY

After the conceptual analysis of relevant structures in matrix views, we
next detail on our FD analysis methodology, as depicted in Fig. 3.

4.1 Selecting an Initial Set of Feature Descriptors

The literature on image analysis provides an abundance of image FDs,
including such based on color, texture, shape, structure, among other
properties. These FDs are traditionally developed and used for process-
ing of real-world images. Our goal is to make an informed selection
of candidate FDs appropriate for responding to patterns in matrix visu-
alizations shown in Fig. 2. To that end, we started with an initial set
of 27 existing, well-known image measures described in the literature.
The main selection criteria are the suitability to respond to our set of
visual patterns in matrices, availability, and stability of the respective
implementations. We also made sure to include two to five FDs from
every different image analysis subdomain [31,37]: texture descriptors,
(localized) color-, edge- and line descriptors, shape-, structure- and
contour descriptors, interest point descriptors, and noise descriptors.
We include three additional FDs that we designed specifically to re-
spond to patterns in matrix views which by their nature show different
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Fig. 3: FD evaluation methodology and main concepts: After a selection
of candidate FDs and the generation of a pattern retrieval benchmark
dataset for matrices, we evaluated all FDs with respect to four distinct
evaluation criteria (C1-C4).

properties than real-world images. For example, our BLOCKS FD not
only responds to blocks, but is able to return their number and den-
sity (Fig. 2a). NOISE_STATISTICAL_SLIDINGWINDOW quantifies the
(local) amount of noise in a matrix (Fig. 2f), while the PROFILE FD
is designed to respond to matrices with many lines (Fig. 2c). Table 1
summarizes the full list of FDs we considered for our analysis.

Feature Descriptor Group Reference
GLOBAL_COLOR_HISTOGRAM Color [31]
AUTO_COLOR_CORRELOGRAM [19]
Fuzzy_HISTOGRAM [14]
Fuzzy_OPPONENT_HISTOGRAM [42]
COLOR_OPPONENT_HISTOGRAM [42]
THUMBNAIL [13]
MPEG7_COLOR_LAYOUT Color Layout [21]
LUMINANCE_LAYOUT [24]

CEDD [8]

FctH [9]

Jcp [8,13]

EDGEHIST Edge Java
MPEG7_EDGE_HISTOGRAM [28]
HouGH [18]

SURF  Point of Interest [3]

FAST [30]

BLOCKS Shape Java

COMPACTNESS [26]

ECCENTRICITY [49]
ADAPTIVE_GRID_RESOLUTION [48]
JPEG_COEFFICIENT_HISTOGRAM Structure [24,25]
PROFILE Java
FRACTAL_BOX_COUNTER [38]

PHOG [7]

HARALICK Texture [15]

GABOR [24]

TAMURA [39]

LOCAL_BINARY _PATTERN [16]
NOISE_STATISTICAL_SLIDINGWINDOW Java
NOISE_DISSIMILARITY [1]
GRADIENT [43]

Table 1: Overview over all tested feature descriptors (FDs). FD names
are hyperlinks to access an interactive FD profile page with e.g., a
distance-to-noise and a distance-to-base ranking.

4.2 Creating a Matrix Pattern Benchmark Data Set

We tested each FD against the same data set, i.e., visual matrices.
An appropriate data set must contain patterns and variations thereof,
and different degrees of pattern quality. Moreover, we need multiple
samples for the same pattern and its variations in order to account for
the variability in the individual data samples. We decided to create
an artificial controlled benchmark data set to control for the presence,
variation, and quality of patterns, as well as to create as many data
samples as necessary. Fig. 4 shows example matrices from the data set.
The complete benchmark data set is available online.
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Patterns and Variations

For each of the five patterns in Fig. 2, we generated prototypes of 30
x 30 matrices and variations thereof (Fig. 4 first line). A prototype
is an image with only the pattern in an otherwise empty matrix. Any
purposeful FD must respond to this pattern. A variation of a prototype is
a variation of the general characteristics of the pattern, mainly number,
size, and position. For example, a variation of the block pattern varies
the number of blocks; a variation of the line patterns changes the line
width or the amount of lines, and so forth. The goal is to assess which
type of variations a FD is able to differentiate.

Gradual Pattern Degeneration

To measure a FD’s ability to respond to unclear and noisy patterns,
we generated a gradual degeneration schema for each pattern and its
variation, i.e., we gradually decreased the quality of the pattern by
introducing “noise” into the matrix. We generated matrices with the
following degeneration functions, making sure that the last steps of
every degradation resulted in a completely random matrix.

a) Point-Swap—A first type of noise function introduces struc-
tural noise into the graph, by randomly swapping cells in the matrix
(Fig. 4b)). Any cell-swap randomly exchanges one black and one white
cell in the matrix (symmetry is preserved by a second corresponding
cell-swap in each degeneration step). We can consider the number of
cell-swaps as a quality measure how salient a pattern is expressed in the
data. For example, a complete block without holes represents a clique
in the graph, while the presence of holes indicates a less dense cluster.
For our data set, we generated pattern degenerations with the following
numbers of cell-swaps: 0, 1, 2, 4, 8, 16, 32 percent of the data, with the
last step (32%) showing no evidence of any pattern.

b) Index-Swap—With a second noise function, we iteratively swap
rows and columns in the matrix (Fig. 4c)). An index swap preserves
the topology of the graph, by randomly exchanging two rows (and
columns). Degrading a pattern with an index-swap is similar to using a
matrix reordering algorithm that fails to show a topological structure,
even though it is present in the data. For our data set, we generated
data samples from O to 10 index-swaps. We can use the number of
index-swaps as quality measure of the respective pattern.

¢) Masking—Lastly, we gradually add additional black points
(noise) to the matrix to mask the pattern (Fig. 4d)). Thereby, we
simulate situations in which the visual pattern is overlapping and inter-
venes with other patterns, e.g., overlapping clusters, closely connected
nodes. The applied noise is exponentially increasing (0% to 16%).

In total we used 23 pattern variations (4 Ml + 49+ 6 H+ 5N+ 4K) and
24 degeneration types (7 point-swap + 11 index-swaps + 6 maskings).
For each condition, we created ten samples, resulting in a set of 5,520
benchmark matrix images with patterns. On top of that, we added
50 pure random noise images with a varying noise density between
1% and 16%, leaving us with a total number of 5,570 MAGNOSTICS
benchmark matrix images. The full data set can be downloaded from
our website: http://magnostics.dbvis.de/#/benchmark.

4.3 Generating Experiment Conditions

For each one of our 5,570 matrix images m; we run each of our 30
FDs. This resulted in 167,100 trials FD;(m;), each one returning
an n-dimensional feature vector v = FD;(m;). For most FD (except,
BLoCKS, TAMURA and some others), vector dimensions may not
have a specific human interpretation. In order to analyze and compare
all feature vectors we have to rely on distances between individual
feature vectors d(v;,v;). Our distance function is the Euclidean distance
between n-dimensional vectors.

Two FDs (ADAPTIVEGRIDRESOLUTION and HOUGH) had to be
excluded from the analysis process, since their implementations did not
reliably return comparable feature vectors.

4.4 MAGNOSTICS Evaluation Criteria

To inform a selection of FDs, we evaluate each FD according to four
criteria. Generally, our criteria selection is inspired by the require-
ments imposed on information/image retrieval- and computer vision

systems [12]. However, some criteria (esp. C2 and C4) have to be
considered as initial research approaches selected specifically to tackle
a visual pattern retrieval in matrix data. The individual results are
reported in Sect. 5:

- Pattern Response—70 which specific matrix pattern(s) does the
FD respond? An appropriate FD must distinguish patterns from noise,
i.e., a matrix with random distribution of black and white cells. For
every pattern in Fig. 2, we can generate a set of prototype patterns and
measure the performance by precision and recall for every FD on our
entire benchmark data set.

- Pattern Variability—How much variation in the pattern can
the FD detect? Patterns in matrices vary, mainly in size or number; for
example, there can be one or more blocks, and each of the blocks can
have a different size. To measure variability, we can generate variations
for every pattern in Fig. 2 and calculate how much the FD response
varies/discriminates, using Euclidean distance.

C3: Pattern Sensitivity—How sensitive is the FD to pattern degen-
eration, e.g., noise? Patterns are rarely encountered in a prototypical
form. For example, blocks may show holes (less dense clusters), or less
sharp boundaries (e.g., overlapping clusters). For every pattern in Fig. 2
and its variations, we gradually degrade the pattern until eventually
returning a noise matrix (randomly distributed black cells). We develop
and derive a pattern sensitivity measure to quantify how well a FD is
able to cope with the degeneration of a pattern.

C4: Pattern Discrimination—How discriminatory can the FD dif-
ferentiate between distinct patterns? An effective FD should yield
discriminative results for different patterns. Otherwise, it does not
allow to correctly interpret the FD’s response. We measure the pattern
discrimination for the FDs by analyzing the differences between vectors
returned by the FD.

For MAGNOSTICS, we consider C1 a decisive criterion, meaning that
we do not want to include FDs into MAGNOSTICS if they do not respond
properly to any patterns. Results for C2 and C3 are descriptive in that
depending on the final use case, a more variable (C2) and/or sensitive
(C3) FD may be preferred. Both C1, C4 are considered decisive criteria
as we want FDs to discriminate different patterns. In the following,
we describe which initial FDs are included in our analysis, how we
generated the benchmark data, and how we analyze the returned feature
values for each defined experiment.

5 ANALYSIS PROCESS AND QUALITY METRICS

Each criteria (C1-C4) requires an individual analysis of the feature
vectors. We report on each criteria individually.

5.1 Pattern Response -

Our pattern response criteria refers to a FD’s ability to respond to a
specific pattern in the data. As a measure of effectiveness, we use
precision and recall measures [2]. High precision reflects a FD’s ability
to rank a larger number of correct answers at the early ranking positions.
High recall means that the FD is able to retrieve a large fraction of
all correct answers (matrices) from the target data set. The weighted
harmonic mean is an aggregate that combines both measures, but prefers
recall over precision (F, score, with § =2). It is given in Equation 1
and will be used to assess the capability of the FDs to identify the
sought matrices.

Fg=(1+B%)-

Separate precision, recall and F| tables can be accessed online!.

Our experiment setup looks as follows and is repeated for all 30 fea-
ture descriptors: First, we derive an appropriate classifier training data
set, which consists of all slightly degenerated pattern images (< 4%
for point-swap and noise and < 6 index swaps). Second, we conduct
a 10-fold cross validation, where each repetition involves the random
partitioning of the data into complementary subsets: the training set

precision - recall
(B2 - precision) + recall

()]

1 http://magnostics.dbvis.de/#/evaluation/patternresponse
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Fig. 4: Examples of matrices as used in benchmark. Benchmark data set can be downloaded at our MAGNOSTICS website.

(70% of the data), which is used to train a classifier, and the validation
set (30% of the data) to derive our performance measures. The valida-
tion results are averaged over the rounds to reduce the variability. To
mitigate the impact of the classifier algorithm we run all experiments
with three distinct classifiers (Random Forest, Naive Bayes, Support
Vector Machine). Since the results are comparable we decided to just
report on the Random Forest Classifier?.

We present the results of our pattern response experiments
in Fig. 8(a). The F; scores are ranging from 0 (low; white) to 1 (high;
saturated). As shown in the table, most of the FDs perform with an />
score of 0.9 or higher, meaning that these FD are able to differentiate
patterns from noise. Generally, texture descriptors yield the highest
overall F-scores. None of the patterns were specifically a problem for
any of our selected FDs, which means that altogether, our preselected
set of FDs is able to respond to each of our six base patterns. Some
measures yield higher scores for certain patterns while scoring less
for others. For example, MPEG7_EDGE_HISTOGRAM yields lower
scores for both block patterns. These results confirm the purpose of an
algorithm designed to respond to edges in images. In contrast, BLOCKS
performs well for block patterns, but worse for lines.

We will report on the choice of each feature descriptor for each
pattern separately in Sect. 6.

5.2 Pattern Variability -

Pattern variability corresponds to how sensitive a FD is with respect
to variations in the pattern. Therefore, we decided to take only proto-
typical patterns without any additional degeneration (e.g., noise) into
consideration for these experiments. Since no scalar measure exists to
describe the pattern variability, i.e., there is so far no vector dimension
on the number of blocks or lines, we need to look at pair-wise distances
between feature vectors and analyze if they allow us to discriminate the
pattern variations.

Fig. 5 illustrates all pairwise distances of the test patterns between
two selected feature vectors in a distance matrix (Descriptor Distance
Matrix, DDM). One row and column represents each pattern variation.
The last row contains the noise matrix as point of reference for a dis-
tance normalization. Black values mean low distances, red represents
medium distances, and white reflects high distances. The example in
Fig. 5 shows a desired distribution of distances for the selected FDs
(THUMBNAIL and COMPACTNESS), i.e., pairwise distances become
gradually higher for more variation of the pattern. Hence, we consider
these FDs as good candidates to measure gradually the variability of
matrix patterns by distance. For better quantification and comparison,
we also report on the standard deviation of the normalized distance
scores, as shown below.

1
o, (PV) = | =— Y (ndist(PVi,PV}))—%)° ()
IPVI < iy

Where, PV; corresponds to the i pattern variation from a base
pattern variation set (e.g., Block1-4), ndist() represents a normalized
Euclidean distance and X corresponds to the average of all distance

2 All other experiment result tables can be found in the Appendix.

a) Variability (C2) Distance Matrix b) Sensitivity (C3) Distance Matrix

Variations Pattern Degeneration

SHAPE_COMPACTNESS

COLOR_THUMBNAIL Z v

Fig. 5: Distances between two selected feature vectors (THUMBNAIL
and COMPACTNESS) of different pattern variations.

combinations. We excluded the reference noise column from this
calculation, since it has only illustration purposes.

Other than for precision and recall, poor performance on variability
is not a sufficient reason to exclude a FD from the selection. A FD
with low variability supports application cases where any expression
of a pattern is of importance, e.g., finding matrices with block patterns.
A FD with high variability supports applications where more detail is
necessary, such as finding matrices most similar to a given one.

We report the results of our pattern variability experiments
in Fig. 8(b). The standard deviation scores are ranging from 0 (low =
white) to 0.5 (high = dark red). From the table we see that the only FD
with no variability at all is HARALICK. Other FDs score consistently
high for our variability measure meaning that they are able to discrimi-
nate between the pattern variations. We also found that variations for
the off-diagonal and block pattern are lower for most FDs, which might
be due to the fact these coherent rectangles are not recognized indepen-
dently of their location in the matrix plot (c.f., translation invariance).
Line patterns seem to yield generally high variability, suggesting that
our FDs are sensitive to changes in the expression of lines.

5.3 Pattern Sensitivity (C3)

Pattern sensitivity refers to how sensitive a FD is to pattern degen-
erations (e.g., noise), implying a visually less salient pattern. High
sensitivity means that only visually salient patterns can be detected,
while a low sensitivity allows even less salient patterns to be detected.

Our analysis approach here is similar to the one for C2; we analyze
the Euclidean distances between feature vectors of different degener-
ation levels (Sect. 4.2). The assumption is that with an increase in
degeneration, the distances between feature vectors and the feature vec-
tors for the non-degenerated base pattern follow a monotonic increase.

Fig. 5(b) shows a DDM for a variation of the Block-Diagonal Pattern
(4 blocks) and examples of increasing degeneration with the PointSwap
modification function. The matrix shows a monotonic increase in
distances from the proto-pattern to the degenerated matrix. For our
analysis of sensitivity, we only report a one pattern variation for ev-
ery base pattern. Tests with the other pattern variations showed only
small difference. Eventually, we obtained 150 DDMs, one for every
combination of the five base patterns and the 30 FDs.
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Fig. 6: Relations between degeneration levels and mean distance (red)
to base patterns.

In analyzing the monotony we (1) assess if there is any monotonic
increase or not. If the increase in not monotonic the respective FD is
very sensitive to any degeneration, i.e., the FD cannot accurately rank
matrices according to their amount of noise. (2) For monotonic plots,
we can then quantify the sensitivity of the FD: highly sensitive (fast
increase of distances) or tolerant (slow increase of distances).

Fig. 6 shows examples of monotonic increases of distances. The
x-axis shows the degeneration level, the y-axis shows the distance to
the average of one base-pattern vector. Each point in the plot represents
the distance of a sample. The red points and line represent average
distances. Fig. 6 (a) shows low sensitivity, (b) high sensitivity, (c)
medium sensitivity but with a high variation in the distances, and (d)
non-monotonically increasing distances.

To quantify monotony of the 150 DDMs and to better inform our final
choice, we calculated a quality metric for the monotony of a feature
descriptor F'D; and a base pattern P; as follows

1, (mean;.| —mean; +0.05) > 0;

monotony(FD;,P;) = VI € noise_levels.

0, otherwise

where mean indicates the average of feature vectors retrieved for
the noise level k. For monotonic increases, we then calculated the
sensitivity as the signed difference between the averaged vector for
each degeneration level, and the normalized equality function x = y.
sensitivity(FDj, P;) is high for sensitivity > 0 (fast increase), and low
(slow increase) for sensitivity < 0.

|noise_levels|—1 i
sensitivity(FD;, P;) = Z (meany, — (

= |noise_levels| ))

We show the results of our pattern sensitivity analysis for the point-
swap modification function in Fig. 8(c). Cross signs mean that the
respective FD did not yield a monotonic increase of distances. The
entire overview of our results for all degeneration functions and base
patterns, as well as every distance distribution, can be explored on our
interactive website>.

In summary, most feature vectors show low sensitivity (i.e., are
tolerant) to our masking function. However, for structural degeneration
(point-swap and index-swap), there are significant differences in the
sensitivity of all FDs. In most cases, a FD is tolerant for all or for none
base pattern. In our analysis, we found that MPEG7_COLOR_LAYOUT
and GABOR performed best across all modification functions.

5.4 Pattern Discrimination (C4)

Our last criteria focuses on how much an individual FD is able to
discriminate different patterns, i.e., blocks, lines, etc. High discrimi-
nation means that an FD allows distinguishing between patterns. The
respective DDM must show overall high values.

To measure discrimination for a given FD, we investigate pairwise
distances between all feature vectors v for every FD, across all patterns.
In order to obtain a single measure for all the pairwise differences per
FD, we report on the median values of distances (we cannot assume
distances to be normally distributed), as well as their scatter. High
median distances indicate high distances among feature vectors for
different patterns, suggesting a high ability to discriminate patterns.
High scatter means that this FD can discriminate only a few patterns.

3
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Fig. 7: Pattern Discrimination (C4): High mean values indicate high
distances between feature vectors for the individual patterns (CI=95%).
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Fig. 7 shows box plots with 25% and 75% quartiles for all FDs. A
median distance of 0.0 would mean that FDs, across patterns, look
all the same and hence this particular FD cannot represent the dif-
ference between patterns. A value of 0.5 means that FDs for dif-
ferent patterns are different by 50%. Our results suggest that most
measures are capable of producing different vectors for different pat-
terns. High discrimination is achieved with BLOCKS, EDGEHIST, and
LOCAL_BINARY_PATTERN. Small spreads are found for BLOCKS,
THUMBNAIL and MPEG7_EDGE_HISTOGRAM. FDs with smaller
discrimination and high spread (e.g. FAST or GABOR) may still show
differences between individual patterns.

6 FEATURE DESCRIPTORS FOR MATRIX PATTERNS

From our experiments, summarized across all criteria in Fig. 9, we
can now choose a purposeful subset of FDs that allows us to describe
our matrix pattern selection. The exact choice of FDs required for a
specific application may vary, but starting with our set of selected FDs
—the MAGNOSTICS set— is expected to be a suitable fit. We disregarded
FDs, which did not perform well with respect to our criteria C1-C4 or
were outperformed by another FD for the same pattern.

We generally found that some patterns, e.g., blocks or off-diagonal
blocks, appear to be easier to detect for our FDs than others, e.g., bands
and bandwidths. This may be due to the fact that these patterns are
(mostly) positioned around the diagonal/counter-diagonal. Especially,
for lines our FDs allowed for little translational invariance (shifts in
the x-/y- positions). For our selection we also found that we should
incorporate trade-off considerations between pattern response (C1) and
the pattern variability (C2), since for some patterns more variations can
be expected then for others.

In summary, we selected six FDs for MAGNOSTICS that we found
most purposeful according to our experimental comparison in the pre-
ceding section. For each FD we briefly describe its name, functionality,
which patterns it detects, and report on variability (C2), stability (C3),
discrimination (C4).

Block Descriptor M

We designed the BLOCKS descriptor as a heuristic to measure the block-
iness of matrix plots along the diagonal, thus allowing us to retrieve
matrices with a Diagonal-Block matrix form ™l The BLocks FD,
shows to be good in all the experiments (C1-4) with a F; score of 0.98,
a high variability of 0.48 and a good sensitivity score of 0.68 for all
degeneration functions.

In a sliding window approach, the descriptor linearly scans for rect-
angles of a minimum size (width/height) and density (black to white
ratio). Found blocks are iteratively enlarged if either the horizontal,
vertical and diagonal direction leads to a block density increase. In
a post-processing step we remove all blocks, which are fully covered
by other blocks. In contrast to the minimum density factor, we also
calculate a factor describing the separatedness/distinctiveness of a block
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Fig. 8: Analysis result overview for all FD and patterns: (a) C1: numbers present the F2-score; higher scores (darker) indicate better response to
the pattern, (b) C2: high values (darker) indicate higher variability between patterns, (c) C3: low values (darker) indicate lower sensitivity.
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Fig. 9: Result table showing all values. Colors correspond to criteria (blue=C1 (response), red=C2 (variability), brown=C3 (sensitivity)). Black
dots in each colored rectangle indicate our subjective ranking; 3 dots represent high ranks, 0 dots indicate low ranks.

and retain only those blocks which are perceptively distinct from the
surrounding.

a high variability of 0.46, but appears to be sensitive to index swaps.
An alternative choice for Off-Diagonal Blocks & can be the TAMURA
textual FD, which is significantly more sensitive to noise.

In a sliding window approach the FD constructs histograms of pixel
intensities, called local binary patterns (LBP) for a central pixel to N
neighboring pixels.
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The LOCAL_BINARY_PATTERN (LBP) texture descriptor [16] is clas-
sically used for background-foreground detection in videos. In our

experiments the descriptor showed to be responding to the off-diagonal Profile Descriptor &

block patterns &". In comparison to our BLOCKS FD, which is de-
signed for blocks along the matrix diagonal, LBP adds an additional
off-diagonal component to the MAGNOSTICS feature vector. It per-
forms well for the C1 and C2 experiments, with F2 score of 0.9 and

We designed the PROFILE descriptor with the aim to describe lininess
characteristics 5 (many/few short/long lines) in matrix plots. In our
experiments the FD responds with a perfect F, score of 1.0, and dis-
tinguishes clearly between the base pattern variations, thus leading


http://magnostics.dbvis.de/#/featurevectors/TEX_LOCAL_BINARY_PATTERN
http://magnostics.dbvis.de/#/featurevectors/SHAPE_BLOCKS
http://magnostics.dbvis.de/#/featurevectors/TEX_LOCAL_BINARY_PATTERN
http://magnostics.dbvis.de/
http://magnostics.dbvis.de/#/featurevectors/TEX_TAMURA
http://magnostics.dbvis.de/#/featurevectors/STRUCTURE_PROFILES

to a quite low variability score of 0.28. As all other FDs it reacts
moderately to noise. However, C1 and C2 make this FD especially
suited for query-by-example search tasks. The PROFILE FD computes
two axis-aligned histograms of the plot, where every matrix row, re-
spectively column, represents one histogram bin and the bin’s value
corresponds the number of black pixels within the respective row. In
order to achieve translation invariance (i.e., an otherwise empty matrix
with just one row/column line should be equally scored independent
of the line’s location) we are computing a standard deviation from the
profile histogram with the intuition that matrix plots with many lines
will show high values, while nearly empty matrices or highly blocky
matrices will show low values (few jumps).

S8 H R
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MPEG?7 Edge Histogram

The MPEG7 Edge Histogram FD [28] can be used to retrieve lines
along the diagonal K. It responds most often to the band pattern (F»
score of 0.92) and allows for some variability (0.42). As all other
FDs, MPEG7_EDGE_HISTOGRAM FD has problems to deal with pat-
tern degenerations, which might be due to the high specificity of the
pattern. The FD subdivides an image into 4 x 4 sub-images. From
each sub-image an edge histogram (5 bins with vertical, horizontal, 45-
degree diagonal, 135-degree diagonal and non-directional edge types)
is extracted [47].
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Color and Edge Directivity Descriptor (CEDD)

The CEDD descriptor [8] showed a good response to the bandwidth
pattern. It incorporates color and texture information in a histogram
form. While the texture information uses the same MPEG7_EHD
implementation as described above, the color histogram is constructed
from an adaptive binning of the HSV color space.
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Although, CEDD does not have the best scores in our MAGNOSTICS
evaluation (F; of 0.81, Variability of 0.48), we decided to include the
CEDD FD. Similar to the closely related FCTH, CEDD outperforms
the other FDs in terms of variability, which is an important factor for
bandwidth patterns ( K). These patterns are often the result of graph-
based reordering methods (e.g., the Cuthill-McKee matrix reordering),
which enumerate row-/column permutations in a breath-first search
leaving an envelope shape behind.

Haralick Texture Descriptor

The HARALICK FD [15] is one of the classical texture descriptors for
images. It responds quite reliably to the noise anti-pattern For
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Fig. 10: Query-By-Sketch interface for exploring large collections of
matrix plots. The user can sketch in the canvas (1) an approximated
matrix pattern and retrieve a ranked result list (2) according to a selected
MAGNoOsSTICS FD (3).

this pattern we conducted only the C1 experiments, since C2-C4 are
not meaningful. We decided to include Haralick even though its F>
score is only 0.83, which is less accurate than three other color intensity
approaches (GLOBAL_COLOR_HISTOGRAM,

Fuzzy _HISTOGRAM,

COMPACTNESS). However, Haralick is generally more expressive
and reliable allowing to quantify a greater variety of noise levels.

We also experimented with our own STATISTICAL_ SLIDINGWIN-
DOW noise descriptor, which regards the sliding window values as a
time series of differences for subsequent regions in the image. On this
time series we calculated average, variance, and standard deviation.
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7 APPLICATION SCENARIOS

In this section, we report on two use cases that apply the MAGNOS-
TICS FDs to support exploration of large matrix view data, specifically
searching in a database of networks and matrices, and analyzing net-
work changes over time. In both cases, MAGNOSTICS helps to retrieve
information (matrices, or changes in a series of matrices) relevant to
the respective task.

7.1 Searching in Collections of Networks

Large collections of networks may occur in many applications. As an
example, von Riiden reports in [44] about existing matrix collections
from the high-performance computing domain with more than 290,000
matrix plots with the analysis goal to retrieve matrices with similar
patterns. Another example of large matrix collections is the results of
the cross-product between networks/tables and their matrix reordering
algorithms as presented in [4].

For the retrieval of similar patterns we developed a prototypical
query-by-sketch interface, depicted in Fig. 10, which can also be ac-
cessed online*. The query-by-sketch interface allows the user to de-
scribe intuitively the expected visual patterns by drawing a sketch of a
sought matrix pattern (Fig. 10 (1), and receiving a ranked list of similar
images (Fig. 10 (2)) according to one or multiple selected feature de-
scriptors (Fig. 10 (3)). For each individually selected FD the feature
vectors of the sketch image and the database images are compared
(Euclidean distance) to retrieve a ranking score. The MAGNOSTICS
FD set is also available: Here, a derived six-dimensional feature vector
is constructed by calculating the Distance-to-Base-Pattern for every
individual MAGNOSTICS FD. The query image feature vector is sub-
sequently compared with the Euclidean distance to the image feature
vectors in the database.

Fig. 10 shows an example using the BLOCKS descriptor for the
matrix reordering data set collection with 4,313 matrices [4]. Matrices
show several blocks for the drawn sketch.

“http://magnostics.dbvis.de/#/sketch
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Fig. 11: Detail from a dynamic network representing brain connectivity
(300 time records).

7.2 Dynamic Network Analysis

Another challenge in the realm of large data collections are networks
changing over time; every time step represents the network at a different
time instance. Fig. 11 shows 11 matrices from a dynamic brain connec-
tivity network, usually comprising around 300 time points (individual
matrices). Brain connectivity refers to the co-variance (connection)
between activity in brain regions (regions of interest, ROI). Neuroscien-
tists are specifically interested in clusters (Blocks) and their evolution,
as well as in identifying noisy time periods. Here, a time point repre-
sents 2-seconds, and dark cells indicate high connectivity (binarized to
obtain un-weighted network). Rows and columns in the matrices are
ordered to optimize the visual patterns independently for each matrix.

To find time points with major changes with respect to noise and
blocks, we first calculate a feature vector v; for every matrix (time
point) #; with HARALICK (noise) and another one with BLOCKS. Then,
we calculate the difference for each feature vector v; and the following
time step v;y (separately for both HARALICK and BLOCKS). High
distances indicate high changes between two consecutive time points,
low distances indicate little change (with respect to noise).

Fig. 11 shows both distances plotted (red=BLOCKS,
blue=HARALICK).  For noise we can observe major differ-
ences between time points 11-14, while the type of blocks changes
most between time points 6-8. Both changes are observable in the
respective matrices. Further, we observe, between 9 and 15, a constant
change (constant distances) for the BLOCKS FD (red), indicating a
salient trend; a possible explanation could be the change from two
separate blocks (clusters) to one larger block.

8 DISCUSSION AND EXTENSIONS

Quantifying patterns in visualizations is an active research field with
varying approaches. While pattern measures can also be derived from
the data space, in our case by graph analysis, MAGNOSTICS follows
the idea to take advantage of screen-space measures. This has the
advantage that a direct correspondence to the human perceptual system
can be constructed.

With MAGNOSTICS we propose an initial set of feature descrip-
tors which showed appropriate based on certain desirable criteria (see
Sect. 4.4) and showed useful to support ranking, searching and cluster-
ing of matrices (see Sect. 7).

8.1 Defining and Retrieving Interesting Matrix Views

While we have focused on six specific patterns and their variations, we
believe our criteria and methodology from Sect. 4 will allow for the
selection of FDs for different patterns including directed and weighted
networks, as well as application specific patterns. Also, higher-level
visual characteristics of matrices, such as the degree of “clumpy-ness”
could be investigated with our MAGNOSTICS evaluation approach.
Further criteria for an effective MAGNOSTICS FD could also be
considered. For example, the human users’ assessment of feature
descriptor quality in light of matrix exploration tasks could influence
the FD selection process in a user-centric fashion. For example, lines
may still be visible to humans, though the algorithms may not detect
them and vice versa. It may also be interesting to link MAGNOSTICS
analysis with interactive matrix exploration techniques. For example,

the NodeTrix approach [17] includes node-link views aside the matrices,
hence we would also need to include FDs for node-link views to jointly
rank interesting views.

A scenario we have not followed further, but which is described
in Scagnostics [46], is to present matrix views that are most different
from the others, i.e., outlier views. Since MAGNOSTICS is based on the
distances between feature vectors, it is straightforward to cluster matrix
views based on the feature-vector distances and to report on more
common views and outliers. Finally, MAGNOSTICS can be embedded
in interactive approaches, in that FDs get weighted either explicitly by
the user, or implicitly by a function analyzing an user’s preferences
while navigating the matrix space.

Given that FDs and their corresponding distance functions are the
basis for many data analysis tasks, more application scenarios as the
presented can be supported. In this work we considered ranking and
searching tasks. Other potentially useful applications include the clas-
sification of matrix views according to expected classes, according to
user interest or the clustering of matrix views.

8.2 Novel Image Measures for Matrix Diagnostics

Another open question remains the development of novel feature de-
scriptors for matrices. As described in the previous section, there may
be more visual patterns important to users of matrix analysis. While
our FDs are global, a natural extension would be to consider local FDs,
focussing on specific subnetworks. Furthermore, we considered adja-
cency (binary) matrices, but MAGNOSTICS could be extended with FDs
also for continuous matrices (e.g., representing weighted networks).

Finally, we mention that the MAGNOSTICS framework can easily
be applied to evaluate existing matrix reordering algorithms in terms
of the visual patterns they produce. Our approach could even inform
the design of new reordering algorithms which aim to optimize matrix
views for certain user-dependent patterns of interest.

9 CONCLUSION

We introduced MAGNOSTICS, an experimentally validated set of view
descriptors aiming to guide exploration of large network collections,
represented as matrix views. Starting from a set of 30 feature descrip-
tors, including three novel specifically designed FDs, we identified a
set of six useful FDs for the analysis of visual patterns in matrices.
The selection of descriptors was guided by a structured and explo-
rative methodology, using a novel large matrix benchmark data set
and based on four quantifiable criteria: (1) pattern response, (2) pat-
tern similarity, (3) pattern sensitivity and (4) pattern discrimination.
We demonstrated how MAGNOSTICS can be applied in an interactive
ranking and searching tasks, and to analyze time series of networks.
MAGNOSTICS complements the set of previous feature-based analysis
frameworks in the context of Visual Analytics tools.
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