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Figure 1: Visual matrix of numerical data (a) ordered randomly (b) and with three algorithms (c-e) revealing different patterns.

Abstract

This survey provides a description of algorithms to reorder visual matrices of tabular data and adjacency matrix of networks.
The goal of this survey is to provide a comprehensive list of reordering algorithms published in different fields such as statistics,
bioinformatics, or graph theory. While several of these algorithms are described in publications and others are available in
software libraries and programs, there is little awareness of what is done across all fields. Our survey aims at describing these
reordering algorithms in a unified manner to enable a wide audience to understand their differences and subtleties. We organize
this corpus in a consistent manner, independently of the application or research field. We also provide practical guidance on
how to select appropriate algorithms depending on the structure and size of the matrix to reorder, and point to implementations

when available.

Categories and Subject Descriptors (according to ACM CCS):

Techniques—

Visualization [Human-centered computing]: Visualization

1. Introduction

A Visual Matrix or Matrix Plot is a visual representation of tabular
data also used to depict graphs and networks by encoding visually
an adjacency matrix. This representation has been used for almost a
century in many domains: biology, neurology, social science, sup-
ply management, transportation and artificial intelligence. While
most network exploration tools today leverage node-link diagrams,
several studies demonstrated that matrix representations are more
effective for several low-level tasks [GFC04] (e.g., finding if two
vertices are connected or estimating the network density) and graph
comparison [ABHR*13], especially when networks become larger
and denser.

Since matrices represent connections between vertices by a cell
at the intersection of a row (source vertex) and a column (target
vertex), they do not suffer from occlusion and link crossings as
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node-link diagrams do. While low-level tasks do not necessarily
require to reorder rows or columns [Ber73, GFCO04], higher-level
tasks, such as identifying groups or highly-connected vertices, do
require a reordering of rows, respectively columns, to reveal higher
order patterns. Figure 1 illustrates how a good ordering can reveal
blocks along the diagonal of the matrix, indicating densely con-
nected groups in the network. The choice of the ordering highly
influences which visual patterns are visible, thus proving a critical
factor for exploration and analysis.

Historically, matrix reordering was done manually, with "the
eye of the artist" [Ber73] and prove to be an extremely tedious
task [Liil0]. The exploration, as well as evaluation of the re-
sults, was implicitly done in the process [PDF14]. Today, nu-
merous automatic reordering algorithms are described in the lit-
erature [Liil0, MMLO7a]. Such automated matrix reordering ap-
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proaches provide much faster results, the ability to order large ma-
trices, and sometimes can even seek to reveal specific patterns in the
data [WTCO08]. In most cases, respective papers report on bench-
marks of calculation complexity and run-time. Some of them in-
cluding pictures of resulting matrices for individual algorithms or
subsets. However the problem of assessing the quality of an order-
ing remains the same; similar to layout algorithms for node-link
representations of graphs, knowing which patterns are artifacts of
the algorithms and which patterns represent structure in the data is
crucial [MBK97]. To the best of our knowledge, there is no coher-
ent survey of reordering algorithms for matrices available today.
Moreover, there exist no visual comparison or methodology that
allows for evaluating the patterns and artifacts each reordering al-
gorithm produces.

In this survey, we describe the main algorithms published for the
purpose of finding a proper order for the rows and columns com-
posing a visual matrix. For each of the six groups of algorithms
we could establish, we illustrate the underlying ordering principles
and discuss pictures of matrices for a set of different graphs. The
problem of finding a good ordering for the vertices of an adjacency
matrix is known with multiple names: seriation, reordering, linear
layout, layout, linear ordering, linear arrangement, numbering, la-
beling, and ordering. In this document, we simply call it reorder-
ing, but these terms can be used interchangeably when the context
is not ambiguous since they are mostly an artifact of their history.
However, the multiplicity of terms testifies of the wide variety of
domains that have studied the problem, and this survey tries to sum-
marize and organize this wide diversity.

While we focus entirely to network data (symmetric matrices),
we found that several ordering methods can similarly be applied
to table data. However, table data can produce visual patterns with
different interpretations and meaning; thus their description and vi-
sual analysis remains future work.

1.1. Related Surveys

There has been several prior surveys describing matrix reorder-
ing approaches. Liiv’s overview [Liil0] summarizes the most com-
mon reordering methods, highlighting the historical developments
in various affected domains. Similarly, Wilkinson and Friendly
present an abstract of the history of cluster heatmaps [WF09]. Also,
Wilkinson describes in “Grammar of Graphics” [Wil05] the pro-
cess of creating a range of visual base patterns (cf. Section 2.3)
and compares four reordering approaches with regards to their re-
trieval performance. Influential for our evaluation approach is the
work of Mueller et al., which focuses on interpreting and describing
structures in matrix plots [Mue04, MML0O7b, MMLO07a]. Although
related, none of these works provide empirical evidence of the in-
dividual reordering performances with respect to (i) specific user
tasks and (ii) the data set characteristics.

1.2. Methodology

In contrast to the historically inspired matrix reordering surveys we
are developing our categorization from an algorithm-agnostic point
of view. Specifically, we are contributing considerations about the
expected visual patterns that can result from the algorithm’s inher-
ent design and the problem space from which a solution is derived.

For our empirical comparison, we chose graphs from three dif-
ferent categories: (i) a set of graphs commonly used to benchmark
matrix reordering algorithms [Pet03], (ii) a set of systematically
generated graphs in order to test for specific graph characteris-
tics, such as density or number of clusters, and (iii) a set of real
world graphs (social networks, brain connectivity networks). For
any of our 150 graphs, we generated an ordered matrix plot which
we used as input for our performance measures. This let us with
a total of 4348 matrix plots as basis for our comparison. Graphs
and matrices shown in this survey represent a purposeful selec-
tion. The complete browsable collection can be found online at
http://matrixreordering.dbvis.de.

1.3. Outline

In the reminder of this article, we start with a background on matrix
reordering methods and challenges. We then provide an extensive
survey on existing algorithms. We review and divide 35 exemplary
matrix reordering implementations into six major categories, as dis-
cussed in Section 3, such as Robinsonian-, Spectral-, Dimension
Reduction-, Heuristic-, Graph-Theoretic-, and Bi-Clustering. Then,
we report on our comparative analysis and discuss the results. We
conclude with a list of guidelines, which algorithm to choose for
specific data sets and characteristics, as well as suggestions for fu-
ture studies.

2. Background

This section introduces definitions and concepts that we rely upon
to describe matrix reordering algorithms. The third subsection also
presents 4 visual patterns and 2 anti-patterns one can identify in
visual matrices. We use these patterns to illustrate and compare the
algorithms.

2.1. Definitions

A graph G is a couple (V,E) where V is a set of vertices, and E is
a set of edges where:

V= {V07"' 7Vn}7
E={ep, - em},e €V’ (1)

A directed graph is a graph where the two vertices associated
with an edge are considered ordered. An undirected graph is a
graph where the vertices associated with an edge are not ordered.

‘We use the term network to describe the graph topology as well
as attributes associated with vertices (e.g., labels), and attributes
associated with edges (e.g., weights). Most networks used in this
survey have names associated with vertices, and positive weights
associated with edges. A weighted graph Gy adds a weight func-
tion w(e) to G so that:

w(e;) = wy, with w; € RT )

An ordering or order is a bijection ¢(v) — i from v € V to
i € N={1,---,n} that associates a unique index to each vertex.
We use @ to describe one specific ordering from the set of all pos-
sible orderings. A network usually comes with an arbitrary ordering
reminiscent of its construction or storage. We call that order the ini-
tial order noted @g(v) to distinguish it from a computed order. A
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Figure 2: A Simple Labeled Graph and its Adjacency Matrix

transformation from one ordering to another is called a permutation
7. Formally, a permutation is a bijection (x) — y such that:

(%) =i, (x,y) € N? where y; =y; =i=j 3)

It is usually implemented as a vector containing » distinct indices
in N. We call S the set of the n! possible permutations for n vertices.
A permutation can also be represented as a n X n matrix P with all
entries are 0 except that in row i, the entry 7(i) equals 1.

An adjacency matrix of a graph G, as depicted in Figure 2, is
a square matrix M where the cell m; ; represents the edge (or lack
of) for the vertices v; and v;. It is equal to 1 if there is an edge
e = (v;,v;) and 0 otherwise. When the graph is weighted, m; ; rep-
resents the weight (for clarity purposes, we restricted weights to be
strictly positive in Equation 2).

mj |
M=| : . @)

min

my | Mp.n

A bipartite-graph or bi-graph is a graph G = (V1,V,,E) where
the vertices are divided into two disjoint sets Vi, V>, and each edge
e connects a vertex in Vj to a vertex in V;:

V=ViUW,ViNV, =0suchthate € E=V; x V, (&)

The adjacency matrix of a bi-graph is generally rectangular, com-
posed of V; in rows and V, in columns to limit empty cells. We
consider a general data table, such as data presented in spread-
sheet form, a valued bi-graph. A classic example of a bi-graph is a
document-author network with a single relation is-author connect-
ing authors to documents. The adjacency matrix of such bi-graph
includes authors in rows (respectively in columns) and documents
in columns (respectively in rows), a value of 1 marking the author-
ing relationship, and a value of O otherwise.

2.2. Related Concepts

In addition to the previous definitions and notations, this survey fre-
quently bridges graph concepts with linear algebra concepts. Since
readers might not be familiar with these relationships, we summa-
rize them here, introducing concepts often used in this article.

Adjacency matrices typically bridge graph theory and linear al-
gebra, allowing the interpretation of a graph as a multidimensional
(n-dimensional for n vertices) linear system, and vice-versa. We list
below several interrelated properties of networks when considered
as adjacency matrices.

e When encoded as an adjacency matrix, a vertex becomes an n-

dimensional vector of edges (or edge weights). When the net-
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work is undirected, the matrix is symmetric and the vectors can
be read horizontally or vertically. Otherwise, two vectors can be
considered: the vector of incoming edges, and the vector of out-
going edges.

Since vertices are vectors, a distance measure d(x,y) can be
computed between two vertices (x,y) € V2 (or a similarity or
dissimilarity measure s(x,y)). For example, the Euclidean dis-
tance Ly: d(x,y) between vertices x and y is:

Y e—w)? (6)

k€E[1,n]

L2(x7y) =

Several reordering algorithms use a distance matrix (or sim-
ilarity matrix) as input, which is a square matrix D contain-
ing the pairwise distances between multiple vectors. From the
n X n adjacency matrix of an undirected graph, one symmetric
distance matrix can be computed of size n X n. From a gen-
eral n-rows X m-columns matrix, two distance matrices can be
computed: one of size n x n for the rows (m-dimensional vec-
tors we will call A), and one of size m X m for the columns
(n-dimensional vectors we will call B). A distance matrix is al-
ways symmetric and positive (it is positive-definite mathemati-
cally speaking).

A particularly important distance matrix is the graph distance
matrix, which contains the length of the shortest path between
every pair of vertices for an undirected graph. Note that a dis-
tance matrix or more generally a positive-definite matrix can also
be interpreted as an adjacency matrix of a weighted undirected
graph. Note also that any symmetric matrix can be interpreted as
an adjacency matrix of a valued undirected graph (a graph where
each edge has an associated value).

From any undirected graph, or positive-definite matrix, many
graph measures can be computed. These can serve as objective
functions to minimize or as quality measures of reordering algo-
rithms. We describe three key measures below: bandwidth, pro-
file, and linear arrangement.

Let us call A(u,v) the length between two vertices in
G, given a one-dimensional alignment of the vertices ¢:

M(u,v),0,G) = |o(u) — 0(v)].

Bandwidth BW is the maximum distance between two vertices
given an order @.
BW(0,G) = max A((«,v),9,G) ©)
(u,v)EE
Intuitively and visually, when looking at the adjacency matrix
of an undirected graph (a symmetric matrix), the bandwidth
is the minimum width of a diagonal band that can enclose all
the non-zero cells of the matrix. A small bandwidth means
that all the non-zero cells are close to the diagonal. Therefore,
a quality measure is MINBW, the minimum bandwidth of a
graph MINBW(G) = argmin,. (BW (¢, G)).

Profile PR is:

PR0.) = ¥ (o0 min o)) ®

uev vel(u

where I'(u) = {u} U{v € V : (u,v) € E}. Intuitively and vi-
sually, the profile is the sum, for each column i of the ma-
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trix, which can be intuitively understood as the “raggedness”:
the distance from the diagonal (with coordinates (i,i)) to
the farthest-away non-zero cell for that column (with coor-
dinates (i, j)). It is a more subtle measure than the band-
width because it takes into account all the vertices and not
only the vertex with the largest length. The minimum profile
is MINPR(G) = argminy. (PR(¢", G)).

Linear arrangement LA is the sum of the distances between
the vertices of the edges of a graph:

LA(9,G)= ) Muv),906). ©)
(u,v)EE

It is an even more subtle measure than the profile since it
takes into account all the edges. The minimum linear ar-
rangement is MINLA (G) = argminy « (LA(9*,G)). MINLA
is an established performance measure for matrix reordering
algorithms [Pet03], since it targets a block-diagonal form of
the matrix (cf. Section 10).

2.3. Patterns and Anti-Patterns in Matrices

Formally, reordering an undirected network G consists in comput-
ing one permutation T € S that maximizes or minimizes an objec-
tive function g(m, G), such that:
argming(m,G) (10)
neS
For example, g can compute the sum of distances d(x,y) between
vertices according to the order 7; Equation 10 would find & € S that
minimizes this sum.

A brute-force approach to return an optimal solution for a sym-
metric matrix would require n! computations, which renders im-
practical when n gets large. Even for n = 10, computing a global
optimum would take 18.29 hours on a computer that evaluates 10*
permutations per millisecond. For an 11 x 11 matrix, it would take
92.21 days, while a 12 x 12 matrix would take 36.38 years. Since
a directed network requires two permutations, one T, for the rows
and one T, for the columns, a brute-force approach would actually
require n! X m! computations.

In addition, there is no consensus of an objective function ¢ in
the reordering literature. Therefore, we cannot understand the re-
ordering problem as a pure optimization problem, and need to con-
sider reordering algorithms according to the structures they reveal
visually. Therefore, the goal of matrix reordering is to make visual
patterns emerge, which represent data properties of the underlying
network. To understand why this is possible, it is essential to real-
ize that the order of matrix rows and columns can be freely changed
without changing the data in the matrix.

Bertin [Ber73, Ber81] developed several important ideas about
the distinct levels of information contained in data displays and
the user tasks—he uses the term questions—that refer to the respec-
tive levels [Ber73, p. 141]. He mentions (i) an elementary level,
comprised of individual graphic elements and the task to under-
stand their specificities; (ii) an intermediate level, for the compar-
isons among subsets of graphic elements and the discovery of ho-
mogeneous information parts; and (iii) an overall level, comprised

of overall trends and relations. As a result, the analysis of visual
patterns in matrices is important, since these patterns can be inter-
preted in the user’s analysis context, i.e., they relate to an analysis
question and task at hand, and second, since they constitute the core
information of a matrix plot, they allow the analyst to interpret and
reason about their presence or salience.

Ghoniem et al. [GFC04] found that a range of overview tasks,
such as estimating the amount of nodes or edges, or lower level
tasks such as finding the most connected node, can be answered
with matrices independent of the matrix ordering. On the other
hand, higher level tasks about the specific topology of the network,
require an appropriate reordering of rows and columns. The graph
task taxonomy of Lee [LPP*06] states eight specific tasks which
can be particularly well facilitated with matrices: retrieving (spe-
cific) nodes, edges; finding connected components and clusters; as-
sessing distributions and cluster memberships, retrieving of (adja-
cency) relationships and general topology estimations.

Extending Wilkinson’s [Wil05] and Mueller et al. [MMLO07b]
work, we list below main visual patterns in visual matrices, along
with their graph-theoretic interpretations and associated user tasks.

Block Pattern (P1M.): Coherent rectangular areas
appear in ordered matrix plots whenever strongly
connected components or cliques are present in the
underlying topology. The figure shows 4 discon-
nected cliques (complete sub-graphs) containing
4, 3, 2, and 1 vertices. Mathematically, these matrices are called
block-diagonal matrices.

Block-diagonal forms are central in the analysis of matrices, since
they directly relate to partitioning and grouping tasks of the data.
Blocks visually represent that their contained vertices share a simi-
lar connection characteristic. In a network analysis scenarios these
blocks would be referred to as cohesive groups or clusters. Clear
block patterns help counting clusters, estimate cluster overlap and
identify larger and smaller clusters. Furthermore, many networks
show block patterns with missing cells, meaning that clusters have
missing connections (i.e., holes) or being connected to other clus-
ters (i.e., off-diagonal dots).

i T emm  Off-diagonal Block Pattern (P2&Y): Off-diagonal
. coherent areas correspond to either sub-patterns of
: a block pattern or relations in a bi-graph. In the
«. first case, the off-diagonal pattern would be visi-
ble in addition to the previous block pattern, and
show connections between cliques.
Off-Diagonal blocks map to the user task of understanding how
groups/entities are connected. In the graph task taxonomy of
Lee [LPP*06], this pattern would allow approaching adjacency as-
sessment and overview tasks. In the case of a bi-graph, the off-
diagonal pattern would show consistent mappings from e.g., a set of
authors to a set of documents. Just like the diagonal block pattern,
off-diagonal blocks can contain missing connections.

10

e Line/Star Pattern (P3M): Continuous horizon-
tal and vertical lines are present in matrix plots if
; a vertex is strongly connected to several distinct
. other vertices.

10 This pattern helps the analysts to understand and

1T
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Matrix Reordering

R
(Statistic)

Spectral —

Dimension
Reduction

Heuristic

Approaches Niermann [Nie05], Wilkinson [Wil05]

Robinson [Rob51], Kendall [Ken63], Eisen et al. [ESBB98], Gelfand [Gel71], Hubert [Hub74],
Brusco and Stahl [BS05], Brusco and Stahl [BS06], Brusco et al. [BKS08], Gruvaeus and Wainer [GW72],
Bar-Joseph et al. [BJGJO1], Wilkinson [Wil05], Brandes and Wagner [Bra07], Behrisch et al. [BKSK12]

Sternin [Ste65], Friendly [Fri02], Friendly and Kwan [FKO03], McQuitty [McQ#68], Breiger et al. [BBA75]
Chen [Che02], Atkins et al. [ABH98], Koren and Harel [Kor05]

_—_ Harel and Koren [HK02], EImqvist et al. [EDG*08], Liu et al. [LHGYO03], Spence and Graef [SG74],
Rodgers and Thompson [RT92], Hill [Hil74, Hil79]

Deutsch and Martin [DM71], McCormick et al. [MDMS69, MSW72], Hubert and Golledge [HG81],

Sloan [Slo86, Slo89], Harper [Har64], Harel and Koren [HKO02], Rosen [Ros68], Cuthill and McKee [CM69],

Graph George [Geo71], Liu and Sherman [LS76], Chan and George [CG80], King [Kin70], Gibbs et al. [GPS76],

Theoretic

Interactive
User-Controlled

-—

Leung et al. [LVW84], Lozano et al. [LDGM12,LDGM13], Pop and Matei [PM14], Lenstra et al. [Len74,LK75],
Bentley [Ben92], Henry-Riche and Fekete [HF06]

[ Biclustering _ Hartigan [Har72], Cheng and Church [CCO00], Lazzeroni et al. [LO*02], Turner et al. [TBK05],
Murali and Kasif [MKO03], Kaiser [Kai11], Prelic et al. [PBZ*06], Jin et al. [JXFDO08]

Bertin [Ber73,Ber81], Perin [PDF14], Brakel and Westenberg [BW13], Roa and Card [RC94], Siirtola [Sii99],
Makinen and Siirtola [MS00], Caraux and Pinloche [CP05]

Figure 3: The taxonomy of the reviewed algorithms. For each algorithm the taxonomy reports first author, the year and the corresponding

bibliographic reference is given.

reason on the general connectivity aspects within the network. In
a network analysis scenario lines would refer to hubs, i.e., nodes
with many connections. The length of a line thereby indicates the
number of connections (node degree).

Cam T Bands Pattern (P4N): Off-diagonal continuous
lines refer to paths and cycles, or meshes in a net-
work. They represent a set of vertices with a few
connections to other vertices. Visually, this pattern
can be regarded as a special case of the line pat-
tern and is useful whenever (adjacency) relationships and connec-
tivity aspects are in the user focus [LPP*06]. In a network analysis
scenario bands would refer connection paths and transition chains,
where the width of the band visually depicts how many distinct
paths could be taken through the network.

Cramm ) Noise Anti-Pattern (A1 Noise (also called
H - salt-and-pepper) is the classic anti-pattern for a
matrix plot. It can be found whenever the row-/
column ordering is not able to reveal the underly-
ing graph topology or if simply no structure exists.
However, submatrices can occur to be noisy, even if other submatri-
ces show structure. Moreover, a matrix can be noisy or show struc-
ture on different levels: locally, i.e. for subgraphs (submatrices),
and globally, i.e. the entire graph (matrix).

The distinction between anti-patterns and the mentioned (inter-
pretable) visual patterns helps the analyst to develop an overview
about the topological aspects of the network at hand.

w0y  Bandwidth Anti-Pattern (A2K): Bandwidth- or
sparsity patterns visually group non-zero elements
(connections) within an enclosure around the diag-
onal. This pattern adds little interpretation asset to
the matrix plot if the inner part of the bandwidth

(© 2016 The Author(s)
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enclosure reveals no structure. Bandwidth patterns are typical for
breadth-first search algorithms where the outer border depicts the
stop criterion of the enumeration (cf. Section 8).

However, similarly to the noise anti-pattern, bandwidth patterns al-
low to reason on the absence of (expected) topological aspects and
facilitate thus overview and exploration tasks [LPP*06].

Any graph motif has a corresponding visual pattern in a visual
matrix, and we only described the most important ones above. Real
world graphs exhibit a mixture of overlapping patterns appearing
at different scales. Hence, the visual patterns we describe are not
always clearly discernible (Figure 1) and may appear merged to-
gether. Reordering algorithms take into consideration different as-
pects of the topology, inducing different patterns. Others directly
optimize for specific patterns. Note that several of these algorithms
however fail to reveal any pattern or introduce visual artifacts.

2.4. Implementations

Most of the reordering algorithms are available in public libraries,
although no library implements them all yet. The Reorder. js
[Fek15] library provides many algorithms in JavaScript. The
R packages ‘corrplot’ [Weil3], ‘biclust’ [KLO8] and seri-
ation [HHBO8] provide a large number of seriation algorithms for
tabular data. Several graph algorithms are available in the C++
Boost library [SLLOI1].

3. Classification of Algorithms

We now survey algorithms for matrix reordering. Our coverage is
not exhaustive but biased towards impact publications in the re-
spective sub-domains. There is also a large number of methods to
speed-up or otherwise improve some algorithmic approaches, but
we try to capture the most important concepts and algorithms here;
the details can be found in the original articles that are cited.
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Figure 4: General process of reordering matrices: After an optional partitioning phase of the input data (1), the data is transformed into a
problem space related representation (e.g., graphs) (2). Within this problem space, the reordering approaches determine a valid permutation
(3) and assess the reordering based on an algorithm-specific quality criterion (4). If a sufficiently good ordering is found the matrix is

reordered accordingly (5).

For the purpose of simplicity and understandability, we decided
to group the algorithms into seven algorithmic families that arise
from the inherently shared reordering concept, as depicted in our
taxonomy in Figure 3. While all algorithms share the same objec-
tive of deriving an appropriate matrix reordering, every algorithm
itself comprises its own design considerations and decisions.

Our classification of algorithms is tailored to the central goal
of providing guidance on what algorithm to use depending on the
dataset characteristics (e.g., size and structure). During our research
we examined different taxonomies and orthogonal dimensions to
describe algorithms in a comprehensive way; the domain they were
developed in, the mathematical background, and the kind of infor-
mation used to determine the distances between vertices (rows and
columns). However, we found that none of those taxonomies was
expressive enough while remaining simple to classify algorithms.
Overall, we derived orthogonal taxonomy families/groups wher-
ever possible, but also use the concept of overlapping and meta
families to stress the importance of shared concepts or to empha-
size particular features.

3.1. Multiple Ways of Reordering

We classify the algorithms for computing these permutations, de-
pending on the stages and intermediate objects required to perform
the computation. Figure 4 outlines the steps involved in reordering:

1. Partition the network into connected components and apply the
reordering in each component separately. For the final matrix,
the components are usually concatenated by decreasing sizes.

2. Transform the data into intermediate objects, such as distance

matrices, Laplacian matrices, or Eigenvector spaces.

. Create a permutation from those intermediate objects,

4. Assess the quality of the obtained permutation. If unsatisfactory,
create a permutations, otherwise

5. Apply permutation to the matrix, i.e. reorder rows and columns
in the original visual matrix.

w

The following sections will explain which intermediate objects
as well as permutation and quality assessment methods each algo-
rithm group employs.

4. Robinsonian (Statistic) Approaches

DATA INTERMEDIATE OBJECTS ORDERED
@ MATRIX
/ permute() Y ) N

> i O Dl
l"—'r: :i permute()
i SR & &

Adjacency Matrix  Distance Matrix
(Pre-robinsonian) (Pre-robinsonian)

Robinsonian

Figure 5: Robinsonian Matrix Reordering.

The fundamental idea of all Robinsonian approaches is to reorder a
matrix so that similar rows (resp. columns) are arranged close and
dissimilar rows (res. columns) are placed farther apart.

Robinsonian methods compute a similarity matrix from the A
vectors (resp. B) of the (adjacency) matrix M. They then try to
compute a permutation T, (resp. ) to transform these similarity
matrices into a Robinson matrix or R-matrix. An n X n symmetric
matrix R is called a Robinson similarity matrix if its entries de-
crease monotonically in the rows and columns when moving away
from the diagonal, i.e., if:

Ri,jSRi‘k forj<k<i (11)
R,',j ZRi,k for i < Jj <k

If instead of computing a similarity we compute a distance, then
the entries should increase monotonically, but the principle remains
identical. This property means that similar vertices are as close as
possible in a consistent way.

When a similarity matrix can be permuted to become an R-
matrix, it is called a Pre-robinsonian matrix (Pre-R) (see Fig-
ure 5 (middle)). The challenge is to find the permutation. When
found, this permutation can be applied to the similarity matrix as
shown in the Figure 5 (middle), but also to the original matrix M.

However, there are similarity matrices that are not Pre-R; in other
words, not all the similarity matrices can be permuted to become an
R-matrix. For real world cases, very few matrices are in fact pre-R.
Therefore, two problems arise:
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1. When a matrix is Pre-R, how to compute the permutation that
transforms it into an R-matrix form?

2. When a matrix is not Pre-R, what is a good approximation of an
R-matrix and how to compute it?

It turns out that there is a solution to the first question that has
been ignored until recently by the statistical community [ABH98].
However, it does not address the second question at all. Therefore,
the heuristics developed to approximate the general Robinsonian
problem are still useful since they provide many solutions poten-
tially applicable to the second question.

Distance/Similarity Measures

The first step to all the traditional Robinsonian algorithms con-
sists in computing the similarity matrices from the (adjacency) ma-
trix. Computing a distance—alike the similarity—matrix is always
quadratic in time and space, and it implies choosing a measure. For
distances, classical measures include the well-known norms Lp:

Lp(xy) = (¥ (=) /7. p >0 (12)
k=1

The most used are L, L, (see Equation 6), and L~ that simplify
as Ly (x,y) = X [xk — yil and Loo (x,y) = maxg (| — yel)-

The choice of the measure may not be considered arbitrarily and
has significant impact on the visual appearance of the matrix to be
calculated. Since this aspect relates also to other matrix reordering
families we will discuss distance metrics and parameterizing algo-
rithms in Section 11.2.

Algorithms and Variations

We now survey the three main approaches to compute a good per-
mutation for the Robinsonian problem: greedy algorithms, cluster-
ing, and optimal-leaf ordering. Almost all algorithms in this group
have to deal with the problem of potentially retrieving a local op-
timal solution, since a full enumeration of all permutations in the
problem space is mostly infeasible. Few algorithms exist that are
able to retrieve perfect anti-Robinson structures. These methods are
not practical, due to their runtime, but provide an upper bound to
this family of algorithmic methods. For example, the Branch-and-
Bound algorithm or the Heuristic Simulated Annealing approach
from Brusco and Stahl [BS05, BKS08] are able to retrieve global
optimum solutions for up to 35 nodes and 35 %35 connections with
CPU times ranging from 20 to 40 min [BSO0S, p. 263].

(a) Greedy Algorithms: For large graphs with hundreds or thou-
sands of nodes, one can enumerate permutations in a greedy fash-
ion. For example, the Bipolarization algorithm [Hub74] alternates
between rows and columns to reorganize a distance matrix, placing
the highest dissimilarities in the remotest cells from the diagonal
(Algorithm 1). Like most other greedy algorithms, Bipolarization
(depicted in Figure 6(a)) is fast and yields good results whenever
the underlying data structure contains a bi-polar organization (e.g.,
patterns P1™J, P2k™, A1E). However, as already mentioned, greedy
algorithms do not guarantee to find an optimal solution, but quickly
yield a “reasonable good” solution. These solutions can then be im-
proved further by seeking to optimize locally. Figure 6(c) shows
examples of locally optimized matrices.
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Algorithm 1 Greedy suboptimal enumeration of matrix permuta-
tions [Hub74, CP05].

1: procedure BIPOLARIZATION ALGORITHM

2: D < distMatrix(M). > Distance Matrix
3: Dinax < max(upperTriangle(D)).
4: Teoi[1] < collndex(Dpax).
5: Trow[1] <= rowIndex(Dimax).
6: D < applyPermutation(T,o/ sow, D). > Reorganize Distance Matrix
7: Dinax < maxFromlndex(rowj,col;,i).
8: if maxFromIndex(row;,i) > maxFromIndex(col;,i) then
9: rowDirection < true.
10: Trow[2] <— rowIndex(Dimax).
11: else
12: rowDirection < false.
13: Tt [2] = collndex(Dpax).
14: end if
15: D <— applyPermutation(Ty; row, D). > Reorganize Distance Matrix
16: rIndex, cIndex < 3.
17: repeat
18: if rowDirection then
19: Dyax < maxFromIndex(row,i).
20: Trow [rIndex| <— rowIndex(Dpay ).
21: rindex+ = 1.
22: else
23: Dyax < maxFromIndex(col;,i).
24: Teot[cIndex] < collndex(Dpax ).
25: clndex+ = 1.
26: end if
27: D < applyPermutation(T;o1 rou, D).
28: rowDirection <— notrowDirection.

29: until rindex = clndex = |M)|.
30: M < applyPermutation(Top, rou, M).
31: end procedure

> Reorganize Data Matrix
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Figure 6: Examples for Robinsonian Matrix Reorderings.
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(b) Clustering Algorithms: Clustering algorithms, in the context
of matrix reordering, are based on deriving clusters of “similar”
data elements (e.g., nodes) and ordering each cluster individually.
Building on this, Gruvaeus and Wainer [GW72] suggested to order
clusters at different levels using an hierarchical clustering (dendro-
gram). Elements at the margin of each cluster, i.e. the first and last
element in the obtained order for the respective clusters, should also
be similar to the first (or last) element in the adjacent cluster. Fig-
ure 6(b) shows the result of the hierarchical clustering algorithm by
Gruvaeus and Wainer (RSeriationGW).

Hierarchical clustering algorithms aim at producing grouping
patterns (P1MJ), however, groups are not necessarily placed along
the matrix diagonal (Figure 6(b), P2&™). In biology, Eisen et
al. [ESBB9S] used agglomerative hierarchical clustering with av-
erage linkage to reveal interesting phenomena in gene expression
data matrices. As also discussed by Wilkinson in “The Grammar
of Graphics” [Wil05, p. 526-527] the choice of the average linkage
method often yields visually good results, but represents a middle-
ground between two extremes: single and complete linkage. While
complete linkage tends to produce spherical clusters, single linkage
tends to produce snakelike clusters.

(c) Optimal-Leaf-Ordering Algorithms: In addition to the afore-
mentioned clustering approaches, smoothing the clusters by order-
ing the vertices according to their neighborhood similarities reveals
structures more clearly than walking the leaf of the hierarchical
clusters in an arbitrary order. Finding an ordering consistent with
the hierarchical binary tree is known as the Optimal-Leaf-Ordering
problem. An optimal ordering is computed globally, so as to min-
imize the sum of distances between successive rows (columns)
while traversing the clustering tree in depth-first order. For any two
nodes p and ¢ in the binary clustering tree and that share the same
parent, two orders are possible: (p,q) or (g, p).

Bar-Joseph et al. [BJGJO1] describe an exact solution that
has a time complexity of (’)(n4) and a memory complexity of
O(nz).Though this can be improved at the expense of more mem-
ory, using memoization techniques. Brandes [Bra07] was able to
present a solution with time complexity of O(n*log(n)) and mem-
ory complexity of O(n), making it practical for larger matrices.
Figure 6(c) depicts exemplified matrix reordering results with vi-
sually coherent block patterns (PI™) derived from the RSeri-
ationOLO algorithm.

Discussion

The quality of Robinsonian approaches is essentially influenced by
two choices: (i) the measure of distance (or similarity) and (ii)
the enumeration approach. The goal of every R-matrix reorder-
ing approach is to optimize similarity between neighboring rows
and columns. The direct outcome is that block patterns (P1Ml) are
made visible. Hence, Robinsonian approaches should be preferred
if a dataset partitioning is expected for yet undetermined data sub-
groups. On the other hand, even if reordering is less strict than clus-
tering, “analysis via clustering makes several a-priori assumptions
that may not be perfectly adequate in all circumstances. First, clus-
tering [... ] implicitly directs the analysis to a particular aspect of
the system under study (e.g., groups of patients or groups of co-
regulated genes). Second, clustering algorithms usually seek a dis-

Jjoint cover of the set of elements, requiring that no gene or sample
belongs to more than one cluster” [TSS0S, adapted, p. 3-4].

Yet, even if the data contains inherent groupings, the similar-

ity function has to be selected with caution, since an inappropriate
choice will disturb grouping patterns. Generally, when clusters ex-
ists, (hierarchical) clustering approaches show visually promising
results, for all linkage functions.
In turn, Robinsonian approaches—in comparison to the other re-
ordering approaches—allow incorporating more domain-specific
knowledge into the analysis process, e.g., by applying domain-
specific similarity considerations. The Bertifier [PDF14] system
uses extensively this flexibility to allow interactively specified pref-
erences to influence the reordering algorithm.

5. Spectral Methods

ORDERED
MATRIX

i

DATA INTERMEDIATE OBJECTS

L |
A -
u | |
Laplacian Matrix
LB
|
\ :_ .'. )  Figenspace

u u
Correlation Matrix

Figure 7: Spectral Matrix Reordering.

Spectral methods relate to linear algebra and use eigenvalues and
eigenvectors to calculate a reordering, i.e. each row (or column) is
projected into the eigenspace where distances between eigenvectors
are used to calculate a reordering (Figure 7). Given a symmetric
matrix M of dimension n X n, we say that A is an eigenvalue of M
if Mx = Ax for some vector x # 0. The corresponding vector x is
an eigenvector. An n X n symmetric matrix has n eigenvectors that
can be constructed to be pairwise orthogonal, and its eigenvalues
are all real. We refer to the eigenvalues in increasing numbers A >

Ay...> M

Computing the eigendecomposition of a matrix is an expensive
operation. However, since the reordering algorithms will use only
the few first or last eigenvectors, iterative methods can efficiently
be used, in particular Power-Iteration [HK02] (see Algorithm 2).

The Power-iteration method is efficient when the largest eigen-
values have different magnitudes. Otherwise, the system is ill-
conditioned and convergence will be slower or not existent at all.
Efficient preconditioning methods exist to address this problem,
such as the LOBPCG method [KnyOl], with implementations in
many popular languages.

To compute the eigenvectors with the smallest eigenvalues, a
simple transformation is required. The matrix M’ = g -1 — M has
the same eigenvectors as a symmetric matrix M but with the eigen-
values in reverse order. The constant g is called the Gershgorin
bound [Wat91], which is a theoretical upper bound for (the absolute
value of) the largest eigenvalue of a matrix:

g = max (Mi,i+Z|Ml;|>. (13)

J#i
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Algorithm 2 Power-Iteration to compute the first £ eigenvalues and
eigenvectors [HK02].

1: function POWERITERATIONS(M)
X1,X2,...,Xk, the first k eigenvectors of M.

> This function computes

2 const € < 0.001

3 fori <+ 1,kdo

4: X; < random

5: £ i
[EA]

6 do

7 Xi < X > orthogonalize

8 for j < 1,i—1do

9: x; +xi— (xIxj)x;

10: end for

11: fi < Mxi

12: X+ ﬁ

13: while £7x; < 1—¢

14: Xi < Xi

15: end for

16: return xj,xp,...,x;
17: end function

Algorithms and Variations

Spectral methods are used in two ways: (i) using the properties
of the eigenvectors with the largest eigenvalue(s), or (ii) using the
eigenvector with the smallest non-null eigenvalue due to its struc-
tural properties.

Sternin commented already in 1965 on the useful rank-order
properties of the two eigenvectors corresponding to the two largest
eigenvalues A; and A; [Ste65] In his divide-and-conquer approach,
he splits the row/column indices into three distinct classes accord-
ing to their index position and the value of the integral abscissa
values of the second principal component at that specific index po-
sition. Each class is then permuted by the value of the integral ab-
scissa of the first principal component at the specific index position.

Friendly [Fri02] developed this concept further in 2002. He was
using correlation matrices as opposed to the raw data (Figure 7) to
position similar variables adjacently, facilitating perception. More-
over, rather than sticking to the integral abscissa values of the first
two principal components, he arranges the row/columns based in
the angular order of the eigenvectors:

fore;; >0

o = {tanl(eiz/eil) (14)

tan~ ! (ej/ej1)+ T otherwise

The achieved circular order for the row/column vectors is un-
folded into a linear arrangement by splitting at the largest gap
between adjacent vectors. Figure 8(a) shows example results for
the RCorrplotSortingAOE algorithm, depicting visually pleasing
global structures, but also bandwidth patterns (P4XY) without rec-
ognizable structure within the band.

A related technique was introduced by McQuitty in 1968
[McQ68], who observed the convergence of recursively formed
(Pearson) correlation matrices into a matrix with the only elements
being —1 and +1. Starting from R (the correlation matrix of the
original distance matrix) the sequence (R(1>7R(2),...) is formed
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Figure 8: Examples for Spectral Matrix Reorderings.
by RY = corr(R<"*1)) and eventually derives R with the men-
tioned properties. In 1975 Breiger, Boorman and Arabie [BBA75]
found that the resultant block form of the correlation matrix R(™)
(if correctly ordered) represents a valid matrix reordering. Later, in
2002 Chen [Che02] developed these ideas further and explored a
rank reduction property with an elliptical structure, even before the
convergence, as Algorithm 3 showcases. Figure 8(b) shows exem-
plified results for Chen’s rank-two ellipse seriation with noticeable
(even though sparse) off-diagonal pattern tendencies (P2n").

Algorithm 3 Rank-two Ellipse Reordering with recursively built
Pearson correlation matrices [Che02].

1: procedure RANK-TWO ELLIPSE REORDERING

2: D « distMatrix(M). > Distance Matrix

3: R©) « PearsonCorr(D).

4: i< 1.

5: repeat

6: R < PearsonCorr(RU—1).

7: i« i+1.

8: until rank(RY) = 2. > Recursive Pearson Corr. Matrices

9: Get first two Principal Components (PCs) of RO,

10: Project rows/columns onto the 2D plane of these PCs.
11: Cut ellipse between the two converged groups.
12: T <— 1D rank approximation.

13: applyPermutation(n,M). > Final Matrix Permutation

14: end procedure

Solution to the Robinsonian Problem Atkins et al. [ABH98]
have solved the Robinsonian problem using the eigenvectors of the
Laplacian matrix. The Laplacian matrix is defined as L =D — M,
where D is the degree matrix and M is the adjacency matrix of the
graph G:

noMe i

Dy o= B M 1T (15)
0 otherwise

A general graph G with ¢ connected components has ¢ eigenvec-

tors with an eigenvalue of 0. If the graph has only one connected

component, then A, = 0 and the associated eigenvector is a vector
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filled with 1 and noted 1. The smallest non-null eigenvalue A, is
called the Fiedler value and the corresponding eigenvector x,_ is
called the Fiedler vector [ABH98,Fie73]. The Fiedler vector can be
used to order a graph by ordering the vertices according to the or-
der of the vector values. This order is a solution to the Robinsonian
problem for a Pre-R matrix.

Discussion

Spectral approaches using the first eigenvectors build on the as-
sumption that the core matrix structure can be extracted from
only a few dominant dimensions. Unfortunately, the eigenvec-
tors are very sensitive to data corrupted with outliers, missing
values, and non-normal distributions [LHGYO03]. In cases where
the underlying correlation-dimension is not uni-dimensional (e.g.
multi-dimensional, or cyclic), such as Wilkinson’s circumplex form
[Wil05, cf. p. 521], these approaches will fail inherently, producing
salt-and-pepper visual patterns (A I &)

In contrast, spectral approaches using the Fiedler vector seem
robust to noise and tend to generate good results consistently.

6. Dimension Reduction Techniques

DATA INTERMEDIATE OBJECTS ORDERED MATRIX
°® i %
— e > Y\ >
° 0 T
Eigenspace

Figure 9: Dimension Reduction Matrix Reordering.

Dimension reduction techniques constitute a rather small stream
to the matrix reordering landscape. While the actual mathemati-
cal ideas have been developed centuries ago, their applicability to
meaningful problem instances in terms of size was hindered by the
calculation performance.

The central goal of dimension reduction techniques is to retrieve
a one-dimensional layout/ordering of the rows/columns that reflects
the (non-)linear relationships between them (Figure 9).

Algorithms and Variations

The main methods in this field (Principal Components Analysis
(PCA) and variants, and Multidimensional Scaling (MDS)) share
the commonality that they decompose varying intermediate objects
(e.g., covariance matrix, normalized data matrix) with the help of a
Singular Value Decomposition (SVD) step to derive a permutation.

(a) Principal Component Analysis: One of the most popular
techniques for dimension reduction is Principal Component Anal-
ysis (PCA). PCA computes a projection of multidimensional data
into an n-dimensional space that preserves the variance between
elements in the data. In the context of matrix reordering, the 1*
principal component of a covariance matrix must project the data.
This 1" principal component represents the most variance and ac-
cordingly the most expressiveness of the data. Figure 10(a) shows
matrix plots resulting from the RSeriationPCA matrix reordering.
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Figure 10: Examples for Dimension Reduction Reorderings.

(b) First Principal Component Projection Alternatively, the 1%
principal component can be directly derived from the raw matrix
data; without the intermediate step of building a covariance matrix.
Figure 10(b) shows this approach on exemplified matrix plots.

As one can see, Figure 10(a) (PCA) and Figure 10(b)
( First PCP ) resemble each other. However, PCA is able to show
off-diagonal patterns, such as P2a", more clearly and tends to pro-
duce patterns along the anti-diagonal of a matrix.

(c) High Dimensional Embedding: Computing the eigenvectors
was long time only possible for small matrices. However, it-
erative approaches (see Algorithm 2) and the ability to paral-
lelize the calculations (even GPU implementations are available
[And09, KYO05]) allow computing the PCA in real-time for large
graphs. A modified PCA method, called “High Dimensional Em-
bedding”, is described by Harel and Koren [HKO02]. Their method
uses the first two/three components of the PCA for laying out node-
link diagrams with up to one million nodes in a few seconds. This
method was adapted by Elmgqvist et al. for reordering matrices for
graphs of a million edges [EDG™*08]. Elmqvist et al.’s results show
that High Dimensional Embedding results in a visually pleasing
overview, while the local ordering is poor A IE.

(d) Single Value Decomposition: Liu et al. [LHGYO03] follow the
idea that data is inherently corrupted with outliers, missing val-
ues, and non-normal distributions that cover up the matrix pat-
terns. Thus, a row vector approximation with bilinear forms x;; =
rimj+ e;j is used, where 7; is a parameter corresponding to the ith
row, m; corresponds to the jth column and e;; is a residual/error
value. Rows are ordered iteratively by their regression coefficients
ri, respectively m; for the columns, with the assumption that similar
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regression coefficients group visually similar rows/columns. The
equation can be solved using SVD, which decomposes a rectangu-
lar matrix Dy, into the product of 3 matrices UWHEWV,,T,Z where
UTu=r1andv’v =1. Although the method is robust, it is expen-
sive since its complexity is higher than quadratic in time.

(e) Multi-Dimensional Scaling: Similar to PCA, another possi-
bility to discover structure in matrices is multi-dimensional scal-
ing (MDS) [BL12]—also denoted as Similarity Structure Analy-
sis. In 1974, Spence and Graef recognized this interrelation and ap-
plied MDS to the matrix reordering problem [SG74]. MDS assigns
rows/columns to a specific index in a conceptual one-dimensional
space, such that the distances between the respective vectors in the
space match the given dissimilarities as closely as possible. The
cost function to be minimized is an overall distortion of the posi-
tions. With this approach MDS can derive non-linear relationships
among the matrix rows/columns.

MDS techniques can be distinguished into two types: (i) non-
metric MDS, which involves data that is not necessarily all nu-
meric was applied by Rodgers and Thompson [RT92] for matrix
reordering, and (ii) classical MDS which involves numeric data
(preferably variables in the same scale) was applied by Spence
and Graef in [SG74]. Classical MDS algorithm is based on the
fact that the permutation indices X— or one dimensional coordi-
nate matrices—can be derived by eigenvalue decomposition from
the scalar product matrix M = XX T To achieve this, each value in
the distance matrix must be squared and “double centered”, such
that the columns and rows both have a zero mean. Subsequently
the SVD of this (normalized) matrix is calculated and the index
positions are retrieved from the factors returned by the SVD. The
steps in Algorithm 4 summarize the algorithm of classical MDS.
Figure 10(c) shows matrix plots for the same RSeriationMDS algo-
rithm, resulting in almost identical plots than when using PCA.

Algorithm 4 Double Centering and Singular Value Decomposition
in the MDS Matrix Reordering.

1: procedure MDS MATRIX REORDERING
D%(i, j) + —%d(x,-,xj)z.
rowMean = mean(M).
colMean = mean(transpose(D?)).
totalMean = mean(rowMeans).
for i = 0,|D?| do

for j = 0,|D?| do
D2 (i, j)+ = totalMean — rowMean; — colMean

9: end for
10: end for
11:  UzvT =SVD(D?)
12: eigenValues < VI

> Squared Distance Matrix

e A A S ol

> Double Centering
> Singular Value Decomposition

13 U+ VI

14: for all row € U do

15: row X eigenValues.

16: end for > Eigenvector Normalization
17: T+ Uj.

18: M <« applyPermutation(n,M). > Final Matrix Permutation

19: end procedure

Alike PCA methods, classical MDS can be heuristically adapted
to allow for larger problem instances. Brandes and Pich [BPO7,
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Pic09] propose PivotMDS, a sampling-based approximation tech-
nique for classical MDS, which is able to determine a layout of
node-link diagrams in linear calculation time and with linear mem-
ory consumption.

Discussion

The central idea of dimension reduction techniques is to take ad-
vantage of the inherent and potentially hidden (non-)linear struc-
tures in the data. This has direct consequences on the matrix plot to
be expected: Normally these approaches favor high-level/coarse-
grained structures (PI™) over fine matrix patterns (e.g., lines
(P3®)). While PCA is only able to retrieve linear structures, MDS
also allows determining non-linear data relationships. On the other
hand, there are only rare cases where a non-linear data structure
should be examined in a matrix form. Other visualizations, i.e., the
raw two-dimensional MDS projection, is better suited for these pur-
poses. In general, Wilkinson notes that SVD and MDS methods are
performing best in terms of the Spearman correlation between the
known row indices (after constructing the matrix) and the permuted
indices [Wil05, p.532].

7. Heuristic Approaches
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Figure 11: Heuristic Approaches for Matrix Reordering.

Heuristics are methods that transform the problem of finding
an ordering into another problem space that abstracts the prob-
lem appropriately and allows for computationally efficient prob-
lem solving. Heuristic approaches can be separated into prob-
lem simplification and problem space transformation approaches.
Problem simplification methods try to use row/column approxima-
tions to iterate through the permutation possibilities (or a subset
thereof), while problem space transformation methods are trans-
forming rows and/or columns into other meaningful representations
(e.g., the nodes of a bi-graph).

Algorithms and Variations

(a) Numerical Abstractions: One classical instance for simplifi-
cation methods is to neglect the row dimensionality and use numer-
ical abstractions for each row and/or column instead. Deutsch and
Martin [DM71] proposed to use the mean row moments to find the
principal axis and thus a single dominant relationship of the data.
Mean row/column moments are defined as follows:

N .
S_ 1 JMm;i
X = 7211;” il (16)
Yioimij

This heuristic approximation is iteratively applied separately on
the rows and columns until the simple vector mean quality measure
stabilizes, as Algorithm 5 depicts.
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Algorithm 5 Separately applied row/column ordering with the
Mean Row Moments quality criterion [DM71].

1: procedure MEAN ROW MOMENTS HEURISTIC REORDERING
2 repeat

3 for all row; € M do

4: X; <— meanRowMoment(row;).
S: end for

6: T < orderPermutation(x).

7 M < permute(n,M).

8 for all col; € M do

9: yi <= meanColMoment(col;).
10: end for

> Row Reordering

11: T <— orderPermutation(y).
12: M <« applyPermutation(n,M). > Column Reordering
13: until Row and column reordering is stable.

14: end procedure

Brain Petit GD96c
187/0.03/5.51) (65/0.06/3.85)

Watts Strogatz 3
(100/0.04/3.98)

Clustered

(70/0.12/8.77)
i B‘_b RS
-

-

L
3 .

Petit GD96¢c
(65/0.06/3.85)

Watts Strogatz 3
(100/0.04/3.98)

Clustered
(70/0.12/8.77)

e

Anti-Robinson Simulated Annealing [BKS0S]

(b)

Figure 12: Example for Heuristic Matrix Reorderings.

McCormick et al. contrast in [MDMS69, MSW72] three differ-
ent heuristics for establishing a matrix reordering: (i) Moment Or-
dering; by means of the mean row moments, (ii)) Moment Com-
pression Ordering; by means of the sum of second moments and
(iii) the Bond Energy Algorithm, short BEA. BEA uses a “mea-
sure of effectiveness” as a quality criterion, and tries to maximize
the so called bond energy over all row- and column permutations.
Figure 12(a) shows matrix plots for the RSeriationBEA algorithm,
which shows tendencies to produce Block-Diagonal matrix forms
(P1™) in combination with off-diagonal groupings (P2kY) and star
patterns (P3H). As seen from the results in Figure 12(a), BEA
tries to maximize contiguous chunks, forming more or less concise
groupings (P1™, P2") in the matrix plot.

Three further heuristics are suggested by Hubert and Golledge:
“Different Counting Rule”, “Gradient Within Rows”, “Szczotka’s
Criterion” [HG81, p. 436-439]. Mikinen and Siirtola [MS00] pro-
pose to reorder the rows/columns iteratively and separately (such as
in Algorithm 5) by their weighted row/column sum. Further heuris-
tics with varying goals are described in [MS14, p. 199].

(b) Barycenter Heuristic: Mikinen and Siirtola propose to use
the barycenter heuristic [MS05] to layout a bipartite graph, in

Algorithm 6 Barycenter Heuristics [MS05].

1: procedure BARYCENTER HEURISTIC(graph)
2 layer] < [v € V where outDegree(v) # 0]
3 Ty < identityPermutation(llayerl|)

4: layer2 < [v € V where inDegree(v) # 0]
S: Ty <— identityPermutation(llayer2|)

6: repeat

7 for v € layerl do

8 n < outNeighbors(v)

9: position|v] <— barycenter(m, ,n)

10: Ty < orderPermutation(position)
11: end for

12: for v € layer2 do

13: n < inNeighbors(v)

14: position|v| < barycenter(m,,n)

15: T, <— orderPermutation(position)
16: end for

17: until Row and column reordering is stable.

18: end procedure

19: function BARYCENTER(T, n) return =<1 ™)

[n]
20: end function

which the matrix rows correspond to the first graph partitioning and
the columns to the other partitioning. An adaption of the Sugiyama
algorithm is applied to minimize the edge crossings (Figure 13).
Algorithm 6 operates on the two “layers” (the two partitions). It is
repeated until the number of crossings does not decrease any more.
Two small changes improve the algorithm results substantially: re-
placing the barycenter by the median [EW94], and applying a post-
processing, repeatedly swapping consecutive vertices on the two
layers as long as it lowers the number of crossings [GKNV93]. This
algorithm has the tendency to arrange matrix plots, such that clus-
ters stick out in the top left and bottom right corners.

3 4 5 D B A C 1 3 2 5 4
| ‘.‘ * 2 oDO00®@®
® o NN slee e
LI INJX A o @
¢ o8 0 0
. 1 3 2 5 4 ...

Figure 13: Reordering using the Barycenter Heuristic [MS05].

(¢) Entropy Optimization and Genetic Algorithms: Nier-
mann [Nie0O5] uses a genetic algorithm to assess the “fitness” of
a matrix permutation by means of an entropy-based objective func-
tion over all matrix plot pixels. The intuitive idea is that a well-
ordered matrix plot—containing locally coherent regions of similar
values (e.g., black or white)—requires a minimum number of bits
for encoding. In other words, the better a matrix plot can be com-
pressed, the better is its reordering (under the assumption the data
contains clusters, groupings, or other partitionings). For the Nier-
mann’s genetic algorithm he models permutations, the individuals
of the algorithm, as arrays of ordering indices. Child individuals are
created from consistently rearranging permutation subsequences in
the parents (crossover) and mutations are implemented by revers-
ing arbitrary subsequences in the permutation. After each round,
the fitness of every offspring is evaluated. Less fit individuals are
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discarded, while more fit offsprings—in our case permutations—
survive and can reproduce.

Brusco et al. [BKSO08] and Wilkinson [Wil05] propose to use
simulated annealing (depicted in Figure 12(b)), a technique similar
to genetic algorithms and used for finding (local) optima in large
search spaces. In each annealing step two rows or two columns
are exchanged and the performance is measured in terms of anti-
robinsion events, respectively residual variance.

Discussion

Heuristic approaches transform the matrix reordering problem,
such that specific assumptions are met. While problem simplifi-
cation algorithms are usually fast, they suffer inherently from this
restriction. If a dataset is not of the expected form, the results will
be inappropriate for an analysis (A IE). One other problem seems
to be specific for problem space transformation: The algorithms are
reported to converge slowly and are sensitive to parameter settings.
Also it is questionable whether general settings can be derived or
inherently depend on the structure and size of the data sets. Particu-
larly, in these cases, it might be beneficial to (pre-)assess the matrix
in terms of density, clusteredness, etc.

8. Graph-Theoretic Approaches

DATA INTERMEDIATE OBJECTS

g. >
Connectivity Graph \
(b=

g

ORDERED MATRIX

Similarity Graph

Wt
g;hortestpathmatrix TSP

Figure 14: Graph-Theoretic Approaches for Matrix Reordering.

Graph-based approaches share a commonality with heuristic
methods: They transform the permutation problem into a related
problem space, in this case graph enumeration. The central idea
of graph-theoretic approaches is to exploit the graph structure for
computing a linear order that optimizes a graph-theoretic layout
cost function. Diaz et al. [DPS02] compiled a list of nine layout
cost functions from which three objectives have been applied in the
context of matrix reordering. We detailed these layout cost func-
tions, along with their visual interpretation in Section 2.2.

Algorithms and Variations

(a) Bandwidth Minimization: In an early approach (1968) Rosen
presented an iterative method to reduce the bandwidth in sparse
matrices [Ros68]. The same central objective is shared by the well-
established (Reverse) Cuthill-McKee matrix reordering algorithms
[CM69,Geo71]. Cuthill and McKee exploit a direct correspondence
between the structure of the coefficient matrix and the structure of
the adjacency matrix to be ordered. Algorithm 7 shows the pseudo
code for the Reverse Cuthill-McKee algorithm. Starting from
a graph vertex with low degree, it enumerates, in a breadth-first

(© 2016 The Author(s)
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search manner, all neighboring vertices sorted by their neighbor-
hood degree (number of common neighbors with the initial vertex).
Figure 16(a) shows exemplified matrix plots, which depict that this
inherently fast approach tends to produce strong bandwidth anti-
patterns (A2K). However, it can also lead to good results (P1M)
within the bandwidth if the graph structure allows for it and—more
crucial—the initial input permutation is appropriate.

Algorithm 7 Bandwidth Minimization with Breadth-First Search
in the Cuthill-McKee Matrix Reordering Algorithm [CM69].

1: procedure CUTHILL-MCKEE MATRIX REORDERING
2: G(V,E) «+ adjacencyMatrix(M).

3 Vstart <— minDegree(V).
4 T < @ UVsrart-
S: i+ 1. > Initialization
6: repeat
7 neighbors < adjacent(v;).
8: sortByDegree(neighbors).
9: for all v, € neighbors do
10: T UV,
11: end for
12: i+—i+1.

> Breadth-first enumeration
> Final Matrix Permutation

13: until i = |V|.
14: M < applyPermutation(n,M).
15: end procedure

An improved version of the Cuthill-McKee algorithm, known as
Reverse Cuthill-McKee algorithm, is proposed by George [Geo71].
It reverses the degree ordering of the neighboring vertices in the
breadth-first search. A comparative analysis of the two variants
shows that this —marginal— change leads to better reordering results
[LS76, p. 207]. Figure 16(a)(b) show exemplified matrix plots for
both algorithm variants However, in our implementations the algo-
rithms produce visually dissimilar results. Chan and George show
in [CG80] a linear time implementation of the Reverse Cuthill-
McKee algorithm.

The memory consumption for the Cuthill-McKee algorithm was
improved by King [Kin70]. King uses a local priority queue to
select the next vertex to visit, based on the number of vertices that
will be added to the neighborhood list in the subsequent iteration.
Later in 1976, Gibbs, Poole and Stockmeyer focused on runtime
improvements in their popular GPS algorithm [GPS76]. GPS de-
creases the search space by starting with a vertex that has a max-
imal distance to another vertex (pseudo-diameter path) and a level
minimization step to reduce the number of vertex enumeration cy-
cles. The GPS algorithm is reported to work up to eight times faster
than the Reverse Cuthill-McKee algorithm.

(b) Anti-bandwidth Maximization: A related and visually in-
teresting adaption of bandwidth minimization was introduced by
Leung in 1984: the matrix anti-bandwidth maximization problem
[LVW84]. It says that after a matrix’s row/column permutation all
nonzero entries should be located as far as possible to the main
diagonal. Figure 15 shows the exemplified result of a matrix re-
ordering with respect to anti-bandwidth optimization.

Anti-bandwidth maximization is able to show off-diagonal line
patterns (a sub-form of the bands pattern, P4K, describing paths)
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spreading over the matrix plot. Similar line patterns can be found in
the analysis of high performance computing clusters [VRHB*15].

Alike bandwidth minimization, also anti-bandwidth maximiza-
tion, is in the class of NP-complete problems [LVW84]. Ac-
cordingly, heuristic approaches were developed to solve the prob-
lem. Lozano et al. [LDGM12] propose a heuristic algorithm based
on variable neighborhood search. Also Lozano et al. [LDGM13]
proposed a hybrid approach combining the artificial bee colony
methodology with tabu search to obtain appropriate results in short
computational times. A genetic algorithm for bandwidth reduc-
tion, anti-bandwidth maximization and linear ordering is proposed
in [PM14], where an exchangeable cost function guides to the ex-
pected result. Further discussion on anti-bandwidth maximization
is given by Raspaud et al. in [RSS*09].

before optimization

after optimization

Figure 15: An example for the antibandwidth optimization [MS14,
image courtesy].

(c) Profile Minimization: Sloan’s algorithm [Slo86, S10o89] has
the goal to reduce the profile and the wavefront of a graph by re-
ordering the indices assigned to each vertex. Similarly to the GPS
algorithm pseudo-peripheral nodes are chosen as a start and end
vertices. All other vertices are prioritized by a weighted sum of the
distance of the vector to the end vertex (global criterion). Addition-
ally, a local criterion is incorporated with the current vertex degree.
It reflects the status of the renumbering in the neighborhood of a
vertex. Therefore, the Sloan algorithm not only takes into account
the global criterion, but also incorporates local criteria for the re-
ordering process. Figure 16(c) shows exemplified matrix plots for
the Sloan reordering algorithm.

(d) Minimum Linear Arrangement: Koren and Harel propose a
multi-scale approach to deal with the MinLA problem [KCHO02].
In their multi-level algorithm (depicted in Figure 16(d)) the en-
tire graph is progressively divided into lower dimensional prob-
lems (reordering of a segment graph). This process is referred to
as the coarsening. The coarsening of the graph is based on restrict-
ing the consecutive vertex pairs of the current arrangement. In the
coarsest level exact solutions for the problem can be calculated.
These sub-solutions are projected back to the higher level problem
in the subsequent refinement process until the initial problem is
reconstructed. This refinement step iterates over all local permuta-
tions and selects the one that minimizes the MinLA (in a dynamic
programming fashion). Multi-level approaches in general have one
significant advantage: They allow fast exploration of properties re-
lated to the global structure, while the local structures can be re-
fined iteratively if necessary. Further multi-scale graph coarsening
approaches are described in [OKLS15].
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Figure 16: Examples for Graph-based Reordering Approaches.

(e) Traveling Salesman Problem: In a technical note from 1974
Lenstra pointed out that the Bond Energy Algorithm (cf. Section 7)
could be modeled as two subsequent Traveling Salesman Problems
(TSP) for the rows and the columns: “It performs well for this type
of problem” [Len74, p. 414]. Shortly after, Lenstra and Kan [LK75,
p. 724] showed that the bond energy heuristic is a simple subopti-
mal TSP variant and compared it to the optimal TSP solution.

TSP matrix reordering approaches model each row, respectively
column, as a city and translate the row/column-wise similarity into
virtual distances. Computing an optimal TSP path (a minimum dis-
tance TSP tour with a virtual city that is used for breaking the cycle)
corresponds then in finding an optimal matrix permutation, such
that the pairwise similarity is maximized (wrt. the chosen similar-
ity function).
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Figure 16(e) shows matrix plots for the RSeriationTSP algo-
rithm. Internally the Concorde TSP solver [ACRO03] and the 2-OPT
edge exchange improvement procedure [Cro58] is used to mini-
mize the Hamiltonian path length. A different approach is pursued
by the Multiple Fragment algorithm, such as described by Bent-
ley [Ben92] or Steiglitz and Weiner [SW68]. It starts by consider-
ing every node in the graph as one independent fragment. Repeat-
edly, any edge that will not make it impossible to complete a tour
is added to the closest fragment. Fragments can be merged by a
connecting edge.

More recently, Henry-Riche and Fekete [HF06] incorporated in
their MatrixExplorer system the consideration that vertices with
similar connection patterns should be positioned next to each other.
This has the advantage that not only the coarse matrix plot structure
(groups/cluster patterns) is focused, but also that the local density
of the occurring clusters is optimized. In their approach the authors
use—instead of the adjacency matrix—the shortest path matrix for
each connected component of the graph and reorder each compo-
nent with a TSP solver; alternatively a hierarchical clustering can
be applied (see also Section 4).

Discussion

The idea to explore the graph structure for computing a linear or-
dering is self-evident and obvious. But, in analogy to our question
“What is a good matrix reordering?” the graph community is pos-
ing the question “What is a good 2D graph layout?”. These ques-
tions are yet unanswered in both domains. However, they share the
common ground that a good result allows perceiving interpretable
visual patterns.

Related to this challenge, several of the mentioned approaches,
such as the Multi-Scale or TSP, have the interesting character-
istic that a consistent and intermediate reordering result can be
shown to the analyst on-the-fly, while the actual matrix reordering
takes place. This idea follows the “results-first-refine-on-demand”
mantra. On the other hand, when it comes to the optimization
of graph-theoretic layout functions, such as bandwidth or profile,
these algorithms are solely governed by the assumption that the
data can be brought into this form. This assumption implicitly ne-
glects all other potential patterns in a matrix plot. Though, a ma-
trix plot that represents patterns along the diagonal well (e.g., clus-
ters) will be perceived as interpretable and effective; a goal also
expressed by Bertin [Ber73].

The efficiency aspect has to be regarded, as well. Sloan notes,
that bandwidth and profile reduction “schemes may be inefficient
for sparse matrices which contain a significant number of zeros in-
side the bandwidth envelope” [S1086, p. 240]. Recently, Wong also
noted that “algorithms such as Fiedler and Sloan consistently re-
quire more time to compute than the others when the graphs grow
to tens of thousands of nodes” [WMFM13, p. 95]. While this is cer-
tainly true, a heuristic implementation for most approaches can be
found in the vast literature of the graph-theoric domain.

9. Biclustering Approaches
Recently, the concept of Biclustering, also called co- or two-mode

clustering or generalized blockmodeling, gained importance for
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matrix reordering. Biclustering is related to clustering, but com-
prises a central difference: While clustering can be applied sep-
arately to either the rows or columns of the matrix, biclustering
performs clustering in these two dimensions simultaneously (Fig-
ure 17). In other words, clustering derives global data models
and biclustering algorithms allow identifying subsets of rows and
columns that reveal a similar activity pattern, and thus have to be
seen as local data models.

Biclustering approaches can be subdivided by the clustering
structure they are able to reveal: Single bicluster, exclusive row
and column biclusters, checkerboard structure, exclusive rows bi-
clusters, exclusive columns biclusters, nonoverlapping biclusters
with tree structure, nonoverlapping nonexclusive biclusters, over-
lapping biclusters with hierarchical structure, and arbitrarily posi-
tioned overlapping biclusters [MOO04, p. 34]. For a matrix reorder-
ing task the most general subgroup with arbitrarily positioned over-
lapping biclusters is of the highest interest, since it enables the user
to see overlapping block patterns in the matrix plot. A repetitive ex-
ecution of algorithms that reveals a single bicluster allows finding
arbitrarily positioned submatrices, too.

Algorithms and Variations

(a) Single Bicluster Approaches: Cheng and Church [CCO00]
present a greedy iterative search algorithm that models the biclus-
tering problem as an optimization problem. The algorithm finds one
d—bicluster (or submatrix) at a time with a potentially local opti-
mal mean squared residue score not higher than a user-specified
parameter 9.

The pseudo code for the Cheng and Church algorithm is given
in Algorithm 8, depicting two greedy row/column removal/addition
steps that are executed subsequently to find one d—bicluster: Start-
ing from the full matrix, (i) rows and columns with a score higher
than the mean squared residue score are deleted; (ii) removed rows
or columns are added if they do not increase the actual mean
squared residue score of the bicluster. This approach converges
with low mean residue and locally maximal size for one d—cluster.
In order to find distinct biclusters, an already identified bicluster
can be artificially masked with random noise so that a subsequent
invocation of the algorithm finds a different d—bicluster.

(b) Arbitrarily Positioned Overlapping Biclusters Several algo-
rithms to retrieve arbitrarily positioned overlapping biclusters exist.
For example, the Plaid model biclustering algorithm of Lazzeroni
and Owen [LO*02] assumes that a matrix can be described as a
linear function of possibly overlapping constant layers that do not
necessarily have to cover the whole matrix. Iteratively new layers
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Algorithm 8 Cheng-and-Church Biclustering algorithm [CCO00].

function CHENG AND CHURCH BICLUSTERING
A < rows(M).
B < columns(M).

Lieamij
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Ljcpmij

1:

2 > Definitions.
3

4

5: eip < 5]

6
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epj <

YicAjeBMij

[A]1B]

RSAB(i, j) <= mij —eaj —eip +eap.
2

€AB <
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o H(LJ) < Yiea,jen tayia
9: Initialize bicluster(I,J) with = A,J = B.
10: while H(I,J) > 8 do

> Algorithm Start.
> Deletion Phase.

11: d(i) « ‘TI‘ZJ-EJRSH(Lj) foralli € I.
12: e(j) + ﬁ):ie,Rs,,(i,j) forall j €J.
13: if maxic;d(i) > maxjcye(j) then

14: I <+ I\ {argmax;d(i)}.

15: else

16: J < J\ {argmax;e(j)}.

17: end if

18: end while
19: I' < 1,J «J.

20: while H(I',J’) < 3 do > Addition Phase.
21: I<1,J«J

22: d(i) + ﬁZjeJRSu(i,j) foralli € A\I.

23: e(j) « ﬁ Yicr RSy (i, ) forall j € B\ J.

24: if max;cd(i) > maxjcse(j) then

25: I' + 1U {argmax;d(i)}.

26: else

27: J' + JU{argmax;e(j)}.

28: end if

29: end while > Initialization
30: return bicluster I,J.

31: end function

are added to the model, so that the new layer minimizes the sum
of squared errors. The Plaid model biclustering algorithm was im-
proved by Turner et al. [TBKOS5], using a binary least squares al-
gorithm to update the cluster membership parameters. This takes
advantage of the binary constraints on these parameters and allows
to simplify the other parameter updates.

(c) Biclusters with similar Visual Patterns: Another approach,
called xMotifs, is presented by Murali and Kasif [MKO03] for the
biological gene expression analysis domain. The authors state that
“a conserved gene expression motif or xMotif is a subset of genes
whose expression is simultaneously conserved for a subset of sam-
ples. [...] If we map each gene to a dimension, each sample to a
point, and each expression value to a coordinate value, an xMotif is
identical to a multi-dimensional hyperrectangle that is bounded in
the dimensions corresponding to the conserved genes in the motif
and unbounded in the other dimensions.” [MKO03, p. 2]. In other
words, the xMotif algorithm searches for biclusters that share a
common visual pattern or motif. To achieve this goal, the data is
discretized into statistically significant intervals—sometimes even
binarized. In a probabilistic approach, randomly chosen “seed”
columns are iteratively compared against growing sets of “discrim-
inant” columns. For these discriminant columns, all rows are incor-
porated into the bicluster if they share a common state with the seed

column at the specific position. Motifs with a low overlap coeffi-
cient are discarded. The algorithm is adapted for ordinal and nomi-
nal scales in the algorithms Quest and Questmet [Kaill]. A similar
approach, called BiMax was presented by Preli¢ et al. [PBZ*06].

(d) A Priori Submatrices: An interesting biclustering variant is
presented by Jin et al. [JXFDOS8]. Based on the assumption that a
set of submatrices of interest is known a priori, the authors try to
find a row/column permutation that allows showing these relation-
ships best. For this purpose, the authors generalize the minimum
linear arrangement problem into the hypergraph vertex ordering
problem and propose to solve the submatrix pattern visualization
problem in this problem domain. In their suggested algorithm ex-
isting graph ordering algorithms are incorporated to solve the opti-
mization problem.

Several other biclustering algorithms exist and are discussed in
[MOO04, PBZ* 06, TSS05]

Discussion

Biclustering focuses on finding subsets of rows and columns that al-
low perceiving coherent activity patterns which cannot be seen with
a global scope. Biclustering approaches are therefore operating on
local models. By definition the retrieved biclusters, or submatri-
ces, should form nearly uniformly colored coherent visual block
patterns (P1MJ, P2&") that stand out from the neutral background
color. This ideal corresponds to the existence of k mutually exclu-
sive and exhaustive clusters, and a corresponding k-way data parti-
tioning [LO*02, p. 62].

Unlike standard cluster matrix reordering approaches (see also
Section 4), biclustering approaches are not necessarily depending
on a similarity model. In contrast, these approaches even doubt the
rationale of an equal weighting of rows and/or columns. Cheng and
Church state that any such similarity formula leads to the discovery
of some similarity groups at the expense of obscuring some other
similarity groups [CCO00, p. 1].

Another central difference to the other reordering approaches is
the notion of data partitioning. While standard approaches mostly
facilitate a data separation into exclusive groups, biclustering ap-
proaches generalize this assumption: data items may be contained
in several overlapping clusters. This understanding is based on the
circumstances of the gene expression domain, where co-regulatory
gene patterns are represented by (multiple) subsets of conditions.

Generally, it has to be noted that the approaches in this field are
not restricted to a-priori constraints on the organization of biclus-
ters, which allows for more freedom, but consequently leads to a
higher vulnerability to overfitting. This is especially obvious in the
high parameter sensitivity: In many cases only slight modifications
of the input parameters lead to empty biclustering result sets and
even erroneous matrix permutations. However, this problem is mit-
igated by the fact that most algorithms are greedy implementations,
which allows a fast but potentially locally optimal result.

10. Performance Comparison

The previous sections grouped algorithms into six categories, de-
scribed the underlying methods, and showed examples of resulting
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matrices. In this section we look at two measures to quantify “per-
formance” of an algorithm: (i) algorithm runtime and (ii) Linear
Arrangement score (LA), a measure for the compactness of blocks
in matrices. A matrix, ordered by an algorithm, results in a low LA
score if it reveals coherent blocks in the matrix (Figure 18 (left, cen-
ter left)). In the opposite case, a matrix results in a high LA score
if it is noisy (Figure 18 (center right, right)). Comparing both mea-
sures can inform the tradeoff between fast algorithms and visually
pleasing reordering results.

Example Low LA Example High LA

Example Low LA Example High LA

Linear Arrangement Quality Measure

Figure 18: Examples of low/high scores for the Linear Arrange-
ment quality criterion.

For our analysis, we obtained implementations of 35 algorithms,
representative for the groups in Section 3. We used these algorithms
to reorder matrices for 150 graphs, resulting in 4348 of 5250 total
reordered matrices (35 % 150). The missing ones are erroneous re-
sults (e.g., not all row/column indices were returned or indexes oc-
cur multiple times), which we attribute to issues with parameters,
especially problematic for Biclustering approaches (cf. Section 9).

For each trial (i.e., reordered matrix) we measured runtime and
LA score, as well as captured the visual matrix in a picture. We pro-
vide online the browsable collection of all matrices and associated
measures at http://matrixreordering.dbvis.de.

10.1. Design and Setup

Algorithms We selected 35 algorithms satisfying the following
criteria: (i) well-known and used in practice, (ii) available and ac-
cessible implementation, and (iii) runtime complexity is reasonable
given the tested datasets.

For example, we tested the two Branch-and-Bound algorithms
BBURCG and BBWRCG, (R seriation package [BS05]), but opted
to remove them due to their long runtime. Our experiments reveal
them being impractical for graphs larger than 30 nodes. Table 1
gives an overview of the selected algorithms, the group they belong
to (Section 3), and the source of their implementation.

Graphs To obtain a large and heterogeneous collection for graphs,
we selected 150 graphs from three different sources and with vary-
ing characteristics (e.g., size, density, cluster coefficient). Interested
readers can explore the relations and distributions within this multi-
dimensional feature space of graph measures in an interactive dash-
board on our website. In the following we present only a higher
level overview of the selected graphs:

e 20 real-world graphs from the Pajek graph collection [BM9S].

e 23 test graphs from the Petit Testsuite [Pet03], one of the pri-
mary benchmark suites used in the literature for comparing ma-
trix reordering algorithms.

(© 2016 The Author(s)
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Family Name Implementation
Robinsonian Hierarchical Cluster Java [ESBB98]
(R) Bipolarization Java [Hub74]
RSeriationGW R seriation [HBH14]
RSeriationBEA R seriation [HBH14]
RSeriationOLO R seriation [HBH14]
RSeriationHC R seriation [HBH14]
Spectral RCorrplotSortingAOE R corrplot [Weil 3]
(S) RCorrplotSortingFPC R corrplot [Weil3]
RSeriationCHEN R seriation [HBH14]
Heuristic Row Sum (Asc)
(H) Row Sum (Desc)
Median Iteration
Mean Iteration
V-Cycle
Dimension RSeriationMDS R seriation [HBH14]
Reduction (D)  RSeriationPCA R seriation [HBH14]
Graph Multiple-Fragment Java [Ben92]
(G) Multi Heuristic

Multi-Scale

Java [KHO2]

Cuthill-McKee
Reverse Cuthill-McKee

Java [CM69]
Java [CM69]

Degree (Ascending) Java

Local Refine Java

RSeriationTSP R seriation [HBH14]
RSeriationBEATSP R seriation [HBH14]
Sloan C++ Boost [boo]
King C++ Boost [boo]

Bi-Clustering RBiclusteringBCPlaid R biclust [KLO8]

(B) RBiclusteringBCBimax R biclust [KLOS]
RBiclusteringBCQuest R biclust [KLOS8]
RBiclusteringBCQuestmet R biclust [KLO8]
RBiclusteringBCQuestord R biclust [KLOS8]
RBiclusteringBCBimax R biclust [KLOS]
RBiclusteringBCrepBimax R biclust [KLO8]
RBiclusteringBCSpectral R biclust [KLO8]

Table 1: Overview of tested matrix reordering implementations.
The table shows (i) the algorithm group according to our taxon-
omy, (ii) the internal identifier and (iii) the implementation source
or respective publication for our Java implementations.

e 107 random graphs generated to control for graph charac-
teristics such as size, density, and number of clusters. We
generated graphs using the random graph generators in Net-
workX [Net]. We tested the following types of graphs: bi-
partite graphs, clustered graphs, graphs with small-world graphs
(Watts-Strogatz), and graphs with power-law degree distribution
(Albert-Barabasi).

For this analysis, we categorized graphs according to two mea-
sures: size: (i) small (25-100 nodes), (ii) large (100-1500 nodes)
and density: (i) sparse (density of 0.05 - 0.28), (ii) dense (density
of 0.28-0.6).

Setup We generated all trials on an Intel Core i7-2600 Quadcore
(3.4 GHz) PC with 16 GB RAM (DDR3-PC3-10600) and a 120 GB
SSD. The PC is operated by Windows 7 Enterprise Edition and
runs R in the version 3.1.2, Java SE 7. We excluded transfer and
preprocessing times from the measured execution time.

We conducted the computation with a Java program. We
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included 19 implementations from the R packages ‘cor-
rplot’ [Weil3], ‘biclust’ [KLO8] and ‘seriation’ [HHBOS]. For
these R packages we used the R-Proxy implementation from
Nuiton! to send and receive information from Java to and from
an R server. We invoked two algorithms, taken from the C++ Boost
library [SLLOI1], via the Java Native Interface (JNA). We imple-
mented in Java several algorithms for which we could not find any
reference implementation.

10.2. Results and Findings

Runtime Figure 19 shows runtime statistics in milliseconds for
each of the four graph groups: small-sparse, small-dense, large-
sparse, and large-dense.

Graph-theoretic algorithms (e.g., Cuthill-McKee, King, Sloan,
Multi-Scale) and some Robinsonian algorithms (e.g., Bipolariza-
tion, Multi-Heuristic, Hierarchical Clustering) are returning re-
ordering results mostly below 1000 msec. More interestingly, these
algorithms are nearly independent from the graph topology. For ex-
ample, it appears that the runtime is not influenced by variation in
the degree of clustering of the graph.

R Seriation and Biclustering algorithms, independent from their
algorithm family, tend to perform slower than graph-theoretic algo-
rithms. This could be due to (i) particular sophisticated implemen-
tations, and/or (ii) the data structures used. However, the R cor-
rplot package is as fast as the fastest algorithms, which makes it
unlikely that the used data structure (access times on the row- or
column vectors and random cell access) has a significant impact on
the overall calculation time.

Runtime for large graphs (large) are still < 3000 msec. An ex-
ception are RSeriationBEA and RSeriationARSA with a runtime
about 144,000 msec and 24,000 msec respectively, on the “c4y”
real-world Integrated Circuit (IC) network with 1366 nodes and
2915 edges.

Linear Arrangement Linear Arrangement (LA) is a loss function
that refers to the minimum linear arrangement problem (e.g., de-
scribed in [KCHO02]). As Figure 18 depicts, it allows assessing the
visual quality of a matrix plot: The exemplified low LA scores refer
to the block pattern (P1™J and P2&"), while high scores prove to be
valid indicators for noisy plots (A

Figure 20 depicts boxplots for our Linear Arrangement exper-
iments under varying topology aspects: We can see that sparse
graphs lead to a consistent high median LA score; however the
mean scores (dotted line) and the prominent Whisker lines indi-
cate the strong variance within the data. Noteworthy algorithms are
the Reverse Cuthill-McKee and the Sloan algorithm (both graph-
related algorithms), which tend to produce consistently either low
scores or end up with noisy visual matrices. In the taxonomy group
of large and dense graphs (Figure 20(d)) we can derive similar
tendencies: graph-related measures often outperform Robinsonian,
Spectral and BiClustering methods.

i https://nuiton.org/projects/nuiton-j2r/

11. Discussion and Research Directions

The question: “What is a good matrix reordering?” does not have
a unique answer. However, we consider a “bad” ordering, one that
fails to reveal patters such as those described in Section 2.3, when
they actually are present in the data (e.g., clusters, hubs, bi-graphs).

Our empirical experience tends to indicate that a higher visual
quality requires more sophisticated approaches and thus, more time
to calculate. This may prove problematic in scenarios where pro-
viding rapid feedback is more crucial than displaying the highest
quality result. In fact, there are many trade offs pertaining to the se-
lection of a reordering algorithm. In this section, we discuss strate-
gies to select an algorithm, explain how several of them can be pa-
rameterized and briefly discuss interactive approaches to introduce
the human in the loop. We conclude by discussing the limitations
of our survey and outline directions for future work.

11.1. Selecting a Matrix Reordering Algorithm

While ideally one would provide specific guidance on which algo-
rithm to select and which parameter settings to use with respect to
data and tasks, there are too many open research questions remain-
ing to provide formal and robust guidelines at this point. Instead,
we provide several insights on which specific matrix reordering al-
gorithm and parameter setting proves to be effective, based on our
observations in Section 3, the analysis in Section 10 and our own
empirical knowledge gathered by applying reordering algorithms
in domain-specific applications.

Fast algorithms first—Fast reordering approaches can produce
results in sub-second runtime when the data structure matches char-
acteristics that this algorithm is optimizing for. Others are robust to
certain properties of the data, making them practical to at least try
first. For example, Cuthill-McKee (see: Section 8) or RCorrplot-
SortingAOE (see: Section 5) algorithms produce results at near-
interactive processing rates, almost independently of the matrix
density. However, results are tailored for a specific data structure
and, when not present, these algorithms often produce anti-patterns
(A1E]) or depict calculation artifacts (A2K), such as described
in Section 2.3. From our empirical experimentations, we note that
if a fast algorithm reveals desired patterns, a more sophisticated one
is unlikely to improve on its quality significantly.

Heuristic algorithms offer tradeoffs—Heuristic approaches
offer a good tradeoff between runtime and quality. They often pro-
duce more patterns than very fast algorithms, and improve them via
multiple iterations. The freedom to interrupting them after a certain
number of iterations enables to strike the balance between runtime
and (potentially measurable) quality. For example, the Barycenter
or RSeriationARSA algorithm (cf. Section 7) can be stopped in early
iterations, but generally require more to produce higher quality re-
sults. These algorithms tend to first reveal data partitioning (e.g.,
connected components, sub-networks), but patterns within these
partitions require more iterations.

Optimizing for cluster identification—For scenarios where
identifying clusters is essential, we recommend selecting (hierar-
chical) clustering approaches, since they explicitly detect clusters
and order each one individually, placing them at the matrix diag-
onal. A good example is Hierarchical Clustering (cf. Section 4).

(© 2016 The Author(s)
Computer Graphics Forum (©) 2016 The Eurographics Association and John Wiley & Sons Ltd.


http://matrixreordering.dbvis.de/#/imagegallery/CuthillMcKee
http://matrixreordering.dbvis.de/#/imagegallery/KingSorting
http://matrixreordering.dbvis.de/#/imagegallery/Sloan
http://matrixreordering.dbvis.de/#/imagegallery/Multi-Scale
http://matrixreordering.dbvis.de/#/imagegallery/Bipolarization
http://matrixreordering.dbvis.de/#/imagegallery/Bipolarization
http://matrixreordering.dbvis.de/#/imagegallery/Multi-Heuristic
http://matrixreordering.dbvis.de/#/imagegallery/Hierarchical Cluster Sort
http://matrixreordering.dbvis.de/#/imagegallery/RSeriationBEA
http://matrixreordering.dbvis.de/#/imagegallery/RSeriationARSA
https://nuiton.org/projects/nuiton-j2r/
http://matrixreordering.dbvis.de/#/imagegallery/CuthillMcKee
http://matrixreordering.dbvis.de/#/imagegallery/RCorrplotSortingAOE
http://matrixreordering.dbvis.de/#/imagegallery/RCorrplotSortingAOE
http://matrixreordering.dbvis.de/#/imagegallery/RSeriationARSA
http://matrixreordering.dbvis.de/#/imagegallery/Hierarchical Cluster Sort

M. Behrisch et al. / Matrix Reordering Methods for Table and Network Visualization

2000 1200
1000
1500
800
1000 600 i
400
500
200
x l. T L T T hd 1 - = = — -
0 o
R o R L0 QG S O b Ry & 0.8, RoRay: Ro ok Do R Ro o0l QS 4 O Lo Rofy & Rod, Ao oty Aok
P KA IS K UM LA Y B AN O M M MO MO
B R e N A R A i T B s S 20 e (SR e S STy, B 90, 8 ST 8 o
(O N O N N I A S N O e M I L SN S 200 [0 % Prtste ol o g et e 00 e P, 2o
%S Cr 095, o 5 R0 55 O s 0,00 X% S e O LIRS IO O Il 0,50 70 X% K e Ok
P07 AR S 2 2 o8, 2 o 0 Cl0” S5 0% e A B S NSO AN ORI NS S ol
O S 3 e Y TG SO Tl SO R R ] S0, LI PNy A (O SO 1 S % (] VLSS,
(o (0,07 (&, (/S > ik B R PR S (st (0,7 (65 16)SeY > iz B2 R IR i S
@@,Q@)J,G)/ J@r@ % J@@J DR sy @»@11@/ J@rg 3% J/,/Q) VU RS
J 2
(a) Small Sparse Graphs (b) Small Dense Graphs
3500 =]
8M
3000
= =
&M 2500 -
= - - -
2000 - =
am 1500
1000
M
l 500
- & 1 - =H = = =
0 o
Ry R R Rty 4 % RaReC, G S, O Co Ry b 2y 7 £y RoRe 8, Rohety R R RoReaRoy 4 % R QG Sy 45 Qo Ro By b T % By R Re G R Ro %y R R
oo, On ot oy s 0503 09 2 00000 0 G B 2 %0 0 80, 8 0 0 0 oo 0 6 0551 0 15 0. 500,02 G880, 5 %0 05 66, B Oy,
R S I A A A s 6%, e 9 b e o gl 95 0 Pl 00 00 ) LGRS RS S 0,8, o 0 9 0 0 g o,
9, %, RN 0, (%7507 0 10 55,/0 1, 0, s RN RN AAY) 2 857, % I CONLNCNEN
s Qe o202, 5 0% 2x e Te o 00 500 8 0% e e, 200, O 0 201,89, 776 2206 Te: o 2 1% S 0 00 P 0, 200,
% 085, 586 &0 5, &0 07 0,960 0 Y o o RO %, 0 09,5, (0056 60 S, e (T 0, %070 X0 Ol o3 0
U0y T 2 e 0GR R S50 2 0,80 102 o5 T OGN, BN NP % 20,8 507 9 O
AN =l A (S GO T SRy B ] V(S Il A (O O S T SRy B %] VS,
(30t (0,07 (S (6)/SeY Y V2w, B @R R ) S Bt 0)0%(c 6 SV 2 T2 X DR ) S
@@r@/J@J J@r@ L IC e A @@)//@J J@@ 3y P VYUY Ry
(c) Large Sparse Graphs (d) Large Dense Graphs
Figure 19: Calculation time (in msec) for each graph category (small/large versus sparse/dense).
30k
20k
l l l l ) -
0 $1 47g] 8
R RoRo Rty 4 4 RaReC G S 5 O Co Ry &y 2o By BBy RoRety: R Pl 2 Rofoy 4 b RRC QS 45 O Lo Poy b 2 o B R R Ro oty Aokt
e 60, 054,00 0, 0t G, Ry 35,06, e S S, 0135, Vo o, 0,505,050, 0.0 G 8, R0y S 0K, 0, 0 S0,
e e My o e Rt osle Ko uens i 0 o5 gl 00 01 2, 5 0 O ) S e R O S o S o o ok o
0,0, 70,70, % 0 &) %0, %l 10,70, 20 Ot 0,70 %%, 50,70, 70, 0 e &) 5550, 5. 10n 00 5, 0, 0y % 1Oy OOk
O X N A S A K s K I S 2 o (S 2080 50 222606 26 00 s 1500 0G0 50T
%, Oy 0, 5 60 5 7 Ipl967 0,9, 0 0 X B O LI SN AN 7 I 0, %6 00 s R s
R0 T 2 200 6% Sy 0 G5 2 0,80 1072 29 P OG0, VP 2y T 2 260 GRS 0 (S50 7 0,8 9T O
E N e N ST O B PN S N AL W S X IO EB AN N Al OL SR R PR B Ve W S X SO
(0t (0,07 (& (6/SeY DYV ) 0 R R ) S (@t 10,0 (S, 16 S DYV Z e, ) BRI DS
@@,Q@JJ@/ J@/@ By g YUY Ry @&,’{@J/@) v %% U AT
2 o
(a) Small Sparse Graphs (b) Small Dense Graphs

500k

450k
400k

350k

300k
250k
3

B
=0-1 m
AN I BN A AN A S RO O S o Tt %0 5%

5, y Bo e Q% T O o R B By BB S Ry B Rofn e
\ 5 s 08 8¢ 5.8 (XN s 05 % S0, 0 V0.0 G %, 8 2, 8. ¥6,$5,C
S R AR o 0 o R O A g I I A SR N SN XS
'b(ﬁeo\;‘?(g’o;%,ff%f‘%@@@%%<‘4-§JJ U /yjﬁﬁs{b%’o,{?og%’oofag’é@f’o(%{%o %ﬁ%gg%%%%%;%%q-G@J f«/f’/“,',@);’rf/yj”sf?*ﬁ/”,gf;,;%o"\@,l.’o»)é‘%gé;;‘%(?éf%
%, %057, Ca 020 5 (50850 5 0 IR %% 10 X% 6 A 6, %, Gy D, % (05648,8 78, OO BT 0 % 060 X% 8 A C
ER N NN oSiss, B e C X0 O S, N B N SR S, P o & C 507 29 7 Ol L,
O 5 o (s, (o S GO Y T SR o ®) %) VSIS NN P S (O SN V5 SRl Y s,
(et 00 (S, 6/ DY Ve, 9w YRR 0D o 10,04 C, 6/ S 0 e, 9 O R R a0
Vg Uy VT Yy P e VUV VeV VT o Wy Yl WYY By
S

(c) Large Sparse Graphs (d) Large Dense Graphs

Figure 20: Linear arrangement Scores for each graph category (small/large versus sparse/dense).
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Alternatively spectral algorithms also highlight clusters in the data
set since similarly connected nodes are located close in Eigenspace.
A good example is RSeriationChen (cf. Section 5).

Quality takes time—If the previous algorithms fail to reveal
patterns, or if the patterns produced are not matching the tasks
and scenario, one may need to compromise on runtime and opt
instead for remaining algorithms. Through our experimentations,
we observed that Optimal-Leaf-Ordering (cf. Section 4) tends
to produce visually coherent and well organized block-diagonal
forms. Note that we consider higher visual quality when local (sub-
)structures and patterns are discernable in the matrix plot. As a di-
rect consequence, algorithms attempting to optimize functions on
the entire data may not be able to grasp these phenomena. For ex-
ample algorithms such as Biclustering approaches often produce
visually interpretable (sub-)structures if, and only if, appropriate
parameters pertaining to the clusters are set. Another example are
the Traveling Salesmen algorithms (cf. Section 8), considering
distances between each pair of vertices, which often reveal local
patterns (e.g., cliques or hubs) but may fail to optimize the general
matrix bandwidth.

11.2. Opportunities and Future Directions

While this document describes existing solutions to reorder matri-
ces, there are still many opportunities to improve these solutions
and provide better ones. We list here some possible future work
and pitfalls of our approach.

Global vs Local Algorithms vary on their strategy to explore the
search space: top-down or bottom-up. Top-down approaches fo-
cus on optimizing a global structure metric (e.g., Multi-Scale, Sec-
tion 8), while bottom-up approaches may retrieve local graph struc-
tures (e.g., Bipolarization, Section 4). The strategy has a direct im-
pact on the visual results. The majority of algorithms proposed in
this article are bottom-up approaches.

Hybrid approaches are an interesting future direction, where re-
trieving global structures is in the focus of the first iterations, and
further (potentially different) algorithms can be applied to sub-
networks in later iterations. Another interesting research direction
relates to multi-scale approaches which could allow a user to re-
trieve results at different scales of interest (e.g., entire data, con-
nected component, sub-network).

Similarity/Distance Calculation An important parameter for re-
ordering algorithms, especially crucial for Robinsonian algorithms
(cf. Section 4), is the choice of the distance metric between nodes
(rows and columns). However, there is no simple method to choose
a good measure given a specific graph or task. Gelfand [Gel71]
notes the importance of these considerations and describes three
exemplary similarity functions, which should be applied with re-
spect to the different data domains [0, 1], [true, false], (—oo, 00).

Alternatively, domain-specific considerations can be included
into the distance calculations, such as in Eisen et al. [ESBB98]:
gene offset shifts over a log-scaled correlation coefficient are ap-
plied to analyze gene similarity. Behrisch et al. [BKSK12] calculate
text similarity on news articles and present the pair-wise compar-
isons in a matrix format.

More sophisticated techniques, such as the earth movers dis-
tance, or statistically inspired distance considerations (i.e., Jenson-
Shannon Divergence or X’ 2) cannot be found in the current litera-
ture for matrix reordering. Gregor et al. [GLS*15] recently made
an attempt at empirically deriving the impact of the respective dis-
tance functions for visual tasks. They found that for feature retrieval
tasks, the Manhattan Distance is a robust choice and outperforms
Jensen-Shannon Divergence and even the Euclidean Distance.

Visual Pattern Assessment Several approaches are tailored to
produce block-diagonal patterns (P1Ml). Unfortunately, if the data
does not contain such patterns, these algorithms mostly fail to re-
veal any pattern. More work is required to design algorithms that
focus on different other patterns. A crucial research direction is to
develop quantitative measures to evaluate the quality of these pat-
terns and thus craft objective functions to optimize or assess the
algorithms’ performance.

Human-Assisted Reordering While automatic reordering algo-
rithms ideally take the burden off the user while producing high
quality results, it may not happen often in practice. To address
shortcomings of certain algorithms and enable the user to steer al-
gorithms by making decisions at critical points, interactive reorder-
ing techniques started to appear. We point to several examples in
this section, however, note that a complete review of these tech-
niques is out of scope of our survey.

We can broadly categorize interactive reordering techniques
in two categories: interactive and semi-assisted (steering). Berti-
fier [PDF14], TableLens [RC94] and InfoZoom [SBB96] are exam-
ples of interactive techniques, providing a user interface in which
users can manually reorder rows and columns. Compare to Bertin’s
initial physical device that enable users to move a single row or col-
umn at a time [Ber81], strategies used in these pieces of software
provide grouping and aggregation mechanisms that enable to move
sets or rows and columns at a time, decreasing the labor to reorder a
matrix. In addition, Bertifier provides primitives to let users change
the visual style of the resulting visual matrices, an important step
towards communication of the results to an audience.

On the other hand, MatrixExplorer [HF06], Select Objec-
tive Measures [BW13], or PermutMatrix [CPOS] provide semi-
automatic approaches and enable the user to steer or guide algo-
rithms when reordering a matrix. For example, MatrixExplorer en-
able the user to select subsections of the matrix to reorder in addi-
tion to interactive reordering of individual rows or columns. Per-
mutMatrix provides a suite of features to enable users to apply
different reordering algorithms and a set of primitives to identify,
select and manipulate substructures of the matrix (e.g., clusters,
cliques or sub-trees).

While these techniques can address shortcomings of certain al-
gorithms and leverage human and computer skills, these systems
are still in their infancy and rather rare in practice. We believe some
of the most exciting advances for matrix reordering will occur in
this space, as our research community crafts visual analytics sys-
tems that leverage user interaction and automatic algorithms.
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11.3. Limitations

This survey presents a categorization of matrix reordering ap-
proaches into six reordering families, sharing similar reordering
concepts. Our goal is to provide a central document where con-
cepts from multiple disciplines are defined and related, algorithms
grouped in categories and discussed in contrast to each other, and,
finally, examples of visual results provided systematically.

While we discussed at length several alternatives to our present
taxonomy, possibly able to better capture nuances between differ-
ent approaches, we finally opted to provide a categorization of re-
ordering algorithms as simple as possible. We believe matrix re-
ordering algorithms are a fundamental barrier for the use of matri-
ces in practice today. By providing a straightforward classification
and formulating mechanisms and approaches in simple terms, we
hope to help a wide audience better understand these algorithms
and integrate them in future systems and libraries.

While we gave insights in discussion on how to select algorithms
for certain data characteristics or specific tasks (e.g., identifying
clusters), matching systematically algorithms and tasks (for exam-
ple the tasks described by Lee et al. in [LPP*06]) is extremely
challenging. We decided against attempting to describe this match-
ing formally as there are still many unknowns and doing so would
require a substantial amount of future work. In particular, we do
not think this is possible without developing measures to assess
and quantify visual patterns produced reliably.

12. Conclusion

Matrix reordering algorithms are essential to make patterns in ma-
trices visible. While previous surveys on algorithms centered on
historical- and domain-related aspects, this present work aims at
providing a comprehensive overview and guidance for selecting al-
gorithms according to their performance and ability to reveal vi-
sual patterns. We collected 35 reordering algorithms from different
disciplines and organized them in six families. We explained and
related major concepts from different disciplines to enable a wider
audience to understand the approaches and underlying mechanisms
of these reordering algorithms.

From our observations and experiments with these algorithms,
we created an online repository of over 4500 visual matrices, and
included practical guidance for selecting and comparing them. Our
general goal with this survey is to lower the barrier for using matri-
ces in visual exploration systems and libraries across many disci-
plines. By gathering the knowledge in a central document, we also
hope to inspire more research to develop novel strategies to reorder
matrices, novel approaches to assess the quality of their results, as
well as to develop high-quality libraries to reorder matrices for im-
proving their visualization and exploration.
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