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Linguistic insight in the form of high-level relationships and rules in text builds the basis of our understand-
ing of language. However, the data-driven generation of such structures often lacks labeled resources that
can be used as training data for supervised machine learning. The creation of such ground-truth data is a
time-consuming process that often requires domain expertise to resolve text ambiguities and characterize lin-
guistic phenomena. Furthermore, the creation and refinement of machine learning models is often challeng-
ing for linguists as the models are often complex, in-transparent, and difficult to understand. To tackle these
challenges, we present a visual analytics technique for interactive data labeling that applies concepts from
gamification and explainable Artificial Intelligence (XAI) to support complex classification tasks. The visual-
interactive labeling interface promotes the creation of effective training data. Visual explanations of learned
rules unveil the decisions of the machine learning model and support iterative and interactive optimization.
The gamification-inspired design guides the user through the labeling process and provides feedback on the
model performance. As an instance of the proposed technique, we present QuestionComb, a workspace tai-
lored to the task of question classification (i.e., in information-seeking vs. non-information-seeking questions).
Our evaluation studies confirm that gamification concepts are beneficial to engage users through continuous
feedback, offering an effective visual analytics technique when combined with active learning and XAI.
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1 INTRODUCTION

The focus of computational and theoretical linguistics is the analysis of different language struc-
tures, such as question types [43]. The goal of scholars in these fields is to generate rules and
high-level relationships to gain insight into linguistic structures, e.g., syntax, semantics, or prag-
matics. However, the generation of rules is complex; it is difficult to distinguish questions where
an answer is expected from the hearer (so-called, information-seeking questions) from rhetorical
questions because of their syntactic similarity [57].

Therefore, domain experts strive to gain a better understanding of patterns arising across large
corpora through machine learning (ML). Examples include using statistical methods, measuring
the frequency of labeled classes, as well as supervised models such as classifiers, to interpret the
given results. For instance, when analyzing different question types, scholars try to interpret the
position of a question word in relation to the subject, verb, or object in a given sentence [66]. They,
hence, observe the labeled instances, or train a classifier to find correlations between its inputs and
outputs. However, in most cases the trained models remain black-boxes, making the extraction of
linguistic insights impossible. Another challenge is the lack of training data, as in many cases no
ground-truth data are available. Reasons for the lack of training data can be manifold. (i) Only few
labeled datasets exist for some problems [46]. (ii) Different analysis tasks may also require different
types of training data. The information need of individual experts may be too specialized, if not
unique, or may even change over time. (iii) Finally, many labeling challenges are ambiguous and
require multiple iterations for a high-quality result [42]. In any of these cases, domain experts have
to overcome the lack of annotated resources, e.g., through time-consuming, manual data labeling.
To summarize, the three main tasks for analyzing linguistic structures are as follows: (1) labeling
of data instances, (2) training a classifier (applying statistical methods) on the labeled data, and
(3) producing linguistic insights.

While scholars would prefer to label similar instances in batches and sort their data based on
some similarity measure [66], they have to remain with their current workflow due to a lack of
readily available systems supporting such tasks, which leads us to postulate the following research
questions: (1) How to help linguists annotate their data effectively while taking into account the
complexity of the classification problem and its raised challenges? (2) How to help them to itera-
tively train a classifier, observe its quality, and understand its decisions? (3) How can we guide users
through the labeling process, having in mind that different users may prefer different annotation
strategies?

Visual analytics provides powerful techniques to incorporate users’ domain knowledge with
the computational power of algorithmic models, in an unified approach. Thus, to help linguists
and other domain experts in the data labeling and analysis process, we present a visual analytics
technique that addresses the above mentioned questions based on three main pillars as follows:
(1) visual-interactive instance selection and labeling techniques, (2) tailored visualization methods
for the explainability of the underlying ML models, and (3) design concepts and user guidance
inspired by gamification (shown in Figure 1). In the following, we briefly describe each of the
pillars.

Pillar 1 (Process): Visual-Interactive Labeling (VIAL) In an ideal case, domain experts
would be able to express their domain knowledge through an interactive interface, to annotate
data easily. Just as well, exploratory data analysis capabilities would provide overviews of the
unlabeled dataset, and guide domain experts toward interesting instances. The interactive and in-
cremental labeling process would then be comparatively short and can increasingly be automated
with the improving quality of the supervised learning model.In the ML community, active learn-
ing (AL) techniques have proven to reduce the number of labeled instance necessary to create
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Fig. 1. The analysis workflow includes three main steps: instance selection, instance labeling, and iterative
learning of a classification model. Active learning methods are used to provide suggestions on which in-
stances to label next. Multiple game elements support user engagement during the long-lasting annotation
process. The learned model is visually explained to the users for sense-making.

effective learners [62]. In the visual analytics community, VIAL interfaces are increasingly used
to combine AL techniques with the abilities of users to select and label interesting patterns in the
data [15].

Pillar 2 (Goal): Explainable Artificial Intelligence (XAI) To gain linguistic insights into the
analyzed language structures, scholars examine generated ML models, which frequently are
non-transparent and difficult to interpret [22]. XAI seeks solutions to make models more un-
derstandable, providing various methods to explain model decisions using multiple strategies
and media [25]. These explanations enable users to understand and trust the generated AI
systems [50].

Pillar 3 (Design): Gamification User guidance plays an important role not only in visual ana-
lytics, “by making suggestions on appropriate views or next steps” [50], but also in other research
disciplines such as gamification. Gamification describes the integration of game elements and con-
cepts in non-game systems with the goals of fostering user engagement and guidance through a
game-like process [44, p. 23]. Here, the system can open pathways or provide restrictions regard-
ing the user interactions. Gamification concepts like continuous feedback and rewards [53] are
beneficial also in visual analytics systems, motivating users to continue the analysis process.

We show the benefit of combining these pillars into a single system through our visual analytics
workspace called QuestionComb. In this workspace, we iteratively create a ML model for classi-
fication of two question types—information-seeking and non-information-seeking, respectively. We
apply techniques, such as dimensionality reduction and clustering to visually display the instances
for labeling. We enable instance grouping for hypothesis generation and instance explanation in
the form of learned rules. Throughout the interface, several gamification concepts are used for
user guidance and progress tracking.

We evaluated our approach based on a qualitative expert study, case study, and a quantitative
study on the model’s performance. The gathered feedback confirms that gamification concepts are
beneficial in guiding users and engaging them using continuous feedback. Moreover, the combi-
nation of VIAL, XAI, and gamification forms an effective visual analytics technique.

Our work makes the following contributions: (1) A visual analytics technique that combines
VIAL interfaces with gamification concepts and XAI methods; (2) the implementation of the tech-
nique in a system called QuestionComb, which supports the labeling and classification of ques-
tion types; and (3) an evaluation of the approach through a qualitative and quantitative study.

2 BACKGROUND AND RELATED WORK

In this section, we provide an overview of the three conceptual pillars we build on, i.e., interactive
data labeling, explainable artificial intelligence, and gamification techniques. Finally, we introduce
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background information about question classification in linguistic research, as this represents the
primary analysis goal of our application example.

2.1 Interactive Data Labeling

One primary challenge in data labeling is selecting instances wisely to create compact but rep-
resentative training data. Benefits of effective and efficient selection strategies are the reduction
of human effort and the improvement of model performance. Interactive data labeling is a form
of interactive ML [6], requiring user feedback that can be utilized [28]. We differentiate between
model-based strategies for the selection of candidate instances and user-based or hybrid strategies.

Active Learning From a ML perspective, the instance-selection problem is often addressed with
AL techniques. Principal ideas are to apply an algorithmic measure that assesses the quality of a
classification model and to query label information from an “oracle” for those instances that may
further improve the quality of the classifier “most.” The oracle refers to humans involved in the
process, who are supposed to act in the sense of question-answering. One class of techniques uses
criteria based on the classifier uncertainty (smallest margin [78], least significant confidence [62],
or entropy [72]). Other classes include strategies building on error or energy reduction [63, 74],
relevance [76], or classifier committees [64]. Three downsides of AL are (a) the cold start problem
in the beginning of the labeling process [8], (b) the commitment to only one single model-based
criterion for instance selection [14], and (c) the exclusion of users from the selection of instances [6].

Visual-Interactive Labeling Humans using visual interfaces are particularly good at identify-
ing visual patterns, which can also be relevant criteria for candidate selection [12, 18, 61]. VIAL
refers to the concept of combining the model-based with the human-based perspective for the
selection of instances, i.e., it motivates the synthesis of AL with interactive interfaces for the ex-
ploration and selection of instances [15]. Building upon the intersection of semantic interaction [27]
and interactive ML [6], VIAL was implemented in a series of pioneer approaches. Example applica-
tions include surveillance videos [37], text document retrieval [36], patient well-being [13], soccer
players [19], or music personalization [58]. For our approach, we employ the VIAL principle and
combine six model-driven techniques with an interactive interface for the visual exploration and
selection of interesting candidate instances. The methodological novelty of our approach is the use
of multiple complementary strategies for the guided selection of instances in a VIAL environment,
which we combine with the gamification concept of incremental content unlocking.

2.2 Explainable Artificial Intelligence

XAI is a rising research topic and is concerned with ensuring intelligibility of AI systems [10].
Abdul et al. provide a recent survey covering different aspects like scrutability, understandability,
interpretability, transparency, or fairness [1]. Already 30 years ago, discussions on trust-building
transferred behavioral patterns in relationships between humans onto the relationship between
humans and machines [56]. Lee and See extend this framework for trust in automation [47]. Jentner
et al. have put the trust-calibration process into context with XAI [39] and El-Assady et al. propose
a building-block framework for explanations [25]. While such a structured explanatory process is
crucial for XAI and building a user’s trust, it must go hand in hand with comprehensible models.

ML models are commonly classified into black-box (i.e., in-transparent) and white-box (i.e.,
transparent) models [49]. Explanations of black-box models frequently include only relations be-
tween input and output [55]; these explanations are model-agnostic predictions that do not re-
veal how model mechanisms work [49] and are suitable for non-machine-learning-experts. For a
more in-depth analysis, black-box models need to reveal their inner workings, e.g., through self-
explanatory approaches [24, 65], model induction [60], or feature explanation that impacts deci-
sions [48]. Contrary to black-boxes, transparent models are understandable to humans. According
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Table 1. GamefulVA Model [67] Describes How the Processes in Visual Analytics Can Be Enhanced by
Gameful Design Elements through Answering Five Questions: When, How, Why, Which, and What

Question Answer
WHEN does the challenging task occur? In the three loops of the knowledge generation model.
HOW can we design an engaging solution? Through interactions, quality metrics, user judgment,

and feedback.
WHY do people do these challenging tasks? Because of the three human needs: to succeed, have

impact, be accepted.
WHICH game dynamics support these needs? Different dynamics for different needs.
WHAT are the game mechanics suitable for the Different mechanics for different dynamics.
dynamics?

to Lipton, a model is transparent if the complete model, its components, and the training algorithm
is understandable by a human [49]. To support model understanding, we train a transparent model
using sequential pattern mining and display the learned rules visually. The transparency allows
users to verify the quality of the learned rules and manually refine the model.

2.3 Gamification for Visual Analytics

Gamification uses game-based mechanics, ideas, and aesthetics to engage people in non-game
applications [44, p. 23]. For the review of gamification rationales, we adhere to the terminology
used by Blohm and Leimeister [16], who refer to (a) mechanics as building-blocks for gamifying
an effect and (b) dynamics as the effects of these mechanics. A common term in gamification and
visual analytics terminology is a task, which refers to an activity that needs to be accomplished.
Although gamification has been widely applied in crowdsourcing applications for tasks such as
labeling of opinions [23], word senses [73], or for collecting common-sense facts [71], gamification
has hardly been applied in the VIS community to support analysis tasks. Recent work by Fulton
et al. [31] applies game principles in the context of explainable AI. The authors assess how humans
interpret AI explanations through integrating XAI in a game-with-a-purpose.

Motivation is one of the core rationales in gamification [21, p. 6], and can be intrinsic or ex-
trinsic. Intrinsic motivation refers to a behavior of a subject that arises from within and satisfies
naturally, i.e., an internal reward [44, p. 52]. From our collaboration with experts, we take away
that intrinsic motivation is typically not a problem that needs to be addressed. Extrinsic motiva-
tion is derived from a goal, purpose, or reward [44, p. 52]. Recently, we presented a GamefulVA
model that augments the visual analytics processes with game mechanics for strengthening user
engagement and motivation while solving a visual analytics task [67]. The framework is based on
the Knowledge Generation Model (KGM) by Sacha et al. [59] that describes the visual analytics
processes as three loops: exploration, verification, and knowledge generation. Our work describes
that loss of motivation can occur in each of the KGM loops, due to multiple reasons, such as data
overload or the complexity of cognitive processes required to validate models and patterns. In the
following, we reiterate the key concepts of the GamefulVA model [67] (depicted in Table 1).

In the exploration loop of the KGM, we can apply game elements that motivate users to perform
an action, i.e., explore the data, or steer a machine learning model. To design a gameful solution, we
can measure user interactions (e.g., the number of explored data elements, exploration pace), and
use this information, among others, to provide gameful feedback, or challenge the users to continue
the exploration. According to McClelland’s Theory of Needs [54], giving users the feeling of success
motivates them to continue solving an assigned task. The exploration processes can be supported
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by several measurement-based game mechanics, for instance, content unclocking and freedom-of-
choice. Content unlocking [69] unlocks information based on user interactions. The benefits of
content unlocking for our approach are twofold. First, it avoids overstraining users with too much
detailed information at the start. Second, unlocking can be exploited as a form of reward. Inspired
by the mantra for expanding content on demand by van Ham and Perer [71], we start with a subset
of candidate instances to be suggested for labeling, and unlock additional instances sensitive to
the workflow of users. We integrate this mechanic into our workspace and provide suggestions
for the order in which the data instances should be labeled. Users can decide whether to accept
the provided suggestions or not. Hence, we support a game concept called the freedom-of-choice,
which states that people are engaged when they have a feeling of control.

The verification loop of the KGM involves many complex cognitive processes that can lead to
a loss of user motivation. In this loop, the users could be asked, among others, to validate the
gained insights or improve the quality of the learned models. When designing a gameful solu-
tion that helps the users to solve these tasks, we can either compute quality measures or ask for
human judgment. The obtained information can be integrated into a motivating game element,
like multiple levels [44, p. 38] or badges [77, p. 42] for progress tracking [44, p. 28], and collec-
tions [21]. Depending on the task and chosen game elements, we can support the human need
for achievement, power, or affiliation [54]. Multiple levels in a game-like interface serve as motiva-
tion; these levels provide small goals that engage users to keep striving to reach the next one [44,
p. 38]. While initial levels are comparatively easy and are often combined with user familiarization,
the complexity of levels usually increases during the game, accompanied with the users’ gain in
experience [44, p. 39]. We use multiple levels to motivate users to improve the certainty of the
learned model throughout the incremental labeling process. Badges and achievements are visual
representations of user success within the gamified process [77, p. 74]. In cases when badges are
pre-defined, they can be used to guide users toward possible, not yet performed tasks also possible
with the system. We use badges to acknowledge users for fulfilling given requirements, i.e., for the
continuous improvement of the ML model. Collections are used to strengthen users’ awareness for
ownership and possession [21]. We use this game dynamic in connection with the instances that
have already been labeled by users. We provide an interface that allows to overview, structure, and
revisit labeled instances.

In the knowledge generation loop, we can apply game elements to motivate users in exchanging
the gained knowledge with collaborators and stakeholders. The exchange of insights as well as
receiving feedback from other experts is important for many tasks, to make the analysis process
more effective. To design a gameful solution, most frequently, one would need to rely on expert
feedback, as it is difficult to measure the quality of gained knowledge automatically. This social
aspect that includes providing and receiving feedback from colleagues or collaborators, supports
the human need of power and affiliation [54]. Although this is an important concept to make the
analysis more effective, the exchange of knowledge is not the scope of our current system.

To summarize, important gamification dynamics for our approach are exploration (e.g., support
for instance selection) implemented through content-unlocking and freedom-of-choice mechanics,
collection (e.g., maintenance of an overview of the labeled data and collection of achievements)
implemented through labeled instance groups, and challenge (e.g., constant quality improvement)
implemented through multiple levels and badge mechanics.

2.4 Question Classification in Computational Linguistics

Machine Learning has been applied to train classification models for question types, such as rhetor-
ical questions in social media [57], questions conveying information needs in Twitter [80], and in-
formational and conversational questions in question and answer websites [33]. Most of the work,
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however, uses features that are specific to social media data, such as usernames and hashtags and,
thus, does not apply to other types of data. A mixed-initiative approach has been presented for
question classification into ISQ and NISQ, which uses AL to suggest the most uncertain instances
for labeling [66]. In this approach, users can see the intermediate classification results by explor-
ing a list of question instances for each class label. This work lacks additional guidance regarding
the selection of interesting data instances, and the graph-based representation of the learned rules
faces scalability issues after a few labeling iterations.

3 PROBLEM CHARACTERIZATION AND METHODOLOGY

In this section, we characterize the scope of the problem that our technique aims to solve. In partic-
ular, we describe the task of classifying data instances through an exploratory annotation process,
define our users, and the data characteristics for the specific analysis task. Further, we extract
five main requirements (listed in Table 2) for an effective data labeling system. To address these
requirements, we propose a methodology that builds upon and combines three pillars (VIAL, XAI,
and gamification).

3.1 Tasks, Users, and Data

Linguists commonly analyze various language structures and aim at gaining insights into patterns
arising in the data through ML methods. Besides tasks that can be solved by applying supervised
learning methods on labeled corpora, there exists a set of tasks, that can not be solved using tradi-
tional methods. Such application examples include question classification (e.g., information-seeking
questions and rhetorical questions), classification of argument quality (e.g., very strong argument,
strong, weak, very weak argument). These applications encounter two main challenges: (1) Due to
the specificity of the analysis task, the scholars often lack labeled data necessary for statistical
learning methods, and (2) the generation of the labeled data requires more sophisticated meth-
ods than commonly used crowdsourcing techniques. The more sophisticated methods are needed
due to two main reasons. (1) The annotation often relies on subjective opinions, as for the partic-
ular tasks usually no intrinsic truth exists. The decisions on correct class labels commonly depend
on the context in which the data instances are used. Hence, often there is a low inter-annotator
agreement. (2) Due to the data ambiguity and the lack of the intrinsic truth, the annotators may
change already specified class labels, as new insights about the data may be learned during the
annotation process. This makes such complex labeling tasks co-adaptive problems, in which an-
notators calibrate their mental models based on obtained insights, while training the system with
the provided knowledge [68].

Due to the specificity of the analysis task, the users usually need to have an expertise in the
particular domain, e.g., in theoretical or computational linguistics. They are commonly interested
not only in creating a labeled corpus but also in gaining insights into the patterns arising in the
annotated data. By externalizing their expertise, they adapt the system and its underlying classifi-
cation models. At the same time, they are aware of the uncertain nature of their analysis problems
and prepared to iteratively co-adapt their mental models throughout the analysis session.

To gain insights into relevant patterns for the particular analysis task, the training data for su-
pervised ML methods needs to cover several different types of linguistic features. Besides content
features (what is said), also structural features (how it is said), and context features (e.g., who ut-
tered the context) have to be extracted to depict the essential data characteristics. Furthermore, the
model must learn and maintain the sequential information of words to learn representative feature
relations, rather than a bag-of-words representation. Taking question classification as an example,
it can be easily seen that the two questions “What should they do next?” and “They should do
what next?” contain the same word-level tokens but in a different order. (Here, the position of
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Table 2. The Five Main Requirements from Domain Experts for an Effective Labeling System

Reqirement Explanation
(R1) Data Exploration The system should provide an overview of data instances and their

characteristics.
(R2) Efficient Labeling The system should help users to label data with as few labeling steps

as possible.
(R3) Effective Labeling The system should guide users to interesting data instances and make

the tedious labeling process more engaging.
(R4) Decision Correction The system should enable users to track ambiguous instances and

correct the labels if necessary.
(R5) Understandability The system should explain the most interesting patterns in the data.

the question word what in relation to the modal verb should is of particular interest for linguists.)
Consequently, the questions have a different meaning, and one might be more likely to be seen as
rhetorical question than the other.

3.2 Requirement Analysis

During our long-term collaboration with computational linguists, we identified several require-
ments for a visual analysis solution supporting linguists in labeling data more effectively and
building an explainable classification model for challenging classification tasks. We also reviewed
various approaches that are currently used by scholars of the humanities to gain additional insight
into typical work processes. Based on the workflow of the linguists we identify problems related
to the process of data labeling, the goal of model building, and the design of labeling interfaces.
Process: Data Labeling The lack of labeled data is one of the main obstacles for modeling and
analyzing linguistic structures. After data acquisition, scholars face several challenges in their com-
mon labeling workflow. First, the experts are often struggling to gain an overview of the phenom-
ena hidden in their data collections. Second, the order of instances to be labeled is often arbitrary,
rather than following a sophisticated strategy. Third, the current labeling method can only cope
with small subsets of training data, as the human-centered process of data labeling is roughly linear
and does not scale for large datasets. With the current working practice of the experts, it cannot
be guaranteed that these small sets of training data are always sufficient for the creation of effec-
tive algorithmic models. The fourth problem is ambiguity: the labels for certain instances depend
on, e.g., the domain expertise, but also the application context. In contrast to labeling tasks where
an intrinsic truth exists (e.g., cats and dogs), classification of linguistic data usually requires more
sophisticated solutions. Finally, a downstream problem to the ambiguity of labels manifests in the
need of experts to change labels during analysis, e.g., as a result of a more thorough understand-
ing of linguistic phenomena. Hence, labeling currently constitutes a tedious and time-consuming
process. To summarize, the experts should be able to infer relevant structures in the data (R1: Data
Exploration) through a more systematic (R2: Efficient Labeling) and effective (R3: Effective Label-
ing) labeling process that helps to deal with ambiguous data instances (R4: Decision Correction).
Goal: Model Building After completing the labeling task, the scholars either train a classifier
or apply statistical methods to produce linguistic insights and explanations on the labeled data.
These insights have a form of high-level relationships and rules of text characteristics (e.g., con-
tent, structure). They include lexical expressions (e.g., after all), structural patterns (e.g., a question
beginning by a modal and followed by a negation), or discourse structure patterns describing rela-
tions between text fragments and their context (e.g., the same person states multiple questions in
a sequence) [66]. The trained classification models are complex as they need to cover the different
aspects of the data; thus, frequently, they are not understood by users. Hence, there is a need for
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explaining the applied ML models and their decisions (R5: Understandability) to provide linguistic
insights in the analyzed data.
Design: Labeling Interfaces Data labeling is a time-intensive task. The design of an engaging
labeling interface is essential to support them. Commonly, approaches rely on full-text interfaces.1

They neither inform users about the consistency of their labeling or the progress they made, nor
do they attempt to hide or reduce the complexity of the labeling task. Through our long-term
collaboration with researchers from linguistics, we derived a set of challenges they currently face
when using available labeling interfaces. These include (1) a missing overview of achieved progress,
(2) a lack of motivation due to tedious labeling processes, (3) and no notion of quality in the labeled
data. To address these challenges, a targeted design rationale [16] is needed that would additionally
assist in making the labeling process more engaging and less tedious (R1, R2, R3, R4).

3.3 Proposed Methodology: The Three Pillars

The core of our technique is the combination of three essential pillars:
VIAL as a process to enable data labeling and an interactive training
of ML models; XAI for providing insights into the iteratively trained
model; and gamification design for leveraging motivation and sup-
porting user guidance.
Visual-Interactive Labeling The VIAL interface enables an efficient and effective data annota-
tion by suggesting interesting instances for labeling. Active learning exploits the predictions of
iteratively created classification models and enables detection of (un)certain data instances, speed-
ing up the learning process and targeting efficient labeling (R2). A special characteristic of our
methodology is the use of multiple automated strategies for the guided selection of instances,
rather than using only a single strategy. By situationally adapting the selection strategy and sug-
gesting coherent groups of questions to be labeled, the interface enables efficient (R2) and effective
(R3) data labeling. In addition, a visual interface for data exploration enables users to identify in-
teresting patterns in the data that may be most relevant for being labeled early in the process (R1).
A progress tracking view shows changes in the model’s performance after each labeling step, and
enables to detect situations when the specified label should be corrected (R4).
Explainable Artificial Intelligence XAI is essential when it comes to providing insights into
the decisions made by a ML model. In our workspace, we apply a transparent rule-based learning
model and provide visual explanations for the learned rules, facilitating the understanding of the
produced model (R5). To avoid information overload, we only present these explanations for single
data instances and instance groups on demand. Furthermore, we apply multiple measures (e.g.,
support, confidence [2, 3]) to reduce the size of the rule set, and aggregate the remaining rules in
a two-level hierarchy, and enable the users to explore groups of similar rules on demand.
Gamification We use multiple gamification concepts to design a workspace that motivates the
users to stay engaged and guides them while solving the given labeling task. To support user
engagement, we incorporate a game mechanic that challenges the users to improve the quality
of the trained model. Users can earn badges for accomplishing the game levels, or succeeding to
maintain or improve the certainty of the model during multiple labeling steps in a row (R3). To
avoid overwhelming users with all available data instances, we only unlock those instances that
are most representative for the chosen strategy for annotation. This systematically guided data
exploration (R1) reduces the amount of labeling interactions needed and increases the systems’
efficiency (R2). Furthermore, we integrate a game concept called collection building that enables
the users to gain an overview of the labeled data, and correct their decisions if needed (R4).

1https://webanno.github.io/webanno/.
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Fig. 2. We model data instances as (a) sequences of itemsets, whereby each itemset contains features speci-
fied by the user before the data preprocessing is started. We apply a sequential pattern mining algorithm to
(b) extract subsequences that we use to (c) derive distance-persistent rules—the basis for our learning model.

4 THE SETUP FOR ACTIVE LEARNING

In this section, we describe the algorithmic approaches for creating a sufficient data representation
and training a classification model. The classifier is generated iteratively (Figure 1); after a new
data instance is labeled, the model gets updated, and the learned rules are presented to the users.
To speed up the labeling process, we implemented multiple instance selection strategies based on
AL techniques, that rely either on data characteristics or the certainty of the learned model.

4.1 Data as Sequences of Words

Although this article describes an approach that is tailored to the classification of questions, the ap-
proach can be generalized and used on various (short) text fragments (e.g., sentences, utterances).
In particular, the presented approach learns a multi-class classifier, whereby the solution is tailored
toward problems in which the relationship (i.e., order) between the words is crucial for the analysis
and question at hand (and, hence, the traditional bag-of-words representations lack the necessary
expressiveness). To learn the relationships within the text data, we model the analyzed text frag-
ments as sequences of words and represent each word by an itemset (i.e., a set of representative fea-
tures, shown in Figure 2(a)). These features are specified by the user before the data preprocessing
is started. We integrated this functionality to be able to generalize the approach, as many models
with varying sets of features for the same use-case can be trained and analyzed. The system sup-
ports a set of word-level features (i.e., word attributes or labels) presented in Reference [26]. These
include content features such as tokens and Part-of-Speech (POS) tags, and labels extracted based
on various word-lists (e.g., WH-question words, speech acts, discourse particles). Furthermore, if
the user specifies that the speaker information is relevant for the classification task, the system
extracts information on whether a text fragment and its context are uttered by the same person,
and treat it as an extra item in an extra itemset.

4.2 Sequential Pattern Mining for an Explainable Classifier

In this section, we explain the iteratively learned classification model—a supervised model that
predicts class labels on unseen data—and the extraction of the most representative rules for the
classification task. As scholars are interested in revealing the structure of descriptive feature com-
binations, they typically prefer transparent, rule-based models over complex black-box classifiers,
taking a potentially limited performance of the model into account. We address this requirement
and apply a sequential pattern mining algorithm (SPM) [4] to iteratively build a rule-based
classifier.

Sequential Pattern Mining. We use a SPM algorithm to learn the sequential dependencies
between different itemsets, i.e., words in a data instance. SPM is a clustering approach for struc-
tured data, mining for commonalities that are represented as patterns. However, in this article
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we will use the term subsequence to describe a pattern to avoid confusion with patterns of other
types, like visual patterns. Using SPM, each data instance is consequently represented as a set
of subsequences. A few possible subsequences for the example data instance are shown in Fig-
ure 2b. As exemplified by that figure, the possible number of subsequences that can be extracted
from a given data instance is large (i.e., exponential). It is thus important for the system to select
appropriate rules for presentation to the users to avoid information overload. In the remainder
of this section, we introduce definitions and concepts from pattern mining that are necessary re-
quirements for our rule pruning approach introduced later in this section. Let there be sequence
sa = 〈A1,A2, . . . ,An〉 and sb = 〈B1,B2, . . . ,Bm〉, whereas A, respectively B, represent itemsets.
Sequence sa is contained in sequence sb (sa � sb ) if there exist integers 1 ≤ i1 < i2 < ... < in ≤ m
such that A1 ⊆ Bi1 ,A2 ⊆ Bi2 , ...,An ⊆ Bin

. Furthermore, sa is a subsequence of sb [30]. A subse-
quence, therefore, contains subsets of itemsets that occur in the same total order. Note that missing
itemsets (∅) are allowed as shown in the Figure 2(b) for subsequence 3. Items in an itemset do not
obey any natural order, however, any total order can be assumed without the loss of generality.
For example, subsequence 2 from Figure 2 s2 = 〈f 1_1, f 2_1, f 1_2〉 is contained in the sequence
s = 〈f 1_1, f 2_1, f 3_1, f 1_2, f 2_2, f 1_3, f 2_3〉. Thus, s2 � s .

To build a classifier that predicts class labels, the label information has to be integrated into the
data instance’s representation. It is done by applying sequential rule mining (SRM) methods.
SRM is an extension to SPM. A sequential rule r : sa → sc consists of two subsequences (e.g., sa and
sc ) divided by an operator “→.” A rule denotes if subsequence sa can be observed then subsequence
sc can be also observed. In our system, we model the class label that is specified by the user as sc ,
i.e., the sc is a subsequence containing a single item (e.g., label 1, label 2, or label x). To predict
most likely labels for data instances, we apply in the SRM two frequently used interestingness
measures: support and confidence [2, 3]. The support of a sequential rule r : sa → sc , denoted as
sup (r ) describes in how many sequences subsequence sa can be observed at least once (P (sa )).

However, sc occurs after sa with a conditional probability called confidence ( P (sa∩sc )
P (sa ) ). Hence, we

can use the confidence measure to determine the probability of a rule to belong to each class label.
As the SPM algorithm generates an exponential amount of sequential rules, we use these measures
to reduce the computed sequential rules to the most representative ones. For instance, we use the
support to prune rules that are infrequent in the training dataset, and apply the confidence measure
to reduce the rule set to the rules that are representative only for one class label.

From Sequential Rules to Distance-Persistent Rules. Subsequences in sequential rules con-
tain only the order information between itemsets but lack any distance information. As this in-
formation is important to the domain experts, we extract distance-persistent rules from every
sequential rule, whereby the distance represents the gap between the itemsets, i.e., words in a data
instance (shown in Figure 2(c)). We limit the maximum gap to five words, as a larger gap would
generate less descriptive rules. Hence, in our final model, each data instance is represented as a
set of distance-persistent rules (in the remaining of this article, we will use the more general term
rule).

Updating Rule Confidence. We calculate the confidence of each rule and use these values to
calculate the predicted label for data instances each time the user labels a new data instance. In
particular, the label with the highest average confidence across the instance’s rules is set as the
instance’s predicted label. Initially, the label of every data instance is set to NONE. During the
labeling process, the labels change and, thus, the confidence of the mined rules for the different
classes and the predicted labels. The most confident rules are presented to the users as model’s
explanations (explained in Section 5.4).
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One challenge of the SRM is the exponential number of rules, which are generated and have
to be explained to the users. As the set of rules is drawn from the exponential pattern search
space, thousands of rules can be mined from one dataset. This is also known as the so-called
pattern-explosion. To overcome this issue, we reduce the rule-set to the most representative ones,
by applying multiple interestingness measures and grouping rules into two-level hierarchies.

Rule Pruning. Rules extracted with the SPM algorithm are complex structures and difficult to
visualize in large numbers [38]. We apply multiple measures to reduce the rule set to the most
descriptive ones.
Interestingness Measures. Recall the definitions of support and confidence: The support of a
rule describes in how many data instances it occurs; the confidence describes the conditional prob-
ability of a rule to belong to a specific class. First, we specify a min-support threshold to eliminate
rules that are too infrequent in the training dataset. After multiple experiments, the threshold was
set to min-support = 1%, which implies that at least a few data instances contain the particular rule.
Second, we use the confidence as a quality measure for the learned rules to determine which rules
to present to the users. This limits the visualized rule-set to rules that have a high probability (i.e.,
min-confidence � 95%) to predict a certain class. Note that as the user progresses with the labeling,
more rules will be pruned out.
Other SPM Constraints. SPM inherently produces subsequences that are partially ordered and
thus have a hierarchy. We exploit this hierarchy to implement additional constraints such as
closed [79] and maximal [52] subsequences. Let P be the result set of subsequences that all satisfy
the minimum support constraint. A subsequence sa is maximal if there are no super-subsequences
sb such that sa � sb |sa , sb ∈ P . A subsequence sa is closed if there is no super-subsequence sb with
an equal support (sa � sb ∧ sup (sa ) = sup (sb ) |sa , sb ∈ P ). We therefore initially mine for closed
subsequnces as no information is lost. This means that only redundant subsequences are removed
that belong to the same equivalence class and have no higher support [51].

4.3 Active Learning Strategies

The classifier is trained iteratively, based on the data labels specified by the users. We implemented
multiple strategies that suggest instances that should be labeled next based on the data or model’s
characteristics to support the users throughout the labeling process. Overall, we provide six com-
plementary strategies to support different objectives of scholars. The variety of selection strate-
gies is motivated by the factor that their appropriateness changes during the labeling process [14],
for instance, data-centered strategies (e.g., density-based or similarity-based selection) are more
beneficial in early phases of the labeling process, whereas model-centered strategies (e.g., uncer-
tainty sampling) are more effective in later phases [11], guiding the users to the most conflict-
ing/challenging instances.

For determining the instance groups that are representative for the selection strategies, we apply
a dimensionality reduction algorithm. The users can choose between MDS [32] (default settings),
tSNE [70], and PCA [41] algorithms. For the dimensionality reduction, data instances are repre-
sented by binary feature vectors indicating which rules apply to them. Before the labeling process
has begun, we use 500 rules with the highest support that is lower than 80% (to avoid rules that are
too frequent and, thus, non-descriptive) to generate these vectors. After the model learning has
begun, the 500 rules used to generate the binary feature vectors for the dimensionality reduction
are chosen based on the selected AL strategy. The six AL strategies are as follows.

(1) Similar Instances We identified the need of the domain experts to label candidate in-
stances that are similar to those instances that have already been labeled, i.e., instances close to
the training set. The rationale of the domain experts is to strengthen the model predictions for
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special of instances that are already labeled. Just as well, the experts aim at labeling multiple simi-
lar instances at a time. To support this, we provide the Similar Instances strategy that automatically
retrieves candidate instances that are close to the training set in the vector space.Technically speak-
ing, we apply a nearest neighbor routine (Nearest Spatial Neighbors [14]). In our implementation,
the feature vectors for the dimensionality reduction are generated from at most 500 rules that have
been learned in the previous labeling steps.

(2) Dissimilar Instances Opposed to similar instances, domain experts are also interested in
candidates that are most dissimilar to the training set. The justification of the experts is based on
the goal to cover the variety of instances that exist in the dataset, and represent it in the training
data, successively. We support this with the Dissimilar Instances strategy, which automatically
retrieves instances furthest from the training set (Coverage Model [13]). We apply an inverted
nearest neighbors routine [14]. The feature vectors for the dimensionality reduction are generated
from at most 500 rules that either have not been learned or have not been updated in the previous
labeling steps.

(3) Highest Model Uncertainty This strategy is motivated by a prominent class of AL
techniques. Domain experts are interested in critical regions of the dataset where the (probabilistic)
learner is most uncertain about. Our implementation uses an algorithm that identifies instances
with the smallest margin [78]. The feature vectors for the dimensionality reduction are generated
from at most 500 rules with the lowest confidence and a high support.

(4) Highest Model Certainty With the assessment of model certainty, domain experts want
to achieve two goals. First, this strategy allows to confirm instances that are predicted correctly
with a high likelihood (allowing changing roles: from labeling to label confirmation). Second, the
strategy can be used as a quantitative measure to assess the achieved quality of the labeling pro-
cess. As such, we ease the assessment of when an expert is done with the labeling process. The
implementation inverts the uncertainty-based least significant confidence [62] AL strategy. The
feature vectors for the dimensionality reduction are generated from at most 500 rules with the
highest confidence and a high support.

(5) Densest Instances Domain experts are interested in patterns such as dense areas and
clusters. According to the experts, it is particularly useful to label such interesting structures in
the data as early as possible. To support the exploration of such patterns even for large data, the
strategy calculates unlabeled instances in dense areas of the dataset [78]. The feature vectors for
the dimensionality reduction include at most 500 rules with the highest support lower than 80%.

(6) Outlier Instances Finally, we identified another information need that considerably dif-
fers from the strategies described earlier: Domain experts are interested in special or even unique
phenomena in the dataset. From a ML perspective, such instances often require special treatment
as the prediction of outlier instances is often difficult for many classifiers. To support the identifi-
cation and selection of such instances, we provide a strategy for the detection of outliers (Outlier
Detection [14]). The feature vectors for the dimensionality reduction are generated from at most
500 rules with the lowest support.

5 QUESTIONCOMB: THE INTERFACE

We showcase the applicability of the presented visual analytics technique that combines VIAL,
XAI, and Gamification in a single workspace called QuestionComb with an example of question
classification. Question classification relates to automatically distinguishing which questions do
elicit an answer (information-seeking-questions–ISQ), and which only trigger a speech act (non-
information-seeking questions–NISQ). Despite the recent development of the question answering
systems, the phenomenon has been understudied in computational linguistics [75].

ACM Transactions on Interactive Intelligent Systems, Vol. 11, No. 3-4, Article 19. Publication date: August 2021.



19:14 R. Sevastjanova et al.

Fig. 3. Workflow of our technique that guides users through the labeling process by providing visual sugges-
tions for instance selection where the data layout is specified using dimensionality reduction and clustering
techniques. The labeled instances are structured in a separate view and used to iteratively update a learn-
ing model; the learned rules are then displayed in the interface for linguistic insight generation. Users can
change the instance selection strategy and request new suggestions throughout the labeling process.

Fig. 4. The workspace consists of four views. The user can (a) choose one of the AL strategies and select sug-
gested instances, (b) label them, and (c) group instances in semantically meaningful batches for observation.
By clicking on an instance, (d) the most confident rules learned by the classification model for each class are
displayed for exploration.

QuestionComb supports four main requirements described in Section 3.2. It provides an
overview of the data for exploration (R1: Data Exploration), integrates techniques to speed up
the labeling process suggesting which instances to label to improve the learning model’s quality
(R2: Efficient Labeling, R3: Effective Labeling), and helps in dealing with ambiguous instances (R4:
Decision Correction). The analysis workflow is shown in Figure 3. The interface consists of four
main views: instance selection, instance labeling, and instance structuring view, and a separate view
for rule explanation, as shown in Figure 4. The general workflow of the analysis process begins
with an exploration of the dataset and a selection of question instance(s) for labeling. To enable
the data exploration, the unlabeled instances are displayed in a scatterplot visualization after ap-
plying a dimensionality reduction technique. To make the process more systematic and effective,
users can choose among multiple AL strategies, and based on these strategies, receive gamified
suggestions for the most interesting instances. They can select one instance or a group of similar
instances; in some situations, observing instances in a batch can help to produce more certain la-
bels. The selected instances are displayed in the instance labeling view. Users label these instances,
and the learning model is updated. Since the question labeling task is challenging due to the data
ambiguity, the labeled data are automatically stored in the instance structuring view for observa-
tion. There, users can regroup labeled instances in gamified collections and observe the changes in
the model’s predictions. This view enables users to detect uncertain instances and relabel them if
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Fig. 5. When the first instance is selected (timestamp 1), the user labels it, and the updated model predicts
labels for the remaining instances (timestamp 2). The user accepts the suggested labels and stores them in
a new collection that she titles “I am confident” (timestamp 3). Next, she requests more groups of similar
instances and selects one of the suggested groups for labeling (timestamp 4).

needed. Finally, users can click on instances to receive explanations for their most representative
rules. To further support the users throughout the tedious labeling process and make the process
more effective, we integrate multiple game elements to motivate users to strive increasing the
model’s quality.

In the following, we explain the us-
age of the QuestionComb interface
through a short use case. In a typical
workflow, the user specifies class la-
bels and relevant features for the learn-
ing model before the data preprocessing is started. For the question classification task, the user
specifies three class labels, i.e., ISQ, NISQ, and NONE, and selects the following features: a word
lemma and its associated POS tag and a marker indicating that a word is one of the nine question
words like where, how, or whom. Furthermore, the user specifies that the model should include the
information whether the question and its context are stated by the same person. After the data
are preprocessed, the user selects an instance (or multiple instances) in the instance selection view
(Figure 5, timestamp 1). This instance is displayed in the instance labeling view for close reading
(shown in the side figure). In this example, the selected question is “Which of these countries borders
both the Persian Gulf and the Gulf of Oman?” The user reads the question and its context informa-
tion and specifies the class label. When the label is submitted, the learning model gets updated.
Based on the learned rules, such as “Which of these” or “Which of DT (Determiner) NN (Noun)”
(these get displayed in the rule explanation view), the model predicts labels for the remaining in-
stances. In this example, the model predicts several instances to be ISQ (see the yellow hexagons
in Figure 5, timestamp 2). The user verifies these and approves the predicted labels, as all of the
instances have common patterns (i.e., “Which of these”). These instances are moved to the instance
structuring view (Figure 5, timestamp 3) for observation. There, the user creates a new collection of
instances that she is confident to have labeled correct. She creates a group-label “I am confident”,
and drags the labeled instances next to it. To find more groups of similar instances, the user “asks”
the system to highlight clusters by applying the Densest Instances strategy. The system updates the
scatterplot and suggests several groups for labeling (Figure 5, timestamp 4). The user selects one
of the clusters and continues with the labeling.

5.1 Guided Instance Selection

The main purpose of the instance selection view is to present non-labeled instances for exploration
and a manual selection (R1), whereby the visualization should guide users through the labeling
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process by visually grouping instances according to different AL strategies and so making the la-
beling process more efficient and effective (R2, R3). In contrast to most existing approaches, we
provide multiple automated strategies that guide users toward interesting instances; users can
change these strategies during the labeling process. This methodology has two primary benefits.
First, our approach does not depend on the strengths and weaknesses of a single AL technique. Sec-
ond, changing the instance-selection support during analysis allows the adaption toward strategies
that are most meaningful for the particular phase of the labeling process.

Visual Design. The non-labeled instances are displayed in a scatterplot visualization. The vi-
sual design is inspired by work of Bernard et al. [12], which shows that a scatterplot visualization
in combination with a dimensionality reduction technique enables to preserve the structure of
the dataset and visually group similar instances for labeling. Hence, the visualization gives an
overview of the data corpus and at the same time visually groups similar instances, enabling the
users to select and label instances in batches (R2). In QuestionComb, each instance is visualized
as a hexagon and, by default, colored white . After the training of the classifier has begun, the
system predicts the most likely label for each instance according to the model’s current state (i.e.,
the confidence of learned rules); the color of the hexagons is updated accordingly. We use a qualita-
tive color scale to distinguish class labels. Here, the predicted ISQs are colored yellow ; predicted
NISQs are colored blue . The predicted label’s confidence is mapped to the color’s opacity; the
less confident the predicted label, the less opaque is the color. To support the visual perception
of instance groups, we apply a clustering algorithm on the coordinates retrieved by the dimen-
sionality reduction and plot convex hulls underneath each cluster. The users can choose between
DBSCAN [29] (default) and k-Means [34] algorithms.

Interaction Design. The users can select an AL strategy by checking a radio button, displayed
underneath the scatterplot. When a strategy is changed, the projection of questions is updated,
and instances representing the strategy get visually separated from the rest. The users can request

to recalculate the dimensionality reduction using the same strategy as well. They
can select a single instance by a click on a hexagon or several instances by using a lasso
interaction, as shown in the side figure. In some situations, viewing several instances
that have similar patterns may facilitate the decision on their most appropriate class
label (R3). Hence, it is important enabling the selection of multiple instances at once and their
observation in a batch. Nevertheless, users have to read every question before labeling it. Thus,
the selected instances are displayed in the instance labeling view for close-reading. Users can also
decide to delete bad quality instances; these instances are moved to a virtual trash bin.

5.2 Instance Labeling

When scholars label questions, they read the sentences and analyze the context in which these
have been uttered to decide which label to choose. The instance labeling view supports users in
performing the labeling task and allows tracking user interactions, including changes in the cer-
tainty of the trained model. This visual component highlights situations when the model’s quality
decreases and motivates the users to relabel ambiguous instances (R4).

Visual Design. By default, we display one instance in the instance labeling view, which is sug-
gested by the selected AL strategy. If the users select instances manually in the scatterplot vi-
sualization, then the default instance is replaced by the selected one(s). If multiple instances are
selected, then they are displayed underneath each other. We display the selected instance(s) at the
center of the view. The textual context before and after the question is located on the left and
at the right, respectively. A circle with a speaker item on top depicts the speaker of the question
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Fig. 6. A visual timeline supports provenance tracking. It displays interactions as well as model certainty
changes during the data labeling process. In situations when the quality of the model decreases, the user
can refine the model accordingly.

and its context. For the question classification task, the speaker information is very relevant from
the linguistic perspective. If the context has been stated by the same speaker, then the circles are
colored in the same color . For different speakers, three different colors are used .

To trace back previous decisions, the labeled instances are visually marked with a circle on top
of the hexagon in the respective class color . In this example, the user has labeled the question
instance as NISQ (blue circle); the model predicts the ISQ class (yellow hexagon) according to the
learned rules and their confidence. This representation highlights question instances in situations
when the predicted label changes during the learning process and disagrees with the labeled class.
Then, users may explore the learned rules and refine the trained model manually (Section 5.3).

To support provenance tracking, we visually display all interactions performed by the users in
a timeline, as shown in Figure 6. Its primary purpose is to give a quick overview of the number
of labeled instances (and the dominant class labels) and help recall specific situations by automat-
ically maintaining the data distribution in a screenshot that captures the scatterplot visualization
for each labeling iteration. Tracking user interactions is essential, as the labeling process can be
long-lasting, and our experts desire to see how their interactions influence the learning process
to be able to change their decisions if needed (R4). In the timeline, we place an icon for each in-
teraction performed by the user. A hexagon icon represents a labeling step; a trash bin shows
that an instance or a rule has been deleted; a grouping icon displays that the user manually
structured instances and updated the labeled instance collection (explained in Section 6.2). To en-
able the model’s validation and progress tracking, we highlight the model’s changes during the
learning process. After each interaction, the system creates a screenshot of the instance selection
view. To highlight the changes made in the model, we measure the similarity between two con-
secutive dimensionality reductions2 and display them in an area chart between them. The higher
the slope, the larger the difference. We display the certainty of the model in the border-width of
the screenshot and show the value in its tooltip. Although the visual representation encompasses
many elements, it helps the users recall specific situations in the annotation process.

Interaction Design. The users can specify one common label for all selected instances, or label
each instance separately. After selecting the appropriate label, the users click on the “submit” but-
ton, and the learning model is updated accordingly. To recall specific situations when the model’s
performance changed after data labeling, the users can hover over the screenshots in the visual
timeline to enlarge them and observe the specific characteristics of the presented data.

2http://rembrandtjs.com.
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Fig. 7. A rule visualization includes information about the relevant itemsets and the distance between them.
Furthermore, it shows whether the same person states the question and its context. Statistical measures
such as confidence and support describe the rule descriptiveness for the particular classification task.

5.3 Incremental Model Update

After each labeling step, we update the classifier, as described in Section 4.2. We use this model for
three purposes. First, we use it for implementing our AL strategies. Second, we use this model for
providing insights in the most important rules for the classification task. Third, we use this model
to predict the most probable class label for each labeled as well as unlabeled question instance. We
predict labels for two reasons: (1) for the unlabeled instances, the predictions can speed up the
labeling process, as they can be considered to be the model’s suggestions for the most appropriate
label (R2); (2) for already labeled instances, the disagreement between labeled and predicted class
labels may signify either an inappropriate labeling or a faulty model. Hence, the users may either
relabel falsely labeled instances (R4), or manually refine the model by deleting bad quality rules.

5.4 Rule Visualization

To explain the model’s made decisions, we visualize learned rules in a separate view (R5). Van
Ham et al. [71] write that there are situations where an overview of all learned instances are not
practical for users, as the large amount of data can overwhelm them. Hence, in the rule explanation
view, we display only the representative rules for the browsed data instances. This view enables users
to validate the learned rules based on their domain knowledge and manually refine the model.

Visual Design. When the user clicks on a hexagon visualization, the confident rules descrip-
tive for the question instance are displayed in the rule explanation view. Each rule is visual-
ized as a sequence of itemsets (ordered horizontally); an itemset can have one or several items
(displayed vertically underneath each other). An example of a rule visualization is shown in
Figure 7. The items represent the different feature categories used to train the model. We use
typographic visualizations [9] to distinguish between different content features. The
visual representation is inspired by the work of Brath and Banissi [17] that shows
the effectiveness of applying font-specific attributes to encode qualitative data. We use
different font styles (e.g., bold font, normal font, italic) for different categories. The font
style, in combination with a qualitative color scale, enables us to encode an unlimited
number of feature categories.

For the question classification task, word lemmas are displayed with bold font, POS tags have
normal font, question-words are displayed in italic. Since the question classification model learns
only three content features, all of them are visualized black. We place a triangle between two
proceeding itemsets; the size of the triangle is scaled to the distance between the itemsets in the
original question instance (distance of 1: ; distance of 5: . This design is inspired by the work
of Chen et al. [20] to highlight the excluded information between the visualized itemsets. On the
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left-hand side of the itemset sequence, we display the learned speaker information, if the user
has specified this feature to be relevant for the classification task. There, speakers are represented
using the same design as in the instance labeling view;
we use color to highlight whether the question and the
context are stated by the same speaker. If the informa-
tion about a speaker pair is learned, then these speak-
ers are colored, and a link is displayed between them
(e.g., if the model has learned that the question and
context after is stated by the same speaker: ; if
the context before and context after are stated by two
different speakers: ). If a piece of speaker infor-
mation has not been learned for the particular pattern, then the speaker(s) are displayed in gray .
In front of the rule, we display its confidence and support as horizontal bars.

Interaction Design. To reduce the number of displayed subsequences, we only visualize maxi-
mal subsequences and visually aggregate all contained sub-subsequences within those. The under-
lying rules can be inspected as details on demand, by clicking on the super-subsequence. Users can
sort the displayed rules based on one of the provided interestingness measures (i.e., support and
confidence). To refine the learned model, users can delete rules by clicking on the remove button
(X) displayed on top-right corner of the bar chart visualization.

6 GAMIFICATION CONCEPT AND DESIGN

In this section, we describe other tailored design considerations to support a more efficient (R2)
and effective (R3) labeling process. Furthermore, we use these design elements to provide a dif-
ferent type of explanations of the learning model (R5) that can ease the detection of erroneous
labels (R4). In particular, we apply multiple gameful design concepts to support user motivation
and provide guidance throughout the labeling process. To motivate the choice of the applied game
elements, we refer to the GamefulVA model [67].

Question labeling and data annotation, in general, is a time-consuming task. The users may
face several challenges in different phases of the analysis (according to the GamefulVA model [67],
challenges can occur in both the exploration and the verification loop). The user engagement can
decrease mainly due to the data overload and the complex and repetitious model refinement task.
To help the users to overcome these challenges and stay motivated, we incorporate into our system
three well-known game dynamics: exploration (implemented via content unlocking and freedom of
choice mechanics), collection (implemented via structured instance group), and challenge (imple-
mented via multiple level and badge mechanics). According to the GamefulVA model [67], all of
these dynamics support the human need of achievement, and belong to the group of measurement-
based gamification approaches. These game dynamics are depicted in Table 3.

6.1 Exploration through Content Unlocking and Freedom of Choice

Challenge Description: The large amount of data instances for the labeling overwhelms users. While
exploring the visualization of all data instances, the users may struggle to choose which instance to
label next. How to support users?

We enhance the visual representation of instances, i.e., the scatterplot visualization by the
measurement-based gamification mechanic called content unlocking. We limit the amount of data
that can be temporally accessed by the users, based on the selected AL strategy. Only the instance
groups suggested by the selected strategy get temporally unlocked in the scatterplot visualization
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Table 3. During the Labeling Process, the Users Can Face Three Main Challenges: (1) to Select
Interesting Instances from the Large Dataset, (2) to Keep an Overview of the Labeled Data,

and (3) to Preserve Engagement in Improving the Quality of the Trained Model

Question Answer
Challenge: How to select instances for labeling from the vast amount of data?

WHEN does it occur? In the instance selection step in the exploration loop.
HOW can we design a solution? Provide suggestions based on AL strategy (quality metric).
WHY users do this task? To succeed in detecting relevant instances in the data.
WHICH game dynamics? Exploration.
WHAT are suitable game mechanics? Content unlocking, freedom of choice.
Challenge: How to keep the overview of the labeled data?

WHEN does it occur? After the instance labeling step in the verification loop.
HOW can we design a solution? Through labeled instance similarity and predicted label

certainty (quality metrics).
WHY users do this task? To succeed in maintaining an overview of the data.
WHICH game dynamics? Collection.
WHAT are suitable game mechanics? Labeled instance groups.
Challenge: How to engage users to keep improving the model’s qality?

WHEN does it occur? In the model update step in the verification loop.
HOW can we design a solution? Through certainty of the learning model (quality metric).
WHY users do this task? To succeed in creating a qualitative model.
WHICH game dynamics? Challenge; collection.
WHAT are suitable game mechanics? Multiple levels, badges.

We describe these challenges and possible gamification solutions, by applying the GamefulVA [67] model.

and become available for labeling. Furthermore, each unlocked instance group gets an assigned
label (i.e., 1 and 2, as shown in the side figure) indicating its representativeness for the selected
AL strategy. A locked padlock visually disables the remaining instances. We use
this mechanic to limit the amount of data that the user can work on, in particular, we
use it as a data filter to enable the users to focus on relevant items. Heer and Shnei-
derman [35] describe it as one of the interactive dynamics for visual analytics “that
contribute to successful analytic dialogues.” By applying this mechanic, users are less
overwhelmed and can choose between suggested instance groups, which have a dis-
tinct and comprehensible structure, still remaining an overview of the full dataset.
However, our aim is not to completely restrict user decisions. The freedom of choice is
another important mechanic in gamification that highlights the need to provide users
with meaningful alternatives. This concept states that people are engaged when they
have a feeling of control. Hence, the highlighted instance groups are only recommen-
dations; users can change the order in which they label the data.

6.2 Collection of Labeled Instance Groups

Challenge Description: There is no intrinsic truth for labeling question instances. Often, the labels
are ambiguous and depend on the domain expertise or the expert’s subjective judgment. Hence, it
is important to maintain an overview of previous labeling decisions to validate them through other
experts as well as return to complex instances and relabel them, if necessary. How to keep the overview
of the labeled data?

To overcome this challenge, we use a game dynamic called collection in the instance structuring
view. To collect and group instances is important for our collaborators; often, they prefer to learn
about a subset of instances first to gather insights about a specific instance group (e.g., questions
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Fig. 8. Groups can be sorted and split apart using a lasso functionality. It enables to regroup instances based
on, i.e., same predicted labels or common patterns detected during the labeling process.

starting with a sequence “You know what is...?” ) (R5). Moreover, to label the data correctly, users
may want to return to already labeled instances, observe similar examples to make a valid decision
for the uncertain instances (R4). The name of the interface—QuestionComb—originates from the
word honeycomb. We use this structure as a background that shows how the data can be aligned
on the surface.

The users can use two approaches to move instances to the instance structuring view. First, ev-
ery time a new instance is labeled, the instances labeled in the preceding step are automatically
transferred to this view. Second, the users can drag instances manually by using lasso function-
ality with the Ctrl key pressed. The manual transfer of instances from the scatterplot visualiza-
tion to the instance structuring view can be relevant for ambiguous cases when the users would
prefer to label instances at a later stage of analysis. When instances are transferred to this view,
users can create a bespoke layout that is tailored to their current mental model by dragging la-
beled instances or groups thereof to different positions on the screen. To facilitate memorizing
and navigating the created layout, they can additionally create and position labels. This function-
ality enables them to, for example, position all certain or uncertain instances separately. For each
group, we automatically extract a suggestion for a group-label by applying a longest common
substring method. The users can manually change these suggestions by entering them in a note-
card (opened by a right-click on the group). In this card, users can also store their domain-related
observations concerning the particular instances. Any labeled instances that the users have not
manually dragged to the instance structuring view are automatically moved to a region reserved
for un-interesting instances, from where they can be manually recovered by the users. This pro-
cess prevents cluttering the scatterplot visualization, as it ensures that only unlabeled instances
retain there. The created groups can be joined by using similar
functionality as for the instance selection (lasso, but for regroup-
ing the Ctrl key has to be pressed). Users can also sort instances
based on their class label (shown in the side figure) or split groups
apart using two different functionalities: They can use the lasso
(shown in Figure 8) or click the group to automatically separate the instances into groups based on
their current label. The labeled instance collection allows to detect changes in the learned model,
as shown in Figure 9. If the color of instances changes, then the users can explore their descriptive
rules and adapt the model, respectively. Furthermore, uncertain instances can be grouped sepa-
rately to relabel them at a later stage.

6.3 Challenge through Multiple Levels and Collection of Badges

Challenge Description: Data labeling is a time-consuming and repetitious task. Frequently, the qual-
ity of the learning model changes during the labeling process. To improve the model’s quality, a manual
model refinement may be needed. How to engage users to keep improving the model’s quality?

In addition to the provenance timeline, we provide a more engaging version of progress tracking,
which applies multiple gamification elements. These concepts support user motivation to strive
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Fig. 9. Labeled instances are stored and structured in a separate view used for their observation, note-taking,
or relabeling. In the given example, the user is confident about the label correctness (see the group label
confident instances), but during the labeling process, the model predicts an opposite class label for several
instances (see the yellow circles on top of blue hexagons and vice versa). The instance grouping view helps to
detect such situations and proceed accordingly (e.g., relabel the instances or refine the model).

Fig. 10. Gamification component for progress tracking and rewarding users for their achievements. We use
a multi-level approach to track the certainty of the trained model. If the certainty is improved, then the user
gets rewarded with a badge.

in increasing the learning model’s quality; hence, they improve the effectiveness of the labeling
process (R3). To motivate users to continue the instance labeling, we integrate a challenge dynamic
through a multiple level mechanic (shown in Figure 10) and combine it with the collection of badges
for the achieved quality of the trained model. According to the GamefulVA model [67], the system
has to obtain some type of measurement, e.g., user performance to design a challenge. For that
purpose, we use the confidence of our probabilistic model as a measure to assess the model’s
quality: Every instance predicted with a confidence of at least ≥95% contributes to the score that
is presented to the user. With every 10% of high-confidence instances, the level achieved by the
user increases. Experiments with labeling strategies have shown that the performance gain of
learners is often high in early phases with a tendency of saturation during the process [14, 45].
This reflects the concept of multiple level components with increasing level difficulties proposed
in gamification methodology [44, p. 39]. Hence, it becomes more challenging to reach the next
level. In these situations, the users are motivated to manually refine the model, e.g., by adding
more labels to instances or by deleting bad quality rules. If the quality of the instances satisfies the
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condition for the particular level, then the users receive a badge and reach the next
level. In our implementation, the design of the challenge depends on the learning
model. The model relies on the features and the used learning algorithm; hence, we
can measure its performance, but there is no guarantee of a 100% model’s certainty.
Therefore, the design of the challenge does not specify the number of achievable levels; it shows
the reached level in the form of feedback and motivates the users to continue improving the quality
of the model and rewards them for succeeding.

Furthermore, to reward users for creating a model with a high certainty, we provide additional
badges in situations when the certainty of the learning model does not decrease in at least x (e.g.,
5, 10, or 20) sequential labeling steps. These badges are displayed on the bottom of the game com-
ponent each time the given requirement is fulfilled. We take into consideration that gamification
could potentially have a negative influence if applied inappropri-
ately, or if a particular user does not prefer to use game elements.
Therefore, we call this game unobtrusive progress reporting and dis-
play it in a visual component that can be disabled by the user.

7 EVALUATION

To evaluate our approach, we conducted three types of studies. One study with three participants
was held to receive feedback on the usability of our tool. Another study was conducted with an
expert in question classification to gain insights into the effectiveness of the classification model
and descriptiveness of the learned rules. We describe the findings through a use case outlining four
main insights the expert gained during the analysis session. The third study measures the effect
of different AL strategies on the model’s performance.

7.1 Expert User Study

To evaluate the usability and usefulness of the QuestionComb interface, we conducted an expert
user study with three participants (Ph.D. students) from computational and theoretical linguistics.
The first participant (P1) is from computational linguistics and has experience in labeling ques-
tions regarding their types (e.g., ISQs vs. NISQs). The second participant (P2) researches syntax
and analyzes how questions emerge from declarative sentences. The third participant (P3) has a
background in phonetics and phonology and explores how questions differ in the sense of their
phonological structures. For the evaluation, we used 400 questions and their context information
extracted from a large CNN corpus3 of transcribed natural language dialog.

7.1.1 Methodology. We held a 2-hour session for each participant, which was audio- and screen-
recorded for later analysis. We began by a 30-minute-long semi-structured interview about the
question classification problem, participants’ previous experience, and their current workflow for
data labeling and classification tasks. In the following 20 minutes, the participants were intro-
duced to the tool and its functionality, and we received initial feedback concerning the func-
tionality and usability of the tool. Afterward, we held a pair analytics session [40]. As Arias-
Hernandez states, pair analytics “is a more natural way of making explicit and capturing reasoning
processes” [7]. Pair analytics requires a Subject Matter Expert (i.e., a domain expert) and one Vi-
sual Analytics Expert. In our study session, the domain expert described steps that she wanted to
execute and a member of our team carried them out. It helped us to guarantee a more natural
interaction that avoids situations when knowledge is not being verbalized [7]. We finished the

3http://transcripts.cnn.com/TRANSCRIPTS/,accessedon4/20/2020.
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session by a 30-minute semi-structured post-interview to get overall feedback on the usability of
the system.

The aim of the user study was to address the following tasks: (T1) question labeling; (T2) under-
standing the learned model. In particular, our goal was to answer questions like: (Q1) Does our tool
help in optimizing the complex annotation process? (Q2) Do the participants rely on the instance
suggestions provided by the system? (Q3) Can experts interpret the generated rules, and thus, can
they manually refine the model? (Q4) Does instance grouping help in tracking model changes?
(Q5) What are participant opinions concerning the used gamification concepts and their ability to
engage users to fulfill the task?

7.1.2 Feedback. In the following, we describe the feedback gathered before, during, and after
the pair analytics session.
Initial Feedback After shortly explaining the system and its functionality, we gathered initial
feedback concerning the participant’s first impression about the workspace and its suitability for
the annotation and classification tasks. All participants reacted positively to the design choices;
although the different view names were found meaningful and descriptive, P2 called the instance
structuring view a pinboard, and P3—a notepad.

All participants reacted positively to the different instance selection strategies. They indicated
that it is important to switch between multiple strategies during the annotation, as each of the
strategies could help them achieve a specific purpose. An example scenario for combining different
strategies was described by P2 stating that she would first use the Similar Instances strategy to learn
the most common rules first, then the Dissimilar Instances to let the model “learn faster.” Afterward,
she would explore how stable the model has become using the Certain Instances strategy. The
Uncertain Instances strategy would be applied to explore the most uncertain rules and manually
refine the model.
During User Interaction All participants started by selecting an instance group suggested
in the instance selection view, and after labeling a couple of similar groups, they changed the
strategy to either the Uncertain Instances or Dissimilar Instances strategy, and back to the Similar
Instances strategy. According to P1, the different AL strategies were the most powerful feature in
the interface.

P2 agreed that to see the rules visually is helpful (satisfies Q3). At the beginning of the label-
ing process many of the rules are not meaningful; however, during the learning process, they
converge to more representative ones. She stated that she would explore the rules after she had
labeled the data for a while, as it would ensure that part of rules was automatically disregarded
by the system. P1 and P3 said that they would explore the rules in situations when the model had
decided that the confident instances should have the opposite label to the manually specified one.
Participants acknowledged the possibility to get an overview of similar instances and label them
in groups. Finding similar instances for the uncertain ones is very helpful for improving the label
quality. Hence, they appreciated the instance structuring view (satisfies Q4). One of the participants
stated that “Currently, I flag the uncertain instances in my CSV file, however in this view, I can
make several categories and come back to them later on. It makes the process more straightfor-
ward.” After labeling multiple instance groups (shown in Figure 11), P1 stated: “I believe that this
system would help me to detect errors that I potentially had made during the labeling process
even though I had not categorized them as uncertain instances. For instance, if I had accidentally
labeled one instance incorrectly, I believe that the model would correct my mistake as the infor-
mation from the similar instances would have a stronger impact than the label which I specified
manually.”
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Fig. 11. An example of the analysis process from an expert study. The participant created three instance
groups according to her confidence level. Some of the instances were ambiguous and, hence, difficult to
label. The user manually moved these instances to the instance structuring view to observe the model’s
predictions. At a later stage of the labeling process, the participant accepted the model’s predicted label for
three of the ambiguous instances.

Post Analysis Feedback All participants appreciated the design of the interface. Due to a clear
separation between different views for different tasks, it is possible to use only a part of the system
(for data selection and labeling) if the exploration of the results is not so relevant. P1 stated that she
would like to use the tool in her research. P3 stated that if the interface included prosodic features,
she would use it in her research; however, the interface would need to be adapted for prosodic
needs as their used features, modeling, and visualizations might differ from the current version.

During the evaluation, we gathered multiple suggestions for improving usability. Due to over-
lapping data in the scatterplot, it would be helpful to see how many instances are hidden in the
clusters. A filter for rules containing queried features would also help to get a better overview of
interesting linguistic patterns. P1 suggested introducing two modes of automation. For users who
prefer to have fewer choices as currently available, the system could automate processes such as
the recalculation of dimensionality reduction when all available instance groups have been labeled.
Feedback on Gameful Design All participants gave positive feedback on the integrated game
elements (satisfies Q5). They stated that the Content Unlocking function relieved them from making
too many decisions on which instances to label, but at the same time, they didn’t feel disempowered
by the system. The participants stated that they prefer an incremental data unlocking, which they
saw as a guideline that engaged to complete the task step-by-step.

The participants also appreciated the Collection Building functionality, which enabled them to
stack instances for further observation, especially the ambiguous instances. They also appreciated
the simplicity of the representation, as the instance groups could be easily regrouped and anno-
tated according to their observations. To see already labeled instances was judged as helpful to
maintain an overview of the annotation’s progress. P2 stated that in her typical labeling workflow,
she is using an Excel sheet for storing the information on her certainty in an extra column; the
grouping of instances visually was judged as a more intuitive and effective approach.

After being introduced to the third gamification component, i.e., Multiple Levels and Badges, that
measures the certainty of the model and enables users to reach pre-defined levels and gather badges,
all of the participants were positively surprised by the game-like design applied in a “serious”
labeling system. After seeing the functionality of this component for the first time, P2 commented:
“I like that the whole labeling process becomes more like a game, and less as a work which has
to be done. [...] I like to get a task which needs to be solved. It motivates me.” The participants
emphasized the relevance of getting feedback on their performance, which motivates them to
either be more careful in the next labeling steps or to verify the model and try to refine it. Also, P1
was confident about the relevance of this component stating: “First of all, you are motivated in a
kind of keep trying and keep giving a correct label and not just clicking your way through it.”
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7.1.3 Lessons Learned. The expert study confirmed the benefit of a visual analytics technique
combining data labeling and explainable model generation with gamified design components. All
participants acknowledged the computational support and guidance provided by the interface,
which helped in performing the labeling task more effectively than by approaches that were used
before (e.g., WebAnno4).

The most appreciated component in the interface was the variety of instance selection strate-
gies. The participants emphasized that the data labeling task in linguistics is complex and, thus,
requires a mix of techniques for comprehensible results. Users relied on the visual instance sugges-
tions, and they labeled instances according to the proposed labeling order. Also, more automation
concerning the strategy selection was an important topic during the evaluation sessions. It would
be appreciated if the interface learned the user patterns concerning the order of the chosen strate-
gies to, at some point, take over the decision by suggesting: “Hey, user! You have labeled enough
instances containing patterns x, y! Let’s move on to different ones!” This could be done visually,
or by using verbal descriptions as in the example before.

The expert studies revealed that the query-based approach for displaying representative rules
is effective, as participants would observe the learned rules only in distinct situations (e.g., for re-
fining the model when it has failed to classify confident instances correctly, and at the very end
of the learning process). Furthermore, the participants evaluated the created rules as interpretable.
Despite that, they provided multiple suggestions on how to improve the model’s performance and
its descriptiveness. To provide more targeted support for linguistic fields, such as syntax and pho-
netics, the learning models should integrate additional features. For syntax analysis, those would
include different clause types (e.g., subject, object); for phonetics—pitch contours or duration. The
latter requires the data to have an audio format, and thus, needs additional processing steps.

In this study, we gathered the first feedback concerning the usefulness of integrating game
elements in a visual analytics application. The evaluation showed that gamification as a design
concept for visual analytics systems has the potential to motivate users and decrease the com-
plexity level of the given analysis task. The participants stressed the advantages of using playful
elements and rewards for keeping them engaged. Although the participants liked the game ele-
ments, we are still not aware of their effect on users’ motivation and performance. To measure it,
we plan to conduct another (broader scope) evaluation study with more participants over a longer
period. Furthermore, when designing a gameful visual analytics application, we need to keep in
mind that not every user will prefer to have a gameful design in their analysis system; thus, we
need to learn user preferences and produce personalized designs, when possible. This can be done
by learning users’ preferences before they interact with the system (e.g., through questionnaires),
or by learning and adapting the design during the analysis session, which is an exciting future
research opportunity. Especially in expert systems, it is favorable if the gamified design decreases
the complexity level of the problem that has to be solved, without reducing the seriousness of the
analysis task, nor being too “gimmicky.” Hence, a good balance between these design elements and
the analytical components is needed.

Currently, we specify the complexity of the challenge dynamic by utilizing the certainty of
the learned model. The implementation is static: the users are asked to increase the confidence
value for further 10% of the training data to reach the next level of the game. We are planning
to evaluate other, more user-centered approaches. For instance, we are implementing a different
type of challenge where its complexity is adapted based on the observed changes in the model’s
performance during the preceding labeling steps. In this version, the system would detect the
possible (reachable) increase in the model’s quality according to the previous labels. For example,

4https://webanno.github.io/webanno/.
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depending on the phase of the labeling process, the reachable increase in the model’s certainty
could be both 10% and only 1%.

7.2 Use Case: Rule Descriptiveness

To gain insights into the quality of the learned rules, we conducted another study with a Ph.D.
candidate from computational linguistics. She has three years experience in analyzing, among
others, different question types. Through her experience, she is familiar with linguistic insights
that the community has discovered in previous research on question classification. Thus, she had
some hypotheses in mind that she wanted to verify with our system. The focus of the study was
on the linguistic insights, and not the usability of the tool.

7.2.1 Methodology. The study lasted one hour. As the participant was already familiar with
the system due to our on-going collaboration, we gave only a short introduction to the tool. Af-
terward, the participant had full control over the system. During the study, we recorded the audio
and captured the screen. The participant labeled 30 instances in seven labeling steps. After each
labeling step, the participant explored and verified the learned rules. Her findings were recorded
using a think-aloud method.

7.2.2 Feedback. In the following, we describe the insights gathered during the evaluation study.
Insight 1: “Which of these...”: The participant started the analysis by selecting three instances in
the scatterplot visualization that were grouped in one cluster.
The participant read the three questions and labeled them
as ISQ, since they all contained the pattern “which of these.”
After the model was updated, the participant explored the
learned rules and detected several similar rules that included
the combination of “which of these/DT (Determiner).” To ver-
ify if there were other instances with similar patterns, she
selected the Similar Instances strategy and ran the dimension-
ality reduction. The scatterplot visualization was updated, and the model predicted further 12 in-
stances to be labeled as ISQ. The participant verified these and concluded that all of them were
predicted correctly as belonging to the ISQ class. The participant concluded that the system could
accurately predict similar instances for question patterns like “which of DT (Determiner) NNS
(Noun, plural)” that occurred repeatedly, since it was sufficient to label the first three to correctly
predict the label for the rest of similar questions.
Insight 2: “NN (Noun), NN (Noun), NN (Noun), or NN (Noun)?”: The participant con-
tinued the analysis by selecting the Dissimilar Instances strategy. After the scatterplot was
updated, she labeled one suggested instance with coordination of noun phrases (a list of
nouns separated by a comma and a coordinating conjunction (CC) or). She stated that
such a construction is representative for the ISQ class, especially, because the sentence did
not include a verb. She selected the Similar Instances strategy to look for more similar
instances. The updated scatterplot suggested
two clusters for labeling. Both of them con-
tained instances with the CC or. The participant
accepted the predicted labels for all but one of
the instances. The instance with the rejected
prediction contained the CC, but lacked the coordination of noun phrases (and was more likely
to belong to the NISQ class). The expert noticed that these questions included another interesting
pattern: The same person uttered the context before, question, and context after. According to the
literature [5], this pattern should be indicative for the NISQ class; this assumption contradicted
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with the observed examples in our tool. It might indicate that for specific question types, the in-
formation about the speakers uttering the context is less relevant than the patterns occurring in
the question.
Insight 3: “You know what is...”: The participant continued the analysis by selecting the Dis-
similar Instances strategy to find questions with not-yet observed rules. One of the suggested
question for labeling was “You know what is more awesome than
Fridays?” The participant stated that she is confident that this
sentence should be an NISQ because of the phrase “You know
what.” She labeled this sentences as NISQ and explored the rules. She stated that a good model
should detect the “You know what” phrase as an interesting rule. After the model was updated,
she explored the most descriptive rules for the NISQ class, and detected the rule “PRP (Personal
pronoun) VB (Verb) what” that approved her claim. Two more instances were predicted to belong
to the NISQ that satisfied the same rule.
Insight 4: “If..., what would...”: The participant continued the analysis by selecting the Dissimilar
Instances strategy. One of the suggested instances for labeling was a question with the pattern “If...,
what would...?” According to the expert, the if followed by an MD (Modal) would shows that the
question contains a hypothetical expression that makes it more likely
to belong to the NISQ class. In our learning model, we are limiting the
distance between words to maximum five elements; hence, the model
could learn only the second part of the pattern. We tested this question by increasing the maximum
distance for our SPM algorithm, and the pattern was learned as desired.

7.2.3 Lessons Learned. The use case shows that using the QuestionComb interface, the do-
main expert could gain insights and verify hypotheses concerning the question classification. The
four insights showcase that the learning model is able to learn relevant patterns in the data. How-
ever, during the study, we also noticed that a subset of the learned rules was general and, hence,
less relevant for the classification task. This became more obvious during the analysis of the pat-
tern “If..., what would...?”; we exceeded the maximum distance between words to enable the model
to learn rules that are relevant for sentences with subordinate clauses. However, increasing the
maximum distance between words leads to the extraction of significantly more rules by the SPM
algorithm. Hence, a solution is needed to improve our rule-pruning technique to limit the extracted
rules to the most descriptive ones. One possibility would be to integrate some constraints. For in-
stance, we could specify that rules containing only DT (Determiner) and NN (Noun) should be
pruned out as they are too general for the classification task. The generation of such constraints
is difficult, though; it requires to make some assumptions about the question classification task,
which might be wrong. Hence, an effective rule-pruning is still an open research challenge.

7.3 The Effectiveness of Active Learning Strategies

In addition to the qualitative evaluation of the system’s usability and the descriptiveness of the
learned rules, we conducted a quantitative evaluation concerning the effectiveness of the inte-
grated instance selection strategies presented in Section 4. In particular, we show the advantage
when combining multiple strategies during a single analysis session to learn descriptive rules
faster.

7.3.1 Methodology and Procedure. We use a dataset consisting of 400 questions from the CNN
corpus that were annotated as ISQ or NISQ by three independent linguistic experts; we take the
result of the majority vote as the ground-truth. Among the 400 questions, 212 were labeled as ISQ.
Previous work has evaluated the performance of multiple off-the-shelf classifiers trained on a bag-
of-words model (using n-grams) on this particular dataset [66]. As shown in Table 4, the results
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Table 4. Performance of Off-the-shelf Classifiers
for ISQ and NISQ Trained with a Bag-of-word

Model of Frequent N-grams [66]

Precision Recall F-Score
ISQ

SVM 0.729 0.701 0.715
Decision Tree 1.000 0.185 0.312
Naive Bayes 0.734 0.692 0.712
NISQ

SVM 0.673 0.706 0.689
Decision Tree 0.519 1.000 0.684
Naive Bayes 0.670 0.717 0.693

were moderate. A rule-based model could reach a higher precision score than the bag-of-words
models (e.g., 81% and 82% for different evaluation settings [66]). Nevertheless, in this work, only
one instance selection strategy (i.e., Uncertain Instances) was used.

In this evaluation, our goal is to highlight the effect of the six implemented instance selection
strategies on the classifier’s performance. We evaluate both the model’s performance on the pre-
dicted class labels for data instances and predicted class labels for descriptive rules. We hypothesize
that the model has a better performance on predicting labels for descriptive rules than instances,
since instances are represented by a set of rules that not all are expressive for the classification
task. Since performing quantitative analysis on the model’s performance for the particular classi-
fication task is difficult due to many truths that exist for appropriate labels, we first evaluate the
effectiveness of different instance selection strategies by learning the model on ground-truth labels. In
particular, 40 instances (i.e., 10% of the dataset) were labeled with the ground-truth labels by apply-
ing a single strategy at a time. Afterward, a combination of strategies was applied and tested against
the single strategies. Finally, we evaluate the performance of the model when trained on labels that
were specified by the users during the user study (described in Section 7.1).

To evaluate the model’s performance on predicting labels for the learned rules, we first created a
model (i.e., rule-based model as explained in Section 4.2) on the 400 labeled questions, and obtained
the class labels for each rule in the model based on their instance labels. We extracted 165019 rules
from the learned model. We tested the effectiveness of instance selection strategies by applying
a single strategy at a time and comparing iteratively learned rules with the ground-truth rule set.
After the first labeling iterations, the trained model was able to reach a high precision; however,
the recall for both classes was minimal (lower than 30% after 20 labeling iterations). Due to low
support of the rules, we excluded the distance information from the rule definition avoiding them
to be too specific. This means we mined the rules as described in Section 4.2, i.e., by limiting
the maximum gap between itemsets to five words. After extracting subsequences, we removed
the actual distance (e.g., whether two itemsets have a distance zero, one, [...], five) from the rule
definition. The classifier learned the ordered subsequences of itemsets without their particular
distance; hence, more general rules were created. A new model was trained on the labeled data that
contained 14830 rules. 3191 rules were classified as ISQ and 2971 as NISQ; the remaining rules were
equally distributed among ISQ and NISQ instances. We used this model both for learning as well as
evaluation purposes. First, the instances were labeled using a single strategy at a time; afterward,
a combination of strategies was applied for the instance selection. All sessions were executed in
an automated manner; we started by labeling the same instance, i.e., the first suggestion of the
model, according to the applied dimensionality reduction, described in Section 4.3.
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Fig. 12. By applying Similar Instances strategy only, the model is trained on an imbalanced dataset, leading it
to predict the majority, i.e., ISQ class for most instances. The ISQ class reaches a high recall but low precision.

7.3.2 Results. The results for each instance selection strategy as well as the combination
of strategies are shown in the line charts. For the single strategies, the performance (i.e.,
precision and recall) of the model on the predicted instance labels is shown on the left;
the performance of the model on the predicted descriptive rule labels is shown
on the right. In these charts, the yellow lines represent the ISQ class, and the
blue lines the NISQ class. The solid lines show the precision value, and the
dashed lines denote recall. The color of the dot on the bottom of the chart
displays the specified class label (i.e., yellow for ISQ and blue for NISQ) in the particular labeling
iteration.

As expected, we can observe differences between the model’s performance on the predicted class
labels for instances and learned rules. For the classification model, it is easier to predict correct
labels for descriptive rules (i.e., the precision of the predicted rules is relatively high among all
instance selection strategies). We need to consider, though, that we evaluated only descriptive
rules according to the ground-truth data; the remaining 8,668 rules that were equally distributed
among ISQ and NISQ instances were not considered here. The performance on the predicted labels
for data instances is worse, since a single question is represented by a set of rules that likely not
all are descriptive (here, we consider all 14830 rules for prediction making). The performance of
single strategies can be seen in Figures 12–20.
Single Strategies Overall, as shown in the line charts, the model performed better for the ISQ
class. This observation was expected, since most of the descriptive rules in the ground-truth model
belong to the ISQ class. The best performance was reached by the Densest Instances strategy (Fig-
ure 16); also, the study by Bernard et al. [14] shows that density-based strategies perform partic-
ularly well already in an early phase of labeling. The results highlight that some of the strategies
have common characteristics (e.g., Similar Instances (Figure 12) and Certain Instances (Figure 15)).
The inspection of the learned rules showed that the training corpus contains groups of similar ISQ
instances, which enable the model to learn descriptive rules fast. Hence, when the first labeled
instance is an ISQ and solely one of the previously named strategies is applied, the model sug-
gests instances that belong to one of these concise ISQ instance groups. Although it helps to learn
descriptive rules for the ISQ class fast, the usage of only one of the strategies may lead to an imbal-
anced training dataset. This is visible in Figure 12 and Figure 15. Feedback gathered during the user
study showed that these strategies are relevant for specific situations, i.e., for verification purposes;
the participants used these strategies to observe similar instances and adapt their decisions when
needed, but not during the whole labeling session. In contrast to Similar Instances and Certain In-
stances strategies, the Dissimilar Instances (Figure 13), Uncertain Instances (Figure 14), and Outlier
Instances (Figure 17) strategies suggest more diverse instances. These strategies enable to cover a
broader data space faster, creating a more balanced training dataset. Since using these strategies,
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Fig. 13. By applying Dissimilar Instances strategy only, the model learns unique rules representative for the
NISQ class, leading to an imbalanced dataset. Opposite to the Similar Instances strategy, the predictions have
a low recall but high precision for the ISQ class.

Fig. 14. By applying Uncertain Instances strategy only, the first selection for labeling is random, since, initially,
the label predictions are certain.

Fig. 15. By applying Certain Instances strategy only, we achieve similar results as with Similar Instances

strategy. When using this strategy solely, the model is likely to choose instances with common rules to the
first labeled instance.

more instances are labeled as NISQ, the recall of the ISQ class in comparison to Similar Instances
and Certain Instances strategies is lower; however, the model’s overall performance is improved.
One needs to consider though that after the first labeling step, the confidence of all instances is
either 1 (i.e., these instances have at least one of the learned rules) or 0 (i.e., these instances have
none of the learned rules). Hence, multiple labeling steps are needed until the model becomes un-
certain. Thus, it is beneficial to apply strategies that allow learning groups of diverse rules first
and only then apply the Uncertain Instances strategy that helps to resolve the model’s uncertainty.
Combination of Strategies Since the different strategies have advantages when applied in spe-
cific circumstances, we expected that a combination of strategies would outperform the model’s
performance when trained using only a single strategy. To test this assumption, in the user study
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Fig. 16. By applying Densest Instances strategy only, the model achieves the best performance among the six
implemented instance selection strategies. Both classes reach precision and recall greater than 0.6 only after
10% of labeled instances.

Fig. 17. By applying Outlier Instances strategy only, the model’s performance is limited due to low support
of the learned rules.

(described in Section 7.1) two commonly applied strategies, i.e., Similar Instances and Dissimilar
Instances, were selected after each other, whereby at each iteration at most 10 suggested instances
were labeled using the ground-truth labels. The
performance of the model increased for both
classes when tested against models trained us-
ing only Similar Instances or Dissimilar Instances
strategy. As shown in the side figure, after
40 labeling iterations, the model reached 83%
precision and 50% recall for the ISQ class, 61%
precision and 89% recall for the NISQ class. In this scenario, the Similar Instances strategy enabled
to detect similar instance batches leading to a fast coverage of descriptive rules, whereby Dis-
similar Instances strategy allowed covering new data regions, and further similar instances could
be detected and labeled. This observation motivated a further evaluation of the model’s perfor-
mance when combining multiple strategies. We tested the model’s performance while labeling
40 instances and combining strategies in a random order. The labels were specified based on the
ground-truth data. We run 10 trials on a random order of strategies and calculated the average
precision and recall among these 10 trials (shown in Figure 18). In particular, for each randomly
chosen strategy, at most 10 suggested instances were labeled, i.e., in each labeling trial, at least
four instance selection strategies were combined. Similar to the results of single strategies, the
model’s performance was better for the ISQ class—after labeling only 10% of instances, the model
could predict around 60% of ISQ instances with 80% precision. Although the average performance
among the 10 models is better than for most of the single strategies, one can see variations in
the gained recall for different strategy combinations. In particular, the strategy combination that
first suggests the Outlier Instances has the weakest performance among the 10 trials (shown in
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Fig. 18. The average performance (see the bold line) of the model among 10 trials using a random order
of instance selection strategies. The precision of the model becomes relatively stable after 10–20 labeling
iterations independent on the applied strategy combination. The recall, however, is highly dependent on the
instance selection strategies that are applied early in the labeling process.

Fig. 19. The model’s performance is influenced by the first instance selection strategy. Among the 10 trials
of applying multiple instance selection strategies in a random order, the best performance was achieved with
the Densest Instances strategy, and the worst—with the Outlier Instances strategy.

Figure 19(a)). However, the best performance was reached by the model that, first, learned on the
Densest Instances strategy, followed by Uncertain Instances, Similar Instances, and Dissimilar In-
stances strategy (shown in Figure 19(b)). Using this combination of strategies, the model was able
to improve the performance achieved using Densest Instances strategy alone, which had the best
performance among the single strategies.
During the User Study Logged Labels Finally, we tested the model’s performance using labels
that were specified by the users during the user study (described in Section 7.1). In this experiment,
we applied a combination of instance selection strategies that performed best when trained on the
ground-truth labels, i.e., Densest Instances, Uncertain Instances, Similar Instances, and Dissimilar
Instances strategy. Although the model’s performance was moderate, it was worse for both classes
when using the logged labels rather than ground-truth labels. These results highlight the difficulty
of the particular classification task (e.g., due to many truths for correct labels) and emphasize
the need for annotation systems that help detect erroneous labels and refine the learning model
manually. The results of the experiment are shown in Figure 20.

7.3.3 Lessons Learned. In this study, we show that the different instance selection strategies
have unique characteristics, leading to varying classification results. Some of them help to cover
the dataspace faster (e.g., Dissimilar Instances, Uncertain Instances, and Outlier Instances strategy);
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Fig. 20. The combination of instance selection strategies, which performed best trained on the ground-truth
labels (i.e., Densest Instances, Uncertain Instances, Similar Instances, Dissimilar Instances), performs worse on
labels that were logged during the user study.

however, others help to increase the model’s performance by learning descriptive rules from
similar instance groups (e.g., Similar Instances, Certain Instances, Densest Instances). The study high-
lights the need for combining different strategies for reaching the best model’s performance. The
performance of different strategies depends on the training corpus, though; the more groups of
similar instances exist in the training data, the higher performance of the learning model will be
in less labeling iterations. Furthermore, strategies such as Outlier Instances that alone may not
reach a high precision for the learned model are important to cover more diverse data regions ef-
fectively. One needs to consider, though, that one best order of strategies does not exist, since the
model’s performance depends on the dataset it is trained on. Nevertheless, we can provide some
suggestions/heuristics for an effective combination of strategies, such as the following: (1) Avoid
using the Outlier Instances strategy at the beginning of the labeling process, since unique rules with
a low support will be learned, and therefore fewer instances will be reliably predicted; (2) try labeling
similar instance groups at once to cover descriptive rules faster (and be able to make more confident
and certain decisions); (3) label a set of instances before applying the Certain Instances or Uncertain
Instances strategies, since otherwise the model will rely on a random selection in the early phase of
the labeling due to (most of) instances being certain; and (4) use the Densest Instances strategy early
in the labeling process, since it unites the best characteristics of the Similar Instances and Dissimilar
Instances strategies.

The evaluation results highlight the potential to improve the model’s performance by enhancing
the model’s architecture, since many rules are spread across both classes and, therefore, are not
descriptive for the classification task. We are planning to extend the used feature set to more
complex representations (e.g., parse trees) to better represent and learn the sentences’ structure.
Moreover, we are currently testing approaches to integrate a similarity score between the question
and its context as an additional feature for learning. We are also designing a new solution for
integrating distance information into the rule definition. Since the current version of the model
creates too specific rules, we would represent the distance either through a distance binning or
through a Boolean value that states whether two items occur in the same clause of the sentence.

The evaluation results also show the potential of combining different instance selection strate-
gies. Currently, we have done an initial study on the model’s performance when combining mul-
tiple instance selection strategies. We are planning to extend the study to evaluate the effects of
different combinations. A potential research opportunity is also to (semi-)automate the selection
process. One solution might be to integrate tailored guidance approaches, that measured user be-
havior and suggested the situations to change the strategy to optimize the model’s performance
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and data coverage. A more simple approach would be to use previously described heuristics and
“lock” a subset of strategies (e.g., Certain Instances, Uncertain Instances, Outlier Instances strategy)
until a sufficient amount of labels was generated forcing the model to evolve uncertainty.

8 CONCLUSION

We have presented a visual analytics technique, which combines three pillars: methods for data
labeling, gamification providing a targeted design rationale, and XAI for building explainable
machine learning models. We showed the benefit of this technique through a visual analytics
workspace called QuestionComb, for labeling and classification of linguistic question types. The
expert studies showed that guided labeling is effective; moreover, scholars acknowledged the pro-
vided choice of instance selection strategies for a more targeted (individual) analysis. The targeted
design rationale that incorporates a variety of gamification components helps users to stay en-
gaged and has the potential of reducing the complexity of the given analysis task. Furthermore,
the explainable rule learning model is giving insights into linguistic patterns. In our future work,
we would like to continue investigating the potential of applying gamification design concepts in
visual analytics systems. Just as well, we plan to implement our methodology for other use cases
with different expert groups and data collections. More information about the project can be found
under: https://question-interfaces.lingvis.io.
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