Seeing the Shift:
Keep an Eye on Semantic Changes in Times of LLMs
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Fig. 1: Our research examines the growing interdependency between socio-linguistic mental models and large language models (LLMs)
as influencers of semantic change. Traditionally driven by socio-linguistic mechanisms such as metaphorization, we now introduce the
theories of recontextualization, standardization, and semantic dementia to conceptualize the impact of LLMs on our general, conceptual
framework. We further propose Visual Analytics as a tool to monitor and explain these ongoing semantic changes.

Abstract— This position paper discusses the profound impact of Large Language Models (LLMs) on semantic change, emphasizing
the need for comprehensive monitoring and visualization techniques. Building on linguistic concepts, we examine the interdependency
between mental and language models, highlighting how LLMs and human cognition mutually influence each other within societal
contexts. We introduce three primary theories to conceptualize such influences: (T1) Recontextualization, (T2) Standardization, and
(T3) Semantic Dementia, illustrating how LLMs drive, standardize, and potentially degrade language semantics. Our subsequent
review categorizes methods for visualizing semantic change into frequency-based, embedding-based, and context-based techniques,
being first in assessing their effectiveness in capturing linguistic evolution: Embedding-based methods are highlighted as crucial for a
detailed semantic analysis, reflecting both broad trends and specific linguistic changes. We underscore the need for novel visualization
tools to explain LLM-induced semantic changes, ensuring the preservation of linguistic diversity and mitigating biases, while providing
essential insights for the research on semantic change visualization and the dynamic nature of language evolution in the times of LLMs.
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Human language is a constantly evolving phenomenon. New word
senses emerge and existing ones change or disappear due to social,
cultural, and technological influences. This dynamic nature of seman-
tics has captivated NLP researchers, leading to extensive investigations
into the diachronic aspects of language. Some studies focus on devel-
oping and refining theories of meaning change from psycholinguistic
and sociolinguistic perspectives [17, 20, 41, 55] to understand the
underlying mechanisms driving language evolution. Others explore the
historical evolution of word meanings [14, 32] to trace cultural and
societal changes reflected in language. Additionally, research track-
ing current transformations in public discourse [2, 50] helps identify
shifts in language use relevant to applications like sentiment analysis
and media monitoring. Visualizing semantic change helps detect and
address biases, as shifts in word meanings can reflect underlying biases
or stereotypes. By identifying these changes, it is possible to mitigate
their impact and promote fairer language modeling. Recent efforts have
focused on creating adaptive learning systems that evolve with human
language and improve predictions beyond their training period [60].
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Conversely, Large Language Models (LLMs) such as GPT [44]
change the way we produce and process information. Transformer
models outperform traditional methods in tasks of natural language pro-
cessing, including prediction and decision-making through fine-tuning
and adaptation. Pre-trained on vast numbers of text documents they can
learn intricate language patterns without supervision. LLMs like GPT
are embedded into various contexts including business domains, medi-
cal diagnostics, and language translation. Additionally, platforms and
integrations such as ChatGPT [44] or GitHub Copilot [9] assist users
with tasks like content creation, correction, and question answering.
The pervasive use of LLMs underscores the urgency of assessing
their impact on our collective knowledge within our digital ecosys-
tem. Following the former discussion of Nannini [40], these models
do not just alter language patterns; they have the potential to reshape
the collective knowledge ecosystem and impair linguistic diversity and
the richness of our collective knowledge. To mitigate risks of homoge-
nization and semantic erosion, it is crucial to foster critical engagement
and (visual) exploration with Al-generated content and training data.
Proactive strategies are required while leveraging LLM capabilities for
enhanced communication and knowledge dissemination.

Semantic change in natural language offers a unique lens through
which we can observe and understand the profound impact of
LLMs. The utilization of LLMs influences our linguistic patterns as
shown by Liang et al. [35] in AI conference peer reviews: The study
revealed that LLMs have altered the linguistic landscape of review texts,
evidenced by a noticeable shift in the frequency of certain adjectives.
For instance, adjectives like “commendable,” “meticulous,” and “intri-
cate” saw a significantly increased use. Similarly, research by Bender
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et al. [4] on the language used in social media platforms highlights
a trend towards more formal and elaborate expressions, reducing the
prevalence of slang and colloquial terms. Another relevant study by
Youvan [59] on academic writing shows that Al tools have led to a
broader range of vocabulary and more varied syntactic structures in
scholarly papers.

Our research hints towards diverging socio-linguistic influences
initiated by LLM usage: LLMs tend to use a more varied and sophis-
ticated vocabulary compared to the writing style of an individual across
given domains. This shift is not merely cosmetic; a single user’s vocab-
ulary can be enriched and diversified. The user can gain word senses
or linguistic patterns through (T1) recontextualization by LLM agent
interaction. However, our language and consequently our conceptual
framework runs into the risk of being (T2) standardized and homog-
enized towards linguistic convergence meanwhile reducing linguistic
diversity and (T3) semantic dementia. Methods of visualization and
Visual Analytics (VA) proved to be effective in exploring semantic
changes as further discussed. We, therefore, call on the visualization
community to monitor current socio-linguistic changes. We par-
ticularly argue for the application of such towards understanding the
epimistic impacts caused by LLMs.

This paper discusses the possible impacts of Large Language Models
(LLMs) on linguistic diversity and semantic shifts in particular, em-
phasizing the need to visually examine these changes to understand
their epistemic impacts. We present the first comprehensive review
of techniques for visualizing semantic shifts, identifying established
methods for capturing such language dynamics to tackle discussed
challenges. Our contributions include a discussion of previous works
on semantic change and the epimistic impact of LLM usage converging
into three theories. This work provides a foundation for leveraging
visualization to mitigate LLM-induced semantic erosion and promote
language-preserving modeling.

1 How po LLMs DRIVE SEMANTIC CHANGE? ON THE INTER-
DEPENDENCY BETWEEN SEMANTIC AND LANGUAGE MoD-
ELS

Semantic Models are human, subjective, and adaptable. Mental
models, as described by Jones et al. [29], are personal, internal rep-
resentations of external reality used for interaction with the world
essential for reasoning, decision-making, and filtering new information.
As a subpart, semantic models represent our understanding and use
of language being subjective, shaped by an individual’s background,
experiences, perceptions, and the applied context. For instance, a car
is conceptualized differently by a mechanic compared to a driver, just
as the meaning of words can vary between individuals based on their
unique experiences. In Human-Computer Interaction (HCI) research,
it is noted that mental models evolve through system interaction [42].
Similarly, our mental model of language evolves with learning and
experiences. Early education builds foundational models of seman-
tics and syntax, which are continuously updated. Acquiring a second
language as an adult extends this model, contrasting with pre-existing
knowledge.

Semantic change is influenced by context, cognition, and society.
Semantic change, a key area in linguistic evolution, involves the trans-
formation of word meanings over time due to cognitive, social, and
contextual factors as depicted in Figure 1. This process is driven by
socio-linguistic motivations as presented by Tragott [52]: metaphoriza-
tion, metonymy, pejoration, and subjectification. Metaphoriza-
tion transfers meaning based on perceived similarities between con-
cepts, creating new, often abstract, meanings. For example, "doughnut"
metaphorically describes an inept person, using the concrete image to
convey incompetence [22]. © Metonymy shifts meaning based on asso-
ciative links; For example "Number 10" representing the British Prime
Minister, where a part (the address) stands for the whole (the office
and its occupant) [26]. & Pejoration (and melioration) alter a word’s
connotation towards more negative or positive meanings, respectively.
"Silly," which originally meant "blessed," now connotes "foolish" [26],
while "rude" has shifted from "unmannered" to "attractive" in certain
contexts [10]. © Subjectification involves meanings becoming more

subjective over time, influenced by personal perspectives. The term
"very" transitioned from meaning "true" to its modern function as an
intensifier, exemplifying this mechanism [52]. Subjectification suggests
meanings tend to become more subjective, reflecting broader cogni-
tive and social trends [19]. These mechanisms interact, reflecting the
complex interplay between cognitive processes and linguistic contexts
within society.

Similar to discussed societal factors, we believe that the increasing
use of LLMs drives semantic change. To the best of our knowledge,
there are few studies apart from initial indications as discussed in
Section 1. The following section presents three theories as depicted
in Figure 1 on the impact of LLMs on semantic change grounded by
further, initial indications £:

Theory 1: Recontextualization

Large language models generate textual outputs that make
learned forms of language accessible to diverse contexts.
LLMs can simulate various text styles and contexts, which
could foster the dissemination of semantic concepts. By gener-
ating text that introduces new terms or repurposes existing ones,
LLMs contribute to the evolution of our conceptual framework.
£ Observations suggest that LLMs have played a critical role
in the spread and normalization of terms like "delve" by dis-
seminating and recontextualizing them [11]. Further, Radford
et al. [46] demonstrate how LLMs can generate contextual text
that popularizes new terminology. Brown et al. [7] as well as
Floridi and Chiriatti [12] discuss the extensive capability of
models to adapt and introduce new language patterns in social
networks.

Theory 2: Standardization

LLMs, through their widespread use, can lead to the stan-
dardization and homogenization of language. The general
use of models without variations or tuning can impose uniform
language patterns, potentially stifling linguistic diversity and
creativity. Caines et al. [8] highlight that uniformity of LLM
text generation can lead to a loss of regional dialects and unique
linguistic expressions. This standardization can contribute to a
homogenized language framework by reducing the richness of
linguistic variation.

£ Studies confirm that our language runs the risk of being
standardized towards linguistic convergence reducing linguistic
diversity. Bender and Koller [4] discuss how the widespread
use of uniform LLMs can suppress linguistic variation. Prabhu
and Birhane [45] highlight concerns over the loss of cultural
and regional linguistic nuances due to LLMs’ homogenizing
effects.

Theory 3: Semantic Dementia

The extensive use of LLMs can lead to the phenomenon of
Semantic Dementia. Semantic Dementia refers to the gradual
degradation of language quality caused by LLMs propagating
biased, erroneous, or oversimplified models. This process can
provoke semantic changes by provoking inaccuracy within the
conceptual framework. The phenomenon emerges when LLMs
generate misleading language patterns of word meanings and
their usage.

£ Studies by Prabhu and Birhane [45] highlight the risks of
training LLMs on biased data, potentially perpetuating inaccu-
racies. Vincent and Hecht [53] discuss how the propagation of
oversimplified models by LLMs can erode nuanced terminol-
ogy, particularly in scientific discourse, leading to the misuse
of precise terms and thereby reducing communication effec-
tiveness. Demonstrations of semantic dementia are provided by
recent studies of LLLM translations [1, 57] and cultural aware-
ness [36].
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Table 2: Our review analyzes techniques for visualizing semantic changes. We extracted information on the corpus, temporal interval, language,
detection method, visual approach, semantic shift, and applied visualization techniques. Our findings indicate that embedding-based techniques are
most effective for visualizing the impacts of LLM usage, though further approaches are needed to explain upcoming changes.

The continuous development and fine-tuning of LLMs through
iterative improvement mechanisms can further impact semantic
change. As LLMs evolve through training and feedback, their internal
representations and outputs also change, reflecting and influencing
linguistic trends. This iterative process can further support shifts in
word meanings and usage patterns. By adapting to new data and refining
their outputs, LLMs continuously align with evolving language norms,
thus playing an active role in shaping and being shaped by semantic
change [8, 52].

2 HOW CAN WE DETECT SEMANTIC CHANGE?

This section introduces key approaches to the computational detection
of semantic shifts, focusing on two primary categories: conceptual and
semantic methods. Collecting those techniques, we are further able to
monitor upcoming changes in our linguistic, conceptual framework.
Conceptual methods include approaches such as co-occurrence anal-
ysis and neural embeddings. One subpart is co-occurrence-based ap-
proaches that identify frequently co-occurring words. By capturing
textual distances, co-occurrence matrices map relationships between
word pairings. More recent methods use static neural embeddings
representing words as numerical vectors with distances reflecting se-
mantic similarity [31]. In contrast, Dynamic word embeddings are
generated by continuous training to capture temporal information with-
out splitting data into discrete temporal bins. This allows its adaption
and evolution over time thereby reflecting the dynamic nature of lan-
guage. According to Bamler and Mandt [3], the method generates more
accurate embeddings for conceptualizing semantics.

Contextual methods focus on identifying changes in the meanings
of words using techniques such as topic modeling, clustering, and
contextualized embeddings. Traditional Topic-based models apply
algorithms like Latent Dirichlet Allocation (LDA) [6] to group words
into clusters based on their co-occurrence patterns. These clusters
represent thematic areas, tracking the topics associated with the word in
different periods. Further, there exists a variety of further contextual
models to cluster context information to detect and model word senses

in text [27]. Present approaches use Deep contextualized embeddings
to capture both the individual meanings of words and their context
within sentences. Techniques like those by Giulianelli et al. [16] use pre-
trained language models to generate these embeddings. The transformer
architecture processes each word while considering its surroundings,
resulting in embeddings of higher informativeness inheriting relations
between a word to its given context.

3 HOWw CAN WE VISUALIZE SEMANTIC CHANGE?

We provide the first review of existing methods for visualizing seman-
tic shifts to motivate future developments. We bridge insights from
NLP and Visual Analytics collecting approaches for Semantic Change
visualizations.

Survey Methodology - A literature survey was conducted finding
seed papers via Google Scholar and ConnectedPapers, identifying 45
papers on visualizing semantic shifts, with 29 meeting the inclusion
criteria. These studies, spanning IEEE Transactions on Visualization
and Computer Graphics (TVCG, including IEEE VIS proceedings)
and Computer Graphics Forum (EuroVis and EuroVA), were selected
for their relevance to both visualization and linguistic perspectives.
We focused on publications from the past 15 years (2006 to 2023),
complemented by snowball sampling.

Next to discussed semantic detection methods and aspects of semantic
shifts, we extracted the used input data in terms of corpus, language,
and temporal span of the studies as relevant parameters. Drawing
from both fields, NLP and VA, we distinguish between linguistic and
semantic focus for reviewing the used visualization techniques.

Techniques

We present the revised techniques, categorized into frequency-based,
embedding-based, and context-based visualization methods:

Frequency-based visualization techniques leverage word usage fre-
quency over time to identify semantic shifts. Dendrograms by Hilpert
and Gries [23] use variability-based neighborhood clustering (VNC)
to detect stability and change, highlighting relevant semantic shifts.



Bar charts by Odijik and Santucci [43], Benito et al. [5], and Xu
and Kemp [56] visualize word frequency over time, aiding detection
when combined with other techniques. Motion charts by Hilpert and
Perek [24] dynamically represent word frequency in a semantic vector
space. Stream graphs by Martinez-Ortiz et al. [39] show term fre-
quency with varying stream widths over time. Line charts by Kulkarni
et al [33], Theron and Fintanillo [51] and Jatowt et al. [27] plot word
frequency, often integrated into temporal word clouds for context.
Embedding-based techniques visualize semantic changes through
word embeddings in a semantic space. Scatter plots by Heylen et
al. [22] and Martinc et al. [38] illustrate semantic distances and re-
lationships over time. Gruppi et al. [18] present SenSE, comparing
semantic differences across corpora. Projections using PCA and t-
SNE, applied by Xu and Kemp [56], Kulkarni et al. [33], Hamilton et
al. [20], and Yao et al. [58], visualize word trajectories and contextual
relationships in a lower-dimensional space. Graphs by Wijaya and
Yeniterzi [54] and Li et al. [34] model semantic changes using topic
models, representing senses as nodes and their co-occurrence frequen-
cies as edges. Martinez-Ortiz et al. [39] use graph visualization in
ShiCo, relating words within semantic spaces of different periods while
Hofman et al. [25] analyze social and temporal dynamics.
Content-based techniques visualize word context to identify semantic
changes. Bar charts by Frerman and Lapata [13] and Giulianelli et
al. [16] use stacked bars to show context evolution over time. Kazi
et al. [30] propose radial bar charts for similarity within time periods.
Line charts by Rohrdantz et al. [47], Wijaya and Yeniterzi [54], and
others [3, 21, 31, 34, 48] plot cosine similarity and context density,
revealing temporal semantic shifts. Li et al. [34] aggregate contexts
to show average change over time. Table views by Kim et al. [31]
and Rudolph and Blei [49] list similar words at different times. Word
clouds by Xu and Crestani [55], Jatowt et al. [28], and Kazi et al. [30]
size words by similarity, displaying semantic associations. Heat maps
by Jatowt and Duh [27] and Xu and Crestani [56] show context similar-
ity over time, with color indicating the degree of similarity.

Discussion

This section evaluates the applicability of techniques formerly intro-
duced, focusing on their effectiveness in detecting and visualizing
semantic changes. The summarized findings are detailed in Table 2.

We find that the studies use different text corpora, including Google
Books Ngram, the Historical American English Corpus (COHA), and
the TIME Magazine Corpus. Some studies find that word developments
vary depending on the text corpus used showing strong dependencies
on the actual input data. While Google Books NGram proves to be
the most comprehensive entity, one needs to extend the input at least
towards typically applied areas of LLMs such as text generation for
scientific publication or social media as that field. Most studies focus
on English, with some exploring semantic changes in other languages.
As formerly discussed, the area of automatic translation is prone to
trigger Semantic Dementia. Future work should consider the extension
towards multi-lingual approaches. Frequency-based techniques, such
as dendrograms [23], bar charts [5, 43], motion charts [23], stream
graphs [39], and line charts [27, 33], proof to be quite basic but useful
for identifying periods of rapid change in word frequency but appear to
ineffective when used as a stand-alone visualization approach. These
methods are best combined with other techniques for a comprehen-
sive overview and also finding more complex patterns of LLM - while
standardization might be highlighted, recontextualization and seman-
tic dementia might be overlooked due to the simplistic approaches.
Embedding-based techniques, including scatter plots [18, 22, 37, 38],
projections [20, 33, 55, 58], and graphs [25, 34, 39, 54], capture
semantic relationships and their changes over time. These methods
are powerful for exploring the direction of semantic change, allowing
visualization of both broad and specific similarities in meaning. They
require dimensionality reduction or vector space representation, making
them suitable for analyzing semantic shifts in a high-dimensional space.
Given the complexity and richness of embeddings, these techniques are
particularly relevant for LLM-driven semantic change detection and
have the potential to display recontextualization of semantics. Content-

based techniques focus on visualizing the context associated with a
word to recognize changes in meaning. Bar charts [13, 15, 30], line
charts [3, 21, 31, 34, 38, 47, 48, 54], table views [31, 49], word
clouds [27, 30, 55], and heat maps [27, 55] provide insights into how
the contexts of word usage evolve over time. These methods help iden-
tify the emergence of new meanings or the decline of old ones, offering
the possibility to reveal patterns of semantic dementia.

We further find a variety of visualization techniques applied for visualiz-
ing semantic change. Besides more usual methods such as scatter plots,
line - and bar charts, rarer visualizations are applied such as motion
charts [24] or storylines [37]. While metaphormization and metonymy
proofs to be well covered by existing approaches, pejoration appears to
be more represented in the related field sentiment visualization.

In general, we find that embedding-based techniques will be cru-
cial for understanding the impacts of LLMs on semantic change.
These methods provide detailed and accurate representations of se-
mantic relationships and their evolution over time. Scatter plots, pro-
jections, and graphs effectively capture the dynamics of semantic
change, reflecting both broad trends and specific shifts in language
usage [18, 22, 34, 38, 54, 55]. Also, we rarely find actual dashboards
applied towards a more detailed investigation. By that, the highlighted
change often lacks context as is discussed in the context of the pub-
lication but not actually demonstrated by inherent visualizations. We
believe the still-growing impact and continuous development of LLMs
will further impact semantic change. Therefore, novel, custom visual
approaches are needed for not only monitoring semantic changes but
also for explaining how these changes happened in tracing back sources
toward the actual origins to distinguish sociological from technical
impact. As LLMs evolve through updates feedback, their internal repre-
sentations and outputs also change, reflecting and likewise influencing
linguistic trends. This iterative process can lead to shifts in word mean-
ings and usage patterns and resolve in interdependency effects. LLMs
can continuously align with evolving language norms, thus playing an
active role in shaping and being shaped by semantic change - examining
such alignments will be the task of the Visual Analytics community not
only showing these changes but also explaining and retracing them as a
first step towards model validation.

4 CONCLUSION

This paper discusses the growing impact of Large Language Models
(LLMs), emphasizing the need for monitoring semantic change to detect
possible influences of (T1) recontextualization, (T2) standardiza-
tion, and (T3) semantic dementia resulting from the interdependency
between mental models and language models. We find that embedding-
based techniques will be crucial for understanding the impacts of LLMs
on semantic change. These methods provide detailed and accurate rep-
resentations of semantic relationships and their evolution over time.
Techniques like scatter plots, projections, and graphs effectively cap-
ture the dynamics of semantic change, reflecting both broad trends and
specific shifts in language usage [18, 22, 34, 38, 54, 55]. However,
the lack of comprehensive dashboards in current approaches limits the
contextual understanding of these changes. We believe the ongoing
impact and continuous development of LLMs will further influence se-
mantic change. Therefore, novel, custom visual approaches are needed
not only for examining semantic changes but also for explaining the
origins and tracing the sources of these changes. Distinguishing so-
ciological from technical impacts will be essential. As LLMs evolve
through updates and epistemic feedback, their internal representations
and outputs change, influencing and reflecting linguistic trends. The
Visual Analytics community will play a vital role in monitoring these
alignments, not only showing these changes but also explaining and re-
tracing them as a step toward model validation. Future research should
prioritize embedding-based visualizations and develop interactive vi-
sualization tools that adapt to new data, particularly in the context of
LLM applications, to offer insights into current language evolution.
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