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A Systematic Review of
Experimental Studies on Data Glyphs

Johannes Fuchs, Petra Isenberg, Anastasia Bezerianos, and Daniel Keim

Abstract—We systematically reviewed 64 user-study papers on data glyphs to help researchers and practitioners gain an informed understanding of
tradeoffs in the glyph design space. The glyphs we consider are individual representations of multi-dimensional data points, often meant to be shown in
small-multiple settings. Over the past 60 years many different glyph designs were proposed and many of these designs have been subjected to
perceptual or comparative evaluations. Yet, a systematic overview of the types of glyphs and design variations tested, the tasks under which they were
analyzed, or even the study goals and results does not yet exist. In this paper we provide such an overview by systematically sampling and tabulating the
literature on data glyph studies, listing their designs, questions, data, and tasks. In addition we present a concise overview of the types of glyphs and
their design characteristics analyzed by researchers in the past, and a synthesis of the study results. Based on our meta analysis of all results we further
contribute a set of design implications and a discussion on open research directions.

Index Terms—Survey, Glyphs, Quantitative Evaluation, Glyph Design.

1 INTRODUCTION

EPRESENTING multi-dimensional data is a common task
Rin data visualization and, thus, a multitude of techniques
has been developed [1]. Data glyphs are one such technique, in
which single data points are encoded individually by assigning
their dimensions to one or more marks and their visual variables.
Data glyphs have a long history, going back to the 1950s, with
metroglyphs being one of the first designs using line length to
encode data [2]. A somewhat infamous, and thus well researched,
example of data glyphs are Chernoff faces [3] which encode data
values in 2D facial features such as the length of the nose or the
orientation of eyebrows. Star Glyphs are another type of glyph-
based encoding that has received research attention [4] and has
been used in various applications [5], [6], [7].

Over the years, many different glyph variations were introduced
to better fit certain data types, or to solve specific tasks more
effectively. Yet, while many designs have already been explored,
the mapping possibilities of data dimensions to visual glyph
encodings is nearly endless [1] and many more designs are certainly
imaginable. This flexibility allows designers to come up with new
and innovative glyph representations for specific data, tasks, or
contexts. However, without any guidance, this freedom and large
design space can become overwhelming. Knowledge of when and
which types of designs work best or are preferred by viewers,
could aid designers and practitioners in creating new designs or in
selecting among existing ones. Yet, while many user studies in the
literature have investigated different data glyph designs and their
variations, a systematic overview of these studies and what they
pertain to, is so far missing.

With this paper we contribute such a systematic overview of
the user-study literature on data glyphs, focusing on the analysis
of 64 papers with quantitative controlled studies. In contrast to
their qualitative counterpart, controlled experiments are more easily
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Fig. 1. Data Glyphs: A selection of the different data glyph designs used in the
quantitative experiments we analyzed.
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comparable and summarizable, as they test concrete hypotheses
regarding design choices and isolate factors in the glyph designs
[8]. We focus on data glyphs that: use different visual channels to
encode multiple attribute dimensions, that can be independently
spatially arranged, and that can vary in size (see Section 3.1). We
categorize the studies we found according to a number of criteria
that are meant to help researchers and practitioners choose amongst
the most relevant literature to read, and ultimately to make informed
choices about glyph use, design, and potential future studies.
These criteria include glyph types (see Fig. 1 for an overview),
presentation settings, datasets, tasks, and study goals. We extend
this characterization with a summary of study outcomes to help
practitioners select the most appropriate data glyphs according
to different criteria like visual design, data density, or task. By
tabulating existing studies according to these criteria we provide
a novel user-study-centric view on the design space and study
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outcomes, and contribute a discussion on open research areas that
will help to further our understanding of data glyphs.

2 RELATED WORK

In this section we provide an overview of glyph-related survey-
or meta-papers that, similar to ours, have attempted to structure
existing glyphs according to various criteria. Since a large number
of glyph designs have been proposed in the past, a tabulation of
existing individual designs is beyond the scope of this section.

Ward [9], [10] was one of the first to provide a structure of
the glyph design space by classifying different layout possibilities
into data-driven and structure-driven layouts. In a data-driven
arrangement spatial position is determined by data: this can either
be the raw data used as in a scatterplot, or a projection-based
approach such as PCA. A structure-driven layout makes use
of relations between the data points to calculate a layout. For
example, hierarchical information can be used to lay out glyphs
in a tree structure. Ward extended this work with a categorization
of the visual characteristics of data glyphs. He structured data
glyphs based on their mapping of data to visual attributes into
three different classes: a many-to-one mapping where each data
dimension is mapped to the same visual variable (e.g., profile glyph
[11]); a one-to-one mapping showing each data attribute with a
different visual variable (e. g., Chernoff faces [3]); and a one-to-
many mapping representing the data dimensions redundantly with
many different visual attributes (e. g., compound glyph [12]). In this
paper, we use this categorization to structure our own categorization
of data glyph user-studies.

In contract, Chung et al. [13] proposed a categorization based
on the visual channels used to represent the data and the spatial
dimensionality of the glyph (2D, 2.5D, and 3D). The authors
also discussed critical design aspects and guidelines for glyph
visualizations, such as the normalization of data input for each
dimension, the use of redundant mappings, and the visual orthogo-
nality of different glyph components to ensure best performance.
Since some of these guidelines cannot be followed for a high
number of dimensions, designers have to choose between few single
complex glyph designs, or many simple designs. Additionally, they
suggested using halos to limit the negative effect of overplotting. In
our survey we extend this list of guidelines based on our review of
experimental results and provide further open research questions.

An extensive survey on data glyphs was presented by Borgo
et al. [14]. The authors cover different glyph representations and
propose guidelines for designing data glyphs based on a collection
of design principles in the literature. While Borgo et al. also include
several empirical studies in their survey, their focus is on design
study papers showing the applicability of data glyphs to different
data sets and tasks. In contrast to this work, we provide an overview
of performance assessments from quantitative user studies.

A more data-specific survey on glyphs in the medical domain
was presented by Ropinski et al. [15]. The authors classified
glyph-based visualizations for medical data into two groups: pre-
attentively and attentively identifiable glyph designs. Based on this
grouping the authors further derive design guidelines for developing
glyphs for this domain, but provide no additional empirical results
from user studies.

While there is no systematic assessment of glyph user-studies
that we know of, some researchers have categorized subsets of
the study design space. Nelson [16], for example, discusses the
history of Chernoff faces [3] with its many variations such as

the Flury-Rydwiel [17] or Kabulov faces [18]. She also discusses
studies investigating performance changes for different data types
or visual variations. We took this work as inspiration, but provide a
much more comprehensive view on the study design space. Ware’s
[Ch. 5] [19] discussion on “Glyphs and Multivariate Discrete Data”
is related to our work in that he categorizes two types of user
study tasks for glyphs. He focuses on tasks designed to find out
which display dimensions are perceived holistically (integral) or
perceived separately (separable): restricted classification tasks and
speeded classification tasks. Among others, we include both types
of tasks in our discussion based on slightly different terminology
[20]: similarity search tasks (related to restricted classification) and
lookup tasks (similar to speeded classification).

In summary, while there are several overview papers on data
glyphs, we know of no prior work, such as ours, that provides a
systematic review of glyph user studies, study designs, and results.

3 METHODOLOGY

For our systematic review we focused on sampling user studies in
which participants performed controlled, quantitatively measured
tasks with data glyphs. These quantitative measurements could (but
did not have to) be accompanied by a subjective assessment of the
tested glyphs (e. g., according to aesthetics, confidence, etc.) Next,
we categorized the found studies according to the criteria discussed
in this section.

3.1

During our previous work on data glyphs we noticed that definitions
of data glyphs vary in the literature. Yet, we needed to base
our systematic literature search on a more formal, grounded
understanding of existing data glyph definitions. We, thus, extracted
definitions from survey- and meta-papers on glyphs, several books
on visualization, many papers in the literature that used the word
“glyph,” and interviewed several visualization experts on their
understanding of the term glyph.

We found that in early years the term “glyph” was often used
as a synonym for the metroglyph [11], [21] but that with increasing
numbers of different glyph designs published, more abstract
definitions of a data glyph emerged. To compare how researchers
have defined the term, we extracted descriptive keywords from
published definitions, and summarized in which publications they
appeared in Table 1. While Table 1 is certainly not exhaustive,
it serves to show the wide variety of ways researchers think of,
and define, data glyphs, an observation corroborated recently by
Munzner [1].

After a careful assessment of these definitions, we approached
the paper sampling as follows: first, we included all user studies
that used the word “glyph”. In a second step we excluded all papers
which used the term glyph as a synonym for simple data marks
(e.g., [22], [23]), such as points in a scatterplot. We chose this
exclusion criteria because we wanted to focus our assessment on
glyphs that encode multiple attribute dimensions at once. This
notion of a data glyph as a multi-dimensional encoding also aligns
with the majority of historical data glyph definitions. We, thus,
chose studies in which glyphs fit the following general definition:

Data glyphs are data-driven visual entities, which make use of
different visual channels to encode multiple attribute dimensions.
They can be independently spatially arranged and can vary in size.

After this filtering we categorized the tested glyph designs
according to the main descriptive criteria we found in the literature:

Data Glyphs: Sampling Characteristics
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TABLE 1
Overview of defining glyph characteristics mentioned in the literature.

References \ Data glyph characteristics
small/compact encodes differ- | uses different

ent attribute di- | visual channels
mensions

[14] X X X

[24] X X -

[25] X X -

[26] - X X

[27] - X X

[28] - X X

[29] - X X

[1] - X X

[15] - X X

[19] - X X

[10] - X -

[30] - - X

[31] - - X

visual channels, encoded dimensions, and presentation size (see
Table 1).

3.2 Paper Sampling and Collection

To find relevant papers for our review we used a snowball sampling
technique in which we first searched for the keyword “glyph” in
the title, abstract, and keywords in the the ACM digital library
(leading to 80 potential results), the IEEE Xplore digital library
(leading to 255 potential results), the EG digital library (leading to
66 potential results), and the DBLP computer science bibliography
(leading to 134 potential results).

In a next step we excluded papers that did not include at least
one user study with quantitative measures or did not study glyphs
that fit our definition. This filtering step removed 505 of the 535
candidate papers, leaving 30 relevant papers for our survey. From
this initial set of papers we recursively scanned references for
further user studies about data glyphs. Using this approach we
collected 64 papers from the visualization literature as well as work
from statistics and psychology.

3.3 Analyzed Study Characteristics

In the design of any quantitative user study several characteristics
are important: the tasks to be performed, the collected measures,
the presentation of the stimuli (glyphs), the size and type of data
visualized, the general presentation setting, and the study goals (or
main research questions) [8]. We categorized the 64 study papers
using these characteristics as explained in more detail next.

3.3.1

We used Ward’s data mapping taxonomy [10] to distinguish
between glyphs using many-to-one and one-to-one mappings (see
Section 2). The rows and columns of Fig. 3 give an overview of
this categorization. We only found two occurrences of Ward’s third
group: one-to-many mappings. Thus, we do not highlight this group
as a category in our result table. The two studies we found ( [32]
and [33]) are, however, discussed throughout the paper.

Since the many-to-one group encodes multiple data point
dimensions using the same visual variable, we further split
this group into categories based on the visual variables used:
position/length, color saturation, and orientation/angle (see Fig. 3).

Glyph Types and Data Encoding

We also distinguished whether or not a linear or circular layout
was chosen to lay out the dimensions.

The category of one-to-one mapping was structured slightly
differently as it includes a wide variety of design choices. As we
mostly found facial glyph representations or three-dimensional
designs, the result table includes these two categories: Faces
and 3D Glyphs. A third category on car glyphs was added,
since in one paper [34] faces were compared against unique car
glyph representations. Car glyphs are abstract two dimensional
representations of vehicles, which use unique characteristics (size
of the trunk or hood) to encode data.

We additionally found twelve studies that tested unique glyph
designs that were not compared to alternative representations:
PlanningLines [35], weather vanes [36], [37], shapes [38], [39],
roses [40], themes [41], arrows [42], Motifs [43], [44], flowers [45],
and MILSTD2525 glyphs [46]. Rather they were either compared
against textual information, tested on varying backgrounds (changes
in the topological level of detail), or against different types of
visualizations. Since they were not compared to other designs in
the table, we positioned them slightly apart in the “One-to-One
Mapping” category.

3.3.2 Glyph Presentation Setting

For the examined studies, we categorized how many glyphs were
presented to a viewer on the screen: individual glyphs, multiple
glyphs of fixed number, or multiple glyphs of varying numbers.
In the category of multiple glyphs we further noted how the
glyphs were arranged on the screen, as grids, scatterplots, node-link
diagrams, on geographic maps, or other layouts.

3.3.3 Datasets

The glyphs used in the studies all encoded either multi-dimensional
data of a general nature, or time-series data. Additionally, we noted
how many dimensions a glyph encoded. The number of dimensions
is related to the visual complexity of a glyph. Independent of
data type and density we further recorded whether the data was
synthetically created, or if real data was used in the study.

3.3.4 Tasks and Measures

Important for understanding any study results is the nature of
the task participants had to perform. We group tasks in broad
categories, differentiating between tasks involving the glyph as
a whole (synoptic tasks [20]) and tasks where participants had
to focus on single specific characteristics of a glyph (elementary
tasks [20]). An elementary task is typically a lookup task during
which participants focus on single dimensions of a glyph and read
individual values.

We further subdivided synoptic tasks into three categories: 1)
visual search where participants had to find a glyph differing from
others, or tell whether a specific glyph is present or not; 2) similarity
search where participants had to compare the overall structure of
glyphs and group similar representations; and 3) trend detection
tasks where participants had to keep track of the development of
data values across dimensions.

3.3.5 Study Goals

We found three different general study goals: 1) a comparison of
various glyph designs according to their performance and a ranking
of designs based on it; 2) a comparison of different variations of a
single glyph, to detect visual features improving a specific glyph
design; and 3) a comparison of single glyphs vs. data tables, to
motivate the use of these visual objects over textual representations.



TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, MONTH YEAR 4

o0

& 25

©

]

S 20

w

@

a 15

4

2

o 10

a

o

o

& ©

£ e

2

Faces 3D Glyphs Linear  Circular Linear Circular  Linear  Circular
Unique Position/Length  Color Saturation Orientation

Fig. 2. Statistics: Ratio of papers evaluating different visual encodings (dis-
tinguished by color). Low saturation indicates experiments evaluating design
variations of this encoding, and high saturation other experiments (e.g. compar-
isons to other encodings).

3.3.6 Study Results

We summarized study outcomes on a high level, reporting findings
on the impact of presentation settings, number of data points
and dimensions on the tested glyphs. We further report overall
ranking of different glyph types, offering explanations to seemingly
contradictory results across studies. We do not enter into detail on
findings regarding variations of a single glyph type. Our goal is
to provide researchers and practitioners with a better grasp of the
overall picture of the performance of different glyphs, and to point
to individual papers for detailed study results.

4 RESULTS: STATE-OF-THE-ART IN GLYPH EVALUA-
TION

In this section we discuss the findings from our systematic
review based on the characteristics discussed in the previous
section. A summary of the results is presented in individual
tables and in highlighted paragraphs throughout the section. Many
study descriptions did not include all information needed for our
characterization and subsequently our counts do not always add up
to 64—the total number of papers examined.

4.1 Study Goals

We found three higher-level study goals—all related to different
types of comparisons: a) comparison of glyph designs, b) compar-
ison of glyph variations, and c) comparison of glyphs with data
tables or text. As can be seen in the diagonal of Fig. 3!, the majority
of studies (39/64, 60.94%) tested case b) or c). Design variations
within a glyph category were more frequently tested against each
other (32/39, 82.05%) than glyphs vs. a common data table or text
description (7/39, 17.95%). The latter group was most often used
to motivate the use of visuals over text descriptions or data tables
[21], [64], [84], [85], [86].

To measure participant performance all studies but one [44]
recorded accuracy scores, additionally 65.63% measured comple-
tion time (42/64), and 29.69% collected qualitative feedback (19/64)
as well. It is interesting to note that participants’ preferences did
not always match with their performance [56], [58], [60], [90].
Therefore, a preferred design was not always a guarantee for a
good user performance.

1. The flower [45] and theme [41] glyphs also fit into this category, however,
due to their visual encoding they are not represented on the diagonal

Summary: We found similar study goals across many ex-
periments, yet varied were factors like number of data points
and dimensions, task, or glyph design. These variations make
individual study outcomes hard to compare. Thus, we will discuss
the individual factors in the following sections before discussing
the study outcomes in Section 4.6.

4.2 Glyph Types and Data Encoding

Fig. 3 summarizes evaluated glyph types and their encodings based
on Ward’s data mapping taxonomy outlined in Section 3. The table
is meant to be read like a matrix. The intersections of rows and
columns show which glyph types and encodings a particular study
compared against each other. The diagonal (top left to bottom
right) of the table contains references to studies that tested design
variations of the same glyph category, or an evaluation of one
specific design against plain text or data tables (marked with a * in
the table). Empty cells indicate new research possibilities.

Fig. 2 shows that face glyphs were evaluated most frequently
(39.06%), followed by glyphs with position/length encodings
(linear: 17.19%, circular: 18.75%), and 3D glyph designs (14.06%).
We note that from the studies involving position/length encodings
or 3D glyphs (27 in total), 8 were in fact compared to faces (Fig. 3).
Color (linear: 9.38%, circular: 3.13%) and orientation encodings
(linear: 3.13%, circular: 0%) have received little research attention.

The high number—28.13%—of user studies on face variations ,
stands out compared to studies that only focus on other variations,
e.g., circular position/length encodings (14.06%), 3D glyphs
(7.81%), linear color (6.25%), or linear orientation encoding
(1.56%). A possible reason for this imbalance are the many ways
one can design faces and their data mappings (e. g., Chernoff faces
[3], Rydwiel-Flury faces [17], Kabulov faces [18]).

We found only two studies [54], [55] that compared different
linear position/length design variations. This is an interesting
research gap given that profile glyphs that use this encoding are
well established in practice (i. e., sparklines [93], profiles [11]).

In general, we only found three main categories of visual
variables used to encode data in glyphs with many-to-one mappings
(Position/Length, Color, Orientation). Almost all glyph designs in
these studies mapped quantitative information to visual variables.
The only exception was Lee et al.’s work [66] which compares
star glyphs, faces, and 2D projected data points using bivariate
data. Here bivariate information, however, was still mapped either
to the length of the whiskers (star glyph) or to different face
characteristics.

Summary: Faces and circular profiles have been investigated
in detail, in contrast to color value and orientation encodings on
glyphs that only few studies investigated. Surprisingly, we found
only two studies comparing different variations of linear profiles.

4.3 Glyph Presentation Settings

Presentation settings can be characterized by the number of glyphs
presented to viewers, as well as by how the glyphs are layed out
in space. We identified three types of studies when considering
the number of glyphs presented (Table 3): those that presented
only individual glyphs to the viewers (7/64, 10.94%), those that
presented a fixed number of more than one glyph at a time (46/64,
71.88%), and those in which the number of presented glyphs varied
but was always higher than one (11/64, 17.19%). Seven papers did
not report the exact number of glyphs represented on the screen:
[35], [37], [41], [43], [44], [45], [56].
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Fig. 3. Glyph Design Table: Columns represent the different categories of glyph encodings, replicated in rows with glyph examples for each category. Additionally,
color is used to visually separate the different categories. References refer to articles in our study bibliography that compare glyph variations from the respective row
and column. Studies placed in the diagonal evaluate either variations of the same glyph type, or comparisons of the glyph with data tables (starred *). Note that papers
can fall in multiple cells. Since PlanningLines [35], weather vanes [36], [37], shapes [38], [39], roses [40], themes [41], arrows [42], Motifs [43], [44], flowers [45], and
MILSTD2525 glyphs [46] use a unique encoding and are not compared to other glyphs, we positioned them slightly apart in the "One-to-One Mapping” category.

For the 46 studies that tested a fixed number of multiple glyphs The goal of most of the studies with varying number of glyphs
at a time, we found five types of layouts. The most frequent was a  was to investigate changes in performance when increasing the
common small-multiples grid (65.22%), followed by geographic number of visible data points in grid layouts [79], [82], [83],
maps (17.39%), scatterplots (6.52%), node-link diagrams (4.35%), geographic maps [42], [81], and node-link diagrams [63]. The
and other layouts (6.52%) like different 3D environments (see amount of glyphs visible to participants changed from 5-50 [79];
Fig. 4). 5-15 [82], [83]; 6-18 [46]; 9-23 [81]; 4-300 [42]; and 30-48 [63].
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TABLE 2
- 30 Datasets: This table illustrates detailed information about the real datasets used
3 in the experiments.
>
S
5 Dataset | Availability
a 20
v Anthropometrical data about twins [95]
9 [17], [76]
I Patients rated by psychiatrists [21] Minnesota Multiphasic Personality Inventory
S 10
g Medical data [32] unknown
g ‘ | Medical images [56] unknown
=2 0 [ | ‘ | Cars dataset [34] http://davis.wpi.edu/xmdv/datasets/cars.html

Grid Geo map Node-link Scatterplot

Fig. 4. Statistics: Ratio of papers evaluating different glyph layouts (distinguished
by color). Low saturation indicates experiments evaluating a varying number of
data glyphs, and high saturation a fixed number of data glyphs.

In all seven studies participants were affected negatively by an
increasing number of data points, as we discuss in Section 4.6.2.
In the studies conducted by Aigner et al. [35], Dunne et al. [43],
Cayli et al. [44], and Zhang et al. [92] the varying number of data
points was not treated as a factor in the analysis.

In seven studies (10.94%) a single data point was shown
to participants at a time [48], [49], [50], [54], [55], [64], [91].
These studies tried to control all parameters and avoid possible
confounding factors, so as to better reason about changes in
performance when modifying specific aspects of the same design
[91], or when comparing it with other representations [48], [49],
[50], [54], [64], or layouts [55].

Regardless of whether a fixed or changing number of glyphs
was tested, the vast majority of studies (56.25%) arranged glyphs in
a grid layout, followed by geographic arrangements (15.63%), node-
link diagrams (7.81%), and scatterplots (4.69%) (see Fig. 4). The
choice of a grid layout for quantitative studies is understandable.
Grids can help to avoid confounding factors in visual search,
comparison, or classification tasks. For example, the information
provided by a background, e. g., an underlying geographic map,
may influence the perception of glyphs. The background color,
for example may influence the perception color hues [94], while
topology (e. g., rivers, mountains, land borders) may act as grouping
enclosures or as reference structures for reading data values
of glyphs. We only found a single study [36] that examined
the influence of reading data glyphs with different geographic
backgrounds; and one [39] that studied how the reading of a glyph
is affected by the presence of other glyphs around it. We discuss
their results in Section 4.6.1.

Summary: Only a small number of user studies varied the
amount of data glyphs as a study factor. Most studies were
conducted with a fixed number of glyphs arranged in a grid layout.
Surprisingly, only four papers investigated the influence of different
background information and layout on reading data glyphs [36],
[39], [55], [62].

4.4 Datasets & Number of Dimensions

The number of data dimensions tested can help us compare results
across studies, and inform us of the imagined use-case setting
for data glyphs. Only four studies (6.25%) used the number
of dimensions itself as a study factor and thus varied between
glyphs with different dimension counts [24], [47], [58], [63]. The
remaining 60 studies tested glyphs with various fixed numbers

Project plans [35] unknown

MMS5 weather information [36]

unknown

NCEP forecast model

Operational Regional Atmospheric Predic-
tion System

‘Weather information [37]
‘Weather information [42]

unknown
Investment in education USA (2008)

‘Wall Street Journal Index (1974 and 1975)
Standard and Poor’s firm list (1974 and 1975)

Modified U.S. census data [38]
Financial data [40]

Financial data [84]
Financial data [85]

Classical music data [41] unknown
Network data [43]

Network data [44]

Lostpedia wiki edits
10 best ranked movies (IMDb)

Google search results [45] http://www.google.de
Marathon runners [50] unknown
Power plant statistics [53] unknown

Audio information [62]
Biological data [70]
Economic variables [77]
Tensor data [92]

One laptop per child sound library

unknown

U.S. Department of commerce & labor
DTI dataset

of dimensions. Of these, 44 tested less than 10 dimensions. An
overview of different dimensionality settings is provided in Table 4.
Three papers did not report about the number of dimensions
encoded by the glyph designs [43], [55], [62].

In the vast majority of studies (54/64, 84.38%) glyphs encoded
general multi-dimensional data, both real and synthetic. Eight
studies tested glyphs encoding time-series data (8/64, 12.5%) and
in two experiments [43], [44] glyphs were used to represent network
topologies.

Only a small number of studies (24/64, 37.5%) used real
data to investigate the performance of different glyph designs.
The respective papers and real datasets can be found in Table 2.
For the other experiments (41/64, 64.06%) the data was created
synthetically.

Summary: Overall, most studies used synthetically created
multi-dimensional data (41/64, 64.06%). The majority (44/64,
68.75%) of studies used glyphs encoding less than 10 dimensions.

4.5 Task Space

We used the Andrienko & Andrienko task taxonomy [20] to
distinguish between two higher-level tasks as discussed in Section 3.
Synoptic tasks (i.e., similarity search, visual search, trend detection)
were the most common type of task used in the studies (44/64,
68.75%). This is perhaps not surprising as glyphs are often meant
to provide quick overviews over a large number of varying multi-
dimensional data points—and the use of synoptic tasks may reflect
the authors’ desire to test glyphs in a realistic use context.

As shown in Table 5, we found the following classes of synoptic
tasks: similarity search (23/44, 52.27%), followed by visual search
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TABLE 3
Presentation Setting: This table distinguishes between the number of data
points shown to the participants during the studies and the used layout. Color is
used to better distinguish between the different categories.

| Layout | References

%‘) [48][49][50][54]1[641[91]
5} Text [55]

Grid (171121 1124133139145 114715 11[521[53]
E [571[581[591[611[66]1[671[711[72][731[74]
H [751[761(771(781[801(841[851(861[871[89]
3 Geo map [361[371[38][40][60][65]1[68][69]
%‘ Scatterplot | [341[881(90]
= Other [32][35][56]

Node-link [41][70]
o | Grid [461[62][791(82][83](92]
E% Node-link [43][441(63]
= Geo map [42](81]

TABLE 4

Number of Dimensions: This table illustrates the different data dimension
densities used in the studies. Color is used to better distinguish between the
different categories.

Number of Dimensions | References
[321[351[36][371[38][391[401[44][48]
[511[60][671[71][89][911[92][96]
[21][41][42][45][46][49][50][641(65]
[681[691[72][801[811[82][83][881[90]
[771185]
[3310341[531[591(611[731[79]
[541[66]1[701[751[841[871
[171[521[571[741(76]1[781[(86]
[241[471[581[63]

2 & 3 Dimensions

4 & 5 Dimensions

6 & 7 Dimensions

8 & 9 Dimensions

10 - 15 Dimensions

17 - 20 Dimensions

Varying

(14/44, 31.82%), and trend detection tasks (7/44, 15.91%). An
example of a similarity search task can be found in two studies by
Klippel et al.: Using a visualization tool showing 81 glyphs each
representing one car, participants had to group these glyphs into
different categories based on their attributes [33], [59].

In contrast to these synoptic tasks, 26/64 studies (40.63%)
used elementary tasks, i.e., lookup (25/26, 96.15%) and 3D
distance calculation (1/26, 3.85%). These studies focused on more
perception-related questions such as the reading accuracy for visual
variables used to encode a data value. In these studies, participants
did not focus on reading the entire shape of the glyph, but on single
glyph characteristics. For example in the user study conducted by
MacGregor and Slovic [50] participants had to read the completion
time of 48 marathon runners from bar chart glyphs, faces, and star
glyphs. Faces performed best, followed by bar chart glyphs and
star glyphs.

Summary: Most studies used a similarity search or a direct
lookup task to measure the performance of glyph designs.

4.6 Study Outcomes

While we cannot discuss the study results individually for all 64
papers, we collected higher-level observations on study outcomes.
Results on the study of factors such as number of dimensions and
datapoints tested, is consistent across experiments. Nevertheless,

when it comes to a general ranking, experimental results apply to a
study’s specific setting and should be generalized with caution. We
discuss these results next.

4.6.1 Influence of Background Information and Layout

Understanding the influence of layout strategies or additional
context information is crucial since data glyphs can be arranged
in various different ways and settings. Four studies investigated
the influence of positioning or background information on the
performance of data glyphs [36], [39], [55], [62].

A common setting for data glyphs was the positioning in
scatterplots, or projections from a high dimensional dataset to a
two dimensional space. Frisson et al. used a visual search task to
examine the benefits of a two dimensional projection compared to
a grid layout used in small multiple settings [62]. Performance was
lower for the two dimensional projection, since after projection,
some data glyphs ended up overlapping each other, which caused
a loss of information making it difficult to detect the stimulus.
In a follow-up study, the authors added a proximity grid [97] as
an additional layout to the study setting. Results indicated that
participants performed best in a visual search task when using the
proximity grid.

Glyphs were also used in textual documents to communicate
statistical data not only with words but visually. Sparklines are a
famous example of such small visual representations [93], which
are usually positioned in the reading direction next to the statistics
(e.g., on the right hand side). To backup this design decision,
Goffin et al. conducted a user study to compare different layout
possibilities of glyphs within sentences [55]. Surprisingly, there
was no significant effect on accuracy or reading performance for
the different layouts. However, participants preferred the glyph
being positioned above the words.

The influence of reading data glyphs with different geographic
backgrounds was investigated in only one study conducted by
Martin [36]. He measured the performance of participants working
with weather vane glyphs while varying the underlying geographic
map. Surprisingly, his results indicated the background had no
influence on the performance of reading data-glyphs. However, the
glyphs in his study were arranged in a grid on top of a map, and
not according to their geographic position. Using different glyph
designs or an irregular layout may, nevertheless, influence their
performance.

Healey and Enns conducted an experiment to compare the
interaction of different visual features in the surroundings of the
glyph stimulus for a visual search task [39]. Results indicated
that color variations due to the presence of other glyphs in
the neighborhood of the stimulus glyph, caused a significant
interference effect when participants had to judge heights of glyphs
or density patterns. However, different densities in the surroundings
of the stimulus or heights of neighboring glyphs had no effect on
the detection of colored glyphs.

Summary: The influence of background and layout on reading
data glyphs has so far received little research attention. The
limited evidence from this work suggests that the background
and neighborhood of a glyph did not affect glyph readability.
Nevertheless more work is needed to determine the perceptual
difficulties of reading glyphs depending on their background and
layout.
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TABLE 5
Data and Tasks: Most studies were conducted using a lookup or similarity search task with multi-dimensional data.

Data Type

Task Description

Elementary Task

Synoptic Task

[37], [38], [40],
[42], [45], [46],
[48], [49], [50],
[51], [53], [60],
[65], [72], [79],
[88], [90], [91]

Lookup 3D Navigation Trend Detection Similarity Search Visual Search
(distance
calculation)
Multi-dimensional [21], [34], [36], [32] [38], [84], [85] [17], [33], [45], [47], [37], [39], [40],

[52], [57], [58], [59], | [56], [65], [67],
[61], [63], [64], [66], | [71], [81], [82],
(731, [74], [75], [76], | [83]

(771, [78], [801, [86],
[871, [89], [92]

Time-series data [24], [35], [54],

[55]

[24], [55], [68],
[69]

[54], [62], [70]

4.6.2 Influence of Number of Data Points

Seven studies varied the number of visible data points as a factor.
The glyphs used in these experiments were either faces [79], [81],
[82], [83], unique glyph designs (i.e., MILSTD2525 [46], arrow
glyphs [42]), or star glyphs [63].

For the studies involving face glyphs, participants had to
perform visual search tasks and find a certain stimulus in a growing
set of data points. The researchers tested whether pre-attentive
identification was possible, in which case search time would not
have been seriously impacted by increasing the number of glyphs.
Yet, in all studies the performance dropped with an increasing
number of data points independent from the mapping of data to
face characteristics. Based on this outcome Siva and co-authors
concluded that participants performed a serial search and were not
able to pre-attentively identify the stimulus [82], [83]. Therefore,
the perception of abstract data glyph faces compared to human faces
was shown to be different. This is an interesting finding, which
lessens the basic motivation for using abstract faces. However,
researchers could also show that a redundant visual mapping of
data to face characteristics improved the performance [79].

Summary: Increasing the number of data points negatively
affects search within a set of data glyphs, indicating that they—
even face glyphs—cannot be read pre-attentively.

4.6.3 Influence of Number of Dimensions

The results of studies varying the number of dimensions as a factor
showed that different designs were impacted to different extents.
In a study by Fuchs et al., for example, the performance of star
glyphs dropped significantly in a lookup task when increasing the
number of dimensions from 24 to 96, whereas the performance of
line glyphs stayed stable [24].

Wilkinson also varied the number of dimensions to investigate
changes in performance for different glyph representations. His
results indicated that increasing the number of dimensions had
no significant effect on the ranking of tested glyph designs [47],
although there was a drop in performance overall.

However, it is interesting to note that even slight variations
of a glyph design can be affected differently by the number of
dimensions. Fuchs et al. tested the effect of increasing the number
of dimensions on whisker glyphs (star glyphs without a contour
line), traditional star glyphs and polygon variations. Although
the performance dropped for all variations, whisker glyphs were
affected the least [58].

Summary: Increasing the number of dimensions negatively
affects the performance of data glyphs [24], [47], [58], [63].

4.6.4

The outcome of individual user studies often involved a ranking
of data glyphs based on their performance in the study. These
rankings were not always consistent for the same designs tested,
and they changed, for example, based on tasks and details of the
visual encoding. Table 6-Table 9 summarize the outcomes of the
different experiments. The “>” symbol indicates that the glyph
on the left outperforms the design on the right (either in terms of
completion time or accuracy).

Seven studies compared faces against circular position/length
encodings [47], [48], [50], [52], [61], [65], [66] (Table 6). In
four, faces performed best [47], [50], [52], [61], while circular
position/length encodings performed best in the remaining three
[48], [65], [66]. These seemingly contradictory results are rec-
onciled when we consider the tasks participants had to perform
and how the glyphs were designed. In five of these studies the
participants performed a synoptic task [47], [52], [61], [65], [66],
in the other three a lookup task [48], [50], [65]. From the five
synoptic task studies, in the three where faces performed best,
the circular position/length encoding was a polygon (i.e., star
glyph without whiskers, but only a contour) [47], [52], [61], while
in the remaining two where faces performed worst the circular
encoding was a star glyph with [66] and without contour line (i.e.,
whisker glyph) [65]. The remaining three studies with lookup tasks
also compared faces against polygons (with polygons performing
best [48]), faces against star glyphs (with faces performing best
[50]), and faces against whisker glyphs (with whisker glyphs
performing best [65]). It seems that star glyphs compared to faces
are more suitable for synoptic tasks. However, the whiskers glyph
had the best performance independent from the underlying task.
This finding has partially been confirmed for a similarity search
[58] but not for lookup tasks.

Another example where glyph rankings change based on study
characteristics can be found when comparing faces against linear
profiles (Table 7). In three studies faces performed best [47], [50],
[52], in the fourth study, profiles [48]. Again, the four studies used
different tasks: lookup tasks [48], [S0] and a similarity search task
[47], [52]. When comparing the two lookup tasks the ranking of
the two glyph designs is still different although they use a similar
number of dimensions (4 [50] and 5 [48] dimensions), and just
show one data point at a time. Yet, a major difference can be

Influence of Tasks and Visual Encoding
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TABLE 6
Studies and their result rankings: faces vs. circular profiles.

Elementary Task ‘ Synoptic Task

5>@ [48] @ (5 [47], 1521, [61]
>(2 [65] xX>@ [65]
&> D 5 | B (@ [66]

TABLE 7
Studies and their result rankings: faces vs. linear profiles. Conflicting results are
marked with orange color.

Elementary Task ‘ Synoptic Task

(>, 50] @ [47], [52]

M >(&) [48]

found when reading the task description more carefully. Although
both tasks are a lookup task, participants had to either read a
one-dimensional value [50] or detect when one dimension changes
significantly compared to the other dimensions for a single data
point [48].

When comparing linear and circular position/length encodings,
we found glyph ranking differences in 8 studies [24], [47], [48],
[49], [50], [51], [52], [53] (Table 8). In four, the linear design
outperformed the radial [48], [50], [52], [53], while in two, circular
designs were better [49], [51], and in the last one performance
varied according to the underlying task [24]. However, only 3 out
of these 7 had a similar experimental setting with respect to design
variations, presentation setting, number of dimensions and task
[48], [49], [S1]. These three all compare bar charts with polygons
in a lookup task, using low dimensional data and presenting only
one data point at a time. Surprisingly, the performance was still
different : polygons ranked best in two of them [49], [51] and bar
charts performed best in the third [48]. Again, we have to look
at the studies more carefully to come to a conclusion. In the two
studies where polygons performed best, the bars in the bar charts
were shown without a common baseline. This was not true for the
third study were bar charts outperformed the polygons. We assume
that a common baseline increases the performance of the linear
profiles, a finding which is proposed as a design guideline from a
study by Fuchs et al. [24]. However, a user study comparing linear
profiles with and without a common baseline has, to the best of our
knowledge, not yet been conducted.

Additionally, it is interesting to note that there were changes in
performance depending on the kind of elementary task. For reading
exact data values linear profiles outperformed star glyphs, however,
when reading the position of an attribute dimension (e. g., a certain
point in time for time-series data) star glyphs ranked first. [24]

Data glyph designs using color saturation to encode data values
have not received much attention. We only found two papers, which
report on results from quantitative experiments comparing these
glyphs against alternative representations [24], [65] (Table 9).

For overview visualizations focusing on the overall appearance
of a glyph, color value encodings were not found to be effective.
In three out of four user studies participants performed better using

TABLE 8
Studies and their result rankings: linear vs. circular profiles. Conflicting results
are marked with orange color.

Elementary Task

> Dl g

& >M [49], [51]

M > D [24], [50], [53]
s >[4 [24]

| Synoptic Task

e [52]
M > [24]

TABLE 9
Studies and their result rankings: color saturation vs. profiles. Conflicting results
are marked with orange color.

Elementary Task

", >

| Synoptic Task

>

" 24 N

', >} o, 541 | 100 >IN (2, 14y
| > M (54]
% > 2 1651 e 4 [65]

g
5> by

JEI

a position encoding (i. e., linear and circular profiles) in synoptic
tasks. In the fourth experiment the color encodings were visually
enhanced to help participants solve certain tasks and outperformed
linear profiles. Only faces performed worse. However, it is more
difficult to draw conclusions for elementary tasks. When pursuing
a direct lookup task (e. g., reading data values) radial color value
encodings have outperformed star glyphs and faces [24], [65].
Whisker glyphs on the other hand have been shown to be as
accurate as color value encodings but more efficient [65]. However,
linear profiles were most accurate and, therefore, the best choice
for direct lookup tasks [24].

Summary: Study results differed based on individual factors
like number of dimensions, task, number of data points, or slight
variations to the designs. Our summary tables can be considered as
a performance overview pinpointing to relevant literature.

4.6.5 Influence of Metaphoric Glyph Design

One goal of information visualization is to present the underlying
data in a way that can be easily understood by users. Thus,
researchers have tried to improve intuitive understandability of
visualizations, by using metaphors when mapping data to visual
representations. One such example can be found for weather
forecasts. In such a scenario weather status is communicated
with small icons on top of a geographic map. These icons are
metaphoric representations of the real environment to facilitate
their understanding. Small cloud icons represent cloudy areas, rain
drops encode rainy areas, and little suns illustrate sunshine in
specific regions.

While data glyphs are different from icons [14], the general
concept of representing the underlying data using metaphors can
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also be applied here. Since the visual representation of a glyph is
data driven the idea is not to use a different glyph design for each
individual data point (like in the weather forecast example), but
to use certain glyph characteristics to display the data while being
consistent with the metaphor.

However, it is not clear whether such metaphor-based represen-
tations are better than more abstract ones. Siirtola has attempted
to provide an answer to this problem by introducing metaphoric
glyph designs and comparing them with more abstract ones [34].
In his experiment he visualized car related data with abstract face
representations, and with metaphoric car glyphs [34]. Car glyphs
were created by mapping data to parts of the glyph with related
meaning. For example the attribute horsepower was mapped to
the size of the engine of the car, which is metaphorically reflected
in a bigger hood. In his user study participants had to answer car
related questions when working with either faces or car glyphs.
The metaphor helped the participants in understanding the data.
As aresult, they performed better when working with car glyphs
compared to faces.

Li et al. [40] provided another example where metaphors were
used. In their quantitative experiment they compared RoseShape
glyphs against abstract polygons to visualize multi-dimensional
data about the education level in the US. The glyphs were
positioned on top of a geographic map and participants had to
either read data values or search for certain characteristics. Results
suggest that participants were more accurate and more confident of
their answers when working with the metaphoric designs.

In a study conducted by Flury and Riedwyl, data collected
about monozygotic and dizygotic twins, such as their height or
weight was mapped to two types of face glyphs [17]. Using abstract
face representations (i. e., Chernoff faces) or more realistic faces
(i.e., Flury Riedwyl faces) participants had to look at a glyph for
each twin and rate whether or not the two glyphs showed data
about monozygotic twins. The results indicated that participants
were more accurate when working with the more realistic faces.

Jacob [21] gave another example where he tested the perfor-
mance of a single metaphoric glyph design. He displayed data from
patients having a certain psychological condition (e. g., depression,
paranoia etc.) using faces. The abstract faces were created to
show facial expressions resembling those of the human faces of
the patients. Participants in his study had to judge which face
corresponds to which behavior without being trained or knowing
the patients. The results indicated that people were able to name the
correct psychological illness without knowing the mapping criteria
of data to face representations.

Metaphors may help to explain the results obtained in a study
conducted by Fuchs et al. [24]. The researchers ran a quantitative
study using time-series data. Participants had to locate specific
points in time using glyphs with either a linear dimension layout
(e.g., sparklines) or a radial arrangement (e.g., star glyphs).
Surprisingly, participants were more accurate when working with
circular glyphs. This is interesting since the visual variable position
(used in linear layouts) is considered more accurate compared to
orientation (used in circular glyphs) [98]. However, participants
argued that they were reminded of a clock when working with
radial glyph designs, which facilitated locating certain points in
time.

Summary: A small number of previous studies suggest that
metaphors may help to better understand the underlying data.

4.6.6 Summary

While we found and reported on 64 papers, the vast design space
of data glyphs and the possibility to test only a limited set of
factors in a controlled user study makes it difficult to recommend a
single best-of glyph design. Glyph performance depends on many
different factors, such as the task used, the number of data points, or
slight variations to the designs used across studies. Our analysis in
Section 4.6.4 presents a summary of rankings from the articles we
analyzed, and discusses how these factors can explain seemingly
contradictory results.

We were able to draw general conclusions when it comes to
number of dimensions and glyphs. Some study results indicate that
increasing the number of data dimensions affects the performance
of glyph designs negatively [24], [47], [58], [63] with position
encodings (linear and circular profiles) being more robust compared
to color encodings in high-density situations [24]. As with the
number of dimensions, there is evidence that performance drops
with increasing the amount of visible glyphs on the screen
[42], [46], [63], [79], [81], [82], [83]. This seems like a logical
conclusion due to the required additional effort in visual search
involving a higher number of entities. In addition, a small number
of past studies indicate that metaphoric glyph designs increase
performance.

Finally, it has to be noted that our analysis was made difficult by
alack of standard for reporting study details on glyphs. For example
specific information (e. g., stimuli size, viewing distance, number
of visible data points, etc.), that could shed light on differences
across experiments, were often missing.

5 IMPLICATIONS FOR DATA GLYPH DESIGN

In this section we abstract and summarize the study outcomes
in the form of design considerations. We indicate the number of
papers supporting each design consideration in brackets to indicate
the extent of generalizability, and order them based on this support.

Do not expect glyphs to be perceived pre-attentively (7).
All seven studies considering the scalability as a factor come
to the conclusion that the performance drops significantly when
increasing the number of data points. However, these studies only
included faces, arrows, star glyphs and MILSTD2525 glyphs.

Faces have possible value (5). Many experiments with differ-
ent study designs have been conducted comparing faces against
other data glyph design. Based on the underlying study setting the
ranking of the tested designs was different. However, in at least five
studies faces outperformed the alternatives [47], [50], [52], [61],
[87].

Consider metaphoric designs (5). Five studies investigated
the usefulness of metaphoric data glyph designs. The results
indicate that metaphors helped participants in analyzing data.
However, the type of metaphors and type of data are closely related,
making the past studies somewhat limited. This a fruitful area for
further research.

Linear data glyph designs profit from a similar baseline (3).
In three studies comparing linear against circular profiles, linear
designs were most effective when the dimensions where aligned
to a common baseline. However, this finding has not been directly
investigated by an experimental comparison of linear profiles with
and without a common baseline.

In linear designs color encodings should be avoided,
whereas they seem to be beneficial for circular layouts (3).
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Since only four studies have been conducted using color satura-
tion to encode data values, this guideline has to be considered
with caution [24], [65]. It seems that in circular layouts with
position/length encodings (i.e. star glyps) the mental rotation
required for comparisons affects participants more strongly than
color comparisons that can be conducted without a common axis.
For linear designs the ranking of visual variables from Cleveland
and McGill seems to hold [98].

Pick line glyphs for lookup tasks with a large number
of dimensions (2): Studies suggest that data glyph designs are
influenced negatively by an increasing number of dimensions.
However, the line glyph seems to be affected the least. For similarity
search tasks one study found the whiskers glyph to be most effective
in a high-dimensional setting.

6 DiscussiON AND OPEN RESEARCH AREAS

In this section we identify and discuss directions for future research
based on our analysis. The proposed research directions are ordered
roughly according to their scope.
Types of User Studies:
Even though we focused on user studies with quantitative compo-
nents for this paper, we found only a few qualitative studies that
considered how glyphs are used in practice within real applications.
One such exception is the experiment conducted by Sreng et al.
[99] where participants used a 3D automotive assembly tool and
answered questions about the perceived usefulness of the embedded
glyphs. Although this study provided qualitative observations
in the form of questionnaires, we can envision more elaborate
field experiments and observational studies on real use of glyphs.
Observers could thus gather information on how people use glyph-
based visualizations in real contexts, for which tasks, and with what
kind of results. Such studies could inform our understanding of
how glyph-based applications are adopted and used in practice and
could, thus, provide new insights on which to base design choices.
Summary: Adding qualitative evaluations observing analysts
working with different glyph designs, datasets, and tasks, would
help to better understand the glyphs design space. In particular,
information about subjective preferences and the applicability of
specific glyph designs in practice would be useful. It would be
interesting to capture which design analysts choose to solve which
analysis task.

Data to be Tested:

There are several pros and cons for choosing real vs. synthetic
datasets for a study. On the one hand, real data has the advantage
that it can demonstrate which visual representation performs best
in realistic situations, providing valuable results for analysts of this
data. However, real data often contains unique characteristics (e. g.,
size, structure, number of dimensions), that make the results noisy
and hard to generalize.

On the other hand, one may argue that synthetic data does
not always represent a real world scenario or problem well
(ecological validity), making results again hard to generalize.
However, artificial data can be easily controlled and focused on
answering specific questions. Additionally, possible confounding
factors due to the underlying data are excluded (e. g., visual search
time according to the number of data points).

Given the above pros and cons, it seems an interesting open
research question to see how glyphs behave when they undergo

study using both synthetic and real data, similar to the approach
taken by Caban [56].

Summary: Running quantitative experiments, using both
datasets from synthetic to real world and vice versa will enhance
our knowledge on the behavior of data glyphs in different situations.

Study Tasks and Measures:

In the majority of studies participants had to perform synoptic tasks
(Table 5). This is not surprising given that glyphs are often used to
provide quick overviews over a large number of multi-dimensional
data points. Nevertheless, there are glyph designs (e. g., some 3D
glyphs) that have not or rarely been looked at for synoptic tasks,
an interesting topic for further study.

Although results from specific tasks, such as these synoptic
ones, are valuable, a common visualization task is free exploration,
insight generation and hypothesis forming. Inspired by recent
work on insight based evaluation [100], it would be worthwhile
to investigate the performance of different glyph designs in such
contexts.

Summary: Adding exploration tasks or extracting insights from
an unknown dataset are realistic real-world analysis tasks. They
should, therefore, be added to the repertoire of user study tasks in
glyph evaluation to further reason about the practical applicability
of data glyphs.

Glyph Presentation Setting:

A large number of studies presented glyphs as small multiples
using a grid layout. There were no studies on glyphs nested
inside treemaps, or other types of representations apart from maps,
scatterplots, node-link diagrams, and two 3D representations in
the medical domain. This is interesting, as it is not clear that grid
layouts present the most commonly assumed usage context for
glyphs. For example, in the area of scientific visualization, glyphs
are often used on 3D volumetric surfaces or to represent 2D flow
fields in order to indicate data at specific sampling points. These
glyphs are approximately uniformly spaced apart, but this relative
spacing changes depending on the view’s magnification factor,
making them appear more or less densely packed together. There
is very little to no guidance from controlled user studies on how
this apparent density affects their performance.

Moreover, we know little about the influence of the background
information on the performance of glyphs. Only one study
investigated performance changes for glyph designs when placed
on top of different geographic maps [36], and one other their
performance close to neighboring glyphs [39]. Many questions
remain unanswered, for example, we do not know if glyphs are
perceived differently when arranged in uniform grids compared
to other arrangements, such as treemaps, that vary their relative
distance.

It is also unclear what effect the glyphs have on the understand-
ing of the underlying visualization itself: for example, it would be
interesting to investigate if rectangular treemaps are more effective
compared to circular treemaps when adding glyph designs; or if
people are distracted by the additional context information in the
form of glyphs in 3D environments. There is certainly much space
for further research.

Summary: Since data glyphs cannot only be positioned in small
multiple grids, evaluating different arrangements of more complex
layouts (i. e., treemaps, etc.), would help to better understand the
influence of specific data glyph designs on the context and vice
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versa.

Glyph Types and Data Encodings:

Understand redundant encodings: Using Ward’s glyph design
categorization [10], we found only two studies that used glyphs
with a one-to-many mapping (i. e., a redundant encoding). Ware
[19], however, discusses interesting perceptual study approaches
to learn how dimension encodings can be separable or integral. A
better understanding of how redundant encodings work together,
and could enforce data reading, would prove beneficial to glyph
design.

Study missing mappings: In Fig. 3 we refer to 50 of the 64 studies
examined, having left out the two one-to-many mappings [32], [33]
and the twelve that were not compared to other designs [35], [36],
[37], [38], [39], [40], [41], [42], [43], [44], [45], [46]. Looking
at the table there is still clearly an imbalance in what kind of
data encodings have been comparatively tested. Many cells remain
empty, and there are several sparsely populated ones. One of the
first things to notice is that there is no single study on circular
orientation encodings, although they are used in visualization
applications: representatives of this category are the compound
glyph used in network graphs [12], pie chart glyphs for analyzing
multi-dimensional data (e.g., global material composition [101], or
biological binding properties [102] ), or as provided in visualization
toolkits (e.g., JIT?). Perhaps this type of encoding is a-priori
deemed inferior based on Cleveland and McGill’s [98] work that
ranks orientation low for quantitative data representation. Given
past use of these encodings however, it is certainly worthwhile to
confirm that Cleveland and McGill’s ranking does hold for circular-
orientation encodings in glyphs, in particular in the context of real
multi-dimensional data.

Similarly, several other cells of Fig. 3 are empty or populated
by studies from a single paper. As discussed in Section 4.6, the
ranking of glyph designs or their variations often depends on tasks
and encodings, and as such more studies are needed to be able
to provide reliable guidance for general glyph use and design.
Especially glyph designs, which have not received much research
attention but are used in practice (i.e., pie chart glyphs, or variations
of linear profiles) should be prioritized in future studies.

Replicate studies on face glyphs: Many studies have been conducted
investigating the performance of faces. Most of these studies were
conducted in the 70s, and 80s when faces were newly introduced.
In recent years face glyphs have been considered inferior but there
are no recent studies or replications of earlier studies to confirm
this. Given that some past studies showed good performance, it
may be worthwhile to try and reproduce some earlier studies to
confirm that they are indeed not as good as their current reputation
in the community suggests.

Test larger number of dimensions: In addition to the data encoding,
the number of glyph dimensions may highly influence performance.
As we saw in Table 4 the vast majority of studies only examined
glyphs under a fixed number of dimensions, often less than 10
data dimensions. Only four varied the number of dimensions
systematically in their studies. To reliably understand how glyph
performance scales, we need to further explore how glyph designs
fare under different dimensions.

Summary: Quantitative user studies should be conducted
to compare data glyph designs which have not yet received
much research attention (i.e., pie chart glyphs). The number of

2. JavaScript InfoVis Toolkit http://philogb.github.io/jit/

dimensions should be varied during the experiment and considered
as a factor for analysis, to better understand glyph scalability.

Summary:

This section motivated promising open research directions for
future experiments on data glyphs. In this summary, we revisit the
most important gaps we identified and most promising research
directions. Firstly, we need to give priority to experiments inves-
tigating glyph designs, which have not received much research
attention, yet. For example, there is only little knowledge about
the performance of radial layouts, such as pie chart glyphs. Having
more evaluations about data glyph designs will help to better
generalize the outcomes and argue about the performance of visual
variables.

Additionally, different presentation settings need to be tested in
more detail, since a big advantage of data glyphs is their flexible
arrangement on the screen. In most experiments the data glyphs
were positioned in a regular grid layout, however, data glyphs can
also be arranged in more complex layouts like treemaps. Currently,
there is only little guidance whether the performance of data glyphs
will change according to context information or layout.

A wider variety of experimental factors should be considered
such as: multiple datasets (i. e., synthetic data and real world data),
different analysis tasks (e. g., exploration or insight generation),
and different study types (i. e., qualitative and quantitative) to get a
deeper understanding of the utility and performance of data glyphs.

7 CONCLUSION

In this paper we contribute a systematic review of research papers
focusing on the evaluation of data glyphs in quantitative user
studies. We organize this work using several criteria, such as glyph
types, study presentation settings, datasets and tasks used. An
overall summary of the most interesting findings can be found in
Table 10. Our goal is to: first, help researchers and practitioners
identify relevant previous studies that give insights into glyph
design tradeoffs, and get inspired by previous study setups; second,
provide a meta analysis of the study outcomes; and third, pinpoint
open research directions for the study of data glyphs.

In summary, we found that faces and their variations were
the most studied glyphs, followed by circular position encoding
glyphs (e. g., star glyphs), which were often also compared to faces.
Our analysis showed that at first glance performance rankings
differ across studies. Yet, we discuss how some of these seemingly
contradictory results can be explained by differences in the study
criteria, such as the tasks, density and variations of glyphs tested.
Our categorization provides readers with references to past studies
that can not only serve as specific design considerations but also
be an inspiration to design one’s own user study.

Our work also aims to highlight gaps in the literature on data
glyph evaluation. Few papers have evaluated variations of glyphs
using color encoding, even though such glyphs are used in practice
[103]. Moreover, only two works [54], [55] have compared design
variations of glyphs using linear position or length encodings, that
are well established in practice (i.e., sparklines [93] or profiles
[11])—although some more have been compared to faces. We
were also unable to find any study on circular orientation/angle
encodings as already used in applications (e.g. [12]). At the present
time we caution against making overly general recommendation
for using one type of glyph over another given in particular the
many criteria we needed to use to distinguish and categorize past
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TABLE 10

Overall Summary: This table is a collection of all design considerations, open research gaps, and findings proposed throughout the paper.

‘ Section

Summary

4.1

4.2

4.3

Study Settings

4.4

4.5

We found similar study goals across many experiments, yet varied were factors like number of data points and
dimensions, task, or glyph design. These variations make individual study outcomes hard to compare.

Faces and circular profiles have been investigated in detail, in contrast to color value and orientation encodings on
glyphs that only few studies investigated. Surprisingly, we found only two studies comparing different variations
of linear profiles.

Only a small number of user studies varied the amount of data glyphs as a study factor. Most studies were
conducted with a fixed number of glyphs arranged in a grid layout. Surprisingly, only four papers investigated
the influence of different background information and layout on reading data glyphs [36], [39], [55], [62].
Overall, most studies used synthetically created multi-dimensional data (41/64, 64.06%). The majority (44/64,
68.75%) of studies used glyphs encoding less than 10 dimensions.

Most studies used a similarity search or a direct lookup task to measure the performance of glyph designs.

4.6.1

4.6.2

463
4.6.4

Study Outcomes

4.6.5

The influence of background and layout on reading data glyphs has so far received little research attention.
The limited evidence from this work suggests that the background and neighborhood of a glyph did not affect
glyph readability. Nevertheless more work is needed to determine the perceptual difficulties of reading glyphs
depending on their background and layout.

Increasing the number of data points negatively affects search within a set of data glyphs, indicating that they—
even face glyphs—cannot be read pre-attentively.

Increasing the number of dimensions negatively affects the performance of data glyphs [24], [47], [58], [63].
Study results differed based on individual factors like number of dimensions, task, number of data points, or
slight variations to the designs. Our summary tables can be considered as a performance overview pinpointing to
relevant literature.

A small number of previous studies suggest that metaphors may help to better understand the underlying data.

Open Research Gaps

Adding qualitative evaluations observing analysts working with different glyph designs, datasets, and tasks,
would help to better understand the glyphs design space. In particular, information about subjective preferences
and the applicability of specific glyph designs in practice would be useful. It would be interesting to capture
which design analysts choose to solve which analysis task.

Running quantitative experiments, using both datasets from synthetic to real world and vice versa will enhance
our knowledge on the behavior of data glyphs in different situations.

Adding exploration tasks or extracting insights from an unknown dataset are realistic real-world analysis tasks.
They should, therefore, be added to the repertoire of user study tasks in glyph evaluation to further reason about
the practical applicability of data glyphs.

Since data glyphs cannot only be positioned in small multiple grids, evaluating different arrangements of more
complex layouts (i. e., treemaps, etc.), would help to better understand the influence of specific data glyph designs
on the context and vice versa.

Quantitative user studies should be conducted to compare data glyph designs which have not yet received much
research attention (i. e., pie chart glyphs). The number of dimensions should be varied during the experiment and
considered as a factor for analysis, to better understand glyph scalability.

studies (e. g., datasets, tasks, encodings). There are still several
years of research possible to understand how humans perceive
and use glyphs. We outlined many opportunities for design and
evaluation and hope this work encourages researchers to pursue
them.
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