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Abstract—While many VA workflows make use of machine-learned models to support analytical tasks, VA workflows have become
increasingly important in understanding and improving Machine Learning (ML) processes. In this paper, we propose an ontology
(VIS4ML) for a subarea of VA, namely “VA-assisted ML”. The purpose of VIS4ML is to describe and understand existing VA workflows
used in ML as well as to detect gaps in ML processes and the potential of introducing advanced VA techniques to such processes.
Ontologies have been widely used to map out the scope of a topic in biology, medicine, and many other disciplines. We adopt
the scholarly methodologies for constructing VIS4ML, including the specification, conceptualization, formalization, implementation,
and validation of ontologies. In particular, we reinterpret the traditional VA pipeline to encompass model-development workflows.
We introduce necessary definitions, rules, syntaxes, and visual notations for formulating VIS4ML and make use of semantic web
technologies for implementing it in the Web Ontology Language (OWL). VIS4ML captures the high-level knowledge about previous
workflows where VA is used to assist in ML. It is consistent with the established VA concepts and will continue to evolve along with
the future developments in VA and ML. While this ontology is an effort for building the theoretical foundation of VA, it can be used by
practitioners in real-world applications to optimize model-development workflows by systematically examining the potential benefits that
can be brought about by either machine or human capabilities. Meanwhile, VIS4ML is intended to be extensible and will continue to be
updated to reflect future advancements in using VA for building high-quality data-analytical models or for building such models rapidly.

Index Terms—Visual Analytics, Visualization, Machine Learning, Human-Computer Interaction, Ontology, VIS4ML

1 INTRODUCTION

In computer science, an ontology is typically represented using a type
of graph. The primary use of an ontology is for encoding the knowl-
edge about common concepts, properties, and relations in a subject [24].
Given a key phrase “an ontology for”, Google Scholar indicates that
there may be some 35,100 publications online. Its applications extend
well-beyond the discipline of computer science. Ontology development
is a major aspect of building a theoretical foundation of visualiza-
tion [11]. However, such effort was only reported sparsely in the
literature (e.g., [5, 14, 51]). While a number of conceptual workflows
have been proposed for Visual Analytics (VA) (e.g., [10, 31, 57, 58]),
there is not yet an ontology for describing common concepts and rela-
tions in VA. This work represents the first step towards a comprehensive
ontology for VA by focusing on a subarea of VA, that is, VA-assisted
Machine Learning (ML).

ML is an inspiring area of artificial intelligence. In data science in
general and VA in particular, ML can play a significant role in devel-
oping machine-learned models that can be used to automate analytical
tasks. In the past, the goal (A) to develop ML models is often inter-
twined with the goal (B) to develop such models automatically. In
recent years, many started to separate these two goals in order to ensure
the optimal achievement of goal (A) in ways including the use of hu-
man intelligence in the ML model development. For example, in IEEE
VAST 2017, more than a dozen of papers presented VA solutions for
aiding ML processes, covering a range of problems (e.g., clustering [56]
or classification [42]) and ML solutions (e.g., deep learning [28] or
decision trees [40]). A new subarea is emerging in VA. Partly because
many are still used to the coupling of goals (A) and (B) and partly
because the new VA solutions for assisting ML are drops of the ocean
in comparison with automated solutions for developing automatic ML
models, it is not always clear where an ML process can benefit from a
VA solution.
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In this work, we present an ontology VIS4ML as a “knowledge
map” of this new landscape. We systematically extract goals and
requirements of using visualizations within ML workflows as the raw
facts for establishing this knowledge map. Our aim is not only to
use the ontology to illustrate the “routes” that have been taken by
recent VA solutions for ML, but also to provide VA practitioners with a
means to “navigate” the complex landscape of ML in order to identify
aspects that may benefit from introducing more machine or human
capabilities. VIS4ML can help practitioners identify where VA has
been used to assist in and improve ML workflows. The online version of
VIS4ML (http://vis4ml.dbvis.de/) provides links to the previous works
to aid further understanding as to why and how. We conceptualize the
entities and relations in VIS4ML based on the related works in VA
in general and VA assisted ML in particular (Section 2). We extract
six major goals for using VA in ML from previous works (Section 3).
We specify the definitions, rules, syntaxes, and visual notations for
formulating this ontology (Section 4). We generalize the traditional VA
pipeline to encompass model-development workflows (Section 5) and
present a formalized ontology “VIS4ML” for VA-assisted ML (Section
6) implemented in the Web Ontology Language (OWL). We validate
VIS4ML using existing VA solutions for ML (Section 7), illustrating
how VIS4ML can be used (Section 8). We offer our concluding remarks,
envisaging the continuing development of VIS4ML (Section 9).

2 RELATED WORK

Our endeavor is related to Conceptual Research in VA/ML and Existing
Ontologies in the Field of Visualization.

Conceptual Research in VA/ML: Conceptual workflows exist in Data
Mining (DM) as well as in information visualization. Fayyad et al. [19]
describe a pipeline of Knowledge Discovery in Databases (KDD) pro-
cesses and Card et al. [7] describe a workflow for Information Visu-
alization (InfoVis). VA aims at integrating both pipelines in order to
combine the human and machine strengths by tightly coupling auto-
mated analysis with interactive visualization [32]. There are many
other conceptual workflows proposed in the visualization literature
(e.g., [10, 22, 67, 68]). Humans play a fundamental role in data intel-
ligence processes: 1.) in InfoVis, analysts explore and manipulate
visualizations to reveal patterns in the data, 2.) In DM, analysts se-
lect appropriate techniques to extract knowledge from data 3.) In ML,
model-developers determine the structures of models, select training
methods, and conduct evaluation. VA research has shown that it is more
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Table 1. Goals and requirements extracted from recent papers that make
use of visualization to assist ML.

G1 G2 G3 G4 G5 G6

1. Kahng et al. [28] X X

2. Sacha et al. [56] X X X X X X

3. Tam et al. [66] X X X

4. Wongsuphasawat et al. [71] X X X

5. Mühlbacher et al. [42] X X X X X

6. Ren et al. [54] X X X

7. Wang et al. [70] X X X

8. Liu et al. [39] X X X

9. Rauber et al. [53] X X X

10. Liu et al. [38] X X X

11. Ming et al. [41] X X X

12. Pezzotti et al. [49] X X X

13. Kumpf et al. [36] X X

14. Kwon et al. [37] X X X

15. Alsallakh et al. [1] X X X X

16. Liu et al. [40] X X X X X X

17. Krause et al. [35] X X X X

18. Strobelt et al. [64] X X X X

19. Cashman et al. [9] X X

20. Olah et al. [44] X X

21. Strobelt et al. [63] X X X

Frequency 8 16 10 10 16 10

ML Stage Data Prep. Prep. Learn Eval. Comp.

effective to involve human analysts in these processes in a “human-is-
the-loop” approach (e.g., [15], a sensemaking loop [50], or the human
cognition model [23]). Chen and Golan [10] provide a theoretical
analysis of human-machine workflows in VA using information theory.

In DM and ML, we observe a growing interest in increasing humans’
involvement. Fails and Olsen [17] describe an interactive ML approach
to build and improve classifiers iteratively. Other classical scenarios are
recommender systems [27] and active learning [61] approaches, where
humans provide relevance information during training. Amershi et
al. [2] review interactive ML systems with a tight user-coupling. They
argue for the need of a common language across the diverse research
areas. The ontology proposed in this work represents a progress towards
such a common language.

Keim at al. [31] described the VA process as a baseline that was
subsequently extended by Sacha et al. [58] to cover the knowledge
generation process. A focus at the intersection between ML and VA re-
sults in a human-centered ML process [57], which integrates interactive
visualization with dimensionality reduction [59]. Complementarily, in
a recent survey [16], Endert et al. reviewed a number of conceptual
workflows for integrating ML into VA and called for a deeper integra-
tion of ML and VA research. Andrienko et al. [3] recently proposed to
view VA as a workflow for building mental and formal moels. They
revisited the definitions of some common concepts, such as “data”,
“analysis”, “tasks”, “structural/mental/formal models”, etc. along the
VA workflow, which covers important stages of model evaluation and
model development within shared human-machine workflows. Our en-
deavor builds up on these definitions and complements their work with
a more specialized focus on building and improving a type of formal
models, i.e., ML models, with the help of visualizations. We achieve
this through a formalized ontology of this “VIS4ML” landscape.

There are many implemented ML systems that feature VA capabili-
ties. However, it is not clear how these workflows are related to each
other. In order to build a holistic view about the role of VA in ML, it is
necessary to develop a common ontology that would allow us to map

out existing VA-assisted ML workflows and facilitate the identification
of more opportunities and benefits in using VA in ML workflows. This
is the main aim of this work. Therefore, as a starting point, we first
analyze in detail the common requirements and goals of the recent
approaches of using VA for ML in Section 3.

Existing Ontologies in the Field of Visualization: A workshop at
UK’s National e-Science Center in 2004 [5] represents the first effort
to build a visualization ontology. The participants sketched a top-level
visualization ontology consisting of Users, Data, Representations, and
Techniques. Duke et al. [13] further discussed how a visualization
ontology might be organized and realized using semantic-web tech-
nologies, and the need for turning existing conceptual terminologies
and taxonomies into an ontology [14]. Shu et al. [62] provided a “pro-
totype” ontology for visualization using the Web Ontology Language
(OWL) and Protégé, pointing out that their ontology is still tentative
and incomplete. Pérez et al. [48] modified a top-level visualization
ontology [5] for representing processes and data models in visualiza-
tion. Voigt and Polowinski [51, 69] made an important advancement in
specifying a visualization ontology, VISO, that unifies previous works,
and in sharing their ontology for further refinement by the community.

In DM and ML, Cannataro and Comito [6] designed a DM ontol-
ogy for grid programming (DAMON). Their ontology covers Tasks,
Methods, Algorithms, and Software. Panov et al. designed an ontology
(OntoDM) [45] that contains DM entities (such as data, tasks, gen-
eralizations, algorithms, components, and constraints). It has been
continuously extended and aligned with other related ontologies, (e.g.,
in [46, 47]) and specialized (e.g., for network/graph analysis [34]).
More recently, Sudathip and Sodanil [65] describe an ontology that fo-
cuses on ML concepts, such as the Learning paradigm (e.g., supervised,
unsupervised, semi-supervised, reinforcement), the ML Techniques
(e.g., Classification, Clustering, Regression), Evaluation (e.g. preci-
sion, accuracy, recall), and Applications (e.g., Forecasting, Diagnosis,
or Screening). Our ontology is inspired by such existing ontologies and
aims at filling the gap between VA and DM/ML

Each ontology covers a domain of knowledge. Top- or high-level
ontologies contain some general terms and meta-concepts that can be
reused for more specific domain ontologies. For example, the OntoDM
ontology by Panov et al. [47] integrates higher level ontolgies, such as
BFO1, OBO2, and OBI3. However, the notion of “high” and “low” is
relative. There has not been widely accepted ontologies for VA and ML,
which may be used to underpin this work. We thus focus on the domain
VA-assisted ML, which is at a higher level than domains of individual
ML problems, ML frameworks, and visualization techniques.

3 LEVERAGING VA TO ASSIST ML

We selected 21 VA-assisted ML workflows published recently in the VA
literature as a starting point for a systematic requirements analysis of
why and where in the ML workflow visualization is used. From these
papers we identified requirements, goals, tasks, and questions that rep-
resent the motivations for using visualization (see an additional report
in the supplemental materials for details). We found the improvement
of the ML model as a primary motivation. A more detailed analysis
revealed six major goals of using VA for ML:

G1: Examine/prepare data: 8 papers motivate the use of visualiza-
tion for examining the input data, such as outlier analysis (e.g., [38,66]),
understanding datasets [64] and instance relations [40], or for partition-
ing the data [56]. Another motivation is the selection and validation of
training data (e.g., [42]).

G2: Examine/understand ML model: A frequent (16 papers) goal
is to examine the architecture/structure of ML models by providing
overview visualizations (e.g., graphs) with details on demand interac-
tions in order to recognize similarities and differences in the model
structure (e.g., [53,71]). Visualizations are specifically leveraged to ana-
lyze relationships between neurons or layers, neuron activations, filters,

1http://basic-formal-ontology.org/, accessed 18.03.18
2http://obofoundry.org/ontology/ro.html, accessed 18.03.18
3http://obi-ontology.org/, accessed 18.03.18
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Section 3 – Figure 1 Figure 1. The class hierarchy of a VA ontology: main subclasses of \textsf{Processes} and 
\textsf{IO_entities}, their connection rules, and visual notations.
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Fig. 1. The main components of a VA ontology: The two major subclasses of the class hierarchy, namely Processes and IO-Entities, are shown in a
Protégé view (a) and in our extended visual notations (b). Classes can be connected to each other using several types of relations (i.e., properties in
OWL) shown in their visual notations (c).

or hidden states within complex neural networks (e.g., [28, 44, 49, 64]).
G3: Feature/parameter analysis: 10 papers provide visualizations

of the feature or parameter spaces in order to understand and improve
the ML model with respect to feature transformations/selections (e.g.,
[37, 66]) or parameter correlations (e.g., [70])

G4: Learning process: 10 papers specifically visualize the training
process to understand and assess the model learning process. An aim is,
e.g., to early identify stable layers for deeper investigation (e.g., [49]) or
to examine the debugging information (e.g., [39]). Some papers involve
users to steer model building during the training iteration (e.g., [66]).

G5: Quality/result analysis: Many papers (16) leverage visual-
izations to evaluate ML results. Examples include the analysis of
errors, performance, or accuracy (e.g., [35,37,54]). Further quantitative
measures concern ML model characteristics, such as complexity or
interpretabilty (e.g., [42]).

G6: Comparative analysis: A subset of papers particularly focus
on the visual comparison of different ML model instances, including
their structures, features/parameters or results (e.g., [41, 56]) or to
analyze and compare sets of ML models (e.g., [36, 70]).

Table 1 summarizes these goals along a typical ML workflow. Most
workflows focus on the Evaluate-Model step (G5), while there are VA
supports to the Prepare-Learning steps (G2, G3) and a number of
VA-enabled feedbacks within a step or across different steps iteratively.
We can observe that not many papers reported about the Prepare-Data
(G1) step and the visualization in Model-Learning (G4) is typically
for monitoring rather than for active-control.

Most of these goals were defined under consideration of specific
ML frameworks, applications, and users. It is thus highly desirable to
transform them to a set of general goals common to different ML frame-
works and applications. Conceptually and methodologically, building
an ontology can enable a mapping from the generalized goals to VA
solutions in the context of ML. The aim of this paper is to establish an
ontology that can be used to illustrate where exactly visualization is
used in a specific ML workflow, allowing us to evaluate and compare
existing VA approaches but also to identify novel or under-explored
pathways. In the next section, we will introduce the definitions, notation
elements and syntactic rules for designing such an ontology.

4 DEFINITIONS, VISUAL NOTATIONS, AND SYNTACTIC RULES

Our ontology is based on existing conceptual work on defining and char-
acterizing VA workflows (e.g., the ones mentioned in Section 2). In this
sequence of evolving definitions, this work echoes the recent work by
Andrienko et al. [3], which generalizes the relation between VA work-

flows and structural/mental/formal models. The basic terms related to
our endeavor are: entities (separated and distinguished things), data
(recorded observations, instances and relationships), formal models
(model in computer readable form, intended for performing calcula-
tions), knowledge (as the ultimate goal of any VA workflow, it has
many facets and appears in different forms along the VA workflow),
and processes transforming entities between the different stages (e.g.,
data processing, data mining, ML, visualization, or human cognitive
processes). In the following, we will describe in detail how we build
up our ontology based on these major concepts. Further descriptions of
terms can be found in the glossary in the supplemental materials.

Our ontology is based on two main classes, Process and IO-Entity
(Fig. 1(a) and (b)). We are interested in how each Process is dy-
namically related to IO-Entities such as, Data, Models, or human
Knowledge. In a VA workflow, some processes may be fully au-
tomated and communicate only with other automatic processes (i.e.,
Automatic-Process), some may receive inputs from humans (i.e., K-
Driven-Process), some may generate outputs intended for humans
(i.e., K-Oriented-Process), and some may have two-way interactions
with humans (i.e., K-Centred-Process). As shown in Fig. 1, the class
Process is categorized into these four subclasses. For example, it
is common for an action updating a neural network in each iteration
of learning to be an automated process, activating an ML session be
knowledge-driven, making an algorithmic prediction be knowledge-
oriented, and visually exploring data be knowledge-centered.

The class IO-Entity consists of three sub-classes, Data, Model, and
Knowledge. The sub-class Data encompasses any data to be analyzed,
extracted features, or analytical results. It may be of a variety of data
types (e.g., tabular, imagery, etc.) and includes visualization images,
and commands in human-computer interaction and inter-process com-
munication. The sub-class Models encompasses all machine-centric
computational functions used or generated by VA workflows, such as
processing software, machine-learned models, scientific simulation
models, and decision-making algorithms. The sub-class Knowledge
encompasses all human knowledge that may be available to a VA work-
flow as well as all human knowledge that may be gained from a VA
workflow. Instances of Data and Models are stored on the computers,
while instances of Knowledge are stored in humans’ mind.

The ontological relations (or properties as referred to in OWL) be-
tween Processes and IO-Entities are conceptually similar to “trans-
form from/by/into” defined in [62] (Fig. 1 (c)). In our ontology, we
explicitly represent these relations separately as connections has-
Process-Successor from IO-Entities to Processes and connec-
tions has-IO-Entity-Successor from Processes to IO-Entities. In
other words, these two types of directed connections explicitly define
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Section	3	– Figure	2 Figure	2.	The	schematic	representation	in	(a)	is	the	VA	workflow	model	by	Keim et	al.	\cite{X}.	It	is	redrawn	
using	(b)	the	ontological	notation,	and	(c)	the	compact	notation.

visual	data
exploration

data	mining
feedback	loop

data

visualization

models

knowledge

(a)	original	notation (b)	ontological	notation (c)	compact	notation

Command

Data	Mining+

VDE+
K-Centred+

K-Oriented+

Data+ Data+Knowledge+ Knowledge+Result

1

2

3

4 5

6 7

8

910

Fig. 2. The baseline schematic representation by Keim et al. [31] in (a) is redrawn in (b) using the ontological notation (we introduced IO-Entities and
Processes according to our syntactic rules). The baseline diamond representation is further simplified in (c) using the compact notation.

Section	3	– Figure	3 Figure	3.	A	diamond-shaped	baseline	layout	for	depicting	any	data	intelligence	workflow	or	its	processing	
component.	The	two	processes	are	placeholders	for	human- and	machine-centric	processes.	Its	hierarchical	
decomposition	features	a	diamond-shaped	substructure	within	a	process,	and	its	temporal	decomposition	
features	concatenated	diamond-shaped	substructures.

IO-Entity

(a)	baseline (b)	hierarchical	decomposition (c)	temporal	decomposition

IO-Entity

Automatic Automatic Automatic

IO-Entity IO-Entity IO-Entity

IO-Entity
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Fig. 3. A diamond-shaped baseline (a) layout for depicting any data intelligence workflow or its processing component. Its hierarchical decomposition
(b) features a diamond-shaped substructure within each process, and its temporal decomposition (c) features concatenated diamond-shaped
substructures. In (a), (b), (c), a K-Driven process can be replaced with a K-Oriented or Automatic process, and vice versa.

the predecessor-successor and action-actor relationships within any
workflow. In addition, there are hierarchical class relations, such as
is-SubClass-Of linking sub-classes to their parent class. In ontol-
ogy modeling, it is common to represent a section of the ontology as a
macro-block. The relation is-BreakDown-Of links such a sub-ontology
to the macro. The relation is-Decomposition-of is a generic relation
encompassing all types of relations from details to a summary abstrac-
tion. Examples of using different types of relations will be shown in
Sections 5-7 in conjunction with our discussions on the ontology for
VA-assisted ML. It is necessary to define a set of syntactic rules for the
aforementioned relations. These include:

1: A has-Process-Successor relation can only be used to connect
from an IO-Entity to a Process. A has-IO-Entity-Successor relation
can only connect from a Process to an IO-Entity.

2: In a full ontological representation, a Process can directly con-
nect only with an IO-Entity or its sub-classes, and an IO-Entity can
directly connect only with a Process or its sub-classes.

3: In a sub-ontology representing the decomposition of a Process,
all incoming connections from outside the boundary can only be has-
Process-Successor relations. All outgoing connections from inside
the boundary can only be has-IO-Entity-Successor relations. Simi-
larly, in a sub-ontology representing the decomposition of an IO-Entity,
all incoming connections can only be has-IO-Entity-Successor rela-
tions. All outgoing connections can only be has-Process-Successor.

When one follows the above syntactic rules strictly, there will in-
evitably be many connections in the graph representation of any slightly
complex workflow. For example, any Process other than Automated-
Process would have connections to IO-Entities representing human
knowledge. To reduce the visual clutter, we allow the omission of such
connections by simply assuming that we can infer such connections for
any K-∗-Process. In addition, we introduce several compact visual
notations as illustrated in Fig. 1. An IO-Entity can be miniaturized,
resulting in a connection between two Processes via an implicitly-
defined IO-Entity. Similarly, a Process can be miniaturized with a
connection between two IO-Entities via an implicitly-defined Process.

As part of the implementation, we have used a standard OWL editor,
Protégé [43], to specify all ontological representations in this work and
used OntoGraf [18] to visualize the recorded representations. A few
examples are included in the supplementary materials. However, On-
tograf cannot visually accommodate new icons and compact notations

as shown in Fig. 1. Therefore all visual illustrations in this paper were
redrawn to enable the richer visual notations introduced above.

5 VISUAL ANALYTICS DIAMOND

As reviewed by Chen and Golan [10], in the field of visualization,
many schematic representations of workflows have been proposed. We
use the diamond-shaped workflow proposed by Keim et al. [31] as the
baseline representation. We chose this workflow as a baseline because it
is used as a foundation in many existing conceptual and methodological
research papers and has proven to be generic (i.e., it can be used to
embed and relate to other existing workflows). In this section, we first
generalize this representation using the ontological notation given in the
previous section. We then demonstrate its generality by transforming
a number of visualization and VA workflows in the literature into
diamond-shaped representations.

5.1 Ontological Representation and Generalization
Fig. 2(a) shows the workflow proposed by Keim et al. [31], and it
features two interacting parallel components for DM models and visu-
alization respectively. Using the ontological notation in Section 4, we
can represent Data and Knowledge as IO-Entities and Visual Data
Exploration (VDE) and Data Mining as Processes. As illustrated in
Fig. 2(b), we have introduced extra components, which were implicitly
assumed in [31], in order to adhere the notational rule about connections
between IO-Entities and Processes. Note that the self-loop associated
with visualization in the original workflow is now represented by the
path labeled as 7-9, that with data is now represented by the path 1-10,
and that associated with models is now represented by the paths labeled
as 8-9-3-4 and 5-6-7-9-3-4. Using the compact notation in Section 4,
we can depict the ontology of Fig. 2(b) as Fig. 2(c), which is more or
less the same as Fig. 2(a).

The essence of the original representation [31] is its emphasis on the
need for both human- and machine-centric processes in VA and the need
for various interactions that transform information between processes.
Furthering this essence, we purposely denote any data intelligence
workflow or its processing components with two generic Processes,
one for a human-centric process and one for a machine-centric process.
This diamond-shaped layout, which is illustrated in Fig. 3(a), is a further
generalization of Fig. 2(c). Here the convention of drawing is to place
any K-Centered process at the upper part of the diamond (or on the
right if we depict the primary progression of a workflow from top to
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VDE

Section	3	– Figure	4 Figure	4:	A	high-level	overview	of	the	overall	VA	ontology
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Fig. 4. A high-level overview of the overall VA ontology, including a coarse sub-ontology for visual data exploration and a pointer to a detailed
sub-ontology for VA assisted ML (VIS4ML).

bottom), and any Automatic, K-Driven, or K-Oriented process at the
lower part of the diamond (or on the left in a top-to-bottom workflow).
The layout does not in any way imply that all workflows must have
two parallel processes. This diamond-shaped layout convention serves
two purposes. (i) They visually distinguish processes that involve more
human decisions from those which involve more automated statistical
or algorithmic decisions. (ii) They encourage the designers of VA
workflows to think about the means to support human decisions with
statistics and algorithms as well as the means to augment machine
decisions with human intelligence.

In fact, neither placeholder is restricted to a process performed solely
by humans or machines. A K-Centered process can be decomposed
into a sub-ontology where humans play a more significant role than
machines, e.g., a K-Centered process in parallel with a K-Driven. Sim-
ilarly, a K-Oriented process can involve humans in its sub-processes.
Fig. 3(b) shows the hierarchical decomposition of the workflow in
Fig. 3(a), while Fig. 3(c) shows the temporal decomposition of Fig. 3(b).
Because any feedback loop can be temporally sequentialized using a
series of concatenated baseline representations, the feedback loop in
Fig. 2 is a compact depiction of such sequentialized workflow, but not
an essential component of the baseline representation in Fig. 3(a).

5.2 Overview of the VA Ontology
We can leverage the ontological elements, rules, and notions in Sec-
tion 4 and the convention for ontological representation and general-
ization in Section 5.1 to construct a VA ontology. A comprehensive
VA ontology will need to map out many aspects of VA (e.g., statistical
inference, DM techniques, visualization, interaction, human cognition,
and so on) as well as to cover a broad range of workflows in different
applications (e.g., financial data, social media, and so on). While it may
take some time and a collective effort of the VA community to create
such an ontology, here we sketch out an overview of such an ontology
in Fig. 4 and we will detail a sub-ontology VIS4ML in Section 6.

The typical visualization workflows (e.g., the visualization loop
in [68] and the two workflows W1 (dissemination) and W2 (observation)
in [10]) can be represented by the path 1-7 or the two feedfack loops 1-
10 and 7-9 in Fig. 2(b). The central process, VDE, can be decomposed
into a sub-ontology as illustrated in the upper part of Fig. 4. Although
VDE is considered as a human-centric process, we can observe that
there are many machine-centric sub-processes within the sub-ontology.
Most of these machine-centric sub-processes are K-Driven processes
as they are controlled by the users but do not deliver output directly
to the users except Display, which is a K-Oriented as a typical dis-

play device is almost always automated when it refreshes the screen.
However, the involvement of the users in controlling visual mapping
and other K-Driven processes, and more importantly, in navigation and
direct manipulation warrants the whole process VDE as a K-Centered
process. We can observe that within the sub-ontology for VDE, there
are several diamond-shaped configurations, suggesting that VDE can
benefit from advanced machine-centric processes such as statistical
analysis and processing and rendering algorithms while empowering
users to have interactive controls, through which their knowledge about
the contexts of the data and tasks can be part of the input of the process.

Although most readers of this paper appreciate that VDE can take
place at any stage of a data intelligence workflow, there is still a
widespread misconception that visualization is just for disseminating
the results of automated DM. Nevertheless, such a workflow (i.e., W3
in [10]) can be represented by the path 2-5-6-7 in Fig. 2(b). The work-
flow of Keim et al. [31] as illustrated in Fig. 2 highlights the necessity
for integrating VDE with DM throughout a data intelligence workflow.

There are a variety of DM tasks and each may utilize different tech-
niques. The lower-right part of Fig. 4 shows a list of sub-classes of DM.
An initial attempt has been made to devise a sub-ontology for DM [55]
and further investigation is required to map out this large collection of
tasks, techniques and application workflows. The central to any DM
process is one or more analytical Models as an input IO-Entity to DM.
Such a model can be developed in many ways. The lower-left part of
Fig. 4 shows a list of sub-classes of Model-Development. It is a vast
area where VA has been deployed to assist the model developers (e.g.,
in software visualization) and can potentially have a more significant
role to play. Chen and Golan outlined two workflows, W5 and W6, for
VA-assisted Model-Development [10], suggesting that this process
can be decomposed into two parallel but inter-related processes in a
way similar to that VA is decomposed into VDE and DM.

One important method of Model-Development is VA-assisted ML,
which is represented by the sub-class VA-assisted-ML. With the gen-
eralization in Fig. 3(a), we can maintain Data and VDE in the VA
ontology, and replace Knowledge with Model and DM with machine-
centric processes designed for model development (representing typical
ML workflows). In the next section, we will show that the VA-assisted-
ML sub-ontology does indeed contain many diamond-shaped stages.

6 VIS4ML – AN ONTOLOGY FOR VA-ASSISTED ML
In this section, we focus on one sub-ontology (VIS4ML) of the general
VA ontology (Fig. 4). We expand the sub-class VA-assisted-ML on
the center-left part of Fig. 4 and examine how steps in machine learn-
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ing (ML) workflows can be assisted by VDE. VIS4ML drills-down
hierarchically from the general VA ontology and directly relates to the
general goals (G1-G6) of using VA to assist ML.

The primary objective of ML is to create an algorithmic model
that can be used to perform an analytical task automatically. These
tasks may include classification, clustering, and so on. There are also
a large number of technical frameworks (e.g., neural networks and
decision trees), each of which underpins a type of algorithmic model
and determines how they are specified and trained. Despite the diversity
among these frameworks and their many variations, a ML process is
typically composed of four major processes (Fig. 5) that facilitate the
pre-processing of the data, the preparation for the learning process,
the model learning itself, and the evaluation of the learned model. In
the following discussion, we sequentially walk trough these major
steps and provide more details about their decompositions. Note that
we position machine-centred processes on the left and human-centred
processes on the right. This duality illustrates that visualization can be
used in any human-centred stage to assist ML at all the major steps.

Prepare-Data: Data preparation or pre-processing is a common
step for many data intelligence workflows, such as data mining (DM),
ML, and visualization. The Data IO-Entity is input and output of this
process and is also used by all subsequent ML steps. Data has many
sub-classes (we added some examples, such as Tabular, Network, and

so on). In an ontological representation, normally, one would depict
only one Data IO-Entity and draw all input and output connections
with the four processes. In order to illustrate the ordering of the four
steps clearly and avoid the cluttering of the connections, we allow
IO-Entities to be duplicated. We use a superscript (e.g., # and ∗) to
indicate that an IO-Entity is duplicated in the visual representation.

As shown in Fig. 5 (G1), the Prepare-Data process can be further
decomposed to include typical machine-centric processes, such as
statistical profiling, automatic detection of errors or missing values, or
data transformation. Because the information and knowledge required
in data cleaning and transformation is typically not in the data and
automatic error detection often is not reliable, it is necessary for such
machine-centric processes to be controlled and monitored by an analyst.

In practice, it is more common for the data to be visually inspected
and manually cleaned and annotated by analysts, with or without using
VA tools. For example, an analyst may observe the data in a tabular rep-
resentation, correct errors, fill in missing data, and annotate individual
data records for supervised learning (G1). Such manual processes are
highly labor-intensive. A prominent visual-assisted data preparation
example is the data wrangler system [29], which allows the analyst to
explore the data with the aid of visualization in order to discover errors
and missing values more efficiently and effectively while controlling
and monitoring the applications of various operations for data cleaning
and transformation. Note that the processes in this step are mostly
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independent of any specific ML framework. The pre-processing step
can also benefit other aspects of VA, such as DM and VDE.

Prepare-Learning: This process is primarily for making prepara-
tion for the learning process to be performed in the succeeding process.
The main focus is to deliver an initialized model. In Fig. 5, the Model
IO-Entity is also visually duplicated as indicated by ∗. It has also many
sub-classes (e.g., Framework, Template, Parameter, etc.). This step,
which is often described as “model building”, involves many human
design decisions and therefore contains many human-centric processes
as shown in Fig. 5 (top-left).

For many types of raw data (e.g., videos and documents), some
ML techniques have difficulties to handle such raw data directly. One
common approach is to extract feature data from the raw data, for
example, in the study of Tam et al. [66], several hundreds of different
candidate features were defined for imagery data and algorithms were
implemented for extracting features. This enables the corresponding
ML processes to learn a model based fully or partly on the feature data,
which is commonly referred to as “a bag of words or features”. At
this stage, the model-developer does not know exactly which candidate
features are useful and which are not. The selection of these features
relies on the model-developer’s knowledge about possible specifica-
tions of features, possible algorithms for extracting these features, and
their availability. Note that some feature extraction algorithms may
also be constructed using ML, but most feature extraction algorithms
contain mathematical formulations or algorithmic structures that are
not machine-learned. It is also common for ML workflows to partition
data into Training-Data and Testing-Data. As this operation is usu-
ally specifically for ML, we include the Partition-Data process in the
decomposition of Prepare-Learning.

One of the most important decisions is to select the ML Framework
determining which principle approach (e.g., supervised or unsuper-
vised), which structure and constructs are used to define a model (e.g.,
convolutional neural networks, decision trees, etc.), which learning
technique (e.g., k-means, hierarchical clustering, Hunter’s algorithm,
random forest, etc.), and so on. In practice, quite often, the ML Frame-
work was determined before the step Prepare-Data or even before
the raw data was captured. In principle, decisions on some details of a
framework are usually evolved during a ML workflow.

Some ML techniques, such as many types of neural networks, re-
quire the specification of a Template model (i.e., an empty structure).
Some ML techniques need to define one or more Metrics such as cost
functions, stress or performance measures, and update rules. Many
of these metrics are parameterized. For example, distance metrics,
which are fundamental to many ML techniques, such as dimensionality
reduction or clustering, may contain weights that can be also modified.
Most ML techniques have Parameters for controlling the learning
process, (e.g., the number of training iterations) or constraining a model
(e.g., the depth of a decision tree). Many of these parameters cannot be
chosen in a purely automatic fashion and have to be manually tuned.
Some ML technique may require an Initialize-Model process to cre-
ate an initialized Partial-Model that may steer the learning process
towards a certain part of the model space. Different initialization strate-
gies exists, e.g., a machine-centric randomized-initialization or more
human-centric techniques (e.g., that allow an analyst to sketch initial
neuron-prototypes for a self-organizing map [60]). Prepare-Learning
is typically an iterative design process. Hence, there are a number
of feedback loops that connect previous processes inside the decom-
position block or the previous steps outside. At the end of this step,
it generates two collections of IO-Entities, Data and Model, to be
passed to the subsequent Model-Learning step. We can relate G2
(understand ML model) and G3 (examining features/parameterizations)
to this Prepare-Learning step. Note, that we can also relate G1 (ex-
amining data) to the Partition-Data process.

Model-Learning: The initialized model is then trained by an al-
gorithmic process, which is usually performed in a fully-automatic
fashion. As illustrated in Fig. 5 (G4), The training is usually performed
iteratively by two machine-centric processes, Compute-Fitness and
Update-Model. The number of iterations vary from a few to millions.

At this step, VA can be used to examine the learning process (G4). More
commonly, visualization of intermediate results and learning process is
provided to enable the model-developer to Monitor-Learning. Some
semi-automatic approaches exist, such as active learning, which allow
the model-developer to control some aspects of the training dynami-
cally. In addition to the basic pausing/resuming the training process,
some ML workflows allow for human-centric decisions for data se-
lection, outlier removal, parameter change, and so on. Our ontology
accommodates such approaches through the Active-Control process.
The resulting full Model is passed to the Evaluate-Model step together
with a collection of Data, which may include monitoring data.

Evaluate-Model: In this step, the trained Model performs the
actual task (e.g., applying a classifier to unseen data), while the
model-developer interprets and assesses the results (G5). As illus-
trated in Fig. 5 (G5), a machine-centric process Model-Testing applies
the Model to Testing-Data and computes quality metrics, such as
precision-recall or accuracy. Similar to the Active-Control in the pre-
vious step, this testing process can also be controlled interactively.
With complex ML models it is a major difficulty for model-developers
to know what is going on. In recent years, more visualization pro-
cesses have been introduced to help model-developers in understanding
a model, its behaviors, and the learning process at different levels
of detail. We accommodate these processes as part of Understand-
Model, which can be used in conjunction with Active-Test-Control
and Quality-Analysis to examine the model’s behaviors under certain
conditions and visualize the results (e.g., a confusion matrix). Naturally
following the Evaluate-Model process, the model-developer may wish
to make some changes to what was set in the previous steps, such
as Prepare-Data and Prepare-Learning. Hence, a number of feed-
back loops originate from the Evaluate-Model process. The resulting
Model is the final output of the ML process and can be used in other
VA processes as shown in Fig. 4.

Multiple iterations of the feedback loops in Fig. 5 result in different
ML models and training provenance. A further step is needed to sup-
port analysis of different ML models, comparing their frameworks or
templates, choices of features or parameters, performances of individ-
ual models and their ensemble. We therefore added G6 (comparative
analysis) at the end of the ML workflow.

7 EXAMPLE WORKFLOWS AS ONTOLOGY PATHWAYS

Usually, there are many ways to represent a complex workflow schemat-
ically, especially if it has feedback loops, which most VA workflows
would have. As our ontology is intended to encompass most, if not all,
VA workflows for ML, it is inevitable that the ontology may have dif-
ferent schematic representations that are functionally equivalent. So we
do anticipate that some colleagues in the communities of visualization
and ML could have or prefer alternative ways to structure the ontology.
We therefore place the emphasis of validation on its descriptive power,
that is, can it describe all VA-assisted ML workflows reported in the
literature. One objective of studying the papers listed in Table 1 is
to validate the ontology proposed in Section 6 by ensuring that each
workflow can be comfortably mapped onto a pathway in the ontology.
As shown in Fig. 6, four example pathways are superimposed onto the
ontology. During the process of validation, we identified a number of
missing sections in some pathways, enabling us to revise and improve
the ontology. Below we described four of such pathways briefly.
An Example of Deep Learning – ActiVis: Kahng et al. [28] present
a system for assisting in learning large-scale deep learning models. It
enables the visual exploration of neuron activations in different classifi-
cation cases (subsets and instances). We extracted a common workflow
from the use cases of ActiVis in the paper, such as understanding ac-
tivation patterns (Evaluate-Model) and revising the CNN based on
observations (Prepare-Learning). This workflow is described by the
blue pathway No. 1 in Fig. 6: An initial model is prepared (Create-
Template, Define-Parameter) and explored after the training has
finished. Then, the analyst selects particular nodes within the architec-
ture graph of the neural network to inspect its neuron activations and
how the model performs on different test cases (subsets) and particu-
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Fig. 6. Pathways within our ontology illustrated for the examples 1-4 of Table 1. The pathways are complemented with marked “bus stops” illustrating
exactly at which stages visualization is used to improve the ML workflow.

lar instances of interest. The visualizations allow the user to explore
and understand the model and the classification quality (Understand-
Model, Quality-Analysis), while the node and instance selections
allow an Active-Test-Control of the Model-Testing. Based on the
observations (e.g., identifying neurons that did not activate or activate
for all classes), the analyst can go back to the Prepare-Data step and
improve the Template or the training Parameters.
An Example of Clustering – SOMFlow: Sacha et al. [56] propose a
workflow for the interactive cluster analysis of time series. Their system
(SOMFlow) utilizes a self-organizing map algorithm to cluster time
series and to project them in a compact Kohonen Map. Subsequently,
the analyst visually analyzes the result and interacts accordingly by, e.g.,
refining cells of the Kohonen Map by training new SOM models by only
considering subsets of the data. The resulting workflow is described by
the red pathway No. 2 in Fig. 6. During the Prepare-Data step, the
input data can be enriched (Annotate-Data) or transformed by, e.g.,
normalizing time series in the data. Subsequently, a SOM template can
optionally be modified by configuring the distance metric or parameters
(Prepare-Learning step). Then, the training process can be monitored
visually (Model-Learning). After the training, a machine supported
visual evaluation takes place in which the analyst can visualize different
quality measures (Evaluate-Model). Dependent on this step and on
the overall goal of the respective analysis, the analyst can refine the

network or parts of it by training new models for subsets of the data
(loop from Evaluate-Model to Prepare-Data). The development of
the last trained model is comprehensibly displayed in a history graph
which hierarchically embeds all previously created models (visualized
as closed circuit at Evaluate-Model). Hence, in that approach it is
possible to go back to a previous state in the evolution of the model and
start over or develop the model in two separate directions in parallel.
An Example of Decision Tree Construction: Tam et al. [66] juxta-
posed a VA workflow for constructing decision trees with an automated
ML workflow. Both of their workflows are shown as the green pathway
No. 3 in Fig 6. The main difference between the two workflows is
in the Model-Learning step. The automated workflow at this stage,
which is marked as 3a, is a series of automated iterations facilitated by
either C4.5 [52] or CART [4]. The VA-assisted workflow marked as 3b,
allows a model-developer to visualize the distribution of training data
against each feature specified in the Prepare-Learning step. While
being guided by the fitness values computed for all features in the same
way as in the automated workflow, the model-developer can exercise
his/her judgment (Active-Control in Model-Learning) about the most
suitable feature for the current iteration using additional knowledge
unavailable in the data. E.g., knowledge about the reliability of various
feature extraction algorithms, the observed anomalies in the raw im-
agery data, and so on). In addition, the model-developer can determine



the best participation of a selected feature axis, for which the automated
system still has some difficulties in making an optimal decision.
Another Example of Deep Learning – TensorFlow: Wongsupha-
sawat et al. [71] describe the TensorFlow Graph Visualizer as part of
the TensorFlow ML platform for building neural network models. Their
task analysis showed that this VA facility helped model-developers per-
form a variety of visualization tasks, such as gaining an overview of
the high-level structure of a model in the steps Prepare-Learning
and Evaluate-Model, observing similarities and differences between
components in a model and identifying potential bugs, and so on. Their
evaluation scenarios confirm that the TensorFlow Graph Visualizer
enabled model-developers to improve their model templates in a more
effective design process at the Prepare-Learning step, and was critical
in assisting the model-developers to gain a good understanding of the
learned model and the learning process at the Evaluate-Model step.
Their pathway (No. 4) is drawn in purple in Fig. 6.

These four examples illustrate that VIS4ML is capable of illustrating
particular ML workflows as pathways that emphasize why and where
visualization can be used to assist ML steps.

8 USING VIS4ML

A Past Scenario of Practical Usage. A PhD student (Martin, not a
co-author) designed a combined neural network (CNN + RNN) for
multi-line offline handwriting recognition. However, his initial error
rate was well under expectation and he therefore started to make use of
visualizations. As a first step, we drew his workflow as a pathway in
the VIS4ML ontology (it can be found in the supplemental materials).
By following the pathway systematically, we were able to identify and
discuss the critical aspects that might benefit from humans’ involve-
ment and formulated various visualization solutions by learning from
previous works linked to each of the bus stops on the pathway.

He then developed a novel workflow that leverages visualizations
for his critical stops. For example, in the Monitor-Learning step, he
captured model snapshots for different data samples (e.g., misclassified
characters). As part of Model-Understanding, he visualized these
snapshots using a purposely-designed heatmap in conjunction with
computed quality measures. He was able to identify the problems and
postulated solutions. With new insight, he went back to the Prepare-
Data step (e.g., adjust the image scaling factor) and to the Prepare-
Learning steps (e.g., revise the model template or re-tune parameters).

Encouraged by the usefulness of his “bus stops”, we started to
explore other pathways to identify new critical points along his path-
way and ideas for new bus stops. He planned to try neuron activa-
tion visualizations and add a steering functionality for continuing the
Model-Learning dynamically after a stop for snapshot visualization
and parameter modification. The VIS4ML ontology has guided the
PhD student to develop a more effective ML workflow for creating
better ML models for handwriting recognition.
A Broader Scenario of Practical Usage. The ontology outlined in this
work is supported by a web-based platform (http://vis4ml.dbvis.
de), which can help researchers and developers answer the question of
where by identifying aspects of their ML workflows that may benefit
from a visual analytics approach, and the questions of why and how by
reading the previous works linked to the ontology. In this way, more
people can benefit from the knowledge captured in VIS4ML.
A Scenario of Theoretical Research. The VIS4ML ontology is based
on the established conceptual workflow for VA by Keim et al. [31]
and supports and complements a number of new works on model de-
velopment, e.g., Andrienko et al. [3], Endert et al. [16], Choo and
Liu [12], and Hohman et al. [25]. As ontology development is a major
component of the theoretical foundation of visualization [11], it will
be highly valuable for researchers to extend the VIS4ML ontology,
e.g., by detailing lower-level ontologies for individual ML problems
(e.g., classification, prediction, etc.), individual ML frameworks (e.g.,
Bayesian network and genetic algorithm, etc.), individual visualiza-
tion techniques (e.g., data flow graphs and confusion matrices), and
so on. Similarly, there is a need for ontologies at higher levels (e.g.,
VA and VIS) and in neighboring domains (e.g., InfoVis and SciVis).

Meanwhile VIS4ML will continue to evolve in response to new ad-
vances in VA and ML. In the future, there will be opportunities to
develop a detailed ontology for the process inside the Knowledge
entity. We have made the source representation of VIS4ML available
at https://gitlab.dbvis.de/sacha/VIS4ML to facilitate future
ontological research effort by the community.
Scenarios of Technology Development. As a knowledge represen-
tation, ontologies can be used to support many technical develop-
ments [8, 21, 26, 30, 33]. For example, the terms and connections in an
ontology can be used to support document and corpus analysis, such
as text searching, labeling, and clustering. The relationships among
pathways, critical points, and commonly-used VA techniques can be
used to enable automated visualization generation or technique recom-
mendation. The increasing complexity of ontologies and scenarios of
their usages will demand for more VA techniques to support the visual
and analytical exploration of ontologies.

9 DISCUSSION AND CONCLUSION

Based on our detailed study of existing ML workflows and our construc-
tion of VIS4ML, we are able to derive the following observations. The
use of VA for the phase of Prepare-Data is least reported in general.
The typical activities in this phase, such as initial data analysis, data
cleansing and annotation can benefit from VA significantly. Hence, this
is an area that VA can potentially have a huge role to play. The phase of
Prepare-Learning is a highly human-centered process. Traditionally,
this is the phase where researchers in ML exercise their knowledge
about various ML frameworks, feature extraction algorithms, creativity
in developing new algorithms, and intuitions in constructing model
templates and setting parameters. Visualizations have now started to
play a significant role in helping this process as illustrated in our ex-
amples. We will witness more advances in the coming years. The
phase Model-Learning is highly automated for some frameworks (e.g.,
CNN, RNN, etc.). These ML workflows can benefit from VA-assisted
monitoring of the learning processes. Some models can be trained
and tested rapidly, for which one can monitor and control the entire
process. In contrast, more complex models require a longer and more
expensive training step and often cannot be visualized dynamically. To
deal with such challenges, novel VA approaches for steering ML are
emerging [20]. The data and visualization captured in monitoring can
support the effort to understand the learned model, learning processes,
and the deficiencies identified. The phase Evaluate-Model usually
features a huge amount of data, including the original data, ground
truth annotation, feature data, monitoring data, testing results, multiple
models for comparison, and so on. It is a natural playground of VA.

Although ML is commonly considered as an AI technique and is
meant to be automated, VIS4ML allows us to view ML workflows holis-
tically. Among the four main phases, three are largely human-centered
processes. Some latest research discussed in the paper suggested that
VA can also provide direct support to the step of Model Learning.

This paper describes the construction of an ontology for VA, focus-
ing on the formal framework of the ontology (e.g., definition, rules,
notations), the generalization and extension of the top-level VA on-
tology, the convention of diamond-shaped layout, and in particular
the sub-ontology for VA-assisted ML. While there are many concepts
and relations in VA, this ontology can be a starting point. Similar to
the classification and clustering problems in VA and ML, it was not
always trivial to assign a Process or IO-Entity to a particular step. For
example, feature extraction or transformation could appear in either
Prepare-Data and Prepare-Learning. In some cases, we duplicated
IO-Entities such as Data and Model visually. In other cases, we
assigned some processes to specific phases.

With the support by the VIS4ML web site (http://vis4ml.dbvis.
de), and the open source of the VIS4ML ontology (https://gitlab.
dbvis.de/sacha/VIS4ML), we call for active participation in the val-
idation and extension of the ontology.
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[49] N. Pezzotti, T. Höllt, J. V. Gemert, B. P. F. Lelieveldt, E. Eisemann, and
A. Vilanova. DeepEyes: Progressive visual analytics for designing deep
neural networks. IEEE Trans. on Visualization and Computer Graphics,
24(1):98–108, 2018. doi: 10.1109/TVCG.2017.2744358

[50] P. Pirolli and S. Card. The sensemaking process and leverage points for
analyst technology as identified through cognitive task analysis. In Proc.
of the Intern. Conf. on Intelligence Analysis, vol. 5, pp. 2–4, 2005.

[51] J. Polowinski and M. Voigt. VISO: a shared, formal knowledge base as
a foundation for semi-automatic infovis systems. ACM SIGCHI Conf.
Human Factors in Computing Systems (CHI), pp. 1791–1796, 2013. doi:
10.1145/2468356.2468677

[52] J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann,
1993.

[53] P. E. Rauber, S. G. Fadel, A. X. Falcao, and A. C. Telea. Visualizing the
hidden activity of artificial neural networks. IEEE Trans. on Visualization
and Computer Graphics, 23(1):101–110, 2017. doi: 10.1109/TVCG.2016.
2598838

[54] D. Ren, S. Amershi, B. Lee, J. Suh, and J. D. Williams. Squares: Sup-
porting interactive performance analysis for multiclass classifiers. IEEE
Trans. on Visualization and Computer Graphics, 23(1):61–70, 2017. doi:
10.1109/TVCG.2016.2598828

[55] D. Sacha. Knowledge Generation in Visual Analytics : Integrating Hu-
man and Machine Intelligence for Exploration of Big Data. PhD thesis,
University of Konstanz, Konstanz, 2018.

[56] D. Sacha, M. Kraus, J. Bernard, M. Behrisch, T. Schreck, Y. Asano, and
D. A. Keim. SOMFlow: Guided exploratory cluster analysis with self-
organizing maps and analytic provenance. IEEE Trans. on Visualization
and Computer Graphics, 24(1):120–130, 2018. doi: 10.1109/TVCG.2017.
2744805

[57] D. Sacha, M. Sedlmair, L. Zhang, J. A. Lee, J. Peltonen, D. Weiskopf, S. C.
North, and D. A. Keim. What you see is what you can change: Human-
centered machine learning by interactive visualization. Neurocomputing,
2017. doi: 10.1016/j.neucom.2017.01.105

[58] D. Sacha, A. Stoffel, F. Stoffel, B. C. Kwon, G. P. Ellis, and D. A. Keim.
Knowledge generation model for visual analytics. IEEE Trans. on Vi-
sualization and Computer Graphics, 20(12):1604–1613, 2014. doi: 10.
1109/TVCG.2014.2346481

[59] D. Sacha, L. Zhang, M. Sedlmair, J. A. Lee, J. Peltonen, D. Weiskopf,
S. C. North, and D. A. Keim. Visual interaction with dimensionality
reduction: A structured literature analysis. IEEE Trans. on Visualization
and Computer Graphics, 23(1):241–250, 2017. doi: 10.1109/TVCG.2016.
2598495

[60] T. Schreck, J. Bernard, T. Von Landesberger, and J. Kohlhammer. Visual
cluster analysis of trajectory data with interactive Kohonen maps. Infor-
mation Visualization, Palgrave Macmillan, 8(1):14–29, 2009. doi: 10.
1057/ivs.2008.29

[61] B. Settles. Active Learning. Synthesis Lectures on Artificial Intelligence
and Machine Learning. Morgan & Claypool Publishers, 2012. doi: 10.
2200/S00429ED1V01Y201207AIM018

[62] G. Shu, N. J. Avis, and O. Rana. Investigating visualization ontologies. In
Proc. of the UK e-Science All Hands Meeting, 2006.

[63] H. Strobelt, S. Gehrmann, M. Behrisch, A. Perer, H. Pfister, and A. M.
Rush. Seq2seq-vis: A visual debugging tool for sequence-to-sequence
models. CoRR, abs/1804.09299, 2018.

[64] H. Strobelt, S. Gehrmann, H. Pfister, and A. M. Rush. LSTMVis: A tool
for visual analysis of hidden state dynamics in recurrent neural networks.
IEEE Trans. on Visualization and Computer Graphics, 24(1):667–676,
2018. doi: 10.1109/TVCG.2017.2744158

[65] K. Sudathip and M. Sodanil. Ontology knowledge-based framework
for machine learning concept. In Proc. of the 18th int. Conference on
Information Integration and Web-based Applications and Services, iiWAS,
pp. 50–53, 2016. doi: 10.1145/3011141.3011207

[66] G. K. L. Tam, V. Kothari, and M. Chen. An analysis of machine- and
human-analytics in classification. IEEE Trans. on Visualization and Com-
puter Graphics, 23(1):71–80, 2017. doi: 10.1109/TVCG.2016.2598829

[67] C. Upson, T. Faulhaber, Jr., D. Kamins, D. H. Laidlaw, D. Schlegel,
J. Vroom, R. Gurwitz, and A. van Dam. The application visualization
system: A computational environment for scientific visualization. IEEE

Computer Graphics and Applications, 9(4):30–42, 1989.
[68] J. J. van Wijk. The value of visualization. In Proc. IEEE Visualization, pp.

79–86, 2005.
[69] M. Voigt and J. Polowinski. Towards a unifying visualization ontology.

Technical Report, Technische Universität Dresden, 2011.
[70] J. Wang, X. Liu, H.-W. Shen, and G. Lin. Multi-resolution climate en-

semble parameter analysis with nested parallel coordinates plots. IEEE
Trans. on Visualization and Computer Graphics, 23(1):81–90, 2017. doi:
10.1109/TVCG.2016.2598830

[71] K. Wongsuphasawat, D. Smilkov, J. Wexler, J. Wilson, D. Mané, D. Fritz,
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