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Abstract. We propose an interactive methodology for generating coun-
terfactual explanations for univariate time series data in classification
tasks by leveraging 2D projections and decision boundary maps to tackle
interpretability challenges. Our approach aims to enhance the trans-
parency and understanding of deep learning models’ decision processes.
The application simplifies the time series data analysis by enabling users
to interactively manipulate projected data points, providing intuitive
insights through inverse projection techniques. By abstracting user in-
teractions with the projected data points rather than the raw time series
data, our method facilitates an intuitive generation of counterfactual ex-
planations. This approach allows for a more straightforward exploration
of univariate time series data, enabling users to manipulate data points
to comprehend potential outcomes of hypothetical scenarios. We vali-
date this method using the ECG5000 benchmark dataset, demonstrat-
ing significant improvements in interpretability and user understanding
of time series classification. The results indicate a promising direction
for enhancing explainable Al, with potential applications in various do-
mains requiring transparent and interpretable deep learning models. Fu-
ture work will explore the scalability of this method to multivariate time
series data and its integration with other interpretability techniques.

Keywords: Explainable AI - Time Series Classifiers - Counterfactuals.

1 Introduction

The increasing deployment of complex deep learning models for time series tasks
necessitates eXplainable Artificial Intelligence (XAI) methods, which allow hu-
mans to understand and interpret the models’ decisions. This emphasis is par-
ticularly crucial in healthcare and predictive maintenance domains, where time
series classification plays a pivotal role in predicting outcomes [12/23]. Analyz-
ing a single-variable (univariate) time series helps us see patterns that change
over time, which is crucial for creating understandable and precise models. This
knowledge is necessary before moving to more complex data, ensuring we fully
grasp these time-related patterns as we explore multiple variables (multivari-
ate). Thus, the focus on univariate time series facilitates initial simplification
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Fig. 1. Overview of the application: On top, visualizes the decision boundary maps
(DBM) of the projections of time series, activations, and attributions of a deep learning
time series classifier. The arrows between data points visualize dragged points by a
user towards counterfactual explanations. A line plot on the bottom (LP) presents the
corresponding time series to the dragged data points in the scatter plot. The highlighted
line (upfront with a black stroke) is also highlighted in the scatter plots. The dragline
for the points demonstrates interesting patterns in the activations and attributions
during a generation of a counterfactual.

and serves as a building block for interpretative modeling in explainable Al
applications [22].

Deep learning models applied to time series data present a significant chal-
lenge in interpretability due to the inherent complexity of the data type. The
sequential nature and the potential for non-linear interdependencies complicate
the understanding of how these models make predictions. In response to this
challenge, XAI endeavors to bridge the gap between complex model behaviors
and human interpretability. In the context of XAI, activations are the outputs
from neurons in a neuronal network model that arise from weighted inputs and
bias terms passed through a nonlinear function. Attributions are a technique
that assesses how each input value influences activations, thereby elucidating
the model’s decision-making process. However, visualizing activations or attri-
butions is only part of the solution for users to grasp model decisions com-
pletely, as attribution explanations are often hard to interpret [I7]. Another
promising avenue within XAT is using counterfactual explanations [I3]. These
explanations allow users to explore model decisions by considering alternative
scenarios: "What would have happened if X had been different?" [I0]. This con-
trastive approach is particularly valuable as it enables a focus on anomalies or
deviations, thereby offering insights into the model’s behavior under varied con-
ditions. Through such mechanisms, counterfactual explanations demystify the
decision-making processes of deep learning time series models and enhance the
user’s ability to trust and effectively utilize these analytical tools.
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In this work, our neural network model-agnostic application provides in-
sights into the model’s inner decision-making processes by combining time series
data alongside model activations and attributions. We propose an interactive
application designed to generate counterfactual explanations for univariate deep
learning time series models, leveraging projection techniques with inherent inver-
sions, such as Uniform Manifold Approximation and Projection (UMAP) [11], for
comprehensive dataset visualization and generation of interactive counterfactu-
als. We further enhance this capability by incorporating optimization techniques
that generate time series based on inverse projections in activation and attribu-
tion spaces, thus offering an approach to understanding and interpreting model
decisions. Our application includes interactive line plots, allowing users to dy-
namically modify time points of time series data, thereby enabling the creation
of contrastive explanations in counterfactual scenarios. We demonstrate the ver-
satility of our application in the medical domain through its application on the
ECG5000 dataset from the UCR benchmark [2]. This approach advances the
field of explainable AI by making machine learning models more interpretable
and serves as a valuable tool for researchers and practitioners looking to gain
actionable insights from univariate time series data.

A running demo and the source code is available online at:
https://github.com /visual-xai-for-time-series/interactive-counterfactuals-for-time-series

2 Related Work

Time Series Classification (T'SC) is a pivotal task within the broader scope of
time series analysis, underpinning numerous applications in fields ranging from
finance to healthcare. The pursuit of XAI for TSC has unfolded along various
dimensions, notably through extracting attributions and counterfactual expla-
nations [22]. Attributions highlight the significance of different portions of the
time series in the decision-making process of models. In contrast, counterfactu-
als provide insights by presenting hypothetical scenarios with altered model’s
prediction [22].

The generation of counterfactual explanations collected by Guidotti [7] can be
approached through multiple methodologies, each offering unique perspectives,
insights, and challenges. Despite the advancements in the automatic generation
of counterfactuals, concerns have been raised regarding the plausibility of such
automatically produced scenarios [3]. However, in many cases, a general plau-
sibility measure is hard to define as time series data can vary quite task- and
domain-dependent, forming different plausible time series for different scenarios.
Del Ser et al. [3] highlight the challenges with optimization-based methods such
as Wachter et al. [24], which, while efficient, often yield non-plausible counter-
factuals that may not align with real-world possibilities or constraints. Delaney
et al. [4] propose an approach incorporating a native guide to modify the query
time series for a counterfactual, which also can lead to non-plausible time se-
ries due to the exchange of segments of the time series and thus cuts at certain
points in the time series [I8]. These challenges underscore the importance of
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integrating user interaction with domain knowledge and heuristic approaches in
generating counterfactual explanations to generate plausible counterfactual time
series. Our approach incorporated the user in exploring counterfactuals toward
already existing time series of a dataset and a model.

Visual analytics has emerged as a crucial component in enhancing the in-
terpretability and accessibility of explainable machine learning, fostering an
interactive workflow that bridges the gap between complex models and end
users [I5]. As delineated by Spinner et al. [21I], integrating interactive elements
into the analytic process enables users to gain deeper insights into model behav-
ior and decision-making processes. Complementing this approach, the What-If
Tool proposed by Wexler et al. [25] provides a platform for users to engage in
perturbation-like sessions, allowing for the exploration of model responses to
various hypothetical scenarios. This hands-on engagement is pivotal in demys-
tifying the often opaque operations of machine learning models. Our approach
includes the user in the generation process of counterfactuals more tightly with
the additional help of techniques to enable easier counterfactual generation and
thus extends previous methods onto time series.

Schlegel et al. [18] employ projections to visualize data in intuitive formats
and facilitate the generation of counterfactual explanations in line plots. Their
method emphasizes on attributions and local time series explanations, enabling
a focused analysis of individual samples to derive explanations. They, however,
focus on the interactive change of the time series in line plots, mitigating the
possibilities of an inverse projection. Meanwhile, DECE [I] introduces a visual-
ization system designed explicitly for the exploratory analysis of subgroup coun-
terfactual explanations. Although DECE primarily addresses tabular data, its
approach exemplifies the potential of visual analytics to make machine learning
models more comprehensible and user-friendly. Thus, as related work reveals,
there is a need for interactive probing of models towards counterfactual gen-
eration. Our approach closes this gap by providing techniques to interactively
generate counterfactuals while still enabling users to probe the model concern-
ing, e.g., training data to enable a comparison of generated counterfactuals to
already existing samples.

3 Interactive Generation of Counterfactuals

Our proposed interactive generation of counterfactual explanations for time se-
ries application, as seen in consists of three visualization components
(three decision boundary plots, two line plots) and a preprocessing step to trans-
form the data and model relationship beforehand. Thus, we introduce the pre-
processing first and then describe the interactive visualization components.

3.1 Preparing the data and the model

We begin by selecting a time series dataset as the foundation for our prepro-
cessing. Next, we train a deep learning model on the selected dataset, utilizing
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its sophisticated architecture to capture the patterns within the time series.
Once trained, the model generates predictions for the entire dataset, providing
a comprehensive overview of its performance. We extract activations from a se-
lected model layer to delve deeper into the model’s decision-making process by
again predicting the entire dataset and collecting the activations for each sample.
These activations reveal the internal representations that the model learned for
each data sample [26]. Additionally, we extract attributions from the model by
applying an attribution technique such as DeepLIFT [20] similar to Schlegel et
al. [16], identifying the specific features within the data that impact the model’s
predictions. This dual extraction of activations and attributions offers a nuanced
understanding of how the model interprets and reacts to the input data, high-
lighting the features it deems most important for making predictions.

The next phase of our analysis involves employing Uniform Manifold Ap-
proximation and Projection (UMAP) [1I] to project the time series data, ac-
tivations, and attributions into a 2D space for visualization purposes through
scatter plots. This projection facilitates an intuitive understanding of the data’s
underlying structure as similar samples based on their neighborhood are grouped
together in the lower dimensional space. We apply UMAP as it provides an in-
verse projection technique that is inherently due to the map properties it focuses
on implementing. However, other projection techniques with inverse projection
capabilities would be possible, e.g., using an autoencoder. We also generate sam-
pled 2D grid data on the projected space to create decision boundary maps [6],
offering a unique perspective on data distribution and enhancing the plots. The
inverse projection of this grid data to time series is approached differently for
each component: the time series data is straightforwardly inverse projected, while
activations and attributions require other techniques. An activation maximiza-
tion approach is employed to transform the activations back into time series data
by not maximally activating the selected neuron but towards the wanted activa-
tion. We adapt the general activation maximization algorithm to first compare
the activations of a randomly generated input time series to our grid-generated
activations. We calculate the gradients of the input based on the resulting loss
of the comparison and use these gradients for a gradient ascent to change the
input time series. Through a few steps, we approximate the corresponding time
series for the selected activation. A depiction of the process can be seen in
ure 2| initialized with a click on the scatter plot. The strategy is also applied
to attributions, with the attribution technique generating attributions for each
intermediate step of the time series. The generation process for the attributions
can be time-consuming but can be parallelized to expedite the process. How-
ever, for small granular grids or large value ranges, this can result in a high
computational load for both activations and attributions.

3.2 Interactive Visualizations Workspace

Following the principles of visual analytics, we rely on multiple interactive linked
views that provide different perspectives to support the user in generating and
investigating counterfactual explanations.
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By employing projection decision boundary maps (DBM), we can make time
series data more accessible, allowing users to grasp temporal patterns at a glance.
The incorporation of decision density maps within the projection space offers a
tangible representation of how decisions are distributed across different ranges.
Allowing the user to drag individual projected time series instances further en-
hances the projection space and empowers the user to inspect how alterations
in data impact model outcomes. These principles are employed in separate pro-
jections for the time series (left), the activations (middle), and the attributions
(right in the DBM of , allowing the user to explore the model on dif-
ferent semantic levels.

The application also integrates line plots as a more conventional visualization
technique for time series analysis. This includes multi-line plots for comparative
analysis and single-line plots with interactive capabilities, facilitating the gen-
eration of counterfactual explanations by permitting users to experiment with
modifications and immediately observe the effects.

Projection Decision Boundary Maps Each time series, activation, or attri-
bution is transformed into a 2D sample point, utilizing UMAP to project data
from n dimensions into a 2D space, with its color denoting either the ground
truth label or a predicted label derived from the model. This method simpli-
fies the complex dimensionality of time series data and facilitates an intuitive
understanding of the model’s accuracy and biases. The backdrop of this visual-
ization features a decision map, employing a dense pixel approach as described
by Rodrigues et al. [I4]. This technique ensures that each pixel or region within
the map reflects the model’s decision for the data projected onto that specific
area. Since deep learning model outputs are typically probabilistic if a softmax
is applied, the color within this density map is adjusted to represent class color
weightings. For instance, in a scenario involving five classes, each class is as-
signed a color of a color map. The model’s predictions, such as an output of
(0.5,0.2,0.1,0.1,0.1) and a color scale of NI (Dark2 [§]), lead to visu-
ally blending colors to class probabilities, such as M, offering a visually intuitive
representation of prediction confidence and class distribution.

Hovering over data points highlights those points within the scatter plots
and emphasizes corresponding data in line plots, fostering a cohesive exploration
across visualizations. Also, hovering shows a tooltip with the ground truth, the
prediction, and the prediction probabilities. Clicking on a data point integrates
it into line plots for more detailed comparison or analysis. Dragging a point of-
fers updates in the scatter and line plots, including the model’s re-prediction for
the adjusted data point with an innovative feature that allows for the inverse
projection of a dragged point into a region without other data points such as
depicted in The original point and the new dragged point get con-
nected by a line with a color gradient, demonstrating the change in prediction
if it happened. Furthermore, the same feature allows the inverse projection of
a clicked area in the scatter plot’s free space, automatically generating a hypo-
thetical time series as seen in This generated series is then depicted
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Fig. 2. Based on a click on the projected activations, the inverse projections generate
activations. These activations are used in an optimization loop that takes a generated
time series and refines it based on the difference between the current time series acti-
vations of the model and the inverse-generated activation.

in the line and scatter plots, bridging the gap between high-dimensional data
representation and tangible, actionable insights as seen in Such inter-
actions empower users to dynamically manipulate and interrogate the data and
facilitate a deeper understanding of the model’s behavior and underlying data.

Comparison Multi Line Plot The multi-line plot feature offers users a tra-
ditional visualization for analyzing time series data, seamlessly integrating with
interactive scatter plots to enhance data exploration. Users can add lines to
the multi-line plot directly from scatter plots, with each line representing either
existing data points or newly generated ones. This integration facilitates an in-
tuitive comparison and analysis of time series data. The color coding of each line
corresponds with the model’s predictions, providing immediate visual feedback
on the data’s classification output. Additionally, an interactive element is intro-
duced whereby hovering over a line in the multi-line plot automatically highlights
the corresponding data point in the scatter plots, linking different visualizations
and aiding in identifying patterns or anomalies. A clear button is included to
provide users with the convenience of resetting the line plot, removing all lines,
and allowing for a fresh start in the data exploration. This feature is indispens-
able for users who wish to reset their analysis and start anew, ensuring that the
visualization space remains manageable and conducive to insightful exploration
without overplotting.

Counterfactual Generation Line Plot In complement to the multi-line vi-
sualization, another line plot feature is designed for more granular interaction,
focusing on modifying a single line at a time. This plot restricts the display to
one line only, necessitating the clearing of the existing line before a new one can
be introduced. Mirroring the multi-line approach, the color of the singular line
reflects the model’s prediction, providing an immediate visual cue to the user
about the classified outcome or regression value. Uniquely, this plot enhances
user interaction by plotting each time point in the time series as a draggable
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Fig. 3. Generating counterfactual explanations based on the projected attributions by
slowly dragging a data point to a region with another class prediction on the dense
decision map on the projected attributions. Generated time series seem plausible in
the projected time series, and projected activations scatter plots never come close to
borders and stay in regions with other data points.

point along the line, as seen in This allows users to adjust the time
series data in the y-direction, facilitating hands-on exploration of data manipu-
lation effects similar to Schlegel et al. [I8§].

A significant addition to this feature is plotting the original time series line in
the background as a reference point for any modifications made. Once applied,
such changes to the time series line can be projected back into the scatter plots.
This projection lets users visually assess how their modifications impact the
time series distribution and the underlying model’s decisions, activations, and
attributions. This interactive process not only aids in understanding the direct
implications of data adjustments on model predictions but also provides insights
into the complex dynamics of the model’s internal decision-making mechanisms,
offering a deeper exploration into the interpretability of models through visual
analytics.

4 Model and Data Exploration on Use Cases

This section delves into the practical applications of our chosen benchmark model
and dataset to demonstrate specific use cases. These examples illustrate the
capabilities of the established models and showcase the dataset’s versatility in
real-world scenarios. Furthermore, an online demo is available for those interested
in exploring a wider array of models and datasets, offering a hands-on experience
with additional resources.

Users — According to Spinner et al. [21], there are three user groups in
XATI: model novices, model users, and model developers with different knowledge
of deep learning models. Our primary audience includes model developers and
model users, each with distinct needs and objectives. These individuals seek not
only to understand the underlying mechanics of models but also to engage in
debugging activities and to test these models against unseen data and unknown
distribution shifts. We employ a contrastive explanation process that utilizes



Interactive Counterfactual Generation 9

counterfactuals to address these requirements effectively. This method explores
how different inputs can lead to varying outcomes, thus providing deeper insights
into model behavior and enhancing a robustness analysis under varied conditions.

Model and datset — The ECG5000 dataset [2], a crucial resource for time
series analysis in the medical domain, comprises 5,000 segments of electrocardio-
gram (ECG) data. This dataset is split into 500 segments for training and 4,500
segments for testing purposes, with each segment encapsulating 140 time points
of ECG readings. This dataset is categorized into five classes, with a significant
imbalance among them, as evidenced by the distribution in the training set: 292
instances in class 1, followed by 177 in class 2, 19 in class 3, 10 in class 4, and
a mere 2 in class 5. A ConvlD ResNet architecture comprising three ResNet
Blocks and a concluding linear layer for classification was employed to tackle the
challenges of such an imbalanced dataset. This choice is motivated by ResNet’s
proven efficacy in time series data, thanks to its ability to capture deep tempo-
ral dependencies [9]. The model’s performance on the ECG5000 dataset attests
to the effectiveness of ResNet in this context, achieving an accuracy of 90.6%
(training) and 89.33% (test).

Task 1: Exploration of data and model decisions relationship — Our
application provides a robust way for dissecting the intrinsic dynamics between
datasets and model decisions, showcased through decision boundary maps us-
ing UMAP projections and dragging interactions. Users can hover over sample
points in the maps to delve into data points and their impact on model outcomes,
observing tooltips and the underlying decision maps while also seeing other high-
lighted points across various plots. These maps clearly define the model’s deci-
sion boundaries at multiple levels - data, activations, and attributions - offering
a comprehensive insight into internal processes. This feature, coupled with the
inverse projection that populates unseen data spaces, provides deeper insights
into the model’s behavior towards novel or hypothetical time series data. Fur-
ther scrutiny of these plots, as detailed in exposes a tendency of the
model to predict major classes accurately, revealed through the dominance of
two colors in the attribution maps that indicate a biased distribution. The use
of 2D UMAP projection offers an essential overview of model predictions but
shows limited impressiveness when actual labels are applied, reflecting similar
patterns to those observed in the ResNet model for majority classes. This anal-
ysis is vital for understanding class imbalance issues and determining that the
model predominantly underfits minority classes, stressing the necessity to refine
model training to enhance predictive accuracy across all classes.

Task 2: Interactive generation of counterfactual explanations using
inverse projections — Our application enhances the generation of counterfac-
tual explanations through inverse projections, allowing interactive manipulation
of data points within scatter plots to create new time series data either by clicking
in empty spaces or dragging data points across different class backgrounds on the
decision map. These modifications are immediately visible in line plots, providing
an intuitive means for exploring changes. Users can further refine adjustments
using the single-line plot feature to modify time points within the time series and
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directly observe effects on model predictions, offering a streamlined toolkit for
constructing and comprehending counterfactual scenarios. In practice, selecting
and gradually dragging a point within a cluster or from an arbitrary location
towards the decision boundaries, as depicted in [Figure 1| and [Figure 3| pro-
vides significant insights. When directed towards another cluster, this technique
leverages inverse projection to generate plausible new time series counterfactual
explanations. Although this method maintains high plausibility within the time
series projection domain, it proves less effective when applied to projected acti-
vations, often resulting in the generation of time series for minority classes with
incorrect predictions and pinpointing areas for model enhancement. In the con-
text of projected attributions, while the dragging technique effectively generates
new data points, it is challenging due to the narrow region delineated for one of
the majority classes, indicating a complex landscape of model decisions where
the utility of dragging for counterfactual generation varies across different pro-
jection types, each providing unique insights into the model’s decision-making

processes.

Projected Activations Projected Attributions

Dragline

Fig.4. On top, visualizes the decision boundary maps (DBM) of the projections of
time series, activations, and attributions of a deep learning time series classifier. The
arrows between data points visualize dragged points by a user towards counterfactual
explanations in the activations. A line plot on the bottom (LP) presents the corre-
sponding time series to the dragged data points in the scatter plot. The highlighted
line (upfront with a black stroke) is also highlighted in the scatter plots. The dragline
for the points demonstrates interesting patterns in the original time series and attribu-
tions during a generation of a counterfactual in the activations. Especially interesting
is the attribution DBM, as the generated time series jumps around quite heavily.

visualizes the process of generating counterfactuals using activa-
tions, thereby facilitating easier access to decision boundaries. However, dragging
a selected time series sample to a decision boundary may sometimes require a
step beyond the border. This necessity might arise from our methodology for
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generating the time series, as the gradient ascent employs a nearest neighbor
approach and could potentially reach a local minimum, necessitating a further
leap over the decision boundary to generate a counterfactual. Nevertheless, the
resulting time series appears promising. More intriguing are the projected time
series and projected attributions plots, which reveal interesting jumps to dif-
ferent locations, with attributions appearing in regions where few other points
exist. Such behavior could occur if the attributions become implausible or unseen
by the projection technique. Investigating these scenarios can provide further in-
sights into the attribution and projection techniques. In our case, the generated
time series are too close to the time series attributions at the border regions of
the plot. The projected time series plot also reveals patterns in our time series
generation process, wherein the nearest neighbor approach identifies time series
similar to the newly generated ones. By introducing some randomness to in-
corporate artificial noise, the generation process can potentially be enhanced to
produce more novel time series. Nevertheless, for our exploration of the model’s
decisions, the current method proves to be quite effective.

5 Limitations & Conclusions & Future Works

Limitations — Our application encounters a notable limitation concerning the
plausibility of generated counterfactual time series, emphasized by Del Ser et
al. [3]. Specifically, the reliance on UMAP for the projection of time series data
inherently challenges the plausibility of counterfactuals when such data points
are located on the projections’ edges, signaling a likelihood of implausibility. Fur-
thermore, the stochastic nature of UMAP underscores the difficulty in achieving
deterministic projections and also inverse projections. To mitigate this, we sug-
gest the incorporation of more deterministic methods, such as inverse Neural
Network projections (iNN) as proposed by Espadoto et al. [6], and integrating
interactive modifications in line plots as recommended by Schlegel et al. [I§].
These enhancements aim to refine the generation process, improving the plau-
sibility and relevance of counterfactuals within the confines of our interactive
application and the user experience. Another factor is the color space used to
generate the background for the DBM. Due to many similar predictions toward
the majority class and the overall color space generation, a clear border between
the different classes and even between the different probabilities is hard to ob-
serve. Changing the color space in a more focused way to something with a larger
variety of colors and a clever combination can facilitate the discovery of patterns
more easily, similar to El-Assady et al. [5]. Also, our current approach only sup-
ports univariate time series due to, e.g., using single line plots to visualize the
generated counterfactuals and original data. Multivariate time series would need
a more sophisticated visualization to enable users to work with the data.
Conclusion — In conclusion, our interactive application designed to generate
counterfactual explanations for time series classification models represents a step
forward in employing advanced visualization techniques, such as inverse projec-
tions via UMAP and optimization steps derived from activations or attributions.
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As demonstrated by our use cases, these techniques support the generation pro-
cess of counterfactuals and potentially lead to more plausible and insightful
outcomes when coupled with user interactions. Furthermore, the application of
projections serves as a valuable tool for evaluating the plausibility of counterfac-
tuals not only in the original time series but also in the associated activations
and attributions. By offering a visual means to identify when a counterfactual
might fall outside the expected distribution, our approach provides a mechanism
for discerning the feasibility and relevance of these hypothetical scenarios, en-
hancing the interpretability and applicability of time series classification models
in various domains.

Future Work — Future work could extend our current univariate time series
approach to accommodate multivariate data. The inverse projection methods,
such as UMAP [I1], are capable of projecting higher-dimensional data into 2D
spaces, indicating the potential for such adaptation. However, this process typi-
cally results in information loss, potentially degrading reconstruction accuracy.
Addressing this challenge could involve employing varied projections across dif-
ferent dimensionalities and interlinking these latent spaces to enable upscaling
from a 2D to a higher-dimensional latent space, such as 100 dimensions, and then
reconstructing the time series. Additionally, exploring alternative inverse projec-
tion techniques like iNN [6] may help mitigate these issues, as these methods are
not confined to specific manifolds, unlike UMAP [I1I]. The core optimization
strategy for deriving time series based on activations or attributions remains
applicable, facilitating the generation of counterfactuals for these measures. The
transition from univariate to multivariate time series is primarily hindered by
the challenges associated with inverse projection and the consequent increase in
information and dimensionality. Further research could also explore other visu-
alization techniques to enhance user comprehension, particularly for those with
limited domain knowledge or Al expertise. For instance, incorporating the ex-
ploration approach by Schlegel et al. [I8] could break down the data and model
information even further, making it more accessible for non-experts. Addition-
ally, incorporating further visualizations can be enhanced by including verbal
ezplanations to provide a more comprehensive understanding of the model’s de-
cisions, thereby supporting a wider user base [I9]. This verbalization may also
enhance explanations in cases of heavily overplotted visualizations where the
UMAP 2D projection does not perform as intended.
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