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ABSTRACT

Invasive species are a major cause of ecological damage and com-
mercial losses. A current problem spreading in North America
and Europe is the vinegar fly Drosophila suzukii. Unlike other
Drosophila, it infests non-rotting and healthy fruits and is therefore
of concern to fruit growers, such as vintners. Consequently, large
amounts of data about infestations have been collected in recent
years. However, there is a lack of interactive methods to investigate
this data. We employ ensemble-based classification to predict ar-
eas susceptible to infestation by D. suzukii and bring them into a
spatio-temporal context using maps and glyph-based visualizations.
Following the information-seeking mantra, we provide a visual anal-
ysis system Drosophigator for spatio-temporal event prediction,
enabling the investigation of the spread dynamics of invasive species.
We demonstrate the usefulness of this approach in two use cases.

Index Terms: I.3.3 [Computer Graphics]: Picture/Image
Generation—Display algorithms; H.5.2 [Information Interfaces and
Presentation]: User Interfaces—User-centered design

1 INTRODUCTION

Non-native plants, fungus or animal species that out-compete native
species often cause severe economic and ecological damage to our
planet. With increasing globalization through trade and travel routes,
humankind has created opportunities for invasive species to establish
themselves in new regions all over the earth.

An exemplary invasive insect currently spreading around Europe
and North America is the Asian vinegar fly Drosophila suzukii or
spotted wing Drosophila (D. suzukii). In 2008, first occurrences
were reported in California, Spain, and Italy rapidly followed by
other regions and countries [11, 12]. In contrast to other Drosophila
species, D. suzukii infests even non-rotting and healthy fruits. It has
a wide range of possible host plants that have thin-skinned fruits, like
cherries, berries or grapes. An adult female fly can lay 1-10 eggs per
fruit and 200-400 eggs within its lifespan of 8-25 days. Depending
on temperature and other external factors, these eggs become adult
flies within 11-24 days. Thus, 13-15 generation cycles are possible
during one year. As a result of the spread of D. suzukii, the USA, for
example, noted an annual loss of $500 million [5] in fruit production
within a few years. Agroscop, the Swiss center of excellence for
agricultural research, has also published data of crop losses from
2014 [26] showing that in some Swiss cantons, 80-100% of cherries
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were unmarketable. Consequently, industry and science are tirelessly
searching for novel ways to keep the spread of D. suzukii under
control through a better understanding of their spread behavior.
Institutes such as the European and Mediterranean Plant Protection
Organization 1 or the State Viticulture Institute (WBI) in Freiburg
run global databases with weekly to monthly reports about present
threats and new findings. Focused on the data gathering aspect these
systems are, however, often analytically limited to providing simple
D. suzukii distribution maps. To this end, various approaches have
been proposed to explore the recorded data. Wiman et al. [35], e.g.,
make use of the fact that insects are ectotherms, which means that
their body temperature equals the ambient temperature. Therefore,
low temperatures are a key cause of insect overwinter mortality.
The authors tried to estimate D. suzukii populations in different life
stages, based on average daily temperatures of some specific fruit
production sites combined with trap catches and fruit infestation
counts. With their temperature model they found some confirmation
of population trends with trap data, and to a limited extent with
fruit infestation data. Building on top of this work, other proposed
approaches try to optimize temporal and spatial dislocation of control
measures by conducting studies on D. suzukii’s plasticity of cold
tolerance and its overwinter behavior [25, 31]. Spatial and temporal
dislocation is caused by mainly measuring in high ripening seasons
and at orcharding sites. Focusing on temperature alone neglects the
environmental aspects under which the fly could best procreate, or
survive even in colder seasons. Other approaches focus on several
integrated pest management (IPM) strategies instead. An extensive
review of current methods as well as a categorization is given by
Haye et al. [23]. They introduce strategies that focus on chemical,
cultural [13, 15] or biological control [14, 34].

The multitude of approaches shows that analyzing the spread of
invasive species is a complex problem. There are many different
external influences, which affect the spread of D. suzukii, such as
surrounding areas, time, temperature, food supply and many more.
This is aggravated by the fact, that these influences have to be
considered in a temporal and geospatial context. This illustrates
the need of researchers for interrogating large amounts of complex
empirical evidence interactively, in order to gain insights.

In this paper we present our application Drosophigator
(Drosophila Investigator). We follow a visual analytics approach
for interactive exploration of large amounts of heterogeneous data
sources, including trap counts of D. suzukii, surrounding high-detail
land use data, and related metadata. To help researchers investigate
the spread dynamics of invasive species, we proceed as follows:
First we train an ensemble of classifiers to predict time and place
of possible infestations by D. suzukii. These infestation events,
are cumulatively visualized with a glyph-based visualization and
brought into a spatio-temporal context by placing them on a map. By
allowing zoom and filter capabilities, as well as details on demand
our application enables domain experts to understand the spread
dynamics of invasive species. We demonstrate the usefulness of
Drosophigator in two use cases.

1EPPO - https://gd.eppo.int
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2 DATA DESCRIPTION

We performed several expert interviews with the State Viticulture
Institute (WBI) in Freiburg, Germany, in order to gain a better
understanding of the influences and factors about the spread of D.
suzukii as well as to identify current challenges faced by domain
experts. The WBI offers through their web service VitiMeteo2

forecast models for different fungi species, monitoring data for
various pests, as well as weather data related to viticulture in the
federal state of Baden-Württemberg. In our interviews we found
that although a lot of data about D. suzukii is being collected by the
WBI they lack adequate methods to analyze and interpret the arising
amounts of data as well as visualization techniques to communicate
and present related findings.

Figure 1: Vineyards (highlighted in red) in Baden-Württemberg, as
well as measurements stations by the WBI (highlighted in yellow).
Highlighted is the Kaiserstuhl, one of the biggest wine regions in
Baden-Württemberg.

In the data provided by VitiMeteo are, among other things, obser-
vations of the spread of D. suzukii. This data consists of trap findings
of D. suzukii as well as percentage information about how many
berries were infested in a sample taken at the station. Additionally,
there is percentage information about how many eggs were found in
a sample. This percentage can be over 100 %, if there are more egg
findings than berries in a sample. These observations are collected
from 867 stations non-uniformly spread over Baden-Württemberg
as shown in Figure 1. Some of them only report observations for
one day, others report multiple observations over a time period of
up to 1641 days. The observations are rather sparse and irregularly
sampled, which makes the use of standard time series analysis tech-
niques challenging, if not impossible. Consequently, Drosophigator
should enable researchers of the WBI to interactively analyze this
complex data source.

The Julius-Kühn-Institute [2] (JKI) suggests that the number
of trap findings are increasing in late summer and stay high until
winter. Additionally, Pelton et al. [29] found that areas surrounded
by woodland exhibit an earlier infestation. As a result, the focus of
our application is the analysis of the spread dynamics, exemplified by
D. suzukii, by taking temporal distribution as well as environmental
factors into account. In order to test the hypotheses of the JKI and
Pelton et al., we gathered the relevant data from different resources.
The time of year is already present in our observation data provided
by the WBI. To gather the height of every measuring station, we
make use of the ASTER Global Digital Elevation Map [1] which was
released by the Ministry of Economy, Trade, and Industry (METI)
of Japan and the United States National Aeronautics and Space
Administration (NASA). For the land coverage, the State Institute for
Environment, Measurements and Nature Conservation of the Federal

2VitiMeteo - http://www.vitimeteo.de/

State of Baden-Württemberg (LUBW), provided us with data from
the ATKIS [21] project for the state of Baden-Würrtemberg. This
includes high-detail statewide land usage information. It consists of
main groups, such as forests or industry, but also subgroups, such as
coniferous forest or treatment plans. Overall there are 83 different
combinations of groups and subgroups.

3 ENSEMBLE-BASED CLASSIFICATION OF INFESTED AREAS

To identify regions, in our case vineyards in Baden-Württemberg,
which are potentially endangered by D. suzukii, we use machine
learning to train a model using the data provided by the WBI in
combination with the data collected from ATKIS and ASTER. This
allows us to learn which combination of features make areas, at
certain points in time, susceptible to infestation. By applying the
trained model on other areas we can find new potentially endangered
areas.

3.1 Data Preparation
When training our model we need to determine which areas are
severely affected by D. suzukii and which are not. As mentioned in
Section 2, we have three types of observation (trap findings, berry
infestation and egg findings) which all indicate whether D. suzukii
occurs in a specific area. All of these observations serve as indi-
cators that an area is infested, thus allowing us to combine them
into a single measurement by first normalizing them to range [0,1]
and afterwards summing them up into a single feature, subsequently
referred to as observations. To cope with irregular samplings of mea-
surements, we averaged the number of observations per station per
month. The resulting distribution is right-skewed, with most values
being 0, meaning that for most stations we observe no infestation
by D. suzukii in a month. To still be able to differentiate between
severely infested stations and weakly or non-infested stations, we
decided to set the 80 % percentile as an experimental threshold to
classify our stations. This threshold may be changed later requiring
a retraining of our model, but otherwise not affecting the later steps
of the classification and the usage of our application. In total we
have a training set consisting of 3860 instances. Using the 80 %
percentile of the average observations per month to partition our
data into weakly (negative) and severely infested (positive) areas
gives us a data set with 735 positive and 3125 negative instances.

We enriched these instances, by adding information about the
environmental surroundings of each station. First, we added the
height information, which we extracted from ASTER. Second, we
added the surrounding land usage information. Since a local spread
is possible by D. suzukii itself, we extracted the land usage informa-
tion in a 5 km radius around each station. Finally, we have an 85
dimensional feature vector for each instance, consisting of the month
of the year, the station height, and the surrounding land usage.

Using this partitioning we end up with a rather imbalanced data
set with four times as many negative examples as positive ones.
This can cause problems since many machine learning algorithms
depend on the assumption that the given data set is balanced [27].
Although machine learning techniques exist which can deal with
imbalanced data sets, such as the Robust Decision Trees of Liu et
al. [27], we want to employ ensemble-based classification, which is
a combination of different classifiers. This allows us to improve the
classification performance [30] and also to model the uncertainty
of our classification, which aids people in making more informed
decisions [33]. This requires the creation of a balanced data set,
which we can achieve by either using undersampling of the majority
class or oversampling of the minority class. Undersampling can be
achieved by stratified sampling using the infestation class as strata.
However, this would remove instances from our already small data
set. To avoid this, we employ oversampling of the minority class us-
ing the Synthetic Minority Over-sampling Technique (SMOTE) [10].
SMOTE picks pairs of nearest neighbors in the minority class and
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creates artificial instances by randomly placing a point on the line
between the nearest neighbors until the data is balanced. Thus,
allowing us to employ default machine learning algorithms.

3.2 Ensemble-based Classifier Training
For training the classifiers we use the state-of-the-art data mining
systems KNIME [6] and WEKA [22]. We use a selection of well-
known machine learning techniques such as Decision Tree, Random
Forest, Multilayer Perceptron, Probabilistic Neural Network from
KNIME and k-nearest neighbor classifiers (k ∈ [1,5]), LibSVM [9],
Bayesian network, locally weighted learning and K* from WEKA.
This selection was determined in an experimental evaluation of
available classifiers in KNIME and WEKA, and might be extended
later. In order to support our decision to employ ensemble-based
classification to improve the classification performance, we first
need a baseline measurement. We performed a 10-fold cross valida-
tion of each of the classifiers mentioned in the previous paragraph
and found that the 1-nearest neighbor classifier achieved the best
performance, with a mean Cohen’s κ score of 0.919. The other
classifiers achieved Cohen’s κ scores between 0.50 and 0.89, as
shown in Table 1, which are according to Altman [4] moderate to
very good agreement between the prediction and actual class. To
test if ensemble-based classification could achieve better results, we
used stacking [36]. Here a logistic regression model is trained which
uses the prediction of all previously trained classifiers as inputs to
make the final prediction, as suggested by Ho et al. [24]. Using this
approach we achieved a Cohen’s κ score of 0.927, which is only
marginally better than the 1-nearest neighbor classifier. Nevertheless,
we are now able to model the uncertainty of our prediction, which
according to Skeels [33] is important for decision-making.

Classifier Cohen’s κ

Ensemble-based Classification 0.927
1-NN Classifier 0.919

K* 0.887
Random Forest 0.866

Decision Tree 0.864
2-NN Classifier 0.812
3-NN Classifier 0.758
4-NN Classifier 0.728

Probabilistic Neural Network 0.718
5-NN Classifier 0.693

LibSVM 0.593
Multilayer Perceptron 0.545

Bayesian network 0.512
Locally weighted learning 0.504

Table 1: The ensemble-based classification achieved the best results,
in accordance with the study by Rokach [30]

4 DROSOPHIGATOR: VISUAL ANALYSIS OF SPATIO-
TEMPORAL EVENT PREDICTIONS

Just providing the users with the raw results of our prediction
is not sufficient - on the one hand because we have over 20.000
predictions for all months and vineyards in Baden-Württemberg and
on the other hand because the spatial context is not interpretable
which makes it hard for experts to integrate their domain knowledge
into the analysis process. Thus, we need visualization to help ex-
perts to easily identify spatial and temporal patterns, select areas of
interest and get detailed information on the uncertainty of our model.
To achieve this, we follow the visual information seeking mantra
of Ben Shneiderman: “Overview first, zoom and filter, details on
demand” [32].

Figure 2: An overview of the Drosophigator application for the
visual analysis of spatio-temporal event predictions.

As depicted in Figure 1, the distribution of vineyards in Baden-
Württemberg is very sparse and several clusters can be immediately
spotted. According to the goals of the analysis system stated in
Section 2, we need to offer the user an overview first before in-
teractively digging deeper into several spatial areas according to
the domain knowledge of the user who could be either a farmer,
vintner or researcher. Existing related systems such as BirdVis [18]
offer heat map overview visualizations. However, as we want to
investigate the distribution of a species over time, we designed a
map overlay consisting of several glyphs. This partially preserves
the geographic context while the position of a glyph can be used to
encode additional information to a certain degree.

The glyph proposed in this paper has a fixed size such that its
visual encodings can be interpreted well. Furthermore, this allows
the user to compare various glyphs. The position and size of each
glyph is determined by a regular grid drawn onto the map. Each
grid cell aggregates all vineyards within the respective grid cell.
Since the vineyards’ polygons might appear very small at the most
zoom levels of the map, we decide to use the center of a vineyard’s
polygon to assign it to its respective grid cell. Moreover we want to
enable the user to drill-down. This is realized by a semantic zoom
into a specific spatial area which enhances well known zooming
techniques offered by the most interactive maps. The semantic of
the zoom lies within the position and size of the glyphs. On a zoom
the size of a glyph stays the same while the map is enlarged or
reduced which consequently results in a split of each grid cell such
that one glyph covers a smaller spatial area and thus represents a
more detailed view. Under certain circumstances, it also may not be
enough to be limited to the predefined size of a glyph. Therefore the
system offers the possibility to adjust the size of a glyph within a
reasonable range by a common slider which is placed above the map
view. This allows a seamless investigation of differently sized areas
without the necessity to change the map’s view-port by zooming in
or out a specific area.

Extensive work on glyphs has been done in the past which we
used as guidelines in order to design the final glyph proposed in
this paper. This includes e.g. the work by Fuchs et al. [20] and
Borgo et al. [7]. We are dealing with time series data, specifically
with periodic time series, namely months. Additionally, a user
might want to test time related hypotheses. This would support a
radial layout of the glyph which facilitates a seamless comparison
of neighbored time periods since they are visually neighbored as
well. Therefore, we decide to arrange each month within a circle
which results in a circle consisting of twelve circle segments (time
segments) such that we utilize the visual metaphor of a clock. We
therefore chose January to be represented by the first time segment
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(a) Each time-segment can be divided into multi-
ple visualization areas, which correspond to the
number of possible events. The more interesting
events to observe are placed on the outside, to be
more easily visible. The ratio indicator is used to
illustrate which event is most likely to occur.

Time 
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Information 
Panel

(b) Time-segments are ordered clock-
wise. They can represent different time
units, from hours, days, months or years.
Each time-segment can be used to visual-
ize the event prediction for the specified
time frame.

(c) Example Glyph Visualization showing the ratio of in-
fested and not infested vineyards, as well the uncertainty of
the prediction for one year.

Figure 3: Sketch of a single time-segment (a), the resulting glyh-based temporal event prediction visualization (b) and a real glyph example (c).

(from 12 to 1 o’clock) and then increase monthly clockwise. Such a
clock metaphor was also used by Fischer et al. to visualize periodic
time data [19]. Moreover, we use the center of the circle to represent
additional time-independent information, namely the number of
vineyards the respective glyph represents. The basic design of the
implemented glyph is depicted in Figure 3 (b).

Another goal is to visualize whether a certain region is endan-
gered or not. Consequently, we visually encode the classification
results of a specific month represented by its time segment. The
basic design of a time segment is depicted in Figure 3 (a). Therefore,
we make use of the interior of the respective time segment to rep-
resent the classification results of the ensemble-classifiers applied
in Section 3. For each month we have a distribution of safe and
endangered vineyards (according to the classification). Since the
number of vineyards stay the same over all months for each glyph,
we fill the area of the time segments according to the ratio of the
binary outcome. This technique results in a radial glyph similar to
a stacked bar chart showing fractions of the whole. To be able to
distinguish the outcome we use the colors red (endangered) and blue
(not endangered) as derived from the warm-cold color scale [28].
Additionally, a probability is assigned to each outcome (endangered
or not) and is of high relevance since it represents the (un-)certainty
and thus helps to find out where to place additional measurement
stations. The average probability of a given outcome is encoded
using the respective half of the warm-cold color scale, such that
a high probability/certainty results in a stronger color tone while
a low probability on the other hand is represented by a very weak
color tone. A very strong red color exemplary means that there is
a very high probability of endangered vineyards within the respec-
tive month (time segment) and area (glyph location). This enables
the user to immediately spot potentially new measurement areas.
An overview of the realized glyph representing all vineyards in
Baden-Württemberg is presented in Figure 4. It can immediately be
observed that there is a general trend as the number of endangered
vineyards (red) is increasing until late summer and then decreas-
ing again. This observation corroborates the hypothesis that the D.
suzukii may only survive in a relative stable environment regarding
temperature such that it dries out in the summer and freezes in winter
months.

It is possible to zoom until there is only one glyph for each
vineyard visible on the display. Nevertheless, for further analysis
regarding the question “why” the ensemble-classification reports a
specific result, it is necessary to show the input feature vectors of the
classification in an easily understandable way. Moreover, the ability
to compare areas/glyphs with each other regarding the feature vectors

Figure 4: Overview of our glyph-based visualization. For each
cell the predictions and their uncertainties are averaged per time-
segment and visualized in our glyph. We provide zoom-and-filter
capabilities by allowing the user to zoom in and out of the map, as
well as manually adjusting the cell size to either get a broader or
more detailed view on the underlying data.

enables the visual detection of several environment compositions
(e.g., surrounding land use and height) that contribute crucial to a
given classification result. Furthermore, the visual representation of
the feature vectors builds additional trust in the classification result
as a user may want to trace why a certain area has a specific result.
Therefore, we enable the user to select one or more glyphs to show
additional details on demand. These details of the input features are
shown within a bar chart as depicted in Figure 5. The color of a bar
is directly associated with the dedicated glyph which is highlighted
in the same color to visually link them.

5 USE CASES

In this section, we want to highlight how visualization can help
domain experts to gain insights about the spread dynamics of D.
suzukii. We show the usefulness of our system by demonstrating
how domain experts can investigate hypotheses using Drosophiga-
tor. Therefore, we investigated two recently proposed assumptions
about the time of infestation [2] and the influences of environmental
factors [29].

The JKI states as a general rule, that the number of findings
increases with decreasing temperatures in late summer and stays
high until November or later if there are no cold snaps [2]. To
investigate this hypothesis we create an overview of all available



Figure 5: Overview of our detail-on-demand visualizations. We
provide tooltips, detailing the number of infested and not-infested
areas per month per cell, as well as statistics about the measured
uncertainty, such as average and standard deviation. Additionally,
we provide bar chart visualizations of the land usage. These can be
used to compare the average land usage of the vineyards contained
in different cells. The bar colors correspond to the highlight colors
of the selected cells.

predictions. We increase the cell size of our grid such that a single
cell covers all vineyards in Baden-Württemberg. The resulting glyph-
visualization is shown in Figure 6. In the visualization, as well as
in the detailed tooltip, we can see that the number of infestation
is marginal in the first half of the year. However, there is a strong
increase in the predicted number of infestation and diminishing
uncertainty starting in August until December. This observation is
consistent with the hypothesis of the JKI.

Figure 6: Overview glyph-visualization of all vineyards in Baden-
Württemberg. The development over the time-segments shows that
the severity of infestation and the certainty of our prediction in-
creases in late summer and stays high until the end of the year. This
corroborates the hypothesis of the JKI [2].

A recent two-year field study of Pelton et al. [29] suggests, that
high amounts of surrounding woodland are correlated with earlier
an infestation of D. suzukii. Using a finer grid resolution, we com-
pare two neighboring grid cells, as shown in Figure 7. The left cell
(highlighted in green) shows an earlier infestation than the right
cell (highlighted in blue). We compare the land usage of vineyards
contained in both cells using our detail-on-demand bar chart visual-
ization. We can identify that the left cell, which exhibits an earlier
infestation, has a larger amount of woodlands in the surrounding
area, while the right has more agricultural areas in its surrounding.
These observations support the hypothesis of Pelton et al.

In these two use-cases, we have demonstrated the capabilities of
our tool. Following the information-seeking mantra of Shneider-
mann using our glyph-based visualization of the ensemble-based

Figure 7: Comparison of the vineyards contained in two neighboring
cells. The left cell (green) exhibits an earlier infestation by D.
suzukii that the right cell (blue). The detail visualization shows,
that the vineyards in the left cell have more surrounding woodland
(Wald) than those in the right cell. This finding strongly supports the
hypothesis of Pelton et al. [29].

predictions, as well as the uncertainty of the prediction, allows us to
make observations supporting hypotheses of researchers about the
spread dynamics of D. suzukii.

6 DISCUSSION AND FUTURE WORK

The approach presented in this paper is currently very application-
driven. However, first feedback from experts is very promising.
There are still limitations, which need to be addressed in future work.
For instance, the inability to specify the time-granularity makes it
currently impossible to investigate the spread dynamics over the
course of multiple years. This may require an extension of our visu-
alization, for example, by following a similar approach as proposed
by Carlis and Konstan [8]. Further potential improvements of our
visualization include switching from a regular grid to a dynamic
aggregation approach, avoiding overemphasis of large areas in the
glyph with low confidence following the guidelines of Ferreira et
al. [17]. Additionally, we plan to reduce the occlusion introduced
through our glyph by investigating advanced alternative visualization
techniques. Eventually, we need to incorporate other data sources,
especially meteorological data. This would allow the investigation
of the effects of late frost or severe heat and drought on the spread
of D. suzukii, since adult flies are very susceptible to weather [25].

For additional future work we aim to investigate the applicability
of our system for spatio-temporal event analysis of other species.
One particular use case will be the Global Initiative for Honey Bee
Health (GIHH) launched by the CSIRO in 2015 [3], which aims to
collect scientific evidence of honey bee population decline through
global collaboration. Towards this end, microsensors are attached
to the bees to record their activity from which predictors of health
are inferred. A visual analytics framework [16] is being developed
that facilitates interactive analysis of the microsensing data and aids
in finding correlates with environmental factors that may impact
on bee health. The system we are presenting here is considered a
valuable means of visually interrogating the health predictors and
their related uncertainties on a global scale.



7 CONCLUSION

In this paper we presented our application Drosophigator which
enables researchers in the field of viticulture and biology to investi-
gate the spread dynamics of invasive species. Using data provided
by the WBI we trained an ensemble of classifiers to identify places
and times which are susceptible to infestation by D. suzukii. Using
our glyph-based visualization we allow a visual analysis of these
spatio-temporal event predictions. We demonstrated the capabilities
of our approach in two use-cases, where we show how our tool can
be used to investigate hypothesis about the spread of D. suzukii.
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