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Figure 1: (A) Sample frames of movement; background indicates spatial coloring. (B) Our Stable Principal Component method
translates collections of moving entities at each time step into a vertical array of pixels; color indicates spatial location. Chart below
indicates spatial quality (yellow) and stability (blue) per time step; high values indicate low quality. (C) Unstable ordering using Hilbert
curve, note the artificial split between the green locations.

ABSTRACT

The availability of devices that track moving objects has led to an
explosive growth in trajectory data. When exploring the resulting
large trajectory collections, visual summaries are a useful tool to
identify time intervals of interest. A typical approach is to represent
the spatial positions of the tracked objects at each time step via a
one-dimensional ordering; visualizations of such orderings can then
be placed in temporal order along a time line. There are two main
criteria to assess the quality of the resulting visual summary: spatial
quality – how well does the ordering capture the structure of the data
at each time step, and stability – how coherent are the orderings over
consecutive time steps or temporal ranges?

In this paper we introduce a new Stable Principal Component
(SPC) method to compute such orderings, which is explicitly pa-
rameterized for stability, allowing a trade-off between the spatial
quality and stability. We conduct extensive computational experi-
ments that quantitatively compare the orderings produced by ours
and other stable dimensionality-reduction methods to various state-
of-the-art approaches using a set of well-established quality metrics
that capture spatial quality and stability. We conclude that stable
dimensionality reduction outperforms existing methods on stability,
without sacrificing spatial quality or efficiency; in particular, our
new SPC method does so at a fraction of the computational costs.
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and statistics—Statistical paradigms—Dimensionality reduction
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1 INTRODUCTION

Over the past years the availability of devices that track moving
objects — GPS satellite systems, mobile phones, radio telemetry,
surveillance cameras, RFID tags, and more — has increased dra-
matically, leading to an explosive growth in trajectory data. Objects
being tracked range from animals (for behavioral studies) and cars
(for traffic prediction), to hurricanes, sports players (for video analy-
sis of games), and suspected terrorists. When exploring the resulting
large trajectory collections, visual summaries are a useful tool to
identify time intervals for further consideration. A typical approach
is to represent the spatial positions of the tracked objects at each
time step via a one-dimensional ordering; visualizations of such
orderings can then be placed in temporal order along a time line.

MotionRugs by Buchmüller et al. [2] (Fig. 1D) translate orderings
of 2D moving objects into a compact grid-based visual summary;
in a MotionRug each vertical strip of n grid cells encodes n objects
at a specific time step. This representation is arguably as compact
as possible and served as the initial motivation for our work. Mo-
tionRugs, and other previous work [2,10] which computes orderings
for moving entities, use either spatial subdivisions or clustering
techniques. As a result, entities which are close in the ordering are
also close in the input. However, the converse does not necessarily
hold: elements which are separated in the ordering can be close in
the input. This causes unfortunate and visually salient artifacts (the
so-called “phantom splits” in MotionRugs). Let us emphasize that
these artifacts are not caused by the visual encoding in MotionRugs,
but they are an inherent consequence of using spatial subdivision or
clustering techniques to create orderings; any visualization which
uses the resulting orderings will exhibit the same artifacts.

The algorithmic problem to be solved is in fact low-dimensional
dimensionality reduction: how to adequately represent higher-
dimension data in 1D? In this paper we hence propose to use actual
dimensionality-reduction techniques to compute orderings of high
spatial quality: objects which are close in the input are also close in



Figure 2: Examples of visual summaries in existing work: (A) Dynamic StoryLine graph [32], (B) Let It Flow for dynamic graphs [5], (C) Parallel
Edge Splatting [4], (D) Extended Massive Sequence Views [30] and (E) Temporal Treemaps [15].

the ordering, avoiding the aforementioned artifacts. We also show
that these techniques can produce coherent representations over
whole temporal ranges, that is, they can be adapted to be stable.

Formal problem statement. Our input is a set P = {p1, . . . , pn} of
n point objects. We sample their positions at T consecutive time
steps; each object pi is a sequence of T locations. We use pi(t) to
denote the location of pi at time t, 1≤ t ≤ T , and, correspondingly,
P(t) to denote the complete point set at time t. A visual summary
S of P is a sequence of orderings of the points in P, one per time
step. We denote the ordering at time t by St , St(pi) denotes the rank
of point object pi in the ordering at time t. The quality of a visual
summary S is determined by two criteria:

Spatial quality. How well does St capture the spatial structure
of P(t)? We characterize the spatial structure via local neigh-
borhoods: we say that an ordering has high spatial quality if
points that are spatially close in the input are also close in the
ordering.

Stability. How consistent are the orderings over time? Here we
can consider absolute changes between orderings or changes
in local neighborhoods, as captured by nearest neighbors in
the ordering. Both types of measures can be considered for
consecutive time steps or over temporal ranges.

Clearly, a visual summary that uses the same ordering for all time
steps is maximally stable. However, the spatial quality of this rep-
resentation will typically be low. Conversely, optimizing spatial
quality for each time step in isolation tends to result in unstable
summaries which make it more difficult for the user to track objects.

Contributions. In this paper we explore the use of dimensionality-
reduction techniques to create orderings from trajectory collections.
Our contributions are twofold. (1) We introduce a new Stable Princi-
pal Component method [SPC] which is explicitly parametrized for
stability, allowing a trade-off between spatial quality and stability.
We chose to “stabilize” PCA since its principal component gives
us an explicit representation of the shape of a trajectory collection
at any point in time. We can interpolate between the first compo-
nents of different time steps to achieve stability. We also describe
a stable Clustered Principal Component [CPC] method which is
particularly well suited for data sets that exhibit clear clusters. For
ease of explanation we describe our approaches in two-dimensions,
however, they directly extend to three or higher dimensions. (2) We
conduct extensive computational experiments, which allow us to
conclude that stable dimensionality reduction outperforms existing
methods on stability, without sacrificing spatial quality or efficiency.

In particular, our new SPC methods does so at a fraction of the
computational costs.

We discuss related work in Section 2 and describe our Stable
Principal Component method in Section 3. Section 4 explains our
experimental setup, including the ordering methods which we com-
pare against (Section 4.1), the quality metrics we use to capture
spatial quality and stability (Section 4.2), and our real-world and
synthetic data sets (Section 4.3). In Section 5 we report on the results
of our experiments. In Section 6 we close with a discussion of our
results, as well as current limitations and directions for future work.

2 RELATED WORK

Visual summaries have been used for various different types of time-
varying data. For example, there are several methods that summarize
time-varying graphs, such as Parallel Edge Splatting [4] (Fig. 2C)
and Extended Massive Sequence Views [30] (Fig. 2D), which show
the temporal evolution by drawing the graph at each time step in a
narrow vertical strip. Similarly, Temporal Treemaps [15] (Fig. 2E)
encode hierarchies via (essentially) one-dimensional intervals and
show the temporal evolution by placing these intervals consecutively
along a line. Also, Storyline Visualizations [17, 32] (Fig. 2A) use
a compact representation at each time step (essentially a pixel per
protagonist); these representations must be coherent between con-
secutive time steps and as such trace a trajectory for each actor.
An interesting variation of Storylines is presented by Muelder et
al. [21], who create so-called Behavioral Lines, which consist of a
collection of features as 1D time series turned into comparable 2D
lines, allowing users to identify similar and deviating behavior of the
observed feature sets. Jäckle et al. [13] introduce another technique
which is based on one-dimensional orderings, namely window-based
1D MDS plots, which are arranged horizontally, grouping together
similar events. The aforementioned techniques all rely on varia-
tions of similarity measures to determine the ordering of entities
and thus, the visual outcome. Our approach takes order quality into
account, as well as the stability of the visualization as a function of
the changes in the entity orders.

Another set of techniques exploits one-dimensional mappings to
produce dense representations of temporal data to generate insightful
visual patterns. MotionRugs by Buchmüller et al. [2] (Fig. 1C and
D) computes orders from spatial locations for entities moving in 2D,
whereas Cui et al. [5] (Fig. 2B) use node degree to order dynamic
graph data. Due to the packed representation of the ordering of the
displayed data points, the visual outcomes of such techniques are
specifically sensitive to ordering quality and, thus, could benefit
directly from our approach.

In this paper we focus on computing orderings using dimensiona-



lity-reduction techniques. We perform experiments with PCA, Sam-
mon mapping, and t-SNE. There are other dimensionality-reduction
techniques, such as MDS [16], Isomap [29], and UMAP [19], but
given the cost functions that they minimize, we believe that they
give similar results (in fact, in the Euclidean plane, classical MDS
is equivalent to PCA). Recently, Rauber et al. [25] also described
Dynamic t-SNE: a more explicit way of making t-SNE stable over
multiple time steps. Unfortunately, various issues prevented the
inclusion of this method in our experiments; see Section A of the
supplementary material for details.

3 STABLE PRINCIPAL COMPONENT ANALYSIS

PCA was first introduced by Pearson [23] and can
be used for dimensionality reduction to 1D by pro-
jecting points onto the first principal component:
a vector in the direction along which the point set
has most variance. Projecting onto this vector maxi-
mally preserves spatial relations in the original point
set. Based on this technique, we describe two algorithms that make
such projections stable for moving entities.

Meulemans, Verbeek and Wulms [20] study the trade-off between
spatial quality and stability of orientation-based shape descriptors,
including PCA, from a theoretical point of view. Their results show
that the principal components of a set of moving points in 2D exhibit
unstable behavior when the point set is not stretched, that is, the
variance along the first and second principal component is similar.
Our approach leverages this result by explicitly enforcing stability
when the point set is not stretched. The intuition is as follows. If
the variance along the first principal component is clearly higher
than the variance along the second principal component, then the
direction is very discriminative: the point set is clearly stretched
in this direction and sorting the points along this vector tends to
lead to high spatial quality. If this is not the case, then the point
set is “round” and the spatial quality is roughly equivalent for other
directions as well. Our goal is to smoothly interpolate the projection
vector in those cases.

[SPCσ ] Stable Principal Component. To create a
stable version of PCA, we use the optimal direction
(first principal component) as projection vector for
any t where P(t) is stretched, as well as for the first
and last time step. For all time steps in between
(when the point set is not stretched) we linearly in-
terpolate the orientation of the projection vector. We use a parameter
σ (0≤ σ ≤ 1) to control when we consider a point set as stretched.

Concretely, the Stable Principal Component algorithm is imple-
mented as follows (see Algorithm 1 for an overview). To determine
if a point set is stretched, we use the corresponding eigenvalues v1
and v2 of the first and second principal components, respectively.
If v2/v1 ≤ σ , then the point set is stretched, and otherwise it is
not. For the time steps t where the point set is stretched (including
t = 1 and t = T ), we simply compute the principal component as
projection vector PV[t]. Note that −PV[t] is equally good as pro-
jection vector, but results in a mirrored representation. To avoid
flipping, we therefore use the direction (PV[t] or−PV[t]) that is most
consistent with PV[t−1] (computed using the dot product). For time
steps t where the point set is not stretched we also first compute the
(consistent) first principal component. We use these vectors to keep
track of the signed angle α describing how the orientation of the
first principal component has changed since the last time t ′ the point
set was stretched (or t ′ = 1). Once we reach another time t ′′ where
the point set is stretched (or t ′′ = T ), we can linearly interpolate the
orientation of the projection vector for all times t with t ′ < t < t ′′.
Although linear interpolation of orientations is not unique in general,
we can use the accumulated signed angle α to uniquely interpolate
the projection vector. Finally, we can project the point sets for all
time steps onto the computed projection vectors PV[t].

Algorithm 1 STABLEPRINCIPALCOMPONENT(P,σ)

Input: Point set P over T time steps, and σ ∈ [0,1]
Output: Visual summary S for P

1: Set PV[1] to the first principal component vector for P(1)
2: Set t ′ to 1 and α to 0
3: for t = 2 to T do
4: Set PV[t] to the first principal component of P(t) and compute

eigenvalues v1,v2
5: Add the signed angle between PV[t] and PV[t−1] to α

6: if v2/v1 ≤ σ or t = T then
7: for ts = t ′+1 to t−1 do
8: Set PV[ts] to PV[t ′] rotated over α · ts−t ′

t−t ′

9: Set t ′ to t and α to 0
10: for t = 1 to T do
11: Define S[t] by projecting P(t) onto PV[t]
12: return S

Since the eigenvalues and principal components of n points in
2D can be computed in O(n) time, it is easy to see that the entire
algorithm runs in O(nT ) time. The explicit trade-off between spatial
quality and stability can be configured via parameter σ . If σ is set to
a value close to 1, the focus of the algorithm is on spatial quality, and
only when the point set is very “round”, stability will be enforced;
σ = 1 eliminates interpolation and always uses the first principal
component in every time step. However, if σ is set closer to 0, the
focus will be on stability and even for moderately stretched point
sets, linear interpolation can occur, thereby sacrificing spatial quality
for stability; σ = 0 causes one interpolation, from the first principal
component at t = 0 to the first principal component at t = T .
[CPCσ ] Clustered Principal Component. If a
point set is strongly clustered, then we would expect
an ordering of this point set with high quality to
separate the different clusters. However, in the Sta-
ble Principal Component algorithm described above,
two clusters may be interleaved if their projections
happen to overlap. Therefore, we also propose the Clustered Prin-
cipal Component algorithm, which is essentially a hybrid between
SPCσ and a clustering algorithm (such hybrids have also been ex-
plored in [33]).

Intuitively, this algorithm performs SPCσ on the separate clusters.
More specifically, for every frame we first perform Complete Link-
age Clustering [9] [CLC] on the point set, resulting in a hierarchical
clustering. CLC is agglomerative and repeatedly merges the two
clusters that are closest, where the distance between two clusters is
determined by the farthest two points in different clusters. To obtain
a partitioning of the points, we stop the process when the closest
distance between clusters doubles with respect to the previous it-
eration. While this heuristic suffices to find salient clusters in our
data sets, many other techniques exist to find a good partitioning in
a hierarchical clustering [22].

Next, we perform SPCσ on the individual clusters, with two small
adaptations, resulting in projection vectors PVC[t] for a cluster C.
First, we end the linear interpolation of PVC[t] when the clustering
changes and there is no longer a cluster with exactly the same points
as C (basically treating the time step as t = T ). Second, it is no
longer straightforward to determine the most consistent direction
(PVC[t] or −PVC[t]) for a cluster when the clustering changes. Here
we use the projection vector used by the majority of the points in the
cluster at time t−1 to determine the most consistent direction.

To find the global ordering at time t, we use the first principal
component of the whole set P to project the cluster centers. The
orderings of points within a cluster are then placed around the pro-
jection of its cluster center. Although this approach may still result
in overlap between two clusters in the projection, we can easily



separate the clusters in the eventual ordering: first, we order the
clusters according to their cluster centers, and then we order the
points within a cluster according to their internal ordering.

4 EXPERIMENTAL SETUP

We aim to quantitatively evaluate methods for computing 1D order-
ings, based on the resulting spatial quality and stability, to understand
the trade-offs that are likely to exist between these methods, as well
as to understand how our own parametrized methods make a trade-
off between spatial quality and stability. Below, we briefly describe
the methods we compare, the measures we use to compare them,
and the data that is used in this evaluation.

4.1 Algorithms

Previous work by Guo and Gahegan [10] and Buchmüller et al. [2]
which compute 1D orderings for moving entities in 2D use either
spatial subdivisions or clustering techniques. For our experiments,
we chose the algorithms that performed best in their experiments.
We also include a baseline algorithm [FXD] that is solely focused on
stability. Fig. 3 shows examples of the orderings generated by some
of the algorithms, including dimensionality-reduction techniques,
for one time step of our test data. We give a short overview here;
details can be found in Section A of the supplementary material.

[FXD] Fixed order. Outputs the same arbitrary linear order for
every time step; each horizontal line represents one moving entity.

Spatial subdivisions. Several well-known 1D ordering approaches
used for spatial indexing, such as tree data structures and space-
filling curves, are based on iterating through some spatial subdivision.
Many variations exist; see [18] for an overview. Here we focus on
four established, representative techniques from this area: [HIL]
Hilbert curve [12], [ZOR] Z-order curve, [PQR] Point Quadtree [7,
8] and [RTR] R-tree [11].

Clustering. Another approach is to first compute a hierarchical
clustering on the point set, and then order the points in such a way
that clusters stay together. These algorithms are defined by how the
points are clustered, and how the linear order is computed from the
clustering. We use the aforementioned [CLC] Complete Linkage
Clustering [9] and [SNN] Shared Nearest Neighbors [14] to cluster
points and derive an ordering from the cluster hierarchy as follows.

The hierarchical clustering is represented by a tree with the in-
dividual points stored in the leaves. We aim to order the leaves of
such a tree without changing the cluster structure, that is, by only
changing the order of the children of any internal node. We follow
the algorithm by Bar-Joseph et al. [1] to efficiently compute the op-
timal order that minimizes the length of the path formed by visiting
the input points in that order.

Figure 3: Visualization of orderings generated for one data frame
using dimensionality reduction (SPC and SNE), space-filling curves
(HIL) and clustering (CLC). Note the very different ways in which
space is transformed into an ordering.

Dimensionality reduction. We also consider dimensionality reduc-
tion techniques to compute 1D ordering. In our experiments we
specifically consider [SAM] Sammon mapping [28] and [SNE] t-
SNE [31], next to the PCA-based techniques described in Section 3.

Both Sammon mapping and t-SNE use gradient descent to mini-
mize a cost function. Normally, this gradient descent is started with
a random initial solution, but this may result in poor stability over
time. To improve the stability of both algorithms, we initialize them
with the solution of the previous time step, resulting in two stable
versions, [SAMp] and [SNEp]. The rationale is that, if the local
minimum found in the previous time step still exists, but has slightly
shifted, then this approach will likely find this local minimum again
rather than any other local minimum.

4.2 Metrics
In this section we discuss the quality metrics we use to capture
spatial quality and stability. We choose measures that focus on the
preservation of local neighborhoods. For applications where other
types of measures are preferred, we refer to the survey in [6].

4.2.1 Spatial Quality
Spatial quality measures the correspondence between P(t) and the
linear order St . We capture this by considering the local neighbor-
hood of a point, as characterized by its nearest neighbors. One way
to measure changes in local neighborhoods is using an evaluation of
dimensionality reduction via persistent homology as introduced by
Rieck and Leitte [27]. However, we choose not to use this type of
measure. While this approach is more recent than the measure we are
using, it does not compare to older results, it is more complex, and
most importantly it does not directly relate input to output, but mea-
sures through an intermediate topological structure. Hence, we use
the Keys Similarity measures as described by Guo and Gahegan [10]
to directly measure the changes in nearest neighbors.

To simplify notation, we omit dependencies on time step t, as the
metrics consider each time step in isolation. Thus, P denotes a point
set in the plane, and S denotes a linear order. Let n(i, j) ∈ P denote
the jth nearest neighbor of pi in P, for each j with 1≤ j≤ k for some
constant k. We use r(i, j) to denote the neighbor rank in S between
pi and n(i, j). However, the difference in rank |S(n(i, j))− S(pi)|
is not unique. There are two neighbors at rank difference 1, two at
rank difference 2, until we reach one end of a linear order. To avoid
arbitrariness, we do not break ties but rather consider each pair with
the same rank difference to have the same value for r(i, j). Thus,
there are two nodes with r(i, j) = 1 (rank difference 1), two nodes
with r(i, j) = 3 (rank difference 2), etc.

Generally, Keys Similarity at time t is then defined as

KS(P,S) =
∑pi∈P ∑

k
j=1 w(i, j) · r(i, j)

∑pi∈P ∑
k
j=1 w(i, j)

,

where w(i, j) denotes the weight or importance of maintaining the
jth nearest neighbor of pi at time t – note that these weights need
not be the same at every time step. We use two variants of Keys
Similarity, see the supplementary material for the exact formulas.
[KSra] Rank-weighted Keys Similarity. We define w(i, j) = 1/ j
inversely proportional to the rank; hence maintaining the closest
neighbors is more important than maintaining the distant neighbors.
[KSdi] Distance-weighted Keys Similarity. We define w(i, j) =
1/‖pi− n(i, j)‖ inversely proportional to the Euclidean distance,
such that maintaining close neighbors is more important than main-
taining distant neighbors. In contrast to KSra, this variant does not
treat neighbors at (nearly) identical distances differently.
Other facets. Our metrics focus on combinatorial aspects of the
position of the point objects. Spatial structure in general knows
many other facets, such as distances and directions between points,



as well as density. For projections into a single dimension, distances
and density can factor into spatial quality. However, a linear order
inherently does not lend itself to represent such concepts.

4.2.2 Stability
Stability or temporal coherence measures the similarity between
consecutive orders in S. In our evaluation, we use the following
three measures for stability. The first two are based on absolute
changes in the order and match the measures used by Buchmüller et
al. [2] to evaluate MotionRugs. The latter uses neighborhoods, based
on the concepts by Guo and Gahegan [10].

We aim to compare the similarity between two linear orders, St
and St+1 for each t with 1 ≤ t < T . We could easily use the same
metrics to compare nonconsecutive orders, but this provides little
insight for such inherently sequential data. To consider the stability
over a temporal range [t, t ′], we use standard summary statistics (e.g.,
average, minimum, or maximum) over all consecutive pairs.
[JMP] Jump distance. We quantify the jump distance for a single
point object pi as the difference between its ranks in the two orders,
that is, |St(pi)−St+1(pi)|. The jump distance between two orders
is then the sum over all jump distances for each point object.

JMPt(P,S) = ∑
pi∈P
|St(pi)−St+1(pi)|

The value for JMPt(P,S) lies between 0 (perfectly stable) and n(n−1)
2

(complete inversion of the order).
[CRS] Crossings. Whereas JMP penalizes any change in the order,
many points moving up together may not constitute much change.
Instead we may count the number of inversions or crossings in
the order, that is, the pairs pi, p j for which St(pi) < St(p j) and
St(pi) > St(p j). The metric CRSt(P,S) lies between 0 (perfectly

stable) and n(n−1)
2 (complete inversion of the order).

Buchmüller et al. [2] also use Kendall’s τ coefficient to eval-
uate stability. We choose to omit this, as it is equivalent to
1− 2 ·CRSt(P,S)/(n(n− 1)/2). That is, Kendall’s τ is the same
as CRS up to normalization to the range [−1,1].
[KSte] Temporal Keys Similarity. We may also take the same
approach as for spatial similarity and consider the similarity of
local neighborhoods in both orders. As distances are not inherently
meaningful in the combinatorial order and simply correspond to
ranking differences, we use only the rank-weighted version of Keys
Similarity. Also for this metric KStet(P,S), we do not break ties in
either order, but rather give them the same rank.

4.3 Data
For comparability, we use the same data as MotionRugs [2] along
with two synthetic data sets, one generated using Netlogo [35] and
another generated with the well known Reynolds model [26]. Note
that we use MotionRugs solely to visualize the output of our algo-
rithms. The algorithms as well as the quantitative evaluation are
independent of the visualization that uses the resulting ordering.

The first data set tracks 151 fish of the Notemigonus crysoleucas
species (Golden shiner). Golden shiner fish live in large groups
called “shoals”, moving in coordination at almost any given time.
The 151 fish were tracked optically while moving through a 2.1m
by 1.2m shallow water tank, thus avoiding movement in the third
dimension. The tank did not feature any obstacles or hindrances
besides the side walls. Different movement patterns can be observed
in the data, which allows us to test quality in different situations.
Among these patterns are uniform group movements, partial and
complete changes of direction, circular movement patterns, splitting
off in separate clusters, and changes in group density, speed, and
acceleration. This data set is quite large, hence we use two excerpts
of 2000 frames of movement, which were recorded at a rate of

25 frames per second, each resulting in 80 seconds of available
collective movement data. For each frame, the spatial coordinates of
each fish are recorded in a Cartesian coordinate system. Fig. 17 in
the supplementary material is a visual summary of the full data set.
Fish 1. In the first excerpt, the fish first move around the boundary
of the tank and finally enter a so-called milling formation, moving
in a circular shape. The fish always form a single cluster.
Fish 2. In contrast, the second excerpt shows the fish splitting in
separate clusters, as can be seen in Fig. 1A.
In addition to analyzing Fish 1 in full, we also zoom in on a small
part of the movement of the fish, which triggers so-called “phantom
splits” [2] for certain ordering methods, most notably HIL, PQR,
and SNEp (see Fig. 6). The shoal of fish appears to split, but this is
purely an artifact of the method and not reflecting the data.
Netlogo. The Netlogo data set is generated using the Flocking
model [34] from the openly available Models Library within the
Netlogo application. Minimal adaptations were made to the model
to ensure the boundaries of the canvas do not wrap around, and the
trajectories of the moving entities could be extracted easily.
Reynolds. The final data set, which we use to demonstrate clustered
movement, is generated by an adaptation from the well known
Reynolds model [26], where between the movers of the three visible
clusters only repulsion forces apply, but no attraction, keeping the
clusters separate. The generator code by Piljek [24] is public.

Since the results are similar across all data sets, we mainly focus
on Fish 1 and Reynolds, while highlighting notable difference in the
results of the other data sets. A full analysis for the remaining data
sets is given in the supplementary material.

5 EXPERIMENTAL RESULTS

Here we report on the results of the quantitative experiments de-
scribed in Section 4. Tables 1–4 in the supplementary material
provide summary statistics over all time steps and for each metric,
for all data sets. We first determine the most effective measures for
spatial quality and stability. We then explore how the parameter for
SPC effects a trade-off between spatial quality and stability. Finally
we briefly discuss the computational efficiency.

Our experiments explore how these methods and quality criteria
relate. To illustrate the resulting orderings, we use MotionRugs
using a 2D RGB colormap as introduced in [3]. As can be seen
in Fig. 1, in the orderings (B) and (C) the data points are colored
according to their 2D position in (A). In visual summaries of high
spatial quality, data points that are close in 2D should be close in 1D,
hence similar colors should end up close to each other. Furthermore,
in stable summaries the neighborhoods do not change much in the
orderings, and hence the colors should smoothly change over time.
Thus, this graphical representation of the orderings allows us to also
visually assess spatial quality and stability.

5.1 Quality Results – Fish 1
Fig. 6 and 7 show visual summaries for all algorithms for Fish 1.
The MotionRugs are accompanied by a visualization of the mean
KSdi and KSte values for each frame, cut off slightly above the
mean values of most algorithms. This ensures that the differences
between the average behavior of the algorithms becomes visible at a
glance. Below, we first discuss spatial quality and stability statistics
separately, along with a discussion on phantom splits. We follow
up with an exploration into the effects of the parameter value on the
outcome of SPC and finally consider the trade-off between spatial
quality and stability for all methods.
Spatial quality. Fig. 4 compares the spatial-quality measures KSra
and KSdi, as measured on all algorithms for Fish 1. For both mea-
sures lower values indicate higher spatial quality. Overall, we see
that the KSra measurements are slightly lower for all algorithms, ex-
cept SNEp where KSdi has a minimal edge over KSra. As expected
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Figure 4: Spatial-quality metrics: mean KSra (left) and KSdi (right) for
all algorithms over all frames of Fish 1. Lower numbers indicate better
overall spatial quality of the ordering.

FXD achieves the worst spatial quality. Furthermore, SNEp and the
algorithms using spatial subdivisions are outperformed by the clus-
tering algorithms, and other dimensionality-reduction techniques.
Comparing the spatial quality of SPC and CPC to the algorithms
that perform best on spatial quality, we see that SPC and CPC both
achieve comparable spatial quality. The choices for parameter σ of
SPC on Fish 1 are 0, 1, and variables a = 0.35,b = 0.53,c = 0.78,
while for CPC we chose σ = 0.53. The choice for the intermediate
values a,b and c is different for the various data sets and will be jus-
tified in the parameter exploration. For CPC we choose a parameter
value that according to the parameter experiment performs well on
both spatial quality and stability, again different for every data set.
Due to the strong correlation of both spatial quality measures, we
focus on only KSdi in the remainder.
Stability. Fig. 5 compares the stability measures: JMP, CRS and
KSte. While JMP and CRS measure absolute changes between
orders, KSte captures changes in local neighborhoods. For each
measure lower values indicate higher stability. We see that CRS
results in lower values than JMP, which is expected: two entities
can jump to different positions in the next frame without crossing,
but they cannot cross each other without jumping. We do see some
differences between the two data sets, as opposed to the results for
spatial quality. For FXD the result is again obvious: all measures
are at their minimum. While JMP and CRS are generally low, CLC,
SNN and SNE show very high numbers. Those three algorithms
also perform worst according to the KSte metric. Another outlier
that performs poorly on KSte is RTR, which also performs compar-
atively poorly on JMP and CRS. Of the remaining algorithms, the
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Figure 5: Stability metrics: mean JMP, CRS (left axis), and KSte (right
axis) for all methods over all frames of Fish 1. Lower numbers indicate
better overall ordering stability.

spatial subdivisions perform worst on KSte. The SAM, SAMp and
SNEp algorithms, the SPC variants and CPC show similar and very
low mean values of KSte. Again, we observe a strong correlation
between the metrics, and thus consider only KSte in the remainder.

Phantom splits. In Fig. 6 each frame of movement data is repre-
sented by a column of pixels, where each fish corresponds to a pixel.
The pixels are colored according to the position of the fish in 2D, as
shown in Fig. 1. The ordering method clearly defines the resulting
visual patterns. An anomaly can be identified in the subdivision
methods (HIL, ZOR, PQR, RTR) and SNEp, the so called phantom
splits [2]. These visual summaries suggest that the shoal of fish
somehow splits, but this is not the case. Such patterns are hence
undesirable, as they convey false information. Other algorithms do
not seem to be prone to these kind of visual artifacts or generally
produce visual results too fuzzy for such patterns to appear. Some
algorithms, such as CLC and SNE, result in cluttered visuals despite
having good spatial quality. This clutter is caused by instability:
the summaries fail to convey patterns over time despite individual
frames being objectively good.

SPC parameter. We now investigate the parameter σ of SPC and its
effect on the results. We run SPC for 101 different values for σ from
0 to 1 with increments of 0.01. As discussed before, we use KSdi to
measure the spatial quality of the visual summaries, and specifically
we use the mean over all frames. For stability we use the mean as
well as the max KSte to quantify stability. As we saw before, mean
KSte captures cohesion over time, while max KSte should be low
to prevent visual artifacts from disrupting temporal patterns. The
results for Fish 1 are shown in Fig. 7 and 8. Note that the highest
plotted value of σ is 0.95, while the lowest is 0.29. Values above

Figure 6: Visual summaries for Fish 1, focused on so called phantom splits for SNEp, HIL, ZOR, PQR and RTR. Below each we show KSdi
(yellow) and KSte (blue), capped at 37.5 and 6.25, respectively. More gradual color changes in the MotionRug relate to better quality.



Figure 7: Visual summaries for Fish 1, focused on instabilities to show how σ affects interpolation in SPC. The summaries in the second and third
columns show how each data point adds to the KSdi (yellow) and KSte (blue) measures. Brighter colors indicate worse spatial quality and stability.
The measures are aggregated per frame in bar charts on the right.

and below these extremes are identical to results with 0.95 and 0.29
respectively. The σ values indicated by labels in the figures are
chosen as representatives, and used in our other experiments.

Overall, we see an inverse relation between stability and spatial
quality. Values of σ closer to 1 result in better spatial quality, while
values closer to 0 sacrifice some spatial quality for more stability.
This is to be expected, as SPC1 always projects the fish to the first
principal component; this will likely lead to the best spatial quality
that can be achieved for any parameter value.

As σ is decreased, SPC increasingly uses interpolated lines for
projection instead. This interpolation smooths changes in angle of
the line, but the projection reflects spatial relations less accurately
as a result. When σ drops below 0.30, the interpolation happens
purely between the first and last frame of the data set. Contrary to
expectation, this negatively affects both spatial quality and stability:
the first principal component rotates both clockwise and counter-
clockwise at varying speeds, not matching the uniform interpolation
over such a long time period; as a result, the interpolated lines do not
correspond at all to the first principal components, neither in angles
nor in rotation direction. This mismatch in angles leads to poor
spatial quality per frame, while the mismatch in rotation direction
also decreases stability.

Finally, we explicitly show the effects of changing σ on the
resulting visual summaries using Fig. 7. In this figure, we visualize
spatial quality in yellow and stability in blue. On the left we show
how much every point contributes to the measures, with brighter
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Figure 8: Comparing the mean and mean (left) as well as max and
mean (right) for KSte (stability) and for KSdi (spatial quality), for
uniformly distributed parameter settings of SPC on Fish 1.

colors indicating worse spatial quality/stability, while darker colors
show placements in the ordering of high spatial quality or stability.
On the right the aggregated values over all points in the data are
visualized in a histogram. Fig. 7 specifically shows an instability that
occurs in Fish 1, using the same intermediate values for σ as before.
When the first principal component is used without introducing
stability (σ = 1), we see a short burst of instability, along with
slightly elevated measurements in spatial quality. As σ decreases
and more stability is introduced by interpolating the direction of the
first principal component over larger time frames, we see that the
instability is distributed over more frames and decreases. The spatial
quality is not negatively impacted by this, until σ becomes too low:
when we interpolate over too many frames at once, spatial quality
will drastically deteriorate, as seen for σ = 0.

Trade-offs. Our main goal is to investigate the trade-off between
spatial quality and stability. Fig. 9 shows a scatterplot on the means
of KSdi and KSte of all algorithms. Since lower values indicate
better quality for both, methods in the bottom-left corner perform
well on both aspects. In both figures SPC variants and CPC are
colored in shades of red, SAM variants in blue and SNE variants in
green. The “best” variants have fully opaque colors, while unstable
variants or those of worse spatial quality have a lighter shade.

The results for Fish 1 clearly show that methods based on spatial
subdivisions (ZOR, HIL) and space-filling curves (PQR, RTR), albeit
fast to compute, perform poorly on spatial quality and stability. The
clustering methods (CLC and SNN) as well as SNE, on the other
hand, perform well on spatial quality, but exhibit very poor stability.

The fixed order (FXD) and SNEp are on the other extreme, having
good stability, but very poor spatial quality. Furthermore, the strong
influence of initialization for t-SNE stands out. When initialized
with random coordinates (SNE), the spatial quality is very good,
but the stability is extremely poor. On the other hand, initializing
t-SNE with the embedding of the previous time step (SNEp) greatly
improves stability, but spatial quality suffers greatly.

That leaves SAM, SAMp, SPC variants, and CPC, which per-
form well on both aspects. We note that SAM and SAMp perform
very similarly on KSdi (difference of 0.03), but SAMp performs
significantly better in terms of stability. SPC variants also strike a
good balance between spatial quality and stability. All SPC variants
have slightly worse spatial quality than SAM variants, but improve
stability. However, recall that SPC is significantly faster to compute
than the Sammon mapping algorithms SAM and SAMp. Finally,
CPC performs similarly to SPC, which is expected since the fish stay
grouped in a single cluster, hence CPC and SPC have very similar
outcomes on this data set.

It is also important for stability to be consistently low, to avoid
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Figure 10: Comparing between the max for KSte (stability) and the
mean for KSdi (spatial quality) for all algorithms on Fish 1.

visual artifacts and ensure that visual patterns in the summary point
to actual movement patterns. As such, bursts of high instability
are undesirable. We hence also consider the maximum value of
KSte; see Fig. 10 for a scatterplot. The overall composition remains
similar, but differences in stability are highlighted. Note that SAM,
SAMp and SNEp are deteriorating with respect to other methods;
we can also see clear bursts of instability in Fig. 6 for these methods.

Interestingly, SAMp performs worse here on stability than SAM,
unlike for other data sets. This shows that, although initializing the
gradient descent with the solution of the previous time step generally
improves stability, there is no guarantee that it will always do so;
there may be outliers, as is the case here.

Fig. 10 also highlights stability differences between SPC variants.
SPC1 always uses the first principal component, which can behave
erratically for round point sets, decreasing stability. The other vari-
ants of SPC overcome this problem by interpolating over these bursts
of instability. Indeed, SPC is largely unaffected for lower parameter
values, having the smallest standard deviation overall (see Table 1
in the supplementary material).

5.2 Quality results – Reynolds
In this section we present the results of our experimental evaluation
for the Reynolds data set. For spatial quality and stability we only
sketch our results. A more elaborate analysis, including figures, can
be found in Section E in the supplementary material.
Spatial quality & stability. Overall, the relative performance of
most algorithms on both spatial quality and stability is similar for
Reynolds and Fish 1. However, on spatial quality measures cluster-
ing techniques and CPC perform better relative to the other algo-
rithms, making CPC one of the best algorithms to achieve spatial
quality. Since there are multiple cluster in this data, which do not
interact with each other, it is not surprising that these techniques
perform so well. In terms of stability, lower values are also mea-
sured for the absolute changes for clustering techniques, and CPC
performs relatively better than on other data sets. Especially when
considering the max values for KSte we see that the clustering tech-
niques and SNE perform better than on the other data sets. The
clustering technique CLC even beats some spatial subdivision tech-
niques (HIL and ZOR) on this measure. All of these results are to
be expected: since the clusters do not interact and contain the same
points in every frame, the clustering techniques also perform very
well on stability. Finally, SNE is less of an outlier for this data set,
as SNN also performs worse on the mean KSte.
Parameter experiment. The parameter experiment gave some sur-
prising results for Reynolds. Fig. 11 shows charts containing the re-

sults. The cut-off values are 0.98 and 0.42 for this data set, meaning
that every value above 0.98 and below 0.42 uses the same projec-
tion vectors as the visual summaries using the cut-off values. The
parameter values that are indicated by labels in the figures are the
values we used in our other experiments. As intermediate values we
choose a = 0.50, b = 0.59, and c = 0.86.

First we consider the parameter values between 0.86 and 0.59.
These values show the inverse relation between spatial quality and
stability: as the parameter value decreases, the stability increases
while the spatial quality deteriorates. This is the expected behaviour,
which we already saw for Fish 1.

Between values 0.59 and 0.50 we see that lowering σ improves
both the spatial quality as well as the stability. The first principal
component does not seem to be the vector that results in the best
spatial quality here, hence interpolating more can give better spatial
quality, while improving stability. Lowering σ further results in
worse spatial quality and stability, as we saw before.

Finally between 0.98 and 0.86 we see better stability when in-
creasing σ . While this is counter-intuitive in general, it can be
explained for this data set. As σ increases we interpolate over less
frames and interpolate over configurations where the point set is very
rounded. This has a positive effect on the stability in this data set,
since it prevents 2 clusters from overlapping a lot: When interpolat-
ing, we get a lot of frames where the projected points of two clusters
interleave, while the points move in opposite directions. This causes
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Figure 11: Comparing the mean and mean (left) as well as max
and mean (right) for KSte (stability) and for KSdi (spatial quality), for
uniformly distributed parameter settings of SPC on Reynolds.
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Figure 12: Comparing the mean for KSdi (spatial quality) and the
mean (left) and max (right) for KSte (stability), for all algorithms on
Reynolds.

many changes in the neighborhood of all the points in those two
clusters. If we interpolate less, this behaviour is less prominent and
contained in a few frames, resulting in better stability.

Trade-offs. The trade-offs between spatial quality and stability for
the clustered data set can be observed in Fig. 12. As we already
observed when considering stability in isolation, clustering tech-
niques and SNE perform really well on this data set, especially when
considering maximum values for KSte. These techniques end up
in the bottom left corner, making them viable techniques for data
sets that are clustered. However, they are still outperformed by SPC
variants for low σ values, SAMp, SNEp and CPC, when it comes to
stability. For σ = 0.50 SPC performs particularly well, even better
than SAMp and CPC on maximum KSte. However, SAMp and CPC
also have very good spatial quality, making them the best techniques
for this data set.

5.3 Quality results – Fish 2 & Netlogo

For the remaining data sets, the values for spatial quality and stability
are very similar to the previous data sets. We therefore give a short
overview of the parameter experiment and trade-offs.

Parameter experiment. For both data sets there is mostly an in-
verse relation between stability and spatial quality. However, for the
Netlogo data set this relation is absent for 0.45≤ σ ≤ 0.59. Increas-
ing σ in this interval leads to both worse stability and worse spatial
quality, like we saw in the Reynolds data set. During instabilities we
observe that at certain frames where SPC projects to an interpolated
line, the spatial quality is better than when we project to the first
principal component. This explains how more interpolation (for
decreasing σ ) can improve spatial quality. For the Netlogo data
set we further observe that both spatial quality and stability change
erratically for σ < 0.40, caused by large intervals of interpolation.

Trade-offs. For both data sets we see similar results as before, ex-
cept for CPC, which seems to perform worse. In general, whenever
the outcome of the clustering in CPC changes, this significantly
changes the ordering and results in a burst of instability. Fish 1 and
Reynolds are not affected by this, as the clustering does not change
in those data sets.

5.4 Running Time

We implemented and executed all algorithms in Java 11 on a work-
station with two Intel Xeon E5-2687W CPUs at 3.10GhZ, 16 Cores,
128GB Ram and an NVidia Quadro M600 GPU, running Windows
10. We measure running times only for computing the orderings,
excluding reading input, color mapping and rendering. The running
times range from a few milliseconds for the Z-Order curve (ZOR)
to just over 8 hours for t-SNE (SNE). General observations include
comparably good performance for the subdivision methods (ZOR,

HIL, PQR, RTR), with values under one second. Only SPC variants
are on par with this speed.

5.5 Conclusion
Overall, stable dimensionality reduction methods such as SAMp,
SNEp, and SPC for parameter values lower than 1 perform very well
in terms of average and worst-case stability, while only marginally
sacrificing spatial quality in the case of SAMp and SPC. SPC does so
at a fraction of the computational cost necessary for more complex
dimensionality reduction techniques. Considering all the above, we
conclude that stable dimensionality reduction methods are the best
for computing visual summaries of time-varying data.

6 DISCUSSION & FUTURE WORK

Here we discuss our results and future work in the context of data
properties, algorithm performance, and visual summaries.

Movement characteristics. Our results show that algorithm effi-
cacy is influenced by the characteristics of the moving entities. SPC
works particularly well for a a single, roughly convex cluster (Fish
1) or with only a few such clusters (Fish 2), even though the method
emphasizes cluster order and uses a suboptimal axis within each
(Fish 2). We can consider many clusters with only a few entities
to be effectively the same as a single cluster, as the order within a
cluster has little to no influence on the spatial quality.

With multiple, reasonably sized clusters (Reynolds), separating
the different clusters in the linear order can be desirable. By their
nature, clustering-based methods will perform better in this regard.
But our experiments show that such methods nonetheless struggle to
find a good, stable order within the clusters. Our hybrid CPC method
combines the advantages of clustering with SPC. However, when the
cluster composition changes, stability is now harder to achieve as
CPC does not interpolate between the different cluster compositions.
We leave to future work how such a hybrid method can be turned
into a “clairvoyant” algorithm [20] that already aligns the SPC axes
of clusters before a change in clusters is actually occurring.

For a complexly shaped cluster, we face yet another issue. Cluster
detection might not find an adequate structure. Neither does a single,
straight projection axis necessarily capture proximity or neighbor-
hood structure well and is hence likely to give unsatisfactory results
as well. Perhaps methods from topological persistence can play an
important role in identifying the structures of these clusters. We
leave the development and evaluation of algorithms for more com-
plex data as future work. Our results show the potential here, for
adapting existing methods to explicitly consider stability.

Beyond spatial data. Our stable methods can be used in any situa-
tion with time-varying data in at least two (numeric) dimensions, to
determine the ordering and construct visual summaries from these.
In other words, our techniques may thus be useful for providing an
overview also for nonspatial data. However, we expect it to be pri-
marily useful when proximity (or more generally, neighborhoods) of
items are meaningful and of interest. Investigating precise conditions
under which this approach is effective is left to future work.

Enriching summaries. We can augment a visual summary with
indicators of its spatial quality and stability. In this paper we used
juxtaposed bar charts (Fig. 1 and 6) or color (Fig. 7). Various other
encodings could also be considered, e.g. reducing the saturation of
the colors or underlining the summary with two lines where the pixel
colors indicate the spatial and temporal quality. Such augmentations
carry information about uncertainty introduced by the dimensionality
reduction. How to best visually convey such information, and how
this affects interpretation are left to future work.

If the graphical space and the number of elements allow for
it, we can also use not just the order but the actual resulting 1D
representation of dimensionality reduction. Connecting the different
positions for each object with a single line then gives us what we



Figure 13: A MotionLines and a MotionRug of the clustered data set,
using 1D representations produced by our CPC algorithm (σ = 0.5).

think of as “MotionLines”, which combine ideas from MotionRugs
[2] and Story Lines [32]. As shown in Fig. 13, the additional space
can be used to communicate more information, such as relative
distances or cluster structure. This hints at a possible trade-off
between the compactness and expressiveness of visual summaries,
which can be further investigated in future work.

Overview-first. Visual summaries are primarily an overview-first
tool. They give an analyst a rough idea of what happens during the
motion of the entities, as a first entry point to find time spans or sets
of entities to further investigate. It is thus important to understand
how movement patterns relate to patterns visible in the summary and
vice versa. To ensure that collective movement of subgroups leads
to observable patterns in a visual summary, we need the attribute
used for coloring to be similar for spatially close entities. Without
a relation between spatial proximity and attribute value, the colors
may jump and it becomes difficult to follow entities or subgroups.

Generally, an efficacious visual summary is coherent: its observ-
able visual patterns are meaningful in the actual movement and vice
versa. Though we leave the visual saliency and meaning of patterns
to future work, our results point towards algorithms that have good
measured performance in the spatial and temporal domain.
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