
To appear in IEEE Transactions on Visualization and Computer Graphics.

Lotse: A Practical Framework for Guidance in Visual Analytics

Fabian Sperrle, Davide Ceneda, and Mennatallah El-Assady

VA Workspace

Analysis Context Vector

Guidance EngineGuidance Design Space

Guidance GeneratorGuidance GeneratorGuidance Strategy

Applicability
Filtering

Adaptation
Strategy

Preview

Strategy Template(s)

Guidance Goal

Degree Level Action

Dynamic Timing Guidance
Suggestion

Suggestion
Visualization

Relevance
Feedback

1 Design guidance strategy
templates as building blocks 2 Translate into

guidance specification 3 Lotse generates self-contained
guidance engine from specification 4 Implement or

adapt frontend

Guidance Loop
Inference Loop Analysis Goal

Meta Strategy

Guidance Action

Interaction
Hooks

Suggestion
Generation

Guidance Action

Interaction
Hooks

Suggestion
Generation

Guidance Action

Interaction
Hooks

Suggestion
Generation

Guidance
Orchestrator

Meta
Strategy

Guidance
Designer

type:
 action
metadata:
 description: Suggest alternative month
 degree: orienting
 action_id: timeslider
generate_suggestion_content:
 args: [state]
 load: return (state.month + 1, 'Move’, ‘[...]’)
threshold: .10
condition:
 type: function
 args: [state]
 load: |
 month = state.get_current_month()
 all_data = len(month)
 een = len([d for d in month if d.hovered])
 kreturn seen / all_data > self.threshold
is_applicable:
 args: [state, delta]
 load: return self.condition(state) \
 and not self.suggested
accept:
 args: [suggestion, state, delta]
 load: |
 state.month = suggestion.suggestion.event.value
 self.threshold *= .95
 self.suggested = False
reject:
 args: [suggestion, state, delta]
 load: |
 self.threshold = min(0.9, self.threshold + 0.05)
 self.suggested = False

Figure 1: Guidance designers derive strategy templates that encapsulate distinct actions and can be implemented as guidance
strategies. Through relevance feedback and temporal adaptation, the engine learns which strategies are helpful in which situations.

Abstract—Co-adaptive guidance aims to enable efficient human-machine collaboration in visual analytics, as proposed by multiple
theoretical frameworks. This paper bridges the gap between such conceptual frameworks and practical implementation by introducing
an accessible model of guidance and an accompanying guidance library, mapping theory into practice. We contribute a model of
system-provided guidance based on design templates and derived strategies. We instantiate the model in a library called Lotse that
allows specifying guidance strategies in definition files and generates running code from them. Lotse is the first guidance library
using such an approach. It supports the creation of reusable guidance strategies to retrofit existing applications with guidance and
fosters the creation of general guidance strategy patterns. We demonstrate its effectiveness through first-use case studies with VA
researchers of varying guidance design expertise and find that they are able to effectively and quickly implement guidance with Lotse.
Further, we analyze our framework’s cognitive dimensions to evaluate its expressiveness and outline a summary of open research
questions for aligning guidance practice with its intricate theory.

Index Terms—Guidance Theory, Guidance Implementation.

1 INTRODUCTION

While visual analytics (VA) approaches aim to generate insights and
knowledge through the promise of effective and efficient visual analysis,
actual analysis scenarios often hold potential for time-consuming trial-
and-error experiences with increasing frustration. Consequently, re-
search on guidance in VA evolved to become more substantial in recent
years [8, 12, 35]. Guidance aims to close knowledge gaps that analysts
encounter and that keep them from successfully solving a given task.
However, previous attempts at characterizing guidance have mostly con-
sidered a theoretical perspective where the envisioned benefits remain
hypothetical with no directives on applying them in practice. A recent
attempt to lay out a design framework for guidance [6] structures the de-
sign process through twelve guiding questions but remains abstract and
removed from the actual implementation process. Beyond this work,
existing implementations of guidance in VA are mostly bespoke solu-
tions to domain- or task-specific problems with unclear generalizability.

This paper addresses this shortcoming in guidance research from
both a design and implementation perspective. Starting from an analy-
sis of existing guidance approaches and design frameworks, we make
a step forward towards their use in practice by developing a practice-
oriented model of guidance, shortening the gap between guidance de-
sign and implementation. One of the main challenges in implementing
guidance systems is developing and selecting guidance actions that are

• Fabian Sperrle is with the University of Konstanz. Email:
fabian.sperrle@uni-konstanz.de

• Davide Ceneda is with TU Wien. Email: davide.ceneda@tuwien.ac.at
• Mennatallah El-Assady is with the ETH AI Center. Email:

menna.elassady@ai.ethz.ch

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on obtaining
reprints of this article, please send e-mail to: reprints@ieee.org. Digital Object
Identifier: xx.xxxx/TVCG.201x.xxxxxxx

helpful to the user at a given moment. Theoretical guidance frameworks
describe processes that first identify when a user needs guidance and
then determine which suggestion might help to close their knowledge
gap [8, 35]. However, this requires guidance designers to rely on the
output of intent identification approaches. Despite recent advances [30],
intent identification remains a challenging task, and inaccurate results
could hamper the success of guidance systems. Instead, we propose an
inverted process that is significantly easier to implement. Our model is
centered around guidance strategies as the building blocks of adaptive
guidance systems. Each strategy should target a specific purpose, such
as the identification of outlier data points, suggestions of alternative
model parametrizations, or proposals to use a different visualization (for
a range of example strategies, please see Section 6). Developers should
implement a wide variety of such strategies and compose them by defin-
ing rules describing in which contexts which strategies should be used
by the system. Throughout the analysis, these initial rules can then be
refined to adapt the provided guidance to the users’ requirements. Guid-
ance theory often relies on a top-down approach, in which the system
should perfectly model the user and their need for guidance before com-
posing appropriate suggestions. We instead take a bottom-up approach
to guidance implementation. We start by asking which suggestions can
be implemented in different strategies today and propose that systems
should refine when to use which strategy over time. This approach is
particularly useful in situations where users perform exploratory analy-
sis and have more than one fixed, well-known analysis goal.

Building on our practical model of guidance, we introduce Lotse,
a library that allows specifying guidance strategies in definition files
and converts them to a running guidance system. Lotse is inspired by
visualization grammars like Vega-Lite [27] and presents the first step
toward a declarative grammar of guidance. Lotse represents the guid-
ance process based on the recently introduced guidance and inference
loops [24] and monitors the analysis state to determine which strate-
gies to employ and which suggestions to provide. To enable adaptation,
Lotse offers various hooks allowing developers to customize system

1

behavior on suggestion acceptance or rejection, for example. Using our
library, developers are freed from implementing common boilerplate
code in guidance orchestration. Instead, they can focus on the design of
effective strategies. Our contributions are the following:

1. A summary of theoretical, co-adaptive guidance processes, cap-
turing the current state-of-the-art.

2. A practical model of guidance focused on guidance templates and
strategies to bridge the gap towards system implementation.

3. A library for guidance specification that generates running guid-
ance systems without requiring writing boilerplate code.

2 RELATED WORK

Visualization Frameworks and Grammars There is a vast ar-
ray of previous work in frameworks for the creation of visualizations.
Notably, Bostock et al. [4] presented d3, a low-level framework that
still seems ubiquitous in visualization development today. Echarts [21]
takes a slightly different approach to d3 and provides more predefined
charts that can be customized. Both libraries require significant imple-
mentation work to set up visualizations. To overcome this requirement,
various projects from the Vega-universe provide declarative visualiza-
tion grammars [28] that even include interactions [27]. Recently, Gem-
ini [20] defined a grammar for animated visualizations, Cicero [19] fa-
cilitates responsive visualizations, and DXR [31] offers JSON specifica-
tions that are parsed into unity prefabs, enabling the declarative specifi-
cation of immersive visualization components in virtual reality. While
these works focus on visualization, Lotse shares with them the aim of
providing simple yet powerful tools of implementation. In the spectrum
between implementation and declaration, Lotse offers some declara-
tive features while relying on imperative callbacks and event handlers
to realize more complex functionality.

Interaction Grammars Vega-Lite [27], in addition to offering a
visualization grammar, includes a grammar of interaction with said vi-
sualizations. Nebula [11] enables the coordination of multi-view inter-
faces through natural-language specifications following the form “X
then Y”. As such, these rules can also be envisioned to be useful in
simple guidance- or onboarding scenarios and could be replicated in
Lotse. While both Vega-Lite and Nebula, among others (e.g., [28, 41])
focus on interaction declarations by developers, Dabek et al. [13] ana-
lyze user interactions from several dozens of users performing a given,
single task to identify frequent interaction patterns. They then use graph
algorithms to determine optimal solution strategies from observed user
behaviors that they describe using an interaction grammar. If later users
of the system deviate from the identified paths, the system aims to guide
them back to being more efficient. Gathani et al. [16] automatically ex-
tract tasks (according to varying task taxonomies) from interaction logs
and encode them as terminals of an interaction grammar. They then
identify production rules on those interaction terminals, aiming to deci-
pher the language of interaction. Lotse provides a first step towards
a grammar of guidance, opening a path towards declarative guidance.
Because guidance can be described as a continuous process of action-
reaction pairs [36], a guidance grammar must, in contrast to existing
interaction grammars, cover not only the users’ interactions but also
interactions initiated by the system to enable contextualized, adaptive
guidance. Omitting the system side would mean that only half of the
mixed-initiative process could be modeled.

3 CO-ADAPTIVE GUIDANCE IN VISUAL ANALYTICS

Guidance approaches have old roots in human-computer interaction
and decision theory [18, 23, 32, 33]. Engels et al. [14] conceptualized
how to provide “task-oriented user-guidance” by deconstructing KDD
processes into reusable task components. Their theoretical framework
is centered around the definition of a goal state for which the system
could then propose task compositions leading to this state. This section
provides background on recent guidance research in visual analytics. In
particular, several theoretical frameworks and characterizations have
been proposed in the past few years. As a result, it might be challenging
for novices to identify commonalities between theories of guidance and
decide which steps to take when implementing guidance. To support

researchers in this task, we summarize existing theories and characterize
guidance along different guidance levels.

3.1 Guidance Theory Review

The most commonly used definition of guidance in VA was coined
by Ceneda et al., describing its fundamental characteristics as aiming
to close a knowledge gap [8] and emphasizing its mixed-initiative
nature [9]. Their model identifies five domains of knowledge gaps
and three guidance degrees to close them. The three guidance degrees
orienting (highlighting through visual cues), directing (ranked list of
suggestions), and prescribing (system selects best suggestion) capture
how much control the system takes over the guidance process. Building
on that, Sperrle et al. have provided a process model of co-adaptive
guidance, highlighting the different guidance dynamics of learning
and teaching between humans and machines in this mixed-initiative
process [35]. They state that systems should define clear adaptation
goals [36] building on Bloom’s taxonomy [3] of learning goals.

Collins et al. [12] proposed a process-oriented view on guidance built
around a framework of high-level VA tasks [1]. They identified several
goals of guidance: “to inform, to mitigate bias, to reduce cognitive
load, for training, for engagement, and to verify conclusions” [12]
and state that different levels of guidance could exist, “from low-level
operations on adjustment of visual displays to high-level analysis tasks
such as model development and evaluation.” In contrast to Ceneda et
al.’s framework that focuses on “how” and “when” knowledge gaps can
be closed, Collins et al. aim to answer “what” knowledge users want
to derive. However, their provided framework remains high-level and
removed from actual implementation practices.

Prez-Messina et al. [24] focus on system tasks in the guidance pro-
cess and contribute a system task taxonomy that mirrors Brehmer and
Munzner’s taxonomy of visualization tasks [5]. They further introduce
how guidance complements the knowledge generation model [26] by in-
cluding the guidance loop and the inference loop. Note that both loops
are covered by our framework, as shown in Figure 1.

In addition to these conceptual works, several applications have
featured guidance components. For instance, Willet et al. described
Scented Widgets that aim to guide the user by integrating hints about
other user activities [40]. Gotz et al. [17] provide guidance to users
building visualizations by analyzing their interaction history. Sper-
rle et al. rely on adaptive guidance to support the annotation of ar-
guments [38] and the refinement of topic models [37]. An extensive
overview of guidance literature is provided in a recent review by Ceneda
et al. [10]. While a significant body of work on guidance systems ex-
ists, extracting commonalities or general patterns remains challenging.
However, developing a “better understanding of the internals of guid-
ance” [8] is necessary as the “core function of guidance, i.e., the guid-
ance generation process, largely remains a black box.” [8].

3.2 Levels of Guidance

From this overview of the guidance literature, we make a further
step towards its implementation by abstracting existing approaches

Figure 2: Four guidance levels (in yellow /
green) of increasing semantic complexity.

and reasoning about how
systems can provide assis-
tance during VA. We can
assume that any VA ses-
sion starts when a user de-
cides to pursue a given
analysis goal. To reach
their goal and solve their
original problem, users
typically have to structure
it into tasks and complete
them sequentially. Along
this process, guidance is required whenever the user cannot solve any
task on their own. As the design space is vast, there are many ways in
which guidance can be provided. While the overarching aim of guid-
ance should be to close knowledge gaps, their categorization into data,
task, and VA methods remains abstract. In Figure 2, we introduce four

2

To appear in IEEE Transactions on Visualization and Computer Graphics.

guidance levels in two semantic complexity levels open-ended and goal-
driven. In onboarding scenarios, guidance does not apply [9, 39]. The
four guidance levels highlight that, from a practical perspective, the
implementation of targeted guidance is primarily limited by what is
known about the users’ tasks and goals: Static tutorials of system func-
tionality are always possible as onboarding. Similarly, guidance on
the used visual mapping and available interactions is frequently possi-
ble. While basic data exploration guidance is possible without the no-
tion of a clear analysis goal, more targeted exploration guidance and
task-specific guidance are only possible if tasks are clearly identifiable.
Hence, the implementation of guidance is constrained by the correct
identification of users’ intents. It is worth noting that guidance level
and guidance degree [8] are orthogonal concepts. The guidance level
describes the semantic complexity of a given suggestion, while the guid-
ance degree characterizes how much control the system assumes over
the mixed-initiative analysis process.

Some approaches try to identify the user intent and then provide suit-
able guidance (e.g., [17]). However, detecting intents can be challeng-
ing, especially if no situational knowledge base or analytical prove-
nance data can be exploited. Hence, other approaches offer speculative
guidance to probe the user for potential knowledge gaps and gather rele-
vance feedback [34]. This process continues until the task (and possible
knowledge gaps) is identified, or enough relevance feedback is gathered.
Then, the system is ready to provide guidance. Our model of strategy-
based guidance that we present in this paper follows a similar approach.

Generating guidance subsumes the consideration of the analysis state
but also of the type of analysis carried out, i.e., open-ended vs. task-
driven analysis. Designers have an active role in deciding how the
system could respond to certain events by specifying rules and defining
guidance goals. In summary, we see the generation of guidance as the
result of two processes: (1) The definition of static directives specified
at design time to tackle expected adverse events, and (2) how these rules
translate into practice, given the dynamic nature of the analysis and the
settings of the scenario. In the next section, we refer to these aspects as
guidance templates and guidance strategies and show how they can be
used to implement guidance in practice.

4 A STRATEGY-CENTERED GUIDANCE PROCESS MODEL

Taking the constraints discussed above into account, Figure 1 illustrates
a suggested way to design and implement contextualized, adaptive
guidance. Our implementation model is primarily targeted at problems
that are situated at the transition between open-ended and goal-driven
guidance. More specifically, we envision our model to be useful when
user tasks contain a mixture of open-ended data exploration and specific
tasks on previously identified data points. The two core components of
our approach are strategy templates as instances of the guidance design
space and the corresponding guidance strategies that provide concrete
implementations on the system level. In this section, we present the
theoretical model of strategy-based guidance. In Section 5 we then
introduce Lotse, our library that instantiates this model.

Designing guidance begins with an exchange between designers
and potential users to determine the goals of the guidance and key
characteristics like degree, level, dynamics, and timings that will be
introduced in detail below. This theoretical design process has been
characterized in terms of twelve guiding questions by Ceneda et al. [6].
A common problem of theory-driven guidance is the focus on systems
inferring the users’ knowledge gaps before providing suggestions. As
this is typically challenging, we propose to invert this process and begin
by designing possible guidance strategies. Once potential strategies are
defined, rules for employing those strategies can be devised and then
refined during the analysis session. By outsourcing some challenges
to the designer, we provide an actionable mapping from their design
decisions (the templates) to implementable strategies. Each strategy
template covers specific actions that can be turned into suggestions.

The resulting guidance process envisions two main loops between
the user and the system or, more specifically, the guidance engine
of the system. These loops correspond loosely to the guidance loop
and inference loop of the guided knowledge generation model (see
Figure 3) that we introduced in previous work [24]. In the outer loop,

the system determines which guidance strategies are applicable in the

Figure 3: Guided
knowledge genera-
tion model [24].

current analysis state based on what it expects
the user’s task to be. Each applicable strategy
defines conditional actions that are evaluated
and ranked by the guidance orchestrator com-
ponent before being presented to the user as
suggestions. In the inner loop, the system eval-
uates obtained relevance feedback to previous
suggestions together with the progressing anal-
ysis to re-evaluate the available actions. When-
ever the focus of the analysis changes, e.g., be-
cause the user has reached their goal, the outer
loop enables the selection of other, more appro-
priate strategies, whereas the inner loop focuses
on providing appropriate suggestions from the
currently used strategies and their adaptation.

In the following, we describe the compo-
nents of the proposed model in an order aligned
to the design process. Using the color map from
Figure 1, we introduce each component with a box containing a short
definition and definitions of relevant key terms, where appropriate.

4.1 Strategy-Centered Guidance Design
Similar to the VA analysis process, guidance design begins with eliciting
user requirements, goals, and potential knowledge gaps [6]. As these
intents can often not be identified with precision (e.g., in open-ended
analysis) or users switch between different tasks and objectives, we rely
on designers providing a variety of strategies and context rules for when
to use them. Over time, the guidance system can then adapt those initial
rules based on observations from the analysis process, e.g., in the form
of relevance feedback. Throughout the section, we rely on a running
example to illustrate the components of our model. Our envisioned
example system offers a scatter plot showing weather data of cities
all over the world and a time slider that allows users to scroll through
different months in the scatter plot. Users can map different dimensions
(temperature, precipitation, wind, etc.) to both axes of the scatter plot.
Assume the users’ goal is to explore the data to find a vacation time and
target. To assist them, the guidance system encourages exploration of
all months and highlights data points of particular interest.

Analysis Goal
A description of the goal the users want to reach during analysis. Sim-
ilar to Gotz et al.’s [17] multi-level task classification (event, action,
sub-task, task), goals exist in a hierarchy of increasing complexity.

In visual analysis, users have one or multiple goals. As outlined above,
various theoretical guidance frameworks are centered around the notion
of identifying knowledge gaps or what knowledge the user aims to de-
rive. Correctly capturing these goals–in our example, the identification
of a month and a city–and the underlying intents is vital for generating
effective guidance. However, in practice, many guidance approaches
support specific tasks rather than open-ended exploration and avoid in-
tent identification due to its inherent difficulties. In that case, the suc-
cess of the provided guidance relies on the requirements elicited in the
design process. Once the main user intents have been identified, the
guidance goals in the analysis should be identified.

Guidance Goal
The guidance goal describes the high-level intent of the guidance
system and abstracts the underlying guidance actions.
Guidance Dynamic Characterizes the interaction dynamics between
user and system from the perspective of the respective intents [35].

Among others, we recognize two high-level guidance goals: support
and correct. The support goal captures systems identifying that the
user is on the correct path to reaching a goal and providing suggestions
to make them, for example, faster. In that sense, it does not aim to
change the user’s goal but might change the user task needed to reach
said goal. In contrast, the correct goal is aimed at getting the user to
change their analysis behavior. As a result, interrupting them in their

3

analysis is not only acceptable but desired. Defining an appropriate
guidance goal is crucial to successfully implementing guidance. As
goals are associated with different interaction dynamics between user
and system, the defined guidance goal shapes the analytical discourse
between system and user. In the weather analysis example, we chose
supporting guidance, as there is no information based on which the
system could determine that it would need to correct user behavior.

Strategy Template
A strategy template is a summary of an envisioned guidance strategy
containing all information necessary to implement the strategy.
Guidance Degree Orienting, Directing, Prescribing [8].
Guidance Level Guidance levels (see Figure 2) describe the seman-
tic complexity of suggestions.
Timing The timing determines in which situations a template should
be used. Depending on the system, this decision might happen on
different granularities – either as broad analysis contexts in which a
suggestion might be useful or as concrete measures (e.g., ten seconds
after the mouse stopped moving).
Action The concrete content or impact of a suggestion.

Guidance templates serve as design sheets in the process of develop-
ing strategy-based guidance and collect all information necessary for
later implementation. In our model, each template corresponds to ex-
actly one strategy that will be implemented later and thus corresponds
to exactly one type of suggestion that could be shown to the user during
the analysis–for example, switching to a different month or consider-
ing specific data points. This strict limitation introduces a separation
of concerns between strategies, limiting their complexity with the goal
of simplifying their implementation. We believe that this separation
is particularly useful for novice guidance designers. For them, think-
ing about individual strategies at a time provides clear steps in the de-
sign process that translate into individual implementation tasks later.
Designers should consider different types of strategies, e.g., branching
out, reinforcing, or serendipity [12]. Within each type, multiple strat-
egy templates can be envisioned that offer distinct suggestions.

We provide a template form that designers can fill out during the
design process in Table 1. In addition to the intended action, templates
capture various theoretical aspects of guidance like degree, dynamics,
level, and timing, but also the visual representation of suggestions.
Consequently, the template generation is the designers’ main task, as a
guidance template is a blueprint for implementing a guidance strategy,
similar to specification sheets typically used in software development.

Meta-Strategy
The meta-strategy mediates between the user’s intent and the most
relevant suggestions identified by the guidance system.

Meta-strategies allow designers to define balancing-mechanisms for

Basic Strategy Name:
Info Description:

Goal Guidance Goal: + Support + Correct
Level: + Onboarding + Open-Ended + Goal-Driven
Dynamic: + Learn + Teach + Other
Knowledge Gap Type: � Path to Solution � Optimal Solution
Knowledge Gap Domain: � Data � Tasks � VA Methods
Details:

Action Content:

Timing: + Static + Contextualized on:
Adaptation: + No + Yes:

Visual Degree: + Orienting + Directing + Prescribing
ization Placement: + In-situ + Ex-situ

Visual Elements:

Table 1: A generic example guidance strategy template form. Depend-
ing on the envisioned guidance, more concrete fields should be added.

prioritizing and alternating the different guidance strategies. Through
the dynamics defined in the guidance goal, a meta-strategy encodes
how aggressively the user is led onto a path suggested by the strategies.
In addition, it provides information on how to select the next guidance
action(s) to be suggested in ambiguous cases. Simple meta-strategies
include, for example, selecting actions that are (dis)similar to previously
suggested actions or from the last user actions. In our example, we
prioritize finishing the exploration of a selected month over potential
suggestions to switch months. Guidance is typically concerned with
modeling the user’s knowledge and identifying gaps therein. In that
sense, the combination of guidance goal and meta-strategy can be seen
as an expression of the designer’s previous knowledge about the analysis
process, complementing the user’s knowledge.

Relevance Feedback
Provided by the user to the system, either explicitly or implicitly.
Explicit Feedback Is provided with the intent of giving feedback.
Implicit Feedback Is automatically derived from the user’s actions.

To enable dynamic system behavior, guidance designers need to con-
sider whether and to what extent they would like to incorporate user
feedback into the generation of suggestions. Next, they need to deter-
mine whether (and how) it is feasible to adapt the content of guidance
suggestions or whether the focus is on adapting the timing or other prop-
erties like degrees. Both aspects are captured in the strategy template
under timing and adaptation. In general, systems can process explicit
user feedback and automatically infer implicit feedback from their in-
teractions (backward feedback). Alternatively, users can signal to the
system what they expect as future guidance (forward feedback) [10].
Once collected, the feedback serves to steer the selection of strategies
and actions.

4.2 Modeling Users, Data, and Tasks
Ideally, guidance is dynamically generated, matching the designer’s
directives to the specific necessities of the user and analysis state.

Analysis State
We define the analysis state as all collected information necessary to
determine which strategies and actions to employ.

The analysis state is at the center of each VA process and captures any
information that is relevant for either the analysis or future guidance. In
the guidance template in Table 1 it can be found under action timing.
We omit definitions and descriptions of the well-established task, data,
and user models here and refer readers to previous work [35]. Practical
implementations of guidance can rely on a state model that serves as a
catch-all model for relevant information, such as application settings
and previous suggestions, but also analyzed machine learning models,
visualization snapshots, and the gathered relevance feedback mentioned
earlier. In our example, we store a model of the data itself, the dimen-
sions shown in the scatter plot, the current month, and which data points
the user interacted with already. In theory, many distinct snapshots of
the analysis state-space could be maintained over time to capture the
evolving analysis. However, such extensive data capture is expensive in
terms of computing power and storage. As a compromise, storing the
delta to the previous state vector can already provide meaningful added
information.

4.3 System Components of Strategy-Based Guidance
While Section 4.1 focused on a strategy-centered guidance design pro-
cess, this section introduces the resulting system components of strategy-
based guidance. A specific implementation of these components in
Lotse will be introduced in Section 5, together with further examples.

Guidance Strategy
Guidance strategies are concrete implementations of strategy tem-
plates and are responsible for generating guidance actions.

Strategy templates devised in the design phase can each be implemented
into a strategy when developing the VA system. The more carefully the

4

To appear in IEEE Transactions on Visualization and Computer Graphics.

templates were designed, the more straightforward their implementa-
tion becomes. As Collins et al. stated, guidance “should be adapted
to the context of the analysis process” [12] as “different kinds of guid-
ance could be reasonable” [12] in different phases. Strategy-based guid-
ance tackles this adaptation from two perspectives. First, the availabil-
ity of distinct strategies and analysis-state-based rules on when to em-
ploy them lay the foundation for adaptive guidance. To that end, strate-
gies contain an applicability filter that defines in which broad analysis
contexts the strategy should be available and is evaluated by the infer-
ence loop. Second, both strategies and actions offer adaptation strate-
gies that process implicit or explicit user feedback into new application
rules. This dual approach enables tailoring contextualized guidance to
a specific user over time.

Guidance Action
Guidance actions belong to a strategy and describe how the content
of suggestions from that strategy is produced, how suggestions are
timed, and how they are adapted.

Guidance actions encapsulate the generation of suggestions based on
the definition in the template. While strategies determine the broad con-
texts in which they should be available, individual actions offer more
precise filter rules that are continuously re-evaluated by the guidance
loop. If an action is applicable in a specific analysis state, it generates a
new suggestion according to the definition in the template. Our model
does not impose restrictions on the types of suggestions. Common ex-
amples of suggestions include encouraging users to switch to different
views, considering alternative data, or changing algorithm parameters.
With interaction hooks, actions also provide a place in which the sys-
tem can react to captured relevance feedback and update the applicabil-
ity rules of both actions and strategies.

Guidance Orchestrator
The guidance orchestrator is the technical instantiation of the meta-
strategy devised in the design phase.

The guidance orchestrator is responsible for prioritizing applicable ac-
tions in a given context. When multiple actions are deemed to be ap-
plicable, they are passed to the guidance orchestrator. The orchestrator
filters or prioritizes actions based on the defined meta-strategy, acting
as a balancing mechanism between competing strategies. Potential cri-
teria for filtering could include a comparison of provided model quality
improvements, time saved, and envisioned guidance dynamics or the
(dis)similarity from previous suggestions. Ultimately, all suggestions
that the orchestrator does not filter out are turned into user suggestions.

5 THE Lotse GUIDANCE LIBRARY

Section 4 focused on the introduction of strategy templates as elements
supporting a structured guidance (design) process and introduced the
concept of strategy-based guidance. In this section, we present Lotse
(German for guide), a library allowing guidance developers to instan-
tiate their created strategy templates via yaml files, similar to visual-
ization grammars such as Vega-Lite [27]. The created strategies and
the analysis state definition are then automatically compiled to a stand-
alone guidance system ready to provide suggestions. Lotse is imple-
mented in Python (data handling, guidance generation) and available
at https://pypi.org/project/Lotse/ or at https://github.
com/lotse-guidance, where we offer implementation examples and
visualization frontend adapters for d3 [4], Vega [27], angular and react.
Storing data into Lotse’s state does not depend on those frameworks,
though, and can easily be added to any system that can perform REST
requests. Rather than writing yaml files, experienced Lotse develop-
ers can also directly implement Lotse’s internal python classes.

Design Goals When designing Lotse, we aimed to produce a
powerful, generic way to implement guidance efficiently. In particu-
lar, we adhered to the following design goals that capture theoretical
requirements of guidance (mixed-initiative and adaptive) and are rele-
vant to novices (easy-to-use strategies):
Ease of Use: First and foremost, we aimed to make Lotse easy to use
to reduce the barrier of entry into guidance design for VA experts that

might question where to begin implementing guidance today. Hence,
Lotse provides defaults that allow developers to drop in strategies and
actions and immediately observe initial suggestions.
Strategy-Based: Reasoning about individual strategies and how they
fit together to reach a guidance goal provides a structured way to design
guidance–the same benefits apply during implementation.
Mixed-Initiative: Lotse features an internal event loop that is used
to schedule guidance operations, allowing it to produce suggestions
without the need for explicit requests. To transport generated sugges-
tions to the visualization frontend, Lotse thus relies on websockets
to distribute new suggestions (in contrast to, e.g., forcing developers to
implement pulling operations via REST interfaces).
Adaptive: Which suggestion is best suited for a given user at a given
point in time might be difficult to premeditate when designing guidance.
As a result, Lotse offers various suggestion interaction hooks, allow-
ing developers to define callbacks and initiate adaptation.

Architecture Summary Lotse is centered around the concept of
guidance strategies introduced above. Each strategy defines condi-
tions based on the analysis state in which its guidance action should
be triggered, leading to a new suggestion. Suggestions, in turn, define
interaction hooks that can be used to drive adaptation. As the analysis
progresses, changes to the analysis state are recorded as state updates.
Strategy orchestration allows designers to enable or disable strategies
in given conditions. Both analysis states and guidance strategies can be
specified in yaml files that Lotse parses into running python code at
startup. In several locations, developers can specify hooks or callbacks
to define the concrete behavior of the created system. In the remain-
der of this section, we present those key concepts in detail, outlining
Lotse’s architecture. We continue to use the example from Section 4.
The two strategies highlight outliers in the scatter plot as they might
be of particular interest and suggest moving to a different month when
enough data points have been explored, respectively. This section intro-
duces the corresponding strategies, trigger rules, and adaptations. All
presented code is available on GitHub.

Lotse Grammar Lotse allows specifying both analysis states
and (meta) strategies as yaml files. We rely on a very relaxed gram-
mar for this purpose. To define custom callbacks, developers specify
type: function, an optional list of arguments args: [], and the
callback under load: Individual, reserved keywords (e.g., data
loading, predefined interaction hooks, etc.) will be introduced below.
Beyond those reserved keywords, all other properties (e.g., maps, lists,
strings, etc.) specified in the yaml files will be parsed and added as
fields into the respective entities. From there, they are available for use
in all callback of their respective entity using python-like syntax under
self. This freedom enables developers to specify strategies, actions,
and state vectors of higher complexity, where necessary.

5.1 Analysis State Representation
Lotse’s core data structure is the analysis state vector. This state vector
holds a bespoke representation of the analysis state that is customized
for each guidance application. Typical state vectors include representa-
tions of the data under analysis, user interaction (meta)data, or model
quality metrics. More advanced implementations could also integrate

data:
source: measurements.csv
load: csv

last_interaction: 0
month: "2022-03"
x_axis: humidity
y_axis: pressure
initialize:

import: [time]
load: self.last_interaction = int(time.time())

callbacks:
update_hover:

args: [id, dim1, dim2]
load: |

dp = next(dp for dp in self.data if dp.id == id)
dp[‘hovered’] = [dim1, dim2]

Load data model from csv

Define initial analysis state

Optional initialization callback:

set current timestamp

Custom state update

callbacks:

when hovering a data point,

store hovered dimensions

Figure 4: An analysis state definition in Lotse defines relevant prop-
erties as well as initialization- and update-callbacks.

5

https://pypi.org/project/Lotse/
https://github.com/lotse-guidance
https://github.com/lotse-guidance

user preference models or modeling alternatives. Lotse does not im-
pose restrictions on the amount or type of data stored in the state vector.

Analysis state vectors, like the guidance strategies introduced below,
are defined as yaml files to reduce coding efforts. An example state
vector is shown in Figure 4 and consists of three sections. In the first
section, Lotse allows defining arbitrary values into the state vector.
All definitions follow default yaml syntax, e.g., month: "2022-03".
Lotse recognizes the key data: to load any data from a file or
URL, specify the sub-key source and load: csv or load: url,
respectively.

Initializing Analysis States In some cases, initializing the analy-
sis state with real-time information or complex data structures might be
necessary when starting Lotse. For that purpose, an initialize
callback can be overridden in the analysis state definition. In the exam-
ple in Figure 4, this callback is used to store the system startup time into
the state. As all callback definitions in Lotse, the callback code is de-
fined in initialize.load. All attributes from the analysis state (in
this example, the data) are available in python-like syntax under self
leaving developers with full flexibility.

Updating the Analysis State Lotse offers two methods for (par-
tially) updating the state vector with corresponding REST interfaces
and callbacks defined in the state vector. For simple updates, Lotse
supports setting properties by sending a JSON object containing key-
value pairs to be set on the state vector. More complex updates can be
realized via callbacks defined in the analysis state. Developers can de-
fine as many callbacks as necessary. In the example in Figure 4, we use
a callback to update our data model to store that a data point has been
hovered. Callbacks require specifying a list of expected arguments and
a code snippet. Both context update methods are exposed via REST
API endpoints. As Lotse is independent of any (visualization) frame-
work, developers are responsible for integrating calls to the API. Such
calls could be made from the frontend (e.g., when users perform spe-
cific interactions) or an existing backend (e.g., when complex data anal-
ysis returns new results). Example integrations are available on GitHub.

5.2 Guidance Strategies and Orchestration
Guidance strategies are concrete instantiations of strategy templates
and can be defined as yaml files (see Figure 5). They define methods to
determine the applicability of the strategy and the available actions, as
well as metadata required for the visualization, such as a strategy
name and optional strategy_id, a guidance degree and a human-
readable description. The guidance action is stored in its own yaml
file and referenced under action. Actions will be introduced in the
following section. To orchestrate the guidance process, Lotse runs
both the inference loop (see Section 4) and the guidance loop on con-
figurable interval timers. In the outer inference loop, the system deter-
mines which strategies are currently active and should potentially pro-
duce suggestions. To enable this functionality, each strategy must de-
fine a determine_applicability callback which takes the analy-
sis state as a single argument and returns True or False. Activating
and deactivating strategies in the inference loop allows developers to
change the broad strokes of the provided guidance.

5.3 Guidance Actions and Suggestions
Guidance actions are also defined in yaml files, together with some
metadata. In particular, each action must define a action_id that
will be added to all suggestions it produces.

metadata:
strategy: slider
description: suggests alternative months
degree: orienting

action:
actions/slider_action.yaml

determine_applicability:
args: [state]
load: return len(state.suggestions) == 0

Define metadata

Load Action

Only activate strategy

if no other suggestions

are present

Figure 5: A strategy example in Lotse references an action and defines
an applicability callback.

type:
action

metadata:
description: Suggest alternative month
degree: orienting
action_id: timeslider

generate_suggestion_content:
args: [state]
load:

return (state.month + 1, 'Move’, ‘[...]’)
threshold: .10
condition:

type: function
args: [state]
load: |

month = state.get_current_month()
all_data = len(month)
seen = len([d for d in month if d.hovered])
return seen / all_data > self.threshold

is_applicable:
args: [state, delta]
load: return self.condition(state) \

and not self.suggested
accept:

args: [suggestion, state, delta]
load: |

state.month = suggestion.suggestion.event.value
self.threshold *= .95
self.suggested = False

reject:
args: [suggestion, state, delta]
load: |

self.threshold = min(0.9, self.threshold + 0.05)
self.suggested = False

Define metadata

Define type as action

Generate suggestion content:

suggest moving to the next month

Define custom fields

Define custom helper function

Here, the helper is used to determine

how much data from the current

month has already been investigated.

If a threshold is exceeded, moving

to the next month can be suggested.

Applicability Filter Callback

is used to determine if the action

should produce suggestions

Suggestion Accept Callback

can be defined to trigger adaptation

of the action or its trigger rules, or

change the application state

Suggestion Reject Callback

can be defined to trigger adaptation

of the action or its trigger rules

Figure 6: An action in Lotse defines how suggestion content is gen-
erated, how the action’s applicability is determined, and what happens
when suggestions are accepted, rejected, or previewed (not shown).

Suggestion Generation and Retraction In the inner guidance
loop, the system evaluates conditions defined by each strategy’s action
to determine whether to generate a new suggestion or not. By default,
the guidance loop is triggered every second, and the inference loop ev-
ery 30 seconds. Both parameters can be adjusted to fit specific imple-
mentation needs. The guidance loop immediately restarts whenever the
analysis state is updated.

Each action must define rules (on the analysis state) for when it
is ready to generate suggestions. To that end, the is_applicable
callback is used and receives the current analysis state as an argument.
If this callback returns True, Lotse generates a new suggestion by
calling generate_suggestion_content. This callback must return
the suggestion content and a title and description of the suggestion to
encourage explainable guidance. The generated suggestions can contain
arbitrary data, as long as it can be serialized to JSON to be transmitted
to the user interface, leaving developers complete freedom over how to
design their guidance. In the example in Figure 6, we simply suggest
the next month, but more complex suggestions such as computing a
DBSCAN [15] clustering on the data points and suggesting outliers are
possible (see GitHub for examples).

In addition to generating new suggestions, the guidance loop also
verifies whether previously made suggestions have become outdated. To
that end, all actions can define should_retract callbacks that receive
a context-suggestion pair and return True if the suggestion should be
retracted. Suggestion retractions are also sent via the websocket.

Meta-Strategy: Suggestion Selection If multiple actions pro-
duce suggestions at the same time, the meta-strategy is provided with
all produced suggestions to its filter_suggestions callback. The
meta-strategy can then decide which suggestion(s) should actually be
made, e.g., by considering similarity to previous suggestions.

{
type: 'guidance',
interaction: 'make’,
suggestion: {

id: uuid,
strategy: str,
title: str,
description: str,
degree: str
event: {

value: Any,
action_id: str

}
}

}

New suggestion

Suggestion metadata

and explanatory

title and description

Suggestion content

Responsible action

Figure 7: Suggestion data structure

Suggestion Transmission
Once generated, suggestions are
provided via a websocket that
the frontend application can sub-
scribe to. Using a socket allows
asynchronous guidance updates
and enables the system to take
the initiative without having to
wait for a frontend request. In
their frontend, developers sub-
scribe to guidance messages from

6

To appear in IEEE Transactions on Visualization and Computer Graphics.

the socket. For JS-based applications, we offer example configurations
for angular, react, and plain javascript.

Before transmission, suggestions are serialized to JSON. We provide
an example of the resulting structure in Figure 7. Each suggestion gets
a unique ID to simplify future communication and contains the names
of the strategy and action that were used to generate it. The suggestion
content can be an arbitrary JSON object. To encourage the development
of explainable and justifiable guidance, Lotse suggestions contain a
title and description field that developers can supply accordingly.

Interaction Hooks Lotse provides four interaction states for each
suggestion via REST endpoints. All endpoints expect as payload the
guidance message to interact with. Most importantly, users can accept
or reject suggestions. To capture more detailed interaction data, addi-
tional endpoints for starting and ending previews are also available.
All endpoints automatically call the corresponding accept, reject,
preview_start or preview_end callbacks defined in the action’s
specification file. Developers can optionally implement those callbacks
to perform additional actions, such as updating when actions should
generate suggestions based on the relevance feedback received.

Adaptation As outlined above, the success of quality-based strat-
egy implementations depends largely on systems being able to adapt
in which contexts they present which strategies. In Lotse, adaptation
is driven via rule-adjustments executed from the accept, reject,
or preview callbacks. Developers can then adjust trigger thresholds,
update rule sets, or re-train ML models as needed from those callbacks.

6 EVALUATION

We rely on multiple evaluations to demonstrate the applicability and
usability of Lotse. First, we present usage scenarios showcasing
common guidance issues and replicating existing systems. To evaluate
the usability of Lotse, we conducted a first-use case study with VA
experts. We use the terms usage scenario and case study as suggested
by Sedlmair et al. [29]. We also provide an evaluation of Lotse in the
cognitive dimensions of notation [2] as supplemental material.

6.1 Usage Scenarios
We present two usage scenarios for strategy-based guidance using
Lotse that replicate existing guidance approaches or showcase oppor-
tunities. The scenarios focus on 1) providing suggestions contextual-
ized on user behavior and 2) adapting suggestions via relevance feed-
back. A third scenario replicating Scented Widgets [40] and showcas-
ing the real-time capabilities of Lotse can be found in the supplemen-
tary material. The scenarios demonstrate that strategy-based guidance
can be used in a variety of situations and should serve as an inspiration
for how to use Lotse in VA systems, not as an exhaustive list of what
is possible with it. Hence, we describe all scenarios from the perspec-
tive of a guidance designer.

6.1.1 Behavior-Driven Visualization Recommendation
Inspired by Behavior Driven Visualization Recommendation [17], we
used Lotse to implement suggestions based on interaction pattern
detection. Using a VA interface with a scatterplot and a line chart, we
defined two strategies: If analysts continuously change the month of
data shown in the scatter plot, we suggest using the line chart. An
excerpt of this action is shown in Figure 8. If analysts inspect more than
five data points in a row by opening their tooltips, we suggest zooming
in and prepare a summary of the data. To enable this scenario, we store

Track interactions
in state

Observe patterns in
individual strategies

Suggest alternative
visualization type

1 2 3

Lotse action .yamlis_applicable:
args: [state, delta]
load: return all(i.type == slider' for i in state.interactions[:-3])

generate_suggestion_content:
args: [state]
load: return ('line chart', "...", "...“)

Figure 8: Lotse can be used to react to streams of interaction patterns,
e.g., to recommend alternative visualizations.

Suggest similar cities

Observe relevance feedback

Fine-tune similarity function
1 2 3

Lotse action .yamlgenerate_suggestion_content:
args: [state]
load: return sorted([self.sim(d, self.target) for d in state.data])[:5]

accept:
args: [suggestion, context, delta]
load: |

city, feedback = (suggestion.event.value, suggestion.interaction)
self.update_similarity(city, feedback)

Figure 9: Strategy example in Lotse that uses relevance feedback to
update a similarity function to guide exploratory data analysis.

a sequence of user interactions into Lotse’s analysis state. Whenever
analysts change the slider or hover over a data point, we add an event
to the interaction history. Both strategies are permanently active, and
their actions define sequence rules on the tail of the interaction log to
determine whether they should produce suggestions in a given situation.

6.1.2 Goal-Driven Suggestion Adaptation
Starting from the same visual analytics interface containing a scatter
plot and a line chart, we imagine a task in which analysts have to
investigate weather data and identify their favorite city for their next
vacation. In the process, analysts select their favorite cities and hide
uninteresting cities. Our guidance goal is to support analysts by learning
the perceived feature importance for each weather dimension and use
it to personalize a weighted similarity function between cities. To that
end, we devise two strategies: the first suggests investigating similar
cities and highlights them in the scatter plot. The second strategy
suggests switching to a different month if more cities with similar
properties to the current favorites can be found there. Accepting or
rejecting a suggestion increases (or decreases) the importance scores
of all dimensions depending on the similarity between the suggestion
and the currently selected favorite cities. All importance scores are
stored in the analysis state vector to easily share them between both
strategies. To facilitate analysts finding their perfect vacation target
(both in terms of location and time), we prioritize month-switching
suggestions over similarity highlighting and block the latter if similarity
highlighting suggestions are currently available using a meta-strategy.
As analysts mark more and more cities as favorites or remove them,
they receive new suggestions based on the fine-tuned similarity function.
The resulting Lotse suggestion workflow is summarized in Figure 9.

6.2 VA Expert Case Studies
In this section, we present two case studies from projects that use
Lotse to provide guidance. Our case studies aimed to evaluate the
usefulness of Lotse to VA experts with no experience in guidance
design and investigate how they used the library. Below, we report
results from both studies individually, in increasing order of guidance
complexity and level.
Methodology – Both case studies were carried out over one week and
started with an introduction session (∼ 1 hour) in which we presented
the library using the demo implementation available on GitHub (code
snippets from Section 5). We described the idea of creating guidance
specifications in yaml files and went through two example strategies to
showcase the interplay of strategies, actions, and applicability condi-
tions. In the following week, participants derived and defined guidance
strategies and implemented the required frontend changes. During the
week, we were in contact with participants to answer clarifying ques-
tions and check on their progress. In one case, we also actively sup-
ported participants in identifying a syntax error in one of their action
files. We concluded the case studies with semi-structured interviews
to capture feedback on the experience of using Lotse. In particular,
we asked participants to summarize their strategies and provide ratio-
nales for their design decisions. Finally, we asked participants to evalu-
ate Lotse in terms of eight criteria (expressiveness, creativity support,
flexibility, efficiency, usability, learnability, and integration into exist-
ing workflows) collected by Ren et al. [25].
Participants – All participants are VA researchers currently designing
or implementing VA systems. All participants (two for each case study)
have rich experience in system design and development but had not
implemented guidance in their systems before. One participant is a

7

Lotse action .yaml

Observe debugging tool
usage sequence

Suggest tools typically used
in related, common use cases

1 2

is_applicable:
args: [vector, delta]
import: [time]
load: |

RSS_TOOL_ID, MSS_TOOL_ID = 0, 2
correct_level = vector.abstraction_level == 3
mss_unused = MSS_TOOL_ID not in vector.tools_used
used_rss = RSS_TOOL_IND in vector.tools_used[:-3]
passed_timeout = int(time.time()) - vector.last_interaction > self.timeout
return correct_level and mss_unused and passed_timeout and used_rss

RSS: runtime statistics
MSS: model save size (on disk)

Make suggestion if
specific views are open

Avoid spamming
suggestions w. timeout

Figure 10: Case study summary for iNNspector. The guidance is
centered around suggesting alternative debugging tools to explore.

final-year master’s student, and three participants are graduate students.

6.2.1 Neural Network Debugging

The first case study was performed in the context of a VA system for
structured neural network debugging called iNNspector. The system is
currently being developed by our participants, and targeted at model de-
velopers aiming to understand their models, compare modeling alterna-
tives, and identify potential issues. It supports tracing model behavior
to the responsible components (e.g, layers, units, functions) and con-
tains a myriad of tools that can be applied to model components, e.g.,
to show performance curves or inspect activations.

Goals and Implementation The researchers conceptualized four
different approaches to implementing guidance but ultimately decided to
focus on guiding their users through the vast amount of debugging tools
in the system. In particular, they saw the biggest value in recommending
which tools users should investigate next. To that end, they collect
the currently selected application abstraction layer, the sequence of
previously used tools, as well as the time since the last user interaction
in the analysis state vector. An excerpt of the action suggesting to use
the MSS (model save size) tool is shown in Figure 10. It first checks that
the MSS tool has not been used already, but that users recently employed
the RS (runtime statistics) tool and that the user has not interacted for
a while. A large collection of such actions can be used to introduce
potentially relevant debugging tools to users quickly. As the participants
had common tool usage sequences in mind to solve different tasks, they
did not implement adaptation or the contextualization to user feedback.

Usage Experience The participants reported that implementing
guidance using Lotsewas “not difficult” but “efficient” and “intuitive”,
especially as the “definition of strategies is straight-forward” while
providing significant freedom in the definition of callbacks. While
they praised the freedom of Lotse’s callbacks, they also stated that
“defining strategies as yaml files brings a lot of flexibility” and was
a “good way of declaring what you want”, similar to writing docker-
compose files or Kubernetes manifests. However, they also stated
that Lotse did not feel as event-driven as they might have liked as
there was no way to subscribe to partial state vector updates. Further,
they requested to inject new, dynamic strategies from the visualization
frontend as required. We plan to address both comments in future
releases of Lotse.

6.2.2 Music Sheet Corpus Analysis

We performed the second case study with researchers who had just
finished the implementation of CorpusVis, a VA system for music sheet
corpus analysis [22]. The results are summarized in Figure 11.

Goals and Implementation In CorpusVis, users can explore cor-
pora of sheet music using a set of coordinated views. The researcher’s
overarching guidance goal was to support this data exploration with a
mixture of suggestions on the data exploration and analysis interaction
levels. In total, they implemented six strategies targeting duplicate re-
moval, data aggregation, or the addition of more potentially relevant
data to the analysis, among others. As CorpusVis already uses intro.js
in the onboarding process, suggestions are also shown via this frame-
work. As a result, all suggestions are prescribing, and at most one sug-
gestion is shown at a time. The example action from Figure 11 suggests
the removal of duplicate data from analysis. Potential duplicates are
identified in the CorpusVis system and sent to Lotse via its state up-
date API. The strategy then follows a pattern the researchers frequently
used: It stores a relevance score which is increased or decreased upon
acceptance or rejection of suggestions from that strategy, respectively.
If a strategy’s relevance falls below a threshold, suggestions from that
strategy are temporarily disabled. Further, the researchers conceptual-
ized various approaches for contextualizing the various strategies as
they “begin to compete with each other.” They finally implemented con-
ditional dependencies between strategies, where some strategies only
activate if suggestions from others were recently accepted or rejected.

Usage Experience As “it does not much take time to integrate in
your system” these participants used Lotse extensively and were able
to achieve results quickly. They found that “by implementing one strat-
egy you immediately have more ideas of what you would also like to do”,
validating our goal to make reasoning about guidance implementation
more approachable. They found that designing guidance with Lotse
“helped to structure the process” and provided a starting point for guid-
ance implementation that they were missing before. While they also
praised that Lotse did not restrict them in the guidance they wanted
to implement, they sometimes found it difficult to debug the contextual-
ization of their suggestions. Nonetheless, they reported that they did
not need much time to get used to implementing in Lotse and stated
that “it is worth it as it can be reused in [their] future projects”. They
further appreciated the definition of strategies and actions in yaml files
as they provided “a clear structure and overview of your strategies”.

Identify duplicates in data in
external application backend

Update Lotse state vector from
frontend or directly from backend

Check if data has changed, time has
passed and suggestion is relevant

1 2 3

Lotse action .yaml

5

Relevance feedback to learn
which suggestions are helpful

condition:
args: [state]
import: [time]
load: return (int(time.time()) - state.last_data_change > self.timeout) and (len(state.duplicates) > 0) \

and self.relevance >= 0.5 and (self.last_suggested < state.last_data_change)
is_applicable:

args: [state, delta]
import: [time]
load: |

if self.condition(ctx) and not self.suggested:
self.last_suggested = int(time.time())
return True

else: return False
reject:

args: [suggestion, context, delta]
load: |

self.relevance -= .2
self.suggested = False

4
Suggest removing duplicates

Avoid duplicate suggestions
from this strategy

Do not re-suggest rejected
suggestions for same data

Figure 11: Case study summary for CorpusVis. The six provided guid-
ance strategies focus on prescribing suggestions for data exploration
and visualization interactions.

8

To appear in IEEE Transactions on Visualization and Computer Graphics.

Overall, they found the integration of guidance using Lotse “very
beneficial for [their] application” and expressed the wish for “a gallery
of examples to learn from and to adapt” that we plan to create together
with the community.

7 DISCUSSION

In this paper, we have proposed an implementable model of adaptive
guidance in VA centered around guidance templates and strategies. This
model bridges the gap between complex, often impractical theoretical
models and what is possible to implement today. We demonstrate
this practical implementability with a library that generates running
guidance engines from strategy- and action-specifications in yaml files.

7.1 Lessons Learned
Guidance Levels While we originally designed Lotse to cover

exploratory and task-specific guidance, developer feedback showed
that Lotse can also be used to contextualize onboarding-like guidance.
Rather than relying on static onboarding tours, Lotse enabled them
to provide contextualized onboarding cues and adapt them to user feed-
back. From our observations, the guidance level determines whether
the focus of change in strategy-based guidance is on contextualization
(i.e., providing suggestions in different situations) or adaptation (i.e.,
varying the suggestion content).

Guidance Implementation Beyond Strategies As a direct con-
sequence of this observation, we do not claim that all guidance in the
future should be generated from strategies following this model. We do,
however, believe that strategies are an appropriate vehicle for novice
designers, excel in multi-objective optimization problems where differ-
ent objectives can be expressed as individual strategies, and when users
frequently switch between exploration and specific tasks. Lotse, as a
particular instantiation of strategy-based guidance, is similarly targeted
towards novices implementing simpler guidance and might be insuffi-
cient for very complex guidance generation processes.

Contextualization of Guidance By making analysis state vectors
first-class citizens, Lotse forces developers to think about contextual-
ization of guidance. While previous work has shown that helpful guid-
ance can also be provided without explicit contextualization, adapting
guidance to the analysis context holds the promise of a more effective
human-machine collaboration. Thinking about guidance contextualiza-
tion in terms of composable rules rather than fixed “if the user clicks
here, then...”-conditions enabled the participants in our case study to
come up with intricate strategies.

Explainable and Justified Guidance Explainability of sugges-
tions and their creation is a common challenge in guidance, with users
missing explanations (how?) and justifications (why?) of guidance they
received. We integrate description fields into each generated sugges-
tion. Hence, developers can either provide a description or actively de-
cide not to do so. We hope that by raising awareness for the impor-
tance of guidance justifications beyond traditional XAI methods, new
approaches for justifiable guidance will emerge.

7.2 Limitations
Our approach of strategy-based guidance assumes that all information
that is necessary to decide which guidance to provide next can be stored
in an analysis state vector. In theory, it is possible to store data like facial
expressions [7] or eye-tracking results into the analysis state. However,
Lotse is arguably built for simpler data like relevance feedback, mouse
positions, or interaction timings and sequences. We believe that this
data already provides a rich foundation for guidance provisioning and
is successfully used in many guidance applications today.

While we set out to make guidance implementation easier and more
approachable for developers without previous guidance experience,
Lotse still has a learning curve. As it starts a python web server to pro-
duce suggestions, its barrier to entry is higher than that of fully browser-
based approaches. Also, we opted to allow imperative callbacks in
Lotse rather than fully restricting it to a declarative grammar. As our
case studies only feature four participants, further observations are nec-
essary to judge the impact of our decisions when designing Lotse.

When discussing prototypes of Lotse with colleagues, we some-
times met the expectation that the library could provide guidance for
their bespoke VA systems out-of-the-box. However, Lotse does not
contain some generic pre-trained ML models that could be generically
employed. Instead, developers must design strategies and adapt exist-
ing visualizations to synchronize analysis state vectors. The current ver-
sion of the library also does not offer a gallery of ready-to-use exam-
ples with broad applicability. Creating such a gallery would facilitate
setting up guidance even further and is thus planned for the near future.

7.3 Opportunities & Next Steps
Our efforts in implementing an approachable guidance library have
revealed several opportunities for future work.

A Guidance-Grammar for VA Visualization grammars have seen
a large increase in popularity lately, with newer grammars tackling
more and more complex issues such as animations [20] or responsive
visualization [19]. Our implementation provides a first step towards
a general, declarative guidance grammar. While it already supports
automatic conversion of created strategy templates into code and offers
some declarative features, it is also reliant on imperative callbacks.
Identifying if and how the vast space of available and potential guidance
systems could be described using a declarative approach–potentially in
close integration with a visualization grammar like Vega-Lite–opens an
exciting direction for future research.

Defining Guidelines As we move towards more readily available
guidance implementations, providing guidance will become more ap-
proachable to novices. As a result, the definition of guidelines that cap-
ture and mitigate common issues such as bias, agency, or simply alien-
ating the user is necessary. The aforementioned creation of a gallery
with prominent strategy examples constitutes a first step towards deriv-
ing reliable, practical guidelines.

Guidance Generation Inputs As mentioned above, a current
limitation of Lotse stems from its focus on analysis state data that
can be captured by observing interactions on the frontend. However,
other inputs such as webcam video, sound, or eye-tracking have also
been used to generate guidance in the past. Comparative evaluations
could identify in which contexts such complex features are necessary
and when simpler input features are equally effective.

Capturing User Feedback At the core of our method is the choice
and evaluation of multiple strategies. To employ these strategies most
effectively, it is necessary to capture and model user feedback. This
feedback can then be employed to adapt the guidance, utilizing strate-
gies considered relevant. For specific model-optimization tasks, a wide
variety of relevance-feedback mechanisms have been proposed in the
past. Future work is needed to determine which candidates are most
promising to capture guidance feedback and initiate adaptation.

Partial Automation Learning contextualized user preferences on
targeted guidance strategies through relevance feedback holds the
promise of enabling partial automation of suggestions in specific con-
texts. While there are apparent concerns regarding the locus of control
and agency, the participants from the musicology case study also ex-
pressed interest in exploring this direction. Splitting the available guid-
ance into strategies allows learning if and when to automate specific
guidance and enables the definition of specific learning goals [36] for
each strategy that need to be reached before automation can take place.

8 CONCLUSION

In this paper, we summarized existing theories of guidance in VA and
derived a model of strategy-based guidance that is closer to actual im-
plementation practices. To demonstrate the usefulness of our model,
we have instantiated it in a guidance library called Lotse. Lotse en-
ables the specification of guidance and automatically generates running
code. It is available at https://github.com/lotse-guidance. In
the future, we will continuously improve and extend Lotse with a
gallery of predefined guidance strategies and work towards further fa-
cilitating the creation of strategies.

9

https://github.com/lotse-guidance

ACKNOWLEDGMENTS

This work was funded by Vienna Science and Technology Fund
(WWTF) under grant ICT19-047, by Deutsche Forschungsgemeinschaft
(DFG) under grant 455910360 (SPP-1999), and the ETH AI Center.

REFERENCES

[1] N. Andrienko, T. Lammarsch, G. Andrienko, G. Fuchs, D. Keim,
S. Miksch, and A. Rind. Viewing Visual Analytics as Model Building.
Computer Graphics Forum, 37(6):275–299, 2018. doi: 10.1111/cgf.13324

[2] A. F. Blackwell, C. Britton, A. Cox, T. R. G. Green, C. Gurr, G. Kadoda,
M. S. Kutar, M. Loomes, C. L. Nehaniv, M. Petre, C. Roast, C. Roe,
A. Wong, and R. M. Young. Cognitive Dimensions of Notations: Design
Tools for Cognitive Technology. In M. Beynon, C. L. Nehaniv, and
K. Dautenhahn, eds., Cognitive Technology: Instruments of Mind, Lecture
Notes in Computer Science, pp. 325–341. Springer, Berlin, Heidelberg,
2001. doi: 10.1007/3-540-44617-6 31

[3] B. S. Bloom, M. D. Engelhart, E. J. Furst, W. H. Hill, D. R. Krathwohl,
and others. Taxonomy of educational objectives: the classification of
educational goals. Handbook I: Cognitive Domain. McKay Company,
Inc., 1956.

[4] M. Bostock, V. Ogievetsky, and J. Heer. D Data-Driven Documents. IEEE
Transactions on Visualization and Computer Graphics, 17(12):2301–2309,
2011. doi: 10.1109/TVCG.2011.185

[5] M. Brehmer and T. Munzner. A Multi-Level Typology of Abstract Visual-
ization Tasks. IEEE Transactions on Visualization and Computer Graph-
ics, 19(12):2376–2385, Dec. 2013. doi: 10.1109/TVCG.2013.124

[6] D. Ceneda, N. Andrienko, G. Andrienko, T. Gschwandtner, S. Miksch,
N. Piccolotto, T. Schreck, M. Streit, J. Suschnigg, and C. Tominski. Guide
Me in Analysis: A Framework for Guidance Designers. Computer Graph-
ics Forum, 39(6):269–288, 2020. doi: 10.1111/cgf.14017

[7] D. Ceneda, A. Arleo, T. Gschwandtner, and S. Miksch. Show Me Your
Face: Towards an Automated Method to Provide Timely Guidance in
Visual Analytics. IEEE Transactions on Visualization and Computer
Graphics, pp. 1–11, July 2021. doi: 10.1109/TVCG.2021.3094870

[8] D. Ceneda, T. Gschwandtner, T. May, S. Miksch, H.-J. Schulz, M. Streit,
and C. Tominski. Characterizing Guidance in Visual Analytics. IEEE
Transactions on Visualization and Computer Graphics, 23(1):111–120,
2017. doi: 10.1109/TVCG.2016.2598468

[9] D. Ceneda, T. Gschwandtner, T. May, S. Miksch, M. Streit, and C. Tomin-
ski. Guidance or no guidance? a decision tree can help. In Proc. EuroVis
Workshop on Visual Analytics, pp. 19–23. Eurographics Association, 2018.

[10] D. Ceneda, T. Gschwandtner, and S. Miksch. A Review of Guidance
Approaches in Visual Data Analysis: A Multifocal Perspective. Computer
Graphics Forum, 38(3):861–879, 2019. doi: 10.1111/cgf.13730

[11] R. Chen, X. Shu, J. Chen, D. Weng, J. Tang, S. Fu, and Y. Wu. Nebula:
A Coordinating Grammar of Graphics. IEEE Transactions on Visualiza-
tion and Computer Graphics, pp. 1–1, 2021. doi: 10.1109/TVCG.2021.
3076222

[12] C. Collins, N. Andrienko, T. Schreck, J. Yang, J. Choo, U. Engelke, A. Jena,
and T. Dwyer. Guidance in the humanmachine analytics process. Visual
Informatics, 2(3):166–180, 2018. doi: 10.1016/j.visinf.2018.09.003

[13] F. Dabek and J. J. Caban. A Grammar-based Approach for Modeling
User Interactions and Generating Suggestions During the Data Exploration
Process. IEEE Transactions on Visualization and Computer Graphics,
23(1):41–50, Jan. 2017. doi: 10.1109/TVCG.2016.2598471

[14] R. Engels. Planning tasks for knowledge discovery in databases; perform-
ing task-oriented user-guidance. In Proceedings of the Second Interna-
tional Conference on Knowledge Discovery and Data Mining, KDD’96,
pp. 170–175. AAAI Press, Portland, Oregon, Aug. 1996.

[15] M. Ester, H.-P. Kriegel, J. Sander, X. Xu, and others. A density-based
algorithm for discovering clusters in large spatial databases with noise. In
Proc. Int. Conf. on Knowledge Discovery and Data Mining, vol. 96, pp.
226–231, 1996.

[16] S. Gathani, S. Monadjemi, A. Ottley, and L. Battle. A Grammar-Based
Approach for Applying Visualization Taxonomies to Interaction Logs.
Computer Graphics Forum, 41(3):489–500, 2022. doi: 10.1111/cgf.14557

[17] D. Gotz and Z. Wen. Behavior-driven visualization recommendation. In
Proc. of Conference on Intelligent User Interfaces, pp. 315–324. ACM,
2009.

[18] E. Horvitz. Principles of mixed-initiative user interfaces. In Proc. Conf. on
Human Factors in Computing Systems, pp. 159–166, 1999. doi: 10.1145/
302979.303030

[19] H. Kim, R. Rossi, F. Du, E. Koh, S. Guo, J. Hullman, and J. Hoffswell.
Cicero: A Declarative Grammar for Responsive Visualization. Proc. Conf.
on Human Factors in Computing Systems, pp. 1–14, Mar. 2022. doi: 10.
1145/3491102.3517455

[20] Y. Kim and J. Heer. Gemini: A Grammar and Recommender System
for Animated Transitions in Statistical Graphics. IEEE Transactions on
Visualization and Computer Graphics, 27(2):485–494, Feb. 2021. doi: 10.
1109/TVCG.2020.3030360

[21] D. Li, H. Mei, Y. Shen, S. Su, W. Zhang, J. Wang, M. Zu, and W. Chen.
ECharts: A declarative framework for rapid construction of web-based
visualization. Visual Informatics, 2(2):136–146, June 2018. doi: 10.1016/j.
visinf.2018.04.011

[22] M. Miller, J. Rauscher, D. A. Keim, and M. El-Assady. CorpusVis: Visual
Analysis of Digital Sheet Music Collections. Computer Graphics Forum,
41(3):283–294, 2022. doi: 10.1111/cgf.14540

[23] R. Oppermann, ed. Adaptive user support: ergonomic design of manually
and automatically adaptable software. L. Erlbaum Associates Inc., USA,
1994.

[24] I. Prez-Messina, D. Ceneda, M. El-Assady, S. Miksch, and F. Sperrle. A
Typology of Guidance Tasks in Mixed-Initiative Visual Analytics Environ-
ments. Computer Graphics Forum, 41(3):465–476, 2022. doi: 10.1111/
cgf.14555

[25] D. Ren, B. Lee, M. Brehmer, and N. H. Riche. Reflecting on the Evaluation
of Visualization Authoring Systems : Position Paper. In 2018 IEEE
Evaluation and Beyond - Methodological Approaches for Visualization
(BELIV), pp. 86–92. IEEE, Berlin, Germany, Oct. 2018. doi: 10.1109/
BELIV.2018.8634297

[26] D. Sacha, A. Stoffel, F. Stoffel, B. C. Kwon, G. Ellis, and D. A. Keim.
Knowledge Generation Model for Visual Analytics. IEEE Transactions on
Visualization and Computer Graphics, 20(12):1604–1613, Dec. 2014. doi:
10.1109/TVCG.2014.2346481

[27] A. Satyanarayan, D. Moritz, K. Wongsuphasawat, and J. Heer. Vega-Lite:
A Grammar of Interactive Graphics. IEEE Transactions on Visualization
and Computer Graphics, 23(1):341–350, Jan. 2017. doi: 10.1109/TVCG.
2016.2599030

[28] A. Satyanarayan, K. Wongsuphasawat, and J. Heer. Declarative interac-
tion design for data visualization. In Proc. ACM Symposium on User inter-
face software and technology, pp. 669–678, 2014. doi: 10.1145/2642918.
2647360

[29] M. Sedlmair, M. Meyer, and T. Munzner. Design Study Methodology:
Reflections from the Trenches and the Stacks. IEEE Transactions on
Visualization and Computer Graphics, 18(12):2431–2440, Dec. 2012. doi:
10.1109/TVCG.2012.213

[30] V. Setlur. Data-driven Intent Models for Visual Analysis Tools and Chatbot
Platforms. In Workshop on Artificial Intelligence for HCI: A Modern
Approach at CHI, 2020.

[31] R. Sicat, J. Li, J. Choi, M. Cordeil, W.-K. Jeong, B. Bach, and H. Pfis-
ter. DXR: A Toolkit for Building Immersive Data Visualizations. IEEE
Transactions on Visualization and Computer Graphics, 25(1):715–725,
Jan. 2019. doi: 10.1109/TVCG.2018.2865152

[32] M. S. Silver. Decisional guidance for computer-based decision support.
MIS quarterly, pp. 105–122, 1991.

[33] S. Smith and J. Mosier. Guidelines for Designing User Interface Software.
Technical Report ESD-TR-86-278, Mitre Corporation, Bedford MA, 1986.

[34] F. Sperrle, J. Bernard, M. Sedlmair, D. A. Keim, and M. El-Assady. Spec-
ulative Execution for Guided Visual Analytics. In Workshop for Machine
Learning from User Interaction for Visualization and Analytics at IEEE
VIS, pp. 1–8, 2018.

[35] F. Sperrle, A. Jeitler, J. Bernard, D. Keim, and M. El-Assady. Learning and
Teaching in Co-Adaptive Guidance for Mixed-Initiative Visual Analytics.
In EuroVis Workshop on Visual Analytics, pp. 61–65. The Eurographics
Association, 2020. doi: 10.2312/eurova.20201088

[36] F. Sperrle, A. Jeitler, J. Bernard, D. Keim, and M. El-Assady. Co-adaptive
visual data analysis and guidance processes. Computers & Graphics,
100:93–105, Nov. 2021. doi: 10.1016/j.cag.2021.06.016

[37] F. Sperrle, H. Schfer, D. A. Keim, and M. El-Assady. Learning Contextual-
ized User Preferences for Co-Adaptive Guidance in Mixed-Initiative Topic
Model Refinement. Computer Graphics Forum, 40(3):215–226, 2021. doi:
10.1111/cgf.14301

[38] F. Sperrle, R. Sevastjanova, R. Kehlbeck, and M. El-Assady. VIANA:
Visual Interactive Annotation of Argumentation. In Proc. IEEE Conf.
Visual Analytics Science and Technology (VAST), pp. 1–12, 2019. doi: 10.
1109/VAST47406.2019.8986917

10

https://doi.org/10.1111/cgf.13324
https://doi.org/10.1111/cgf.13324
https://doi.org/10.1111/cgf.13324
https://doi.org/10.1111/cgf.13324
https://doi.org/10.1111/cgf.13324
https://doi.org/10.1111/cgf.13324
https://doi.org/10.1111/cgf.13324
https://doi.org/10.1007/3-540-44617-6_31
https://doi.org/10.1007/3-540-44617-6_31
https://doi.org/10.1007/3-540-44617-6_31
https://doi.org/10.1007/3-540-44617-6_31
https://doi.org/10.1007/3-540-44617-6_31
https://doi.org/10.1007/3-540-44617-6_31
https://doi.org/10.1007/3-540-44617-6_31
https://doi.org/10.1007/3-540-44617-6_31
https://doi.org/10.1007/3-540-44617-6_31
https://doi.org/10.1007/3-540-44617-6_31
https://doi.org/10.1007/3-540-44617-6_31
https://doi.org/10.1007/3-540-44617-6_31
https://doi.org/10.1007/3-540-44617-6_31
https://doi.org/10.1007/3-540-44617-6_31
https://doi.org/10.1109/TVCG.2011.185
https://doi.org/10.1109/TVCG.2011.185
https://doi.org/10.1109/TVCG.2011.185
https://doi.org/10.1109/TVCG.2011.185
https://doi.org/10.1109/TVCG.2011.185
https://doi.org/10.1109/TVCG.2011.185
https://doi.org/10.1109/TVCG.2011.185
https://doi.org/10.1109/TVCG.2013.124
https://doi.org/10.1109/TVCG.2013.124
https://doi.org/10.1109/TVCG.2013.124
https://doi.org/10.1109/TVCG.2013.124
https://doi.org/10.1109/TVCG.2013.124
https://doi.org/10.1109/TVCG.2013.124
https://doi.org/10.1109/TVCG.2013.124
https://doi.org/10.1109/TVCG.2013.124
https://doi.org/10.1111/cgf.14017
https://doi.org/10.1111/cgf.14017
https://doi.org/10.1111/cgf.14017
https://doi.org/10.1111/cgf.14017
https://doi.org/10.1111/cgf.14017
https://doi.org/10.1111/cgf.14017
https://doi.org/10.1111/cgf.14017
https://doi.org/10.1111/cgf.14017
https://doi.org/10.1111/cgf.14017
https://doi.org/10.1109/TVCG.2021.3094870
https://doi.org/10.1109/TVCG.2021.3094870
https://doi.org/10.1109/TVCG.2021.3094870
https://doi.org/10.1109/TVCG.2021.3094870
https://doi.org/10.1109/TVCG.2021.3094870
https://doi.org/10.1109/TVCG.2021.3094870
https://doi.org/10.1109/TVCG.2021.3094870
https://doi.org/10.1109/TVCG.2021.3094870
https://doi.org/10.1109/TVCG.2021.3094870
https://doi.org/10.1109/TVCG.2016.2598468
https://doi.org/10.1109/TVCG.2016.2598468
https://doi.org/10.1109/TVCG.2016.2598468
https://doi.org/10.1109/TVCG.2016.2598468
https://doi.org/10.1109/TVCG.2016.2598468
https://doi.org/10.1109/TVCG.2016.2598468
https://doi.org/10.1109/TVCG.2016.2598468
https://doi.org/10.1109/TVCG.2016.2598468
https://doi.org/10.1111/cgf.13730
https://doi.org/10.1111/cgf.13730
https://doi.org/10.1111/cgf.13730
https://doi.org/10.1111/cgf.13730
https://doi.org/10.1111/cgf.13730
https://doi.org/10.1111/cgf.13730
https://doi.org/10.1111/cgf.13730
https://doi.org/10.1111/cgf.13730
https://doi.org/10.1109/TVCG.2021.3076222
https://doi.org/10.1109/TVCG.2021.3076222
https://doi.org/10.1109/TVCG.2021.3076222
https://doi.org/10.1109/TVCG.2021.3076222
https://doi.org/10.1109/TVCG.2021.3076222
https://doi.org/10.1109/TVCG.2021.3076222
https://doi.org/10.1109/TVCG.2021.3076222
https://doi.org/10.1109/TVCG.2021.3076222
https://doi.org/10.1109/TVCG.2021.3076222
https://doi.org/10.1016/j.visinf.2018.09.003
https://doi.org/10.1016/j.visinf.2018.09.003
https://doi.org/10.1016/j.visinf.2018.09.003
https://doi.org/10.1016/j.visinf.2018.09.003
https://doi.org/10.1016/j.visinf.2018.09.003
https://doi.org/10.1016/j.visinf.2018.09.003
https://doi.org/10.1016/j.visinf.2018.09.003
https://doi.org/10.1016/j.visinf.2018.09.003
https://doi.org/10.1109/TVCG.2016.2598471
https://doi.org/10.1109/TVCG.2016.2598471
https://doi.org/10.1109/TVCG.2016.2598471
https://doi.org/10.1109/TVCG.2016.2598471
https://doi.org/10.1109/TVCG.2016.2598471
https://doi.org/10.1109/TVCG.2016.2598471
https://doi.org/10.1109/TVCG.2016.2598471
https://doi.org/10.1109/TVCG.2016.2598471
https://doi.org/10.1111/cgf.14557
https://doi.org/10.1111/cgf.14557
https://doi.org/10.1111/cgf.14557
https://doi.org/10.1111/cgf.14557
https://doi.org/10.1111/cgf.14557
https://doi.org/10.1111/cgf.14557
https://doi.org/10.1111/cgf.14557
https://doi.org/10.1145/302979.303030
https://doi.org/10.1145/302979.303030
https://doi.org/10.1145/302979.303030
https://doi.org/10.1145/302979.303030
https://doi.org/10.1145/302979.303030
https://doi.org/10.1145/302979.303030
https://doi.org/10.1145/302979.303030
https://doi.org/10.1145/302979.303030
https://doi.org/10.1145/3491102.3517455
https://doi.org/10.1145/3491102.3517455
https://doi.org/10.1145/3491102.3517455
https://doi.org/10.1145/3491102.3517455
https://doi.org/10.1145/3491102.3517455
https://doi.org/10.1145/3491102.3517455
https://doi.org/10.1145/3491102.3517455
https://doi.org/10.1145/3491102.3517455
https://doi.org/10.1109/TVCG.2020.3030360
https://doi.org/10.1109/TVCG.2020.3030360
https://doi.org/10.1109/TVCG.2020.3030360
https://doi.org/10.1109/TVCG.2020.3030360
https://doi.org/10.1109/TVCG.2020.3030360
https://doi.org/10.1109/TVCG.2020.3030360
https://doi.org/10.1109/TVCG.2020.3030360
https://doi.org/10.1109/TVCG.2020.3030360
https://doi.org/10.1109/TVCG.2020.3030360
https://doi.org/10.1016/j.visinf.2018.04.011
https://doi.org/10.1016/j.visinf.2018.04.011
https://doi.org/10.1016/j.visinf.2018.04.011
https://doi.org/10.1016/j.visinf.2018.04.011
https://doi.org/10.1016/j.visinf.2018.04.011
https://doi.org/10.1016/j.visinf.2018.04.011
https://doi.org/10.1016/j.visinf.2018.04.011
https://doi.org/10.1016/j.visinf.2018.04.011
https://doi.org/10.1111/cgf.14540
https://doi.org/10.1111/cgf.14540
https://doi.org/10.1111/cgf.14540
https://doi.org/10.1111/cgf.14540
https://doi.org/10.1111/cgf.14540
https://doi.org/10.1111/cgf.14540
https://doi.org/10.1111/cgf.14540
https://doi.org/10.1111/cgf.14555
https://doi.org/10.1111/cgf.14555
https://doi.org/10.1111/cgf.14555
https://doi.org/10.1111/cgf.14555
https://doi.org/10.1111/cgf.14555
https://doi.org/10.1111/cgf.14555
https://doi.org/10.1111/cgf.14555
https://doi.org/10.1111/cgf.14555
https://doi.org/10.1111/cgf.14555
https://doi.org/10.1109/BELIV.2018.8634297
https://doi.org/10.1109/BELIV.2018.8634297
https://doi.org/10.1109/BELIV.2018.8634297
https://doi.org/10.1109/BELIV.2018.8634297
https://doi.org/10.1109/BELIV.2018.8634297
https://doi.org/10.1109/BELIV.2018.8634297
https://doi.org/10.1109/BELIV.2018.8634297
https://doi.org/10.1109/BELIV.2018.8634297
https://doi.org/10.1109/BELIV.2018.8634297
https://doi.org/10.1109/BELIV.2018.8634297
https://doi.org/10.1109/BELIV.2018.8634297
https://doi.org/10.1109/BELIV.2018.8634297
https://doi.org/10.1109/TVCG.2014.2346481
https://doi.org/10.1109/TVCG.2014.2346481
https://doi.org/10.1109/TVCG.2014.2346481
https://doi.org/10.1109/TVCG.2014.2346481
https://doi.org/10.1109/TVCG.2014.2346481
https://doi.org/10.1109/TVCG.2014.2346481
https://doi.org/10.1109/TVCG.2014.2346481
https://doi.org/10.1109/TVCG.2014.2346481
https://doi.org/10.1109/TVCG.2016.2599030
https://doi.org/10.1109/TVCG.2016.2599030
https://doi.org/10.1109/TVCG.2016.2599030
https://doi.org/10.1109/TVCG.2016.2599030
https://doi.org/10.1109/TVCG.2016.2599030
https://doi.org/10.1109/TVCG.2016.2599030
https://doi.org/10.1109/TVCG.2016.2599030
https://doi.org/10.1109/TVCG.2016.2599030
https://doi.org/10.1109/TVCG.2016.2599030
https://doi.org/10.1145/2642918.2647360
https://doi.org/10.1145/2642918.2647360
https://doi.org/10.1145/2642918.2647360
https://doi.org/10.1145/2642918.2647360
https://doi.org/10.1145/2642918.2647360
https://doi.org/10.1145/2642918.2647360
https://doi.org/10.1145/2642918.2647360
https://doi.org/10.1145/2642918.2647360
https://doi.org/10.1145/2642918.2647360
https://doi.org/10.1109/TVCG.2012.213
https://doi.org/10.1109/TVCG.2012.213
https://doi.org/10.1109/TVCG.2012.213
https://doi.org/10.1109/TVCG.2012.213
https://doi.org/10.1109/TVCG.2012.213
https://doi.org/10.1109/TVCG.2012.213
https://doi.org/10.1109/TVCG.2012.213
https://doi.org/10.1109/TVCG.2012.213
https://doi.org/10.1109/TVCG.2012.213
https://doi.org/10.1109/TVCG.2018.2865152
https://doi.org/10.1109/TVCG.2018.2865152
https://doi.org/10.1109/TVCG.2018.2865152
https://doi.org/10.1109/TVCG.2018.2865152
https://doi.org/10.1109/TVCG.2018.2865152
https://doi.org/10.1109/TVCG.2018.2865152
https://doi.org/10.1109/TVCG.2018.2865152
https://doi.org/10.1109/TVCG.2018.2865152
https://doi.org/10.2312/eurova.20201088
https://doi.org/10.2312/eurova.20201088
https://doi.org/10.2312/eurova.20201088
https://doi.org/10.2312/eurova.20201088
https://doi.org/10.2312/eurova.20201088
https://doi.org/10.2312/eurova.20201088
https://doi.org/10.2312/eurova.20201088
https://doi.org/10.2312/eurova.20201088
https://doi.org/10.2312/eurova.20201088
https://doi.org/10.1016/j.cag.2021.06.016
https://doi.org/10.1016/j.cag.2021.06.016
https://doi.org/10.1016/j.cag.2021.06.016
https://doi.org/10.1016/j.cag.2021.06.016
https://doi.org/10.1016/j.cag.2021.06.016
https://doi.org/10.1016/j.cag.2021.06.016
https://doi.org/10.1016/j.cag.2021.06.016
https://doi.org/10.1111/cgf.14301
https://doi.org/10.1111/cgf.14301
https://doi.org/10.1111/cgf.14301
https://doi.org/10.1111/cgf.14301
https://doi.org/10.1111/cgf.14301
https://doi.org/10.1111/cgf.14301
https://doi.org/10.1111/cgf.14301
https://doi.org/10.1111/cgf.14301
https://doi.org/10.1111/cgf.14301
https://doi.org/10.1109/VAST47406.2019.8986917
https://doi.org/10.1109/VAST47406.2019.8986917
https://doi.org/10.1109/VAST47406.2019.8986917
https://doi.org/10.1109/VAST47406.2019.8986917
https://doi.org/10.1109/VAST47406.2019.8986917
https://doi.org/10.1109/VAST47406.2019.8986917
https://doi.org/10.1109/VAST47406.2019.8986917
https://doi.org/10.1109/VAST47406.2019.8986917
https://doi.org/10.1109/VAST47406.2019.8986917

To appear in IEEE Transactions on Visualization and Computer Graphics.

[39] C. Stoiber, D. Ceneda, M. Wagner, V. Schetinger, T. Gschwandtner,
M. Streit, S. Miksch, and W. Aigner. Perspectives of Visualization On-
boarding and Guidance in VA. Visual Informatics, 6(1):68–83, 2022. doi:
10.1016/j.visinf.2022.02.005

[40] W. Willett, J. Heer, and M. Agrawala. Scented Widgets: Improving
Navigation Cues with Embedded Visualizations. IEEE Transactions on
Visualization and Computer Graphics, 13(6):1129–1136, 2007. doi: 10.
1109/TVCG.2007.70589

[41] K. Wongsuphasawat. Encodable: Configurable Grammar for Visualization
Components. In 2020 IEEE Visualization Conference (VIS), pp. 131–135,
Oct. 2020. doi: 10.1109/VIS47514.2020.00033

11

https://doi.org/https://doi.org/10.1016/j.visinf.2022.02.005
https://doi.org/https://doi.org/10.1016/j.visinf.2022.02.005
https://doi.org/https://doi.org/10.1016/j.visinf.2022.02.005
https://doi.org/https://doi.org/10.1016/j.visinf.2022.02.005
https://doi.org/https://doi.org/10.1016/j.visinf.2022.02.005
https://doi.org/https://doi.org/10.1016/j.visinf.2022.02.005
https://doi.org/https://doi.org/10.1016/j.visinf.2022.02.005
https://doi.org/10.1016/j.visinf.2022.02.005
https://doi.org/10.1016/j.visinf.2022.02.005
https://doi.org/10.1109/TVCG.2007.70589
https://doi.org/10.1109/TVCG.2007.70589
https://doi.org/10.1109/TVCG.2007.70589
https://doi.org/10.1109/TVCG.2007.70589
https://doi.org/10.1109/TVCG.2007.70589
https://doi.org/10.1109/TVCG.2007.70589
https://doi.org/10.1109/TVCG.2007.70589
https://doi.org/10.1109/TVCG.2007.70589
https://doi.org/10.1109/TVCG.2007.70589
https://doi.org/10.1109/VIS47514.2020.00033
https://doi.org/10.1109/VIS47514.2020.00033
https://doi.org/10.1109/VIS47514.2020.00033
https://doi.org/10.1109/VIS47514.2020.00033
https://doi.org/10.1109/VIS47514.2020.00033
https://doi.org/10.1109/VIS47514.2020.00033
https://doi.org/10.1109/VIS47514.2020.00033

	Introduction
	Related Work
	Co-Adaptive Guidance in Visual Analytics
	Guidance Theory Review
	Levels of Guidance

	A Strategy-Centered Guidance Process Model
	Strategy-Centered Guidance Design
	Modeling Users, Data, and Tasks
	System Components of Strategy-Based Guidance

	The yamlLotse Guidance Library
	Analysis State Representation
	Guidance Strategies and Orchestration
	Guidance Actions and Suggestions

	Evaluation
	Usage Scenarios
	Behavior-Driven Visualization Recommendation
	Goal-Driven Suggestion Adaptation

	VA Expert Case Studies
	Neural Network Debugging
	Music Sheet Corpus Analysis

	Discussion
	Lessons Learned
	Limitations
	Opportunities & Next Steps

	Conclusion

