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ABSTRACT

Monitoring computer networks often includes gathering vast
amounts of time-series data from thousands of computer sys-
tems and network devices. Threshold alerting is easy to
accomplish with state-of-the-art technologies. However, to
find correlations and similar behaviors between the differ-
ent devices is challenging. We developed a visual analytics
application to tackle this challenge by integrating similarity
models and analytics combined with well-known, but task-
adapted, time-series visualizations. We show in a case study,
how this system can be used to visually identify correlations
and anomalies in large data sets and identify and investigate
security-related events.

Categories and Subject Descriptors

C.2.0 [Computer-Communication Networks]: General—
Security and protection; C.3.8 [Computer Graphics]: Ap-
plication; H.5.2 [Information Interfaces and Presenta-
tion]: User Interfaces

General Terms

Network Security, Visual Analytics, Correlation, Time-Series,
Anomalies

1. INTRODUCTION

Nowadays, computer networks are used by almost all peo-
ple in everyday life. In addition, the economic importance
makes computer systems a valuable target for a large num-
ber of different targeted and wide-spread attacks. Obviously,
monitoring is, therefore, indispensable in all productive envi-
ronments to make sure to identify suspicious anomalies early
and to be able to investigate the root causes in a timely man-
ner. Monitoring computer networks often includes gathering
vast amounts of time-series data from thousands of computer
systems and network devices. While threshold alerting is
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easy to accomplish with state-of-the-art technologies, find-
ing correlations and similar behaviors between the different
devices is still challenging. Especially the task of analyzing
the shear amount of time-series to find the related ones is
often not possible interactively and there is less computa-
tional support to guide the analyst in this process. In our
approach, we make use of the visual analytics [10] approach,
which combines automated methods and the human capa-
bilities in recognizing interesting patterns using background
knowledge. Our system uses analytical models to highlight
interesting and anomalous parts within time-series to make
possible important events more visible to the analyst. Using
visual exploration the analyst can benefit from the system’s
drill-down capabilities and similarity search across all other
time-series to retrieve related data to eventually identify the
root cause of the suspicious events. Subject of this work is
the design of techniques, which employ network time-series
correlation analysis to track down such incidents. The re-
sulting system combines the techniques to be used for anal-
ysis and detection of incidents of various kinds.

According to Fink et al., it is very common for network
analysts to utilize correlation in their daily work: “Analysts
perform standard types of correlation in the course of their
normal work, such as correlating network flows to process
activity.” [5]. In the same work, the authors quote analysts,
that there is only very little visual support for such tasks. In
our work, we therefore concentrate on creating a framework
explicitly targeted at providing support for visual correlation
of network time-series data.

The three main contributions of this work are the fol-
lowing: (1) A visual analytics system, which provides tight
coupling of analytical models and the visual representation
of thousands of time-series to enhance visual correlation
recognition. (2) A lens-based line chart widget designed to
specifically focus on correlations of sub-segments between
time-series. (3) An implementation of a time-series storage
optimized for the use in a visual analytics application.

The remainder of this paper is structured as follows: In
Section 2 we briefly discuss related work in the field of mon-
itoring of system metrics and visualizing time-series, which
are highly related areas of this work. To introduce the over-
all system of our approach, we explain the different server
and client modules and in Section 3. Additionally, we briefly
introduce the time-series modeling and the used techniques.
We continue in Section 4 to describe the graphical user inter-
face and the visualization components of the implemented
application and show in Section 5 a case study, how the
system can be used to analyze large data sets. Finally, we



conclude in Section 6 and briefly discuss limitations and fu-
ture research perspectives.

2. RELATED WORK

The most extensive overview of visualization techniques
for time-dependent data can be found in the book of Aigner
et al. [1] providing a systematic overview and survey of
many existing visualization techniques. A very compact
visualization techniques is called two-tone pseudo coloring
[16], which uses two discrete colors for each value of the
time-series. This technique is also used and implemented in
the so-called horizon charts, which properties has also been
compared in [7] against line charts. However, using color to
represent the value, restricts the further usage of color for
highlighting critical or suspicious segments, which is an im-
portant feature in our system. Additionally, we are not so
much interested in easy-to-detect peak values and the pre-
cise readability of the visual representation, which is a key
advantage of horizon charts. It is more important to rec-
ognize shapes, correlations and patterns, where commonly
used line charts provide a good basis.

The graphical perception for multiple time-series and line
charts has been evaluated by Javed et al. [8], who showed
that the presentation of time-series as small multiples is gen-
erally more efficient for comparisons across time-series with a
large visual span. Plotting several lines in the same diagram
was more efficient for comparison of smaller visual spans.
This shows the trade-off we are confronted in our system,
because we are actually interested in large visual spans to
convey the overall shape and small visual spans to correlate
interesting anomalous segments against other time-series.
ChronoLens [18] is a highly interactive approach which en-
hances the exploratory analysis of times-series. The user
can select parts of the line charts. The data of the selected
segment is automatically transformed to show derivatives,
correlations or other derived time-series for the selected fo-
cus lens area. This tightly integrates visual analysis with
user interaction and provides good means to deeply analyze
multiple line charts. With respect to the number of shown
time-series, the Line Graph Ezplorer [12] is much more scal-
able, because it provides a compact overview using colored
pixels positioned on a single line for each time-series. Se-
lecting those pixel lines provide a lens mode to give more
space to the selected metrics to be shown as standard line
charts. This tool provides a compressed visual representa-
tion, which is very good to catch the overall global simi-
larity of many time-series. However, if you need to explore
many time-series in detail using the lens, the scalability de-
grades. While our system is quite similar to the Line Graph
Ezplorer, we have a stronger focus on comparing specific
segments across thousands of metrics using the line chart to
represent the relative value and using colored highlighting to
emphasize the deviation to the underlying analytical model.

Network and system performance time-series are often an-
alyzed to identify security-related incidents in large com-
puter networks. ClockMap [6] focuses on the hierarchical
structure of such networks and uses a circular treemap lay-
out with embedded temporal glyphs to represent many met-
rics within its context. Systems like LiveRAC [14] focus
specifically on the analysis of monitoring data which is highly
relevant from a network security perspective. They also use
semantic zoom and combines it with a reorderable grid with
embedded charts to represent many time-series. This sys-

tem was also used by Best et al. [2] for network traffic
data combined with advanced time-series analysis based on
Symbolic Aggregate approXimation [11] to find unusual se-
quences to improve network security and to provide real-
time situational awareness. Shafer et al. [17] also provide
a visual analysis system for system monitoring to identify
anomalous machines based on time-series of computer net-
works decomposing significant bursts and long-term trends.
A good overview of related wavelet-based techniques to pro-
vide anomaly detection in network traffic for security-related
applications can be found in [9]. The authors discuss and
compare several applications with a focus on data traffic vi-
sualization tools to enhance security.

3. SYSTEM

This section describes the two main parts of our sys-
tem, which are: A stand-alone server managing the time-
series data and providing analysis, query and retrieval re-
lated functionality, and a rich client. The latter provides
access to the time-series data and allows the user explore
and analyze the data. Multiple clients can operate indepen-
dently from each other with data form the same server in-
stance. Both components communicate via a RMI network
link.

3.1 Server

The server is a stand-alone application. It contains the
components to retrieve data from various external sources,
a high performance time-series data store, a modeling facil-
ity for time-series data, and extendable query and retrieval
functionality. A schematic overview of the components can
be seen in Figure 1.

‘ External Data Sources
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Figure 1: Schematic overview of the server components.

The core of the server is the custom time-series database,
which acts as the time-series persistence layer. Although
designed as a high performance retrieval system for time-
series data, it can also be used to store the generated model
data (see Section 3.1.1). If required, the database fills out
missing values or re-samples the data with a given interval
transparently on inserts of the raw data linearly. This leads
to a consistent dataset without missing values, which allows
the simplification of further analysis and the processing out-
side the server. In addition, the resulting time-series are
continuous in the time domain, which is a requirement for
the Fourier analysis described in Section 3.1.1.

The query facility can be adapted to the actual usage sce-
nario, providing the best possible support for different query



types and the corresponding computation tasks. This is re-
flected in the API, where the client can query for supported
query types and their parameters. By default, the query
facility provides similarity queries. By specifying an origi-
nating time-series or its model and a time-span, the server
can search in a set of given candidates or the complete, avail-
able time-series stored locally. By default, the distance of
two time-series is computed by the Euclidean Distance of
the normalized query region. Thanks to the high retrieval
performance, the server can finish a time-series query on a
dataset of around 1,1 million time-series in about a minute
(10 months of data, indexed in five minutes intervals, Intel
Core 2 Quad Processor, 8 GB of main memory, Intel X-18
SSD).

3.1.1 Time-Series Model

Besides the data restoration and sampling, a model of the
time-series is created or updated when new data is inserted
in the database. This model can be retrieved by the client
and supports additional visualization and analysis methods.

In general, there are certain key observations characteriz-
ing a network time-series on two different levels. The first
level is the intra-day level, where the observations refer to
phenomena lasting a few hours. Some of those typical char-
acteristics can be seen in Figure 2 on the time-series drawn
with the solid line.

time

Figure 2: Two typical network traffic charts. The solid line
is a exemplary labor day time-series, the dashed-dotted line
resembles a typical non-labor day network time-series.

What at first stands out is the peak around noon. A
typical observation is also the increase of the series values
starting around 6 a.m. leading to the peak at noon. Another
noticeable pattern is the slow decrease of the peak at noon,
compared to the fast increase in the morning.

The second level where key observations can be made is
not the intra-, but the day level. A good example of such a
day level key observation can be made when comparing the
overall shape of a time-series of labor- with non-labor days
(solid versus dashed-dotted line in Figure 2). In the given
example, one can easily distinguish the non-labor from the
labor-day by not having a very high level around noon and
the relatively constant level of the series.

Those observations are the motivation of creating the time-
series model per-day. Each time-series is modeled by seven
independent models describing one weekday. There is no dis-
tinction in holidays or vacations, which preserves the maxi-
mal generality of the model on server side. Such adjustments
should be made on client side, where in the ideal case the
user can interactively adjust any kind of filters or modifi-
cations on the data. This also opens possibilities for task-
specific adaptations of the model, where the server is just
providing general data and the client adapts them in a task
specific way.

The model for one time-series contains two different mod-
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Figure 3: The model creation pipeline. From the left to the
right, the raw time-series are transformed and aggregated to
the model containing the Fourier and wavelet coefficients.

els created by Fourier and wavelet transform of the time-
series [3, 15]. In general both methods can be used to an-
alyze and model time-series data. The Fourier transform
decomposes the signal in components, where each of the
component can be interpreted as a longer or shorter last-
ing phenomena in the time-series data. Besides this advan-
tage, the frequency domain data resulting from the Fourier
transform looses its time dimension. Therefore, it is almost
impossible to properly model non-stationary signals which
may change the frequency over time, or very short lasting
phenomena in general.

To overcome this limitation of the Fourier transform based
models, an additional model based on the wavelet transform
has been added. The major advantage of the wavelet trans-
form is the dynamic window size, since the actual wavelet
function is scaled to fit the input in data and time domain.
Together, both parts of the model can accurately capture
different longer lasting effects and also capture short phe-
nomena in the time-series. To maintain the general nature
of supported analysis tasks by the server and the models,
there is no combination on the server side of the Fourier
transform and the wavelet transform of the time-series, but
band-filtering of the models is supported. By choosing such
a design, the server does not restrict the available analysis
tasks, but at the same time supports common, potentially
computation intensive filter techniques.

To create a Fourier and wavelet model out of different
days, the resulting coefficients are aggregated incrementally
[13]. Besides being able to compute the incremental arith-
metic mean efficiently, a comparison of different aggregation
methods has been made by creating models out of 9 weeks
of real network time-series data. To judge the quality of the
aggregation method, the resulting models have been evalu-
ated with the sum of squared residuals (SSR) of the models
and the input time-series (see Table 1 for details).

The resulting model can be used to find anomalies by com-
paring the actual value of a time-series with its aggregated
model. The server returns both, the Fourier and wavelet
model, which keeps the design space of the application and
its processing and application of the model as general as
possible. The single components and computation steps for
the model creation are shown in Figure 3.

3.2 Client

The client is built on top of the NetBeans Rich Client
Platform (RCP)'. This Java framework provides a mature
and flexible framework for Swing? based applications. Be-
sides having a powerful window management, the platform
provides mechanisms for extendable, module based applica-
tions. Building on that, the foundation of the client is built

"http://platform.netbeans.org/
2Java user interface toolkit



Aggregation || Mo | Tue | Wed | Thu | Fri | Sat | Sun |
Median 5.344e13 8.287e13 3.005e14 4.962e14 4.022e14 5.270e13 1.225e12
Arithmetic Mean 4.453e13 6.872e13 1.752e14 4.063e14 2.926e14 4.651e13 1.051e12
Geometric Mean 9.070e14 1.420e14 4.186e14 7.360e14 5.573e14 9.620e13 2.736e12
Effective Value 5.072e13 | 7.247e13 | 1.942e14 | 4.043e14 | 3.154e14 | 5.151e13 | 1.376el2

Table 1: Comparison of the SSR of models with different aggregation methods for 9 weeks of data. For each day, the minimal

SSR is highlighted with a gray cell background.

by three modules (the upper part in Figure 4): the Data
Source API, the Time-Series API and the Visualization API
and their respective SPIs.

Data Source API/SPI Time-Series API/SPI Visualization API/SPI

NetBeans RCP

Figure 4: Schematic overview of the client components.

The Data Source API unifies the inclusion of different data
sources in the client. This makes it possible to extend the ap-
plication by other data sources, for example direct database
access or flat files. Since the API induces no restrictions
to the data handling, the different data source modules can
handle the data in the most efficient and effective way.

The Time-Series API is a general contract of accessing
the time-series data. This is done mostly by having direct
access to the data based on the timestamps. As stated in
Section 3.1, the server component can transparently fill out
missing values or resample time-series data. The default
time-series implementation provides the same techniques.
By not requiring data sources to re-use this default imple-
mentation, it is also possible to work with un-processed time-
series data.

The Visualization API is used to provide a general inter-
face of visualizations on an abstract level. It just handles
basic data management tasks and provides a high level win-
dow container. The implementation of a visualization is not
restricted in terms of the painting or supported interaction
techniques. The corresponding SPIs connect the different
API implementations and adapt the client interface to the
available modules.

All APIs are designed to be as general as possible. This
makes it easy to adapt the client to different data sources,
different types of visualizations with different interaction
possibilities and not at least to allow efficient and effective
handling of the data.

4. GRAPHICAL USER INTERFACE

For a visual analytics system, the design of the user inter-
face and the motivation and design choices of the visualiza-
tions are crucial. The following section describes the user
interface of the client and motivates and explains the design
choices of our main visualization in detail.

As described in Section 3.2, the user interface is based on
the NetBeans Rich Client Platform. In its general form, the
underlying framework provides functionality for managing
and accessing different data sources, handling general time-
series data, and display data or analysis results with custom

visualizations.

4.1 Overall Interface

The overall interface of the client can be seen in Figure 5.
It is composed out of three main areas. On the left, covered
by A and B, there is the general data control and action area.
The center of the user interface, area C, is designated to hold
the visualizations. On the right area (D and E), context sen-
sitive displays and controls are placed. In Figure 5, there are
the main controls of the visualization, D, and a mouse po-
sition dependent information pane, showing information of
the currently hovered time-series in the visualization, E. The
same panel is also used to display details on demand, if the
current context provides such detail information. For exam-
ple, if segments of one or multiple time-series are selected,
the minimum and maximum values of those selections will
be shown.

This clear separation makes it easy to access all features,
the context sensitive parts on the right make it possible to
keep the separation of the areas even with changing visual-
izations or actions.

Thanks to the window management provided by the Net-
Beans Platform, all parts of the user interface can be de-
tached and freely placed on or even outside of the main ap-
plication window. This also adds support for multi-monitor
workplaces. Besides of having such support on the window
level, the Visualization API contains an optional part deal-
ing with visualization synchronization which supports mul-
tiple visualizations at the same time. Based on the actual
type of the visualization, this feature allows sharing of the
current data, view port or even single configuration param-
eters. In case of visualizations of the same type, different
instances can also share their configuration.

4.2 Time-Series Overview

The main visualization of the Client is the so called Ex-
PLORERVIEW. It can be seen in the center area of Figure 5
labeled with C.

The EXPLORERVIEW is built to support the following main
tasks: Shape recognition. Similar time-series should have
similar visual appearance and shape. Correlation recogni-
tion. Users of the client should be able to visually identify
time-series with high correlation. Pattern recognition. The
visualization should enable the user to recognize similar pat-
terns in different time-series. In addition, those tasks should
also scale for large amount of time-series.

Our visual approach takes the context of the time-series
into account and allows refinements of the visual represen-
tation, which is desirable in order not to loose any infor-
mation. Also, the time resolution of the EXPLORERVIEW is
freely adjustable and the visual appearance can be adjusted
to fit the task best. This variety is very hard to support with
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Figure 5: The main interface of the client. A labels the data management and time-series selection window, B lists different
available visualizations, C denotes the main area where the visualizations are shown. D identifies the visualization configuration
and the area marked with E is a context aware information panel.

automatic methods. The visual interface also allows explo-
ration and browsing through the data, which should create
a picture of the network condition and its usual patterns.

In addition to fulfilling the task specific requirements, line
chart based time-series visualizations have two further ad-
vantages. Annotating data in line charts is straight forward
by re-using the usually empty area in the background of the
chart. Besides having the possibility of enriching line charts
with additional data, the scaling invariance of the actual
line shape facilitates level independent shape, correlation
and pattern recognition.

Due to the layered network architecture, this property is
desirable because a network operation can have effects on
different network time-series. For example, browsing to a
website generates data in (not only) the following network
time-series: ip traffic, tcp port 80 and http. Therefore,
it is very likely that time-series, generated from the differ-
ent layer data, are composed of parts of the same operations.
Scaling the series in a fixed range, for example [0...1], cre-
ates similar line charts in terms of their shape and correla-
tion. Obviously, this also helps with the visual correlation
and pattern recognition.

The line charts in the EXPLORERVIEW differ in one im-
portant aspect from common line charts. The time axis is
not on the horizontal, but on the vertical. While this it
not conform to the common line chart displays, it has an
effect on the perception of the operator. In the Western
world, people are used to read text and charts from the left
to the right. This is also the case for line charts. This leads
to the behavior, that viewers tend to follow a single line
chart, instead of comparing them to each other even if there
are multiple charts drawn next to each other. By placing
the time axis not on the horizontal, but on the vertical, we
force the viewer to break this habit, and try to direct the
perception to comparing different line charts. The EXPLOR-
ERVIEW does not force this rotated view, the single series
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displays can also be rotated by 90 degrees, which results in
a common line chart arrangement.

To account for the nature of repeating patterns in the
data, it is desirable that the visualization is able to put the
currently focused pattern in the larger context of the series.
To support that, the line chart is divided into three parts:
the prae-focus, focus and post-focus area. The prae- and
post-focus area are building the context area, the focus is
located in the middle of the visualization area. See Figure 6
for the construction of context and focus area.

One key issue is the blending area of the non-focus with
the focus area, which is caused by the different scaling of
focus and context area. There are numerous different meth-
ods of techniques that those areas of different scales have
a smooth transition to each other, for example based on a
Gaussian kernel or hyperbolic functions [4]. In our case,
comparison and exploration requires to have the current in-
teresting points in the focus area of the visualization. To
have a steady reminder of the different scales in terms of time
and to minimize artifacts introduced by distortions intro-
duced by the time scaling techniques, the EXPLORERVIEW
uses a sharp transition from the context to the focus area.
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Figure 7: 63 different time-series. Each series is scaled in a
way, that the data of all time-series fit on a common worksta-
tion display. The order of the time-series plots is determined
by the volatility of the data in the focus area.

An additional shadowing around the area transitions can be
enabled, to make the actual borders of the three areas clear
to the observer. This shadowing can be seen in Figure 5.

Each time-series is displayed as a single line chart, which
according to Javed [8] is the right choice for the discrimina-
tion and therefore also the compare task. In the same work,
the authors show that displaying time-series with less space
has little influence on the time the analyst needs to accom-
plish a given task. The smaller size has only an effect on the
ability of estimating the value of the time-series, which is
not a key issue in the tasks the EXPLORERVIEW is designed
to support. Especially for tasks, where many time-series has
to be considered at once, this property is important. To fit
as much time-series on the available display space as possi-
ble, all plots in one EXPLORERVIEW instance can be freely
re-sized to fit the needs of the task and the visual abilities of
the analyst. In Figure 7, a view with 63 different time-series
is displayed. Although the space used to display the time-
series charts is very small, it is possible to get an impression
their shapes and compare with each other.

Creating and executing queries on the displayed time-
series is supported by the visualization. To issue a simi-
larity query, the analyst can choose an area of a time-series
via clicking and dragging the query time-span directly on
the visualization. After selection the query range, it is pos-
sible to narrow down the search space and name the query
before it is executed. The results can be displayed in any
EXPLORERVIEW instance and inspected visually.

5. CASE STUDY

In this section, we describe how our system can be used
with an exemplary use case performed by a fictive analyst.
Although the use case is created just for the sake of show-
ing the capabilities of our system, the data set comes from
a computer network with around 20 users (for details see
Section 5.1.1). Due to the general nature of network traffic,
the definition of an anomaly can be different. In the follow-
ing, we define an anomaly as a significant deviation from the
usual traffic levels. The threshold of allowed deviation from

Name Service

TCP Port 25 email transport (SMTP)

TCP Port 194 | IRC

TCP Port 465 | email transport (SMTPS)

TCP Port 587 | email transport (SMTPS)

TCP Port 6667 | IRC

UDP Port 53 name resolution (DNS)
Network traffic | aggregated network throughput

Table 2: A time-series group containing some of the network
time-series belonging to the most widely exploited services.

the time-series to the model can be adjusted in multiples of
variances of the time-series model.

5.1 Root Cause Analysis of Anomalies in Net-
work Time-Series

5.1.1 Data Set

For the following example, the Internet traffic of a small
computer network with a mixed environment of around 30
workstations and servers with about 20 regular users, has
been analyzed on different network layers. To do so, a so
called probe analyzes the traffic going through a central
switch by trying to match descriptors to the data. The
analysis system contains descriptors for different protocols
like TCP or UDP, SIP or HTTP, and application specifics,
for example for each IRC command. For each of those, a
numerical counter exists, which is incremented each time
a descriptor matches. The counters are transmitted in five
minute intervals to a data store, from which applications can
retrieve the counter values and build a discrete time-series
out of them. In the deployed system, a total of 1.6 mil-
lion descriptors are contained, from which around 300,000
matched in the captured traffic of the observed network.

Since the data set contains numerical counters only, sen-
sitive data like source ip, destination ip, or the application
payload can not be stored, which protects the privacy of the
users. While it is possible to use this data set for traffic
and application usage analysis, it is not possible to conclude
which workstations or servers are behaving anomalous. To
overcome this limitation, multiple probes can be added to
different subnets or in front of single servers. Unfortunately,
in our environment this was not possible due to user con-
cerns regarding their privacy.

5.1.2  Searching for anomalies

Our example begins with the analyst browsing through
the network time-series data. Our system is capable of stor-
ing groups of time-series, so that if the active data source
contains series with the given name, they can be loaded
quickly. In our example, the analyst has created a time-
series group containing the time-series shown in Table 2.
This group contains time-series describing the most vulner-
able services, which are usually target of attacks and are
used to be exploited in various ways. Therefore, anomalies
in those series require special attention, because they are
most definitely a sign of unwanted network activity.

To support browsing through the data, the EXPLORERVIEW
visualization is switched to the model difference mode, where
significant deviations of a time-series from it’s model are
highlighted with a blue (lower value as modeled) or red
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Figure 8: Detail from the EXPLORERVIEW. The time-
series are: 1: TCP 25, 2: TCP 465, 3: TCP 587, 4:
TCP 6667, 5: TCP UDP 53, 6: Ethernet traffic. The
time-series for port 194 TCP is missing, because it contained
no data and is excluded from the view. The red x is placed
on the right of detected anomaly.

Al

Figure 9: The EXPLORERVIEW showing the time-series se-
lected at the beginning (the first six) and the time-series re-
turned by the server by the similarity query (the last seven).

(higher value as modeled) background. This view mode is
realized by querying the server for the time-series model, ap-
plying the reverse transformations with the configured band-
filters (see Section 3.1.1), computing the differences of the
model and displaying them in the background of the line-
chart.

The browsing task can be performed by pressing the arrow
keys or scrolling through the data with the mouse wheel.
This simple interaction induces only low cognitive effort and
allows the analyst to concentrate on the visual correlation
of the time-series and on detecting anomalous areas via the
background color of the visualization.

By browsing through the data, the analyst spots an area,
where the general level of Ethernet traffic has a very signif-
icant spike, which is identified as a large deviation from the
model, see Figure 8 the red x at series 6.

Selecting the range of the anomaly with the mouse and
formulate a similarity query, which is executed on the server
is the next step towards identifying the cause of the traffic
spike. After the query has finished, the analyst has the
possibility of getting a list of resulting time-series ordered
by their similarity, or adding them in the visualization for
visual correlation analysis.

Both, the visualization (Figure 9) and the list of simi-
lar time-series (Table 3) indicate a very large, unexpected

| Time-Series

IP - Packet length between 0 and 255

IP - Packet TTL between 64 and 95

TCP - Source Port 36761

TCP - Destination Port 22 and packet length 0 - 255

TCP - Window Size 4096 - 4351

#
1
2
3 | TCP - Destination Port 22
4
5
6
7

TCP - Window Size 3840 - 4095

Table 3: The first seven series returned by the server when
the analyst queried for the anomaly region he visually iden-
tified.

transfer of data to machine outside of the monitored net-
work on port 22 TCP. On the visualization side, the analyst
can clearly see that the spike of the Ethernet time-series
(marked with an a in Figure 9) is contained in all other vis-
ible time-series on the right of the originally queried series.
By that, the analyst can conclude that there are some very
good candidates to get an impression of the application and
the actual use case from. This is strengthened by the fact,
that there are also no anomalous spikes in the focus area of
the visualization. This is additional information which can
not be seen when just a list of similar time-series is returned
by the server.

For all displayed time-series, the spike detected in the ag-
gregated network traffic is an anomaly which can be easily
spotted by the operator.

Having a look at those series (Table 3), it becomes clear
that a large transfer of data has happened. The destination
port 22 TCP is usually used for SSH based services, and
there are some protocol which use SSH as transport protocol
for their application data like SFTP® or rsync. Together
with the detected anomaly in the aggregated network traffic,
the analyst can conclude that most likely a large transfer of
data from the internal network to a machine in the Internet
has been executed.

It has been mentioned in the introduction of this section,
that due to privacy concerns, the network data analysis has
been done on a very abstract level with just counting match-
ing descriptors. In this example, the analyst can therefore
generate very plausible explanations of the observed spike
in the aggregated network traffic. Our system could be able
to determine also the source of the data transfer, if there
would be more probes available. On the server this would
not need any changes, because the modeling is done for each
time-series separately. Also, the client is able to access mul-
tiple data sources simultaneously. If this is the case, the
name of the time-series would be extended with the name
or id of the generating probe, which makes it possible to
identify the source of the displayed time-series — and in this
example the source of the file transfer.

6. CONCLUSION

In this work, we presented a visual analytics system for
analyzing, examining and investigating time-series data. It
provides tight coupling of analytical models and visual repre-
sentations capable of mining through vast amounts of time-
series data. To support this task, the system features a focus
plus context or lens based line chart carefully designed for
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displaying correlation of sub-segments of time-series. All an-
alytical and visual tasks are not possible without the support
of a high performance time-series storage, combined with a
scalable analysis framework. The usefulness of the design
has been shown with a case study where the system allows
an analyst to determine possible causes of a traffic anomaly.

6.1 Future Work

In the future, we plan to extend the current analytic mod-
els to provide a more sophisticated analysis. The server com-
ponent could suggest certain band filters, in order to make
specific classes of network anomalies visible.

The EXPLORERVIEW could also be enhanced with further
visual representations, for example based on glyphs designed
specifically for showing anomalies in time-series data. In
addition to the automatic ordering of the series, it is also
desirable to identify groups and aggregate their visual rep-
resentation in order to reduce the number of visualizations
shown at once. Although preliminary tests and discussions
had been promising, the EXPLORERVIEW with its 90 degree
rotation of the line charts should be formally evaluated to
prove its usefulness.

To show the general applicability of our system and the
design decisions, we currently add other data sources like
DNA sequence data, where visual similarity and anomalies
of the data, which can be interpreted as time-series too, play
an important role for biologists.
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