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Abstract A fundamental task in Criminal Intelligence

Analysis is to analyze the similarity of crime cases, called
Comparative Case Analysis (CCA), to identify common

crime patterns and to reason about unsolved crimes.

Typically, the data is complex and high dimensional

and the use of complex analytical processes would be

appropriate. State-of-the-art CCA tools lack flexibility

in interactive data exploration and fall short of compu-

tational transparency in terms of revealing alternative

methods and results. In this paper, we report on the

design of the Concept Explorer, a flexible, transparent

and interactive CCA system. During this design process,

we observed that most criminal analysts are not able

to understand the underlying complex technical pro-

cesses, which decrease the users’ trust in the results and

hence a reluctance to use the tool. Our CCA solution

implements a computational pipeline together with a

visual platform that allows the analysts to interact with
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each stage of the analysis process and to validate the re-

sult. The proposed Visual Analytics workflow iteratively
supports the interpretation of the results of clustering

with the respective feature relations, the development

of alternative models, as well as cluster verification. The

visualizations offer an understandable and usable way

for the analyst to provide feedback to the system and to

observe the impact of their interactions. Expert feedback

confirmed that our user-centered design decisions made

this computational complexity less scary to criminal

analysts.

Keywords Crime Intelligence Analysis · Visual

Analytics · Clustering · System Design · Human-

Computer Interaction · Sequential Pattern Mining ·
Text Analysis · Dimensionality Reduction

1 Introduction

Comparative Case Analysis (CCA), also called Similar

Fact Analysis (SFA) [29] is an important tool for crimi-

nal investigation and crime theory extraction [28]. Given

a collection of crime reports, the idea is to analyze the

commonalities between crime cases in order to support

reasoning and decision making. For example, examining

solved crimes that have similar characteristics as an

unsolved crime may help the analyst generate a new

hypothesis during a criminal investigation, and under-

standing the uneven distribution of crimes in terms of

offender/s unknown approached school changing rooms,
from side of building, opened insecure fire exit door,
gained entry, stole items belonging to football teams,
mainly money and jewellery, made good their escape.

Fig. 1 A typical Modus Operandi (MO) of a burglary crime
report. The extracted terms are underlined.
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Fig. 2 Concept Explorer: A visual, interactive interface for Comparative Case Analysis. Crime cases and clusters are shown
in the center within the Crime Cluster Table (CCT). On the left hand side, a hybrid analysis perspective on the data and
feature space is provided: A two-dimensional embedding of the crime similarities and the clustering is shown in the Similarity
Space Selector (S3). Another two-dimensional embedding of the feature similarities based on the shared crimes is shown in the
Sequence Similarity Space Selector (S4). The respective features are also shown in the Pattern Selector (PS) on the right hand
side. Tracked interactions and configurations are displayed in the Weight Observer Component (WOC). All views are linked
and allow criminal analysts to develop and verify alternative clusterings from different tightly integrated perspectives.

spaces, types of offenders and victims may help the

police to allocate police resources more effectively [12].

The latter lies in the responsibility of a Tactical An-

alyst (TA) who examines sets of crimes periodically

to find new trends. CCA starts with the extraction of

relevant headings (features) that are considered to be
useful for the understanding of the crime cases. Infor-

mation is then collated under the headings, resulting in

a CCA table where each row is a crime case. As well as

common headings such as day of week or time of day,

the main focus is on extracting concepts from free text

fields such as the Modus Operandi (MO) (see Figure 1).

Manually analyzing an excessive number of such crime

cases (extracting and analyzing the relevant information

for each crime) is a tedious and complex task for crimi-

nal analysts. General purpose analysis tools (e.g., IBM

I2 [20], Jigsaw [36]) and existing analysis approaches

from text or high-dimensional data analysis (e.g., Rup-

pert et al. [30] and Jäckle et al. [21]) can be applied to

criminal intelligence analysis. However, most of the work

does not allow the analyst to develop and validate com-

putational alternatives (transparency of the results) and

does not allow the user to form the familiar structured

CCA tables. In many real world data analysis scenarios,
it is necessary to iteratively improve, adapt and combine

a set of analysis methods to solve the analysis task. This

results in complex pipelines that need to be analyzed

from different perspectives.

In this paper, we present our ongoing research on

the design of a visual comparative case analysis tool

called the Concept Explorer, which comprises several

component views (Figure 2). The work is part of the

EU-funded project “Visual Analytics for Sense-making

and Criminal Intelligence Analysis (VALCRI)” [4]. The

aim of the project is to develop a Visual Analytics (VA)

system to improve the effectiveness of current criminal

intelligence analysis solutions. According to our police

partners, traditionally CCA is carried out manually on

a spreadsheet. The task becomes increasingly difficult

due to the growing volume and complexity of today’s

crime data. When introduced to automatic analysis tech-

niques, such as feature extraction and clustering, that

could help with the analysis tasks, the analysts found

them “scary”, principally due to the lack of understand-

ing of the algorithms and the impossibility to examine

alternatives. In order to design a CCA tool that cap-

italizes on the machine intelligence and at the same

time provides sufficient level of usability, we designed

our system in close collaboration with one police officer

with an extensive analysis background, and received

feedback on a regular basis from several police forces

across Europe. The system design is based on a number
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of analytical tasks we derived through the discussion

with our end users, including:

Task 1. Understand Cluster Characteristics: A

major task of CCA is to identify groups of crimes that

have similar patterns and to understand the key features

that define their main characteristics.

Task 2. Develop Alternative Clusterings: The ana-

lyst needs to be able create several alternative clustering

results.

Task 3. Verify Cluster Robustness: The analyst

needs to verify the robustness and stability of cluster-

ing result. This includes examining changes of grouping

caused by different feature weightings (i.e., removing

or adding features) as well as checking if the clustering

result is stable across different computation methods.

Driven by these tasks, we designed a VA approach in

a user-driven design study with TAs and other domain
experts. The system instantiates the process model for

interactive Dimensionality Reduction (DR) proposed by

Sacha et al. [33] with the aim to provide an interactive

visual platform for the analyst to examine groups of

similar crimes as well as their main characteristics.

The main contribution of this paper is a comprehen-

sive and flexible criminal intelligence analysis tool that

implements a hybrid analysis approach to interactively

analyze the data and feature space in parallel (Figure 2).
The system takes free text fields of crime reports as in-

put, extracts key features from the reports using a series

of NLP techniques, calculates frequent sequences of the

key features, and allows the analyst to select features

of interest and set their weight/importance for similar-

ity computation. The result is displayed in a 2D data

similarity space that can be clustered. The features are

displayed simultaneously in a similar fashion allowing

the exploration and interpretation of the feature space.

A table, inspired by the traditional spreadsheet table,

combines the two spaces and enables the tactical analyst

to undertake a CCA.

Additionally, we elaborate the design process that

was carried out over a period of 2 years and we are able

to report and subsequently reflect on four major design

phases. Figure 3 depicts this system evolution with four

instances of the framework. Each step embeds the DR

pipeline (bottom row) in an iterative exploration process

(right) with several ways to provide interactive feedback

to the underlying analytics (top row).

The work is based on a previous short paper pub-

lication which described an intermediate state of our

current solution [31]. The work was published at the

international EuroVis workshop on Visual Analytics

(EuroVA). The related work in the next section high-

lights various related VA systems as well as systems

specialized on criminal intelligence analysis. Section 3

details four phases of the design process showing the

evolution of each component and ultimately the whole

system. We describe the current system in Section 4

and explain how the components are embedded into the

VALCRI framework. Additionally, we present a use case,

reflecting on its use by TAs. Feedback from the experts

on the current system is reported in Section 4.2 and

then lessons learned during the design process are sum-

marized in Section 5. Conclusions are drawn in Section 6
and future perspectives are outlined.

2 Related Work

Our analysis approach combines many analytical tech-

niques, such as textual feature extraction, sequential

pattern mining, high-dimensional data analysis, and

visual interactive clustering applied to criminal intelli-

gence analysis. We illustrate these with examples.

2.1 Comparative Case Analysis

Comparative Case Analysis (CCA) is based on the no-

tion of comparison, which is a fundamental technique

used by many social science and scientific domains [11].

CCA starts with processing the text to extract key fea-

tures, followed by reasoning and sense making based

on similarity comparison. One challenge of CCA is to

extract features. In the literature this is a manual pro-
cess as presented by Bennell et al. [7] who manually

extracted features from Modus Operandi (MO) of 86

solved commercial burglaries committed by 43 serial

offenders in order to compare the similarity between

burglary case. The findings were used to examine if a

high-degree of similarity between them enables different

cases to be validly linked to a common offender. This

requires a significant amount of work even with this rel-

atively small amount of data. Another challenge is the

comparison. Given a set of crimes, what to compare and

how to compare has to be decided by the analyst [29].

Work carried out by Canter et al. [10] used the Jaccard

coefficient to measure the proportion of co-occurring

features in crimes. The work also applied multidimen-

sional scaling on the data to investigate the consistency

of features across organized and disorganized cases. The

research revealed that disorganized features were either

easy to identify or occur more commonly, probably due

to their vast number compared to organized features. To

the best of our knowledge, no work has been reported

on automatic feature extraction, feature selection and
weighting for CCA.
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2.2 Automated Feature Extraction for CCA

For the feature generation, we use a custom frame-

work based on components from Stanford CoreNLP [26]

and Apache OpenNLP [1]. For characterization of con-

cepts and automated class assignments, two different

resources, Wordnet [27] and Framenet [6] are used. Be-

sides customized retrieval and classification methods,

the analytic parts are based upon state-of-the-art tech-

niques as described by Manning et al. [25] or Jurafsky

and Martin [24].

For our system, we use a Sequential Pattern Min-

ing (SPM) algorithm to mine for frequent sequences of

terms occurring in the MO of the crime reports (see Fig-

ure 1 for an example). The problem was formally defined

by Agrawal et al. [5]. In order to avoid redundant pat-

terns, we mine for a set of closed sequential patterns [19,

43]. We use a Dimensionality Reduction (DR) on the

mined frequent patterns and visualize them in a feature

similarity space. Similarity measures for sequential pat-

terns exist [34], however, in order to be consistent with

the data similarity space, we use a binary feature vector
containing the crime reports where a bit is set to one if

the sequence occurs in that crime report.

2.3 Visual Analytics for CCA

Automatic analysis methods such as feature extraction,

pattern mining, clustering and DR provide effective

means of analyzing large amount of crime data and

extract patterns in it. But Visual Analytics (VA) tools

for supporting CCA are scarce. Software systems such

as IBM I2 [20] and Jigsaw [36] were developed for the
general purpose of Criminal Intelligence Analysis but

little work has been carried out to improve on the manual

CCA process. Jäckle et al. proposed a projection based

approach [21] for analyzing similarity between textual

data items but the approach does not allow police officers

to form the customary structured tables. The Spherical
Similarity Explorer system developed by Zhang et al. [45]

allows the analyst to project crime data onto a spherical

surface for similarity analysis. The tool focuses on one

DR algorithm with limited interaction possibilities.

2.4 Interactive Visual Machine Learning

A VA system should effectively involve the analyst by

interacting with the data and the models at different

stages of the analytical pipeline in order to iteratively

improve, adapt, and combine analysis methods to solve

the analysis task at hand [32]. Recent work by Sacha et

al. [33] surveyed existing visual DR tools and highlighted

interaction possibilities to improve the effectiveness of

the tools. The interpretability of results and the usability

of interactive DR systems, especially for domain expert

users (without technical and data analysis background)

is a major area for improvement.

Existing visual text analytics approaches such as

IN-SPIRE [40] (and its predecessors [15,8]), or recent

works described by Ruppert et al. [30], shed light on

the possibility of automatically processing textual docu-

ments to obtain and explore document clusters. These

systems adopt different DR and/or clustering techniques

to generate visual embeddings of the high-dimensional

data to enable the analyst to compare the similarity

between data items and examine interesting patterns in

the data. Given that DR and clustering are complex pro-

cesses that involve a series of selection, computation and

validation, input from human analyst is often beneficial

and largely unavoidable. Wenskovitch et al. [39] provide

an overview of how to combine DR and clustering and

also recommend design decisions.

2.5 Hybrid Views

Hybrid views, also often referred as dual views, aim

to provide simultaneous access to the data and feature

space. Van der Corput and Van Wijk [38] are using

IF -F I tables to support access to both spaces. Turkay

et al. [37] and Yuan et al. [44] use two tightly coupled

scatter plots. We follow this strategy by creating these

scatter plots through DR. However, additionally we use

one table were both, data and features, are combined

and the clusters generated in the data space can be in-

terpreted. Demiralp [13] uses a heatmap-matrix diagram

in combination with a scatter plot in order to interpret

clustering results. We follow this approach, however, we

utilize bar charts in a table to enable the user to perform

a cluster comparison.

3 Design Study Methodology

We adopted a design study methodology [35] to itera-

tively build and refine our Visual Analytics (VA) ap-

proach based on several rounds of expert feedback from

different user groups. We worked in close collaboration

with one expert with a data analysis background on a

regular basis while we conducted less frequent expert

evaluations with different police forces. In the early

phases, the feedback was provided as we demonstrated

prototypes or versions of the tool to small expert groups.

Later, the experts had to use the tool to perform partic-

ular tasks with a given data set. We are able to reflect

on four major design phases:

Phase 1. Proof of Concept: The research focus was

to test if we can extract useful features from the given
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Fig. 3 The four phases of our design study. Each is represented by an instantiation of the visual interactive Dimensionality
Reduction (DR) process described by Sacha et al. [33]. The pipelines show what core-parts were modified and extended during
the phases. The pipeline delineates (from left to right) data (blue), pre-processing and feature generation (turquoise), DR and
clustering methods (green), and visual interfaces (red). End-user involvement increases as the project progresses.

crime cases and if DR makes sense. The result was a

basic pipeline (Figure 3, Phase 1) with some basic inter-

active visualizations: a 2D projection and a crime matrix

which represent early versions of S3 and CCT (Figure 2).

Phase 2. Design: We enriched the computational and

interaction capabilities. The resulting system calculated

similarities and crime clusters based on a variety of con-
figurations and parameterizations with visual compo-

nents for each pipeline stage (S3, Matrix, CCM Tables

- as described later in this section). However, during

guided demonstrations of the prototype, the criminal

analysts were overwhelmed by the apparent computa-

tional complexity.

Phase 3. Integration & Adaption: All developed

components were integrated into the consortium’s VAL-

CRI framework. With the additional components, such

as a geographic map or timeline, we could investigate

some more realistic use cases together with our domain

experts. This resulted in reducing the computational

complexity and simplifying the user interface, as stated

in our previous work [31] (Figure 3, Phase 3).

Phase 4. Evaluation & Usability: Observations dur-

ing task-based evaluation sessions with crime analysts

from our partner police forces were particularly useful,

especially as one of our users reported being “scared

to death” by the clustering when they were asked to

work independently with the system. Various changes

were introduced to alleviate this. Henceforth, the User

Interface (UI) strictly separated different configurations

and the parameter tuning process was greatly simplified.

We incorporated a Sequential Pattern Mining (SPM)

algorithm and extended our analysis in order to im-

prove the feature selection and emphasis process. A

second perspective on the feature space (hybrid anal-

ysis of data and feature space) was added to help the

users understand relations and patterns of crime clusters.
The current version of the system is shown in Figure 3,

Phase 4.

Phase 5. End-User Training & Evaluation: With

the current prototype, we are now transitioning into the

end-user training and evaluation phase, with the aim to

further improve some UI elements.

The following sections describe the evolution of the

major components of these design phases, giving an

insight into some of the important design decisions made.

3.1 Feature Generation

We developed a text analytics solution that generates

feature vectors for each input Modus Operandi (MO)

text (Figure 1), where each position in the feature vector
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Fig. 4 Phase 1 shows a visual interface to visualize occurrences of adjective noun combinations where the frequency is mapped
to colors from black (zero occurrences) to cyan (max occurrences). A prototype to demonstrate similarity in the generated
feature space is displayed in phase 2. Phase 3 and 4 are omitted because no further visual prototype was developed. Instead,
the feature extraction was refined with experts and a sequential pattern mining algorithm was introduced.

refers to a concept indicating the occurrence of a term in

the input data. This effectively generates the headings of

a Comparative Case Analysis (CCA) table, automating

the data processing conducted by police analysts.

Phase 1: To find some structure in the text data, we im-

plemented a basic Natural Language Processing (NLP)

pipeline, based on part-of-speech tagging and a lem-

matizer to cope with inflected terms. This counted

occurrences of distinct, adjective and noun combina-

tions. The visualization (Figure 4, Phase 1) was a heat

map-like matrix view, that displayed each unique adjec-

tive plus noun combinations (rows) per input document

(columns). This provided an overview of our analysis

results for a large number of documents. However, this

generic approach yielded too many results to be of use,

although the approach of representing the MO text fields

by short extracts was regarded as possibly useful.

Phase 2: To reduce the number of possible features, we

experimented in two different directions: 1) implemented

a tf-idf based term weighting scheme [24]; and 2) de-

signed a data and offense-specific text analysis matching

system, that utilized domain knowledge in order to iden-

tify relevant parts of the MO. Domain experts provided

good insights into the structure of current CCA table

creation and what they regarded as potentially relevant

features. We implemented a prototype using the selected

terms for similarity-based retrieval of data records (see

Figure 4, Phase 2), where the cut-off of terms and selec-

tions of the types of term combinations (bigrams and

trigrams) could be adjusted. Using a variety of settings,

police analysts compared the results with the actual

crime reports. However, the feedback sessions were not

promising, as the results were considered to be fairly

random.

Phase 3: It became clear, that the CCA task uses fea-

tures and concepts that are very specific to the offense

and, hence, we started to integrate sets of concept terms

in the text analysis process. A two-stage analysis process

was developed, that firstly identifies all possible combi-

nations of corresponding terms (unigrams, bigrams, and

trigrams) and then created the text feature space based

on offense specific concept lists. As the VALCRI crime

dataset was mostly burglaries, a relevant set of concept

terms were collected in order to demonstrate the text

analysis process to our end-users. These included 8 dif-

ferent types of concepts, for example, parts of a building,

colors, and a frequency-based list from the dataset. We

discussed missing or wrongly identified features with

the domain experts.

Phase 4: We extended the amount of expert knowledge

by refining the concept lists (feedback from Phase 3).

Experiments with the S3 prototype (see Section 3.2)

showed, that some of the created features were too fine-

grained to be of good use for the CCA process. Addi-

tionally, crime investigators are, for example, interested

in crimes where a burglar enters the building through a

window. A simple extracted term window, however, does

not provide enough information as it probably includes

crimes where the burglar exited through the window.

To cope with such problems, we experimented with a

SPM algorithm, which extracts frequent sequences of

terms as they occur in the crime reports [22]. The order

of the terms is important but gaps are allowed to filter

out extremely infrequent terms that would obstruct a
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sequence from being frequent. Sequences allow a more

fine grained similarity space. For example, the sequence

window steal door probably describes only MOs where

a burglar enters through a window and exits through

a door. The experts reported that features consisting

of term-sequences are useful as they provide a better

picture of the MO. We make use of a minimum support

parameter (minSup) set to 5%, so a pattern has to

occur in 5% of the crimes to be included in the results.

Hence, reducing the amount of data will reveal more

fine-grained patterns containing more terms (see Sec-
tion 4.1).

3.2 Similarity Space Selector – S3

S3, a data projection view, provides a simple interface for

the crime investigators to understand the relations and

similarities among multiple crimes across different DR
and clustering results. It represents the two-dimensional

data space with crimes arranged according to feature

similarities (i.e., if they contain similar crime patterns).

Phase 1: A first prototype explored the capability of

DR techniques to spread out the data based on the

sparse extracted concepts. Initially we used the num-

ber of occurrences of each concept in a crime and tried

out different feature combinations (e.g., building parts

of a house combined with actions or movements, e.g.,
smashed door). The web-based t-SNE implementation [3]

provided promising results (Figure 5, Phase 1) with each

dot representing one crime-report. The central view

shows the current projection while the small multiples

on the side offer alternatives, based on different concept

sets, that might show promising patterns to the user.

Feedback showed that the actual number of occurrences

were not important and that users have difficulties in

identifying the extent of possible clusters in the pro-

jected space.

Phase 2: The underlying data structure was changed

to a binary feature vector where each bit represents one

term. The effectiveness of other DR algorithms were ex-

plored. Figure 5, Phase 2 shows the different DR results

for PCA [17], MDS [9] and t-SNE [2] in the columns left

to the main plot. The rows show projections for specific

feature configurations (e.g., all features or subsets of

specific concept families, such as movements, colors or

building parts), which formed a matrix of small mul-

tiples. Clicking on any of these small multiples moved

it to the central view, with the previous one joining

a history list. The visual clustering was improved by

coloring a convex hull (and the points) based on the

results of k-means clustering [17]. The CCA table (see

Section 3.3) is tightly coupled with the S3 component,

showing concept data from crime reports in selected

clusters. However, experiments demonstrated that users’

trust in the system was low because they did not un-

derstand the projection techniques. Although we antici-

pated that the multiple plots would generate interesting

patterns, they just added confusion.

Phase 3: To simplify the UI, we reduced the compo-

nent to its main view, giving the user the option to

change the DR algorithm, and also added an animated

transitions between the results (Figure 5, Phase 3). Ini-

tially, clusters were recomputed directly after changing

either the importance (weight) of a term or applying

a different DR algorithm. However, it was difficult for

analysts to keep track of the changes, despite using ani-

mated transitions, and this reduced their understanding

of the impact of their actions. Automatic re-clustering

was therefore disabled which allowed our users to track

the animated transitions of the dots (crimes) and clus-

ters. More importantly, it was now possible to track and
assess the cluster robustness (by investigating the dis-

tortion of the cluster hull and the crime colors) and the

impact of the changes (e.g., feature removal or change

to type of DR). This step was a quantum leap for the

users to better understand the different DR techniques

and to understand the cluster dynamics. The user must
actively re-cluster the data to obtain new cluster colors

and hulls. Here, the animated transitions of the colors

and the cluster hulls are also helpful. The DBSCAN

clustering technique [17] was added, which provided

better results in some cases. However, it was still up

to the analyst to select a clustering technique and to

enter the respective parameters (k for k-means, or eps

and minPts for DBSCAN). The transition from Phase

2 significantly reduced complexity for the user interface

but manual parameterization still confused some users

to such as extent that one end-user stated: “Your clus-

tering scares me to death!”.

Phase 4: Figure 5, Phase 4 illustrates that the UI has

been further simplified. Buttons were renamed (PCA to

linear, MDS to distances and t-SNE to neighbors) giving

the user a better understanding of what they can expect

from the different DR techniques. A similar measure was

taken for the visual clustering algorithms: k-means to

non-overlap (because the clusters are clearly separated),

hierarchical clustering [17] to overlap (this clustering

algorithm was added to allow overlapping clusters) and

DBSCAN to outliers (as this density based algorithm

allows outliers that are not part of any cluster). More-

over, the parameters for each clustering algorithm were

replaced by one single slider to control the respective

parameters. The slider has the same semantics as it

shows more clusters when it is dragged to the right.
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Fig. 5 The evolution of S3 beginning with a proof of concept to test the usefulness of dimensionality reduction for displaying
crime report similarities. We experimented with different DR and clustering algorithms and weight models in the second design
phase. Phase 3 shows the integration and simplification of the components to focus on one projection. The user interface
complexity was further reduced in Phase 4, for example, by introducing a simple slider interaction for all visual clusterings and
by strictly separating different computations (DR – top, clustering – bottom).

Pre-computing all clusterings for specific parameters

enables our users to explore the parameter spaces of the

respective clusterings with a simple slider interaction

providing instant feedback. Another beneficial measure

is the clear distinction between the DR techniques (on

the top) and the visual clustering techniques (below).

3.3 Crime Cluster Table – CCT

The CCT supports the CCA task and is, therefore, a

central component of our UI. Crime investigators manu-

ally maintain such spreadsheets where crimes are listed

with user identified crime characteristics as columns.

Phase 1: Our first visualization was a Crime Com-

parison Matrix (CCM, Figure 6, Phase 1). Here, the

extracted concept-term combinations (e.g., Building

Part→door) are displayed as rows (sorted in a descend-

ing order according to their overall frequency) and the

crime cases as columns. The cells are color-coded when

the respective term occurs in the crime report. The ana-

lysts had no difficulty in understanding the component.

However, it showed that such a matrix does not scale
well with many crimes and/or many features and that

a single representation cannot be used for comparing

different sets of crimes.

Phase 2: Multiple CCMs (Figure 6, Phase 2) were used

to support the comparison task of the clusters that are

generated by the S3 component (data projection view).

The coloring of the cells corresponds to the color of clus-

ters in S3. The users welcomed this step as it enabled

them to interpret the clusters. We understood that the

scalability issue is not yet solved.

Phase 3: In a first step, the multiple CCMs were re-

duced into a single CCM (Figure 6, Phase 3). The cells

are colored according to the respective cluster and the

feature weights are mapped to the labels’ font-size. The

latter can be changed in steps by mouse clicks. To cope

with the scalability issues, a secondary view called the

Crime Classification Table (CCT) was developed, taking

advantage of the two-level hierarchy in the features (e.g.,

Building Part→door). Here, only the concepts are dis-

played in separate rows while the corresponding terms,

if they occur in the crime report, are directly written

into the cells. Semantic zooming was introduced that

decreased the font-size of the views and reduced the

spacing. This enabled many crimes/features on a single

display but could make it hard to read the labels. The

users stated that they felt comfortable with this view

and thus, were bolder to experiment with the given fea-

tures. We observed that the users mainly counted how

often a feature occurred in a cluster.

Phase 4: In the transition to this phase, we learned

that one key to understanding a cluster is to check how

frequent a feature occurs in a cluster and whether it

does not occur in any other cluster. Such distinctive

features are interesting to the users and can be steered

by their weights. The CCT shown in Figure 6, Phase 4

was modified to display aggregated clusters as rows [31]

and the feature frequencies as columns. This simplified

the display considerably, whilst still making it possible to

investigate individual crimes by expanding clusters. The

overall frequency of a feature is displayed in the header

via a bar chart in the background of each label. Similarly,

the size of the clusters (number of crime reports) is

displayed in each cluster summary row. The features

(columns) can be sorted by frequency, alphabetically, or

interestingness. The latter favors the most distinctive

features of the clusters (sorting left to right) in order

to support the analyst in interpreting the differences of

the clusters (Section 1, Task 1). To reflect the change
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Fig. 6 The evolution of the CCT component starts with an instantiation of a CCA spreadsheet table. Multiple instances are
created in Phase 2 to compare different clusters. The table is modified in Phase 3 to increase its scalability. In Phase 4, the
table is optimized for comparing clusters.

of emphasis, the component was renamed as the Crime

Cluster Table (CCT) (Figure 2).

3.4 Sequence Similarity Space Selector – S4

S4 is a feature projection view that offers an important

perspective on the feature space, supporting the fea-

ture selection and emphasis task to improve the data

clusters of the projections in the data projection view

S3. The visual clusters are only as good and useful as

the features, therefore, the user needs to understand

feature characteristics of the analyzed dataset including

overlaps, redundancies, correlations and outliers.

Phase 1: An early version of this view (Figure 8, Phase 1)

consisted of a basic feature frequency lists. Even though

it did not reveal any similarities, the overall frequency of

a feature is important for an analytical task as detailed

later on in this section. We experienced that similar-
ity is difficult to visualize in a list view. Therefore, we

started to develop two separate components. The fol-

lowing phases will outline the evolution of the similarity

view. The further development of the list view is detailed
in Section 3.5.

Phase 2: During the design phase, we focused on re-

vealing similar features and added a correlation-matrix,

as depicted in Figure 7, Phase 2. The matrix shows

highly co-occurring features in a saturated blue color

and mutually exclusive features in a saturated red color.

The correlation values for hovered feature combinations

are shown in a tool tip. Negatively correlating features

can be used to split the data, whilst positively correlat-

ing features are largely redundant. As the latter tend

to dominate the projection, users could directly remove

them by clicking on the respective cells.

Phase 3: The matrix did not scale well to an increas-

ing feature space and showed many uninteresting, less

correlating feature pairs, which are not regarded as that

useful by the experts. To overcome these problems, we

created a correlation sorted list where all combinations

with a correlation between −0.3 and 0.3 are omitted

(Figure 7, Phase 3). This simplified the navigation and

allowed the users to spot the interesting correlations

faster.

Phase 4: User feedback revealed that more fine grained

feature combinations are needed to distinguish crime re-

ports (see Section 3.1, Phase 4). With experience of the

data projection view S3, the users better understood the
concept of DR. Therefore, we provided a similar view

for the feature space: the Sequence Similarity Space

Selector (S4) which illustrates the similarities of the fea-

tures (sequential patterns) based on shared data items

(crimes). The length of a sequence (number of terms) is

mapped onto the length of the rectangles and the sup-

port of a feature is mapped onto the opacity (Figure 7,

Phase 4). To help the user better distinguish between

data and feature space, all items in the feature space

use a rectangular shape and no color coding while the

data space uses rounded corners. The bottom part of the

component is replaced by two range sliders. The upper

one sets the frequency range so it is possible to exclude

features with either low or high frequencies; for example

in the removal of outliers (see Section 4.1, Step 5). The

lower slider sets bounds for the length of a sequence.
Longer sequences are typically more specific and, thus,

less frequent. To provide rapid feedback, the chart is

updated whilst dragging the slider. On release, the DR

is recalculated and the updated weights are propagated

to the other components.

3.5 Pattern Selector – PS

The Pattern Selector allows the user to browse and ex-

plore multiple feature patterns.
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Fig. 7 S4 evolution: Starting with a simple list showing the frequency of the features (see Figure 8, Phase 1). Phase 2 introduces
a correlation matrix where highly co-occurring features are displayed in blue, negative correlations are displayed in red. Phase 3
shows a wrapped list instead of the matrix to simplify the navigation. The component is drastically changed in Phase 4 and
uses the analogy of the S3 component showing similarities in the feature space.

Fig. 8 The evolution of the Pattern Selector component starts with a list displaying the features and their frequencies. A
simple frequency list is used in Phase 1. In Phase 2, a table is created that makes use of the two-level hierarchy of the features.
A separate prototype uses a list to display sequences. This prototype is integrated and slightly modified to show the clustering
information as generated by S3.

Phase 1 & 2: In Phase 1, this component was equal to

the feature space component (see Section 3.4, Phase 1).

In Phase 2 (Figure 8), the concept selector leverages the
two level hierarchy of the terms (e.g., door) and their

corresponding concepts (e.g., Building Part). Both are

represented in a table where concepts can be expanded

to view the individual terms. The number of occurrences,

as well as the selection, were displayed accordingly. Des-

elected terms set the corresponding weights, used in the

DR, to zero. Disabling a concept disables all underlying

terms.

Phase 3: The first external prototype using the se-

quences [22] was not linked with the data projection

view S3, however, the end-users stated that sequences

containing three or more items provide enhanced infor-

mation to understand the underlying MO. In Figure 8,

Phase 3, the sequential ordering of terms is shown for

each pattern. Additionally, the terms are color coded to

enable users to detect patterns in the sequences. The
list can be filtered by entering a term in the search field.

Phase 4: The prototype was integrated into the VAL-

CRI framework and revised based on user’s feedback

(Figure 8, Phase 4). The colors were removed to com-

ply with the design decision of not using colors in the

feature views (see Section 3.4, Phase 4). The number

of occurrences is displayed in the first column. The list

can be sorted as in the CCT (see Section 3.3, Phase 4).

The cluster information is displayed as bar charts rep-

resenting the frequency of the feature in each cluster.

The color of the clusters is linked to S3 (data projection

view) and the top row shows the size of each cluster.
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Clicking a feature in the pattern selector provides sev-

eral actions: i) sets the weight (0 removes from display),

ii) filter for crimes that contain this feature, and iii)

filter for crimes that do not contain this feature. This

drill-down operation can be performed multiple times,

with all other components updating automatically (see

Section 3.1, Phase 4 and Section 4.1).

3.6 Weight Observer Component – WOC

The WOC (Figure 2) provides analytic provenance [42]

and captures user interactions [14]. It was initially de-

signed as a tool for the developers to track and un-

derstand how the Concept Explorer was being used.

It tracks and visualizes the feature weights in a multi

line chart and the DR and clustering configuration in

state-history charts (Figure 2). The end-users did not

find it particularly useful but suggested that it could be

part of a reporting feature, outlining their exploration of

the data. The Security, Ethics, Privacy & Legal (SEPL)

board highlighted its crucial role in court cases when

analysts have to justify their decision making. We also

observed that the component can be useful as a book-

marking feature to save and load configurations and

feature weights for specific analytical tasks.

4 The Concept Explorer

The Concept Explorer’s components are embedded into

the VALCRI framework which provides additional com-

ponents such as a timeline or a map view. The Con-

cept Explorer targets the structurization of the Modus

Operandi (MO) through feature extraction (Section 3.1)

and the exploration of crimes, as well as the extracted

features. The VALCRI framework features a web-based

dashboard design [41] in the front-end and a Java-based

back-end to perform more complex operations such as

the Dimensionality Reduction (DR) and clustering. The

user can open a canvas on a screen, each with mul-

tiple components which can be arranged and resized

freely. The components are tightly coupled to provide

a better analytical understanding of the data and its

features. In general, hovering over a feature (e.g., in the

feature projection view S4) will highlight the feature

in other components (e.g., Pattern Selector) with all

crime reports, described by that feature, highlighted as

well. Similarly, hovering over a crime report highlights

features within that report. This linking and brushing

capability is important in understanding the influences

of features in the data similarity space (see Section 4.1).

The Similarity Space Selector (S3, data projection view)

creates the clusters and the cluster information is broad-

cast to the other components, such as the Crime Cluster

Table (CCT). Filters can be applied by all components

to reduce the crime report data set and enable users to

drill down for a specific set of crime reports containing

a user-defined set of features.

4.1 Use Case

The crime set being investigated is normally specific

to a region and a time range and this can be obtained

with the respective components available in the VAL-

CRI framework (map and timeline). Additionally, the

set is filtered by search terms to receive similar types

of crimes. This use case emerged from our experiences

within collaborative evaluation sessions with different

user groups. It comprises a set of different analytical

steps that have been considered useful to solve a variety
of analytical tasks. The following use case demonstrates

this functionality and has been conducted in multiple

paired-analytics and user training sessions.

Step 1: The user is interested in burglaries in schools.

After opening the data and feature projection views

S3 and S4, the hybrid view is arranged as in Figure 9,

Step 1. S4 (left) shows three exposed dark quadratic

rectangles representing to three feature sequences, con-

taining a single term, that occur frequently. These terms

are door (red), rear (blue), and window (green). The

fact that these features are exposed and are highly satu-

rated, suggests to the user that the data similarity space

visible in S3 (right) is mainly separated by these fea-

tures. We have annotated the regions where the crime

reports are located in the same colors as in S4. The

linking and brushing features of the components are

used to obtain this insight.

Step 2: The user is further interested in these features

and increases the weights for the features door and win-

dow and applies a new clustering to better distinguish

the crime reports (Section 1, Task 2). The results are

visible in Step 2.1 where S3 shows four clusters. The

yellow and the green clusters, circled in green, contain

crime reports with the feature window. The yellow and

the red clusters, circled in red, contain door. The blue

cluster, on top, does not contain any of the these fea-

tures. All clusters contain crime reports with the feature

rear meaning that the similarity space is currently not

separated by this (Section 1, Task 1). The user is also

interested in the feature rear and therefore increases its

weight. The data projection view updates immediately

resulting in the view given in Step 2.2 (note that all clus-

ters are rather distorted). The lower part of the clusters,

circled in blue, consists of crime reports containing the

feature rear. The user manually triggers a re-clustering

and also increases the number of clusters using the lower

slider in S3 (Section 1, Task 2). The result can be seen
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Fig. 9 A frequently observable use case starting with the initial data. The user identifies the main features separating the data
space (Step 1) and increases the weights (importance) of interesting features and defines a new clustering (Step 2). A CCA
analysis with detail on demand follows (Step 3). The cluster robustness across different DRs is tested afterward (Step 4). The
use-case ends with a drill-down operation including the pruning of the feature space (Step 5).

in Step 2.3. This sub-workflow presented in Step 2 can

be frequently observed. We call it “cluster-mitosis”.

Step 3: The feature-characteristics of the clusters can

be examined using the Pattern Selector (Step 3.1) and

the CCT (Step 3.2) (Section 1, Task 1). Cluster 5 (Fig-

ure 9, Step 3.2 (dark-blue)) contains only crime reports

that have all three features. This cluster is located in

the bottom center location in S3 (Step 2.3). With the

CCT (Step 3.2), the user can now perform typical CCA

tasks, such as comparing the features of the clusters

to spot interesting co-occurring features. The feature

sequences rear window and rear door, framed in pur-

ple, are only present in clusters 3, 4 and 5 where the

single-term sequences are present. The bars displaying

the frequency of the feature in the clusters are not full,

showing that there are some crimes which contain the

feature sequence door rear. But this sequence is too

infrequent (less than 5% of the crimes; see Section 3.1,

Phase 4) to be in the feature result set and therefore is

not visible as a column in the table. Furthermore, the

gray bars in the header, show that the feature sequence

rear window is more frequent than rear door. The user

expands cluster 5 in the CCT to inspect the individual

crime reports. A similar view is visible in Figure 2. By

clicking on one crime report, the crime-card opens show-

ing more details of that crime including the MO (Step

3.3). As this cluster only contains crime reports holding

all three features, the user can find these features in

the text. Due to the order of the terms, the crime also

contains the sequences rear door and rear window.

Step 4: The user checks the other projection methods
(Section 1, Task 3) such as “distance” (MDS) and “neigh-

bors” (t-SNE). Whilst the “distances” only shows that
the clusters expanded a little (Step 4.1), the “neighbors”

projection shows a different picture (Step 4.2). This

projection favors neighborhoods and therefore shows

identical crimes in non-overlapping rings. These crime-
rings can be important in the users’ analysis. The user

learns that there are a few crime-rings containing the

feature sequence climb roof. The feature is highlighted

in Step 4.2 (right side) and the crime-reports are high-

lighted with a black border in Step 4.2 (left side). The

user is further interested in these crimes and filters the

crime data set on the feature climb roof (drill down).

Step 5: The remaining dataset contains 46 crime re-

ports. However, the set of features has increased to 110

because a pattern must occur in at least 5% of the

crime reports to remain in the result set which are only

two crimes in this case. These longer and more specific

sequences can be already interpreted by the experts

without the need to read the MO (Section 3.5, Phase 3).

S4 shows an outlier circled in yellow in Step 5.1. At
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Fig. 10 The use case as it is recorded in the WOC component.
The line chart represents the weights of the features. The upper
state-history chart represents the clustering. The different
colors represent different clustering algorithms or changes in
the parameters. The lower state-history chart shows changes
of the DR algorithms.

this location, three features climb, roof and climb roof

are overplotted. These features are outliers since they

describe all crimes in the result set. Thus, these features

are uninteresting and do not influence the DR in S3.

The user removes these features by changing the range

slider as indicated by the red arrow in Step 5.1. The

user sets the range of the support for a feature to 2

- 40. Features that have less or more occurrences are
removed by setting their weights to 0. This change only

affects the outliers. The remaining feature set contains

107 features and their similarity space is redrawn (Step

5.2). Note that this did not change the data similarity

space in S3. Whilst browsing the features in the Pattern

Selector, the user spots one feature climb roof skylight
and repeats the cluster-mitosis step to obtain a cluster

for this feature. These features are described by the red

cluster (Step 5.3). They are overplotted in S4 (Figure 9,

Step 5.2 (purple circle)) because they are redundant.

This use case was captured by the WOC (Section 3.6)

as shown in Figure 10. Going from left to right, it shows

the weights (importance) were increased for the fea-

tures window and door. The upper state-history chart

then shows that a new clustering was triggered man-
ually (change from light blue to orange). Afterwards,

the weight for feature rear was increased in Step 2.2. A

re-clustering was executed in Step 2.3 which is visible

in the change of color from orange to light-orange in

the upper state-history chart. The user experimented

with the projections as shown in the lower state-history

chart (Steps 4.1 and 4.2). The Tactical Analyst (TA)

proceeded with a drill-down for climb roof and then re-

moved uninteresting features (their weight was changed

to 0 in Step 5.1). The cluster-mitosis step was repeated

with the feature skylight for Step 5.3.

The use cases represents a possible workflow, high-

lighting many of the features of the Concept Explorer.

As a toolset, the respective Steps (1-5) can be freely

combined and repeated to explore the data in depth.

4.2 Expert Feedback

We obtained feedback for the current system from a soft-

ware developer and data analyst developing solutions

for police forces (internal expert). We also presented the

system to criminal investigators of the German police

who are not part of the consortium (external experts)

and did not have any training on the system.

The experts reported that the extracted features are

relevant for their analytical tasks and the navigation

in the data and feature space is easy due to the rapid

updates and the linking and brushing capabilities. The

crime investigators stated that without any user train-

ing the system seems to be very complex at first glance,

however, it is definitely relevant for TAs as it can pro-

vide a much better overview for (large) sets of crimes.

Tooltips provide relevant details on demand. Addition-

ally, it avoids the cumbersome and very time consuming

manual extraction of the features. The internal expert

states that the addition of the S4 and Pattern Selec-

tor components provides valuable functionality and are
highly relevant for the tasks of the TAs. All experts

agree that the existing instantiation of the CCA table

provides easily understandable access to the data and

feature space and is suitable to perform CCA tasks. The

external experts remarked that it would be necessary

for users to add new concepts to the concept lists when

dealing with new MOs and crime types.

The WOC is criticized as it looks complex and labels

are missing. The experts affirm that such a component

is useful for the analyst and others in order to explain

the decision making. However, the actual numbers for

the weights are necessary in order to generate reports.

5 Lessons Learned

The system was developed in collaboration with domain

experts over a period of 2 years. Hence, we are able to

enumerate observations and lessons learned.

Our initial User Interface (UI) comprised multiple

scatter plots that show visual embeddings using different

configurations (Dimensionality Reduction (DR) types,

feature subsets, etc.). Without much training, our end

users reported that it was difficult to understand the

results obtained with the different settings. They consid-

ered the concept of DR to be very abstract and found it

hard to interpret and trust the result shown in scatter

plots where the “meaning of axis” is missing. Although

there exists work by Gleicher [18] to provide meaningful

axes, this issue became irrelevant over time as the users

learned that only the distance, not the actual position
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is meaningful. As the CCT UI was familiar in some

respects, it helped the users interpret the results of DR

and visual clustering. We also recommended that the

criminal analysts start with a few clusters that can be

interpreted more easily. This allowed them to anchor

particular areas (or specific crimes) in the projection

which could be related to some specific patterns (e.g.,

a particular area contains all the “roof” crimes). The

cluster slider allows them to easily increase the number

of clusters whilst the animated transitions enables the

tracking of positional changes. Interacting with the sys-
tem and observing the changes helped the analysts to

understand how the methods work and how they can

interpret the results. While the users always showed

interest, it was observable that the main interactions

drifted to the spreadsheet tables even though such a

comparison required much more effort. Due to the sim-

plifications of the S3 component, plus a training effect

over time, the users became more confident and exper-

imented more with the component. However, we also

learned that it is essential to provide the analysts with

tools they are familiar with (e.g., the spreadsheets) and

the interpretablity of the results is the key to building

trust in the system, as is providing useful interactive

feedback. It is also worth mentioning that the system

helped us (as developers) to understand the extracted

data. We realized that some features occur with high

frequency while others are very sparse. The user can

now refine this with the help of the S4 component us-

ing the range sliders. Training of the users with the S3

component made this transition easier.

We experienced that consistency in such a complex

system is vital. Users will immediately ask why certain

linking and brushing capabilities are not working in

one component or working differently in another. This
consistency includes design decisions such as shapes and

colors. Consistency is also fundamental in helping the

user relate and navigate the data and feature spaces.

Combining these two in the CCT provides additional

context. As with many systems, tooltips are a useful

aide-memoire as well as an easy method to show details

on demand.

Users typically show interest in novel components

and methods. With guidance and explanations the ex-

perts were able to solve the tasks reasonably well. How-

ever, on their own, the users were much more hesitant

because they missed guidance from the system or an an-

alyst. To overcome this, substantial effort has to be put

in to lowering the complexity of a component whilst not

sacrificing too much functionality. This includes chang-

ing labels so they express what the users can expect

when they interact with it. Here, users and developers

should agree on terms for the labels. Additional demon-

strations and training helped the user to build trust in

the system.

Most of the users are not interested in technical

details. Others are interested in everything, but as non-

computer scientists, they are unlikely to understand

complex concepts and importantly, we should not expect

them to understand. We learnt that it is better to explain

how to react in certain situations. For example, during

demonstrations we explained that the feature space of

the S4 component “does not look nice” as much space is

wasted when there are outliers (see Section 4.1, Step 5.1).

In this situation, the user has to rate the interestingness

of such features and react with defining a different weight

for it. A clear separation in the UI helps the users to

remember the associated tasks.

Automation comes at a cost to interpretability. Whilst

it saves time, it may greatly increase the complexity,

resulting in a major decrease of trust in the system.

For instance, disabling the automatic clustering really
helped the users to better understand the difference

between the DR and the visual clustering. In the words

of the users: the DR is responsible for moving the crimes
while the clustering changes the colors. Additionally, it

helps the user to spatially anchoring individual crime

reports and clusters across different projections.

Sliders with sensible limits and direct visual feedback

and are a great way to encourage the user to trying dif-

ferent settings. In early versions, the users were reluctant

to try out different alternatives for weights, projections

and clusterings. We also provided them with a cluster

interpretation strategy. Starting with a few clusters, al-

lows the users to interpret and understand the major

areas and features within the projections, that can be

iteratively refined. We implemented this exploration

strategy with the clustering slider.

Like many Visual Analytics (VA) tools, the scal-

ability of our system is limited. Our domain experts

suggested a typical targeted analysis task (e.g., looking

at crimes happened in last three months in a specific

region) involves no more than 500 crimes. For our use

cases the tool worked reasonably well on 2000 crimes

with 300 features. However, calculating the distances

and sorting is bounded by computational complexity.

PCA and MDS work the fastest. T-SNE is the slowest.

Calculating all clustering parameterizations does not

take too long as only 2 dimensions are covered. In any

case, the user sees visual cues hinting that a computa-

tion is being performed. Although the users state that

waiting for a certain computation is acceptable, we do

not freeze nor disable any component, but allow the

user to continue the exploration.

The Sequential Pattern Mining (SPM) processing

step, after the feature extraction, offered valuable advan-
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tages. The number of features is reduced as rare features

are pruned and the relevance of a feature is related to the

overall size of the current dataset being analyzed. This

means that in smaller and more specific datasets the

features are likely to contain more terms and are there-

fore more fine-grained. The use of patterns (sequences of

terms) allows crime reports to be better differentiated.

Additionally, this step allowed us to preconfigure default

weights based on the length of a sequence. Here, we

assume that a longer sequence is more valuable to the

user, but typically describes less crime reports (due to
the antimonotonicity of patterns [5]).

We incorporated many changes in the UI to remove

or hide complexity. As in many projects, it took time

to find a common level of expert language to efficiently

discuss features and issues. We found it beneficial to

attend workshops where experts explained their daily

work and detailed their analytical tasks, including the

problems they typically face. Frequent software updates
maintains a welcome degree of familiarity with the sys-

tem, helping the experts keep abreast of the changes and

reduces the amount of the training. This also increases
the motivation of the experts, encouraging them to be

more open in stating issues in using the tool, which

eventually increases the productivity.

In contrast to the work of Johansson et al. [23],

the Concept Explorer is specifically designed for expert

users. However, many parallels in the lessons learned

are visible. Users are easily overwhelmed by complexity

which can be partially compensated by frequent user

training but removing or hiding complexity yields a

more sustainable effect. Our end users also expressed

the wish for more guidance but in the same breath,

they wanted to keep the freedom and transparency of
the current system (which is required in the criminal

intelligence analysis domain). We experienced positive

feedback during paired-analytics sessions as guidance

from the developers combined with the expert knowledge

has a positive synergy. Overall, we observe a tradeoff

between guidance and the transparency across different

algorithmic alternatives.

6 Conclusions and Future Perspectives

We presented our research in designing an interactive

Comparative Case Analysis (CCA) system in collabora-

tion with domain experts and detail on how components

and the overall system has changed over time in a de-

sign study. The current system provides a powerful tool

using a hybrid approach to simultaneously analyze and

explore the data and an automatically generated fea-

ture space. Dimensionality Reduction (DR) techniques

are utilized in a similar fashion to visualize the similar-

ity spaces. The hybrid view aids the users in drawing

conclusions on the effects of features in the data space.

The tight coupling of multiple components allows ac-

cess to the data from different perspectives. Our DR

pipeline implementation supports a variety of interac-

tions but we observed and learnt that analysts may be

overwhelmed by an excessive number of visual alterna-

tives and configuration options. To tackle this problem

we allow the users to interpret the results and interact

directly with them in the crime table (the tool that they
are familiar with). This helped them to understand and

importantly, build trust in the computations. Our visual

interaction design is generalizable to other data types

and applications. To this end, we now include additional

structured metadata, such as the weekday or known

offender properties (e.g., gender, age) in our analysis.

In future work, we aim to enrich the table interac-

tions with semantic mappings to DR pipeline adaption
(inspired by Endert et al.’s work on semantic interac-

tion [15,16,14]). For example, we want to allow the

Tactical Analyst (TA) to re-arrange columns or rows

to derive feature weights. An automatic sorting of the

cluster-rows, for example, based on the td-idf measure

could support the analyst in the CCA task. Similarly, we

want to automatically derive which DR type is closest to

the analyst’s feedback (e.g., when the analyst declares

two clusters as similar).

Based on the feedback of the experts we will also im-

prove the WOC by hiding unchanged features in the line
chart and showing them only on demand. Furthermore,

a filter list can be used to selectively compare different

histories of feature sets. Labels, as well as the values
in numbers will be added to allow simplify the gener-

ation of reports. Annotations in the WOC can enable

the analyst to explain and justify their decision making.

Eventually, this may enable us to generate templated

reports automatically.

The VALCRI project is in its final phase that will

focus on the end-user training and evaluations. Our plan

is to quantitatively measure which interactions are used,

to capture the analysis processes of different analysts,

and to collect more qualitative feedback.

One important aspect of the Concept Explorer as a

tool for TAs is to manually add new concepts. Addition-

ally, users reported that many concepts are not useful

for a specific case, so a preconfiguration step selecting

and adding features will be beneficial.

We provide insight into the development of a rather

complex tool and show how we gradually decrease and

hide the complexity from the user during the develop-

ment in order to make it “less scary”.
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