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Fig. 1: We present a workspace that enables the evaluation and comparison of adapters — lightweight alternatives for language model
fine-tuning. After data pre-processing (e.g., embedding extraction), users can select pre-trained adapters, create explanations, and
explore model differences through three types of visualizations: Concept Embedding Similarity, Concept Embedding Projection, and
Concept Prediction Similarity. The explanations are provided for single models as well as model comparisons. For each explanation,
we provide further explanation details, such as the word contexts as well as embedding vectors themselves.

Abstract—Neural language models are widely used; however, their model parameters often need to be adapted to the specific domains
and tasks of an application, which is time- and resource-consuming. Thus, adapters have recently been introduced as a lightweight
alternative for model adaptation. They consist of a small set of task-specific parameters with a reduced training time and simple
parameter composition. The simplicity of adapter training and composition comes along with new challenges, such as maintaining
an overview of adapter properties and effectively comparing their produced embedding spaces. To help developers overcome these
challenges, we provide a twofold contribution. First, in close collaboration with NLP researchers, we conducted a requirement analysis
for an approach supporting adapter evaluation and detected, among others, the need for both intrinsic (i.e., embedding similarity-
based) and extrinsic (i.e., prediction-based) explanation methods. Second, motivated by the gathered requirements, we designed
a flexible visual analytics workspace that enables the comparison of adapter properties. In this paper, we discuss several design
iterations and alternatives for interactive, comparative visual explanation methods. Our comparative visualizations show the differences
in the adapted embedding vectors and prediction outcomes for diverse human-interpretable concepts (e.g., person names, human
qualities). We evaluate our workspace through case studies and show that, for instance, an adapter trained on the language debiasing
task according to context-0 (decontextualized) embeddings introduces a new type of bias where words (even gender-independent
words such as countries) become more similar to female- than male pronouns. We demonstrate that these are artifacts of context-0

embeddings, and the adapter effectively eliminates the gender information from the contextualized word representations.

Index Terms—Language Model Adaptation, Adapter, Word Embeddings, Sequence Classification, Visual Analytics

+

1 INTRODUCTION

Language models (LMs) such as the masked language model
BERT [11] are widely used for diverse natural language processing
(NLP) and understanding tasks. Such models are capable of learning
manifold language properties in an unsupervised manner [59]. How-
ever, the model parameters typically need to be updated before using
them on downstream tasks, such as sentiment classification. Task spe-
cific fine-tuning [27,55] along with domain specific fine-tuning [21,22]
are the most common methods for parameter adaptation. Although
fine-tuning methods commonly achieve state-of-the-art results on many
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NLP tasks [55], they come along with limitations such as a high train-
ing time and storage [32]. To overcome the shortcomings of the model
fine-tuning, Houlsby et al. [26] have recently introduced adapter mod-
ules — a lightweight alternative for LM fine-tuning. Instead of adapting
the complete model, adapters learn a small set of task-specific parame-
ters, requiring less training time and storage space. For a more efficient
adapter training and composition, Pfeiffer et al. [49] have proposed a
modular adapter framework called AdapterHub. It comes along with
adapter-transformers — an extension of HuggingFace’s transformers li-
brary!, integrating adapters into state-of-the-art LMs. In addition to the
simple parameter adaptation, the AdapterHub framework allows shar-
ing adapters with the community, supporting open science practices.
The AdapterHub repository currently contains almost 400 adapters
for 72 text analysis tasks and 50 languages. To select the best adapter
for a given analysis task, one needs to be able to compare the adapters
and their learned language properties. The related work has shown
that such model comparison tasks are the focus of both model- and
data-driven users working with LMs [5]. To understand more about
the typical analysis setting, data, and performed tasks when evaluating
fine-tuned model properties, we conducted literature review and semi-
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structured interviews with two NLP researchers. The requirement anal-
ysis revealed that researchers are interested in analyzing models with
respect to different human-interpretable concepts. In particular, they
investigate how specific concept representations change during fine-
tuning. The analysis is typically performed on two types of data: (1)
word embedding representations and (2) classifier prediction outcomes.
Using word embeddings, they analyze evolving concept intersections
as well as newly produced artifacts like strange word associations (e.g.,
biases). Prediction outcomes are used to analyze task-adapted model
behavior changes, e.g., whether specific word associations lead to un-
expected prediction outcomes.

The adapters trained on one particular task typically have different
architectures [26, 50] and training corpora. These different learning
settings usually lead to different model performances; it is difficult,
though, to keep track of such performance variations. The continuous
development of new adapters thus dictates the need for a solution that
assists the analysis and comparison of adapter properties.

To support the NLP community in an effective adapter evaluation
and comparison, we contribute a novel visual analytics workspace. The
workspace integrates adapters from the AdapterHub repository and en-
ables their analysis through three types of visual explanation methods:
Concept Embedding Similarity, Concept Embedding Projection, and
Concept Prediction Similarity (see Fig. 1). We support model compar-
ison according to their produced word embeddings and classification
predictions, i.e., both intrinsic and extrinsic evaluation methods. The
explanations are performed on diverse human-interpretable concepts
related to bias mitigation and sentiment analysis tasks (e.g., gender-
related stereotypes, human qualities). The users can upload further con-
cepts to the workspace to cover further analysis directions. The modular
composition of visual explanations supports such analysis extensions.

The comparison of adapter properties requires sufficient comparative
visualization designs. As described by Gleicher [19], the design of com-
parative visualizations is not trivial since they typically combine the
issues of representing individual objects as well as their relationships.
In order to design an appropriate solution, we rely on the comparative
visualization guidelines [19] and consider four task- and data-related as-
pects: (1) comparative elements, (2) challenges related to representing
relationships between the comparative elements, (3) strategies to over-
come the challenges, and (4) a sufficient design solution. The design
process constituted of several iterations in close collaboration with NLP
researchers. In Sect. 5 we present some of the considered design alter-
natives; others are provided as supplementary material to this paper.

We show the applicability of the workspace through case studies cre-
ated collaboratively with NLP researchers. In particular, we compare
the properties of six adapters related to debiasing, sentiment classifica-
tion, and named entity recognition tasks. We present new insights into
model properties related to human-interpretable concepts and show that,
for instance, context-0 (decontextualized) embeddings of the adapter
trained on the language debiasing task contain a bias where words be-
come more similar to female- than male pronouns; however, the gender
information is eliminated from the contextualized word representations.

To summarize, the contribution of this paper is threefold. (1) We
present requirements for a visual analytics system supporting fine-tuned
LM comparison. (2) We introduce a workspace for model comparison
and present design considerations for three types of comparative, visual
explanation methods. (3) We present new insights into multiple adapter
properties through expert case studies.

2 BACKGROUND AND RELATED WORK

In the following, we describe background information related to LM
fine-tuning and related work to explanation methods.

2.1 Language Model Fine-Tuning

In this paper, we analyze transformers, which are multi-layer models
that use attention mechanisms [69]. In these models, each token of the
input sequence is mapped to a high-dimensional vector (i.e., context-
dependent embedding that encodes specific context properties). These
embeddings are updated in each transformer’s layer; thus, one can ex-
tract and analyze contextualized word embeddings layerwise (e.g., 12

layers for the BERT-base model). It has been shown that these em-
beddings encode different language properties found in the training
data [59]. LMs, including transformers, are commonly fine-tuned to
capture language characteristics for specific domains or tasks. Domain-
adaptive fine-tuning is an unsupervised fine-tuning approach based on
a masked language modeling task on text from a specific domain [22].
Intermediate-task training is a model’s fine-tuning on labeled data prior
to task-specific fine-tuning [52]. Task-specific fine-tuning deals with
adapting an LM to a particular output label distribution [27]. The fine-
tuning of LMs is effective yet time- and resource-consuming. Kirk-
patrick et al. [32] also showed that fine-tuning can lead to catastrophic
forgetting of language characteristics acquired during the model’s pre-
training. To overcome these limitations, Houlsby et al. [26] introduced
adapters. They are a lightweight alternative for model fine-tuning, only
optimizing a small set of task-specific parameters learned and stored
during the adaptation phase, thus, reducing both training time and stor-
age space. The AdapterHub framework [49] has brought the advantage
of a simple and efficient adapter composition and reuse — one can upload
their trained adapters to the AdapterHub or HuggingFace? repositories,
and they are available in the framework for interested parties, supporting
the open science practice. Adapters can be trained on masked language
modeling as well as specific downstream tasks (e.g., sentiment classifi-
cation). The trained adapters can be ‘attached’ to the pre-trained model,
leading to adapted model parameters. The model with an attached task
adapter can be used for the target task (e.g., sentiment classification).
Adapters have been applied for tasks such as natural language gener-
ation [38], machine translation [31, 53], domain adaptation [18,51],
injection of external knowledge [35], and language debiasing [34].

2.2 Visual Embedding Explanation and Comparison

With respect to explainability, most relevant work has focused on visu-
alizations that show how transformers work and what they learn. For
example, visual analytics systems like NLIZE [40], Seq2Seq-Vis [66],
BertViz [70], exBERT [25], SANVis [46], and Attention Flows [10] vi-
sualize the attention layer, i.e., to highlight tokens to which the model
attends to in order to solve a task. Although widely used, attentions
and their suitability for explanation purposes are being controversially
discussed in related work (see, e.g., [28]). Other work has focused on
visualizing word embeddings to show what LMs learn. The first such
tools were designed for static embeddings, such as word2vec [44] and
GloVe [47], and facilitated analogies [39] and tasks related to local word
neighborhoods [23]. Later, Berger [3] explored correlations between
embedding clusters in BERT [11]. Recent tools focus on LM compari-
son tasks by visualizing multiple models simultaneously. For instance,
Strobelt et al. [67] present LMDiff — a tool that visually compares LM
probability distributions and suggests interesting text instances for the
analysis. Heimerl et al. [24] present embComb, which applies different
metrics to measure differences in the local structure around embedding
objects (e.g., tokens). Embedding Comparator by Boggust et al. [5] is
a system for embedding comparison through small multiples. It calcu-
lates and visualizes similarity scores for the embedded objects based
on their local neighborhoods (i.e., shared nearest neighbors). Differ-
ent from these two approaches, we provide explanations of pre-defined
human-interpretable concepts, enabling testing more specific hypothe-
ses related to embedding intersections. Sivaraman et al. [65] present
Emblaze, which uses an animated scatterplot and integrates visual aug-
mentations to summarize changes in the analyzed embedding spaces.
In contrast, we compare models by aligning the two spaces using juxta-
position, superposition, and explicit encoding techniques. Our recent
work called LMFingerprints [62] applies scoring techniques to exam-
ine properties encoded in embedding vectors and supports model as
well as model layer comparison. Embedding comparison tasks are rel-
evant for all types of data that get represented by embedding vectors.
For instance, Li et al. [36] present a visual analytics system for node
embedding comparison (i.e., graph data), and Arendt et al. [1] intro-
duce a visualization technique called Parallel Embeddings for concept-
oriented model comparison on image data, to name a few.
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Fig. 2: The workspace contains three views: Adapter Composition View (A), which lists adapters from AdapterHub repository, Explanation
Composition View (B) for modular explanation generation, and Visual Comparison View (Workspace) for model comparison. Here: contrary to
the rotten-tomatoes model, the context-0 embeddings of the sst-2 sentiment classifier strongly encode the two polarities of human qualities.

3 REQUIREMENT ANALYSIS

Before designing the visual analytics workspace, we conducted a lit-
erature review related to LM comparison tasks (e.g., [5,24,65]). Fur-
thermore, we conducted two semi-structured interviews in an online
setting with two NLP researchers (co-authors of this paper) with exper-
tise in language modeling tasks to discuss further common evaluation-
related analysis aspects. Our goal was to gather specific linguistically
motivated analysis tasks and research challenges for the evaluation of
adapted LMs. In the following, we describe the gathered requirements
through Models and Data and Users and Tasks [45].

3.1 Models and Data

The NLP research focuses not only on developing and adapting new
models with better performance but also on understanding the lin-
guistic properties the models implicitly capture. Probing classifiers
[12,29,37] and adversarial testing [20,41,58] are the most common
methods used in computational linguistics to understand such prop-
erties. The current research explores not only what the models learn
but also when they fail and which limitations they have, such as dif-
ferent types of biases [4,17,43]; as well as ways to mitigate those bi-
ases [14,16,56,57,72]. Visualizations are used to analyze the model
latent spaces to gain insights into the degree of changes in embedding
vectors [15,61], properties encoded in embedding vectors [62], and
word neighborhood changes [5,24,65]. Especially, the comparison of
embedding local neighborhoods is one of the critical tasks for many
users of LMs [5,65]. For such comparisons, one first needs to select
words for the analysis. Boggust et al. [5] write that this is commonly
done either in a data- or model-driven way, for instance, by exploring
specific domain-related words or challenging words for the analyzed
model. During the interviews, the NLP researchers agreed with this
statement and emphasized that evaluation methods related to model
limitations often explore specific, pre-defined human-interpretable con-
cepts such as gender-related stereotypes. When analyzing such human-
interpretable concepts, people commonly analyze contextualized word
embeddings. For some methods (e.g., Word Embedding Association
Tests [7]), researchers compute word-level vectors without an explicit
context [34,71]. In particular, for BERT, one can append the sequence
start and the separator token before and after the word, respectively
(e.g., [CLS] word [SEP]) and extract embeddings with context size
zero [74] (also known as decontextualized embeddings [6]). In the
following, we call them context-0 embeddings. Our experts also em-
phasized the need to ‘connect’ the embedding space with the model’s
behavior to inspect whether specific embedding vectors influence the
model’s predictions on downstream tasks.

3.2 Users and Tasks

With this work, we aim to support developers and researchers who adapt
and evaluate LMs to perform their analysis more easily by focusing on
the analysis of diverse human-interpretable concepts. To do that, we
gathered task-related requirements. NLP researchers’ work is related to
comparison (i.e., baseline) tasks. In particular, their analysis typically
involves (T0) a comparison of multiple LMs with different architectures
or fine-tuning settings as well as multiple model layers. Second, they
typically analyze specific human-interpretable concepts and try to (T1)
partition the representation (e.g., embedding) space according to these
concepts. Third, they try to (T2) understand interactions between
specific concepts, e.g., to what extent these concepts are represented
similarly in the representation (e.g., embedding) space. They aim to
(T3) detect ‘unexpected’ associations, e.g., positive sentiment words
that tend to trigger the negative sentiment because, e.g., they are negated.
And finally, their goal is to (T4) connect the representation space with
the actual behavior of the model, e.g., to understand whether concepts
are separated in the representation space yet do not affect the behavior
of the model.

4 VISUAL ANALYTICS WORKSPACE: DATA PROCESSING

In this section, we present our visual analytics workspace and its three
main components: Adapter Composition View (in Fig. 2 A), Expla-
nation Composition View (in Fig. 2 B), and Visual Comparison View
(in Fig. 2 Workspace) for model and layer comparison. Before introduc-
ing the workspace design in Sect. 5, we describe the data processing.

41

Motivated by the gathered requirements, we first build the data model.
Since human-interpretable concept analysis plays a crucial role in NLP
research, we start by modeling such concepts. By default, we work
with concepts that are commonly used in research related to bias miti-
gation® and sentiment analysis. The users can upload further concepts
as .json files in the interface. One concept is represented by two word
lists, each having a specific polarity. For instance, a concept called
person names consists of two word lists — male person names and fe-
male person names, respectively. We provide the following concepts:
male/female person names, male/female pronouns, male/female-related
nouns, male/female-related stereotypes, positive/negative human quali-
ties, high/low-GDP countries, and words related to weak/strong, fam-
ily/career, science/arts, intelligence/appearance.

We first model each word in a concept through a list of sentences in

Data Modeling
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which the word is used. For this purpose we use the Yelp dataset [73];
the user can also upload other datasets and use them for explanations.
The associated sentences are used for two purposes. First, we use them
as an input to the (adapted) LM to extract the word’s contextualized
word embeddings. The embeddings are extracted layerwise (i.e., layer
1-12 for BERT-base) and get aggregated [6] for each unique word (e.g.,
one average embedding from all occurrences of the word Germany
per layer). Second, we use these sentences as input for task adapters
for prediction making. Furthermore, we extract the word’s context-0
embedding by using the model’s special tokens and the word itself as
the input to the model (i.e., [CLS] word [SEP]). For words that do not
occur in the vocabulary, we average their sub-token embeddings.

4.2 Adapter Composition and Explanation Composition

We load adapters from AdapterHub repository and list them in the
Adapter Composition View. The user can select an adapter for the
analysis by clicking on the particular icon. Currently, we have pre-
processed the data for six models: the pre-trained BERT (BERT-base-
uncased), the debiasing BERT [34], and four task adapters for BERT
(sentiment classifiers sst-2, rotten-tomates [54], and imdb [54], and
the named entity recognizer conll2003). For a new adapter selection,
the data is first pre-processed and stored in the database.

The user defines which explanation methods to use for their analy-
sis in the Explanation Composition View. The explanations are con-
structed from available concepts and three visualization types. The
visualizations include Concept Embedding Similarity, Concept Embed-
ding Projection, and Concept Prediction Similarity. The Concept Em-
bedding Similarity requires an input of two concepts: one is used as
an anchor in the visualization and the other is explained through the
cosine similarity to the anchor. The Concept Embedding Projection re-
quires an input of one or two concepts (to analyze a single concept or
the relation between two (un)related concepts). The user can choose
between multiple projection techniques: Principal Component Analy-
sis (PCA) [30], Multidimensional Scaling (MDS) [33], t-Distributed
Stochastic Neighbor Embedding (t-SNE) [68], and Uniform Manifold
Approximation and Projection (UMAP) [42]. The Concept Prediction
Similarity can be applied only on adapters with prediction heads (e.g.,
sentiment classifier). The explanation requires an input of one concept;
the class labels are used as anchors in the visualization.

The pre-computed adapters, as well as created explanations, are dis-
played on top of the Visual Comparison View, represented through an
icon and adapter’s or explanation’s name. The user first selects an expla-
nation type, then an adapter that they would like to analyze. To guide
the users toward interesting adapters for the analysis, we display a glyph
underneath the adapter’s icon. The glyph shows the overlap between
the two concept word lists for the selected explanation. The overlap is
determined using a similar algorithm to the class consistency [64] that
is commonly used to select good scatterplot views for high-dimensional
data. An example of these glyphs is shown in Fig. 2. The explanation vi-
sualization is displayed in the Visual Comparison View on a zoomable
canvas; hence, one can display as many explanations on the canvas as

needed. A draggable placeholder icon ® marks the position where the
next selected adapter visualization will be displayed on the screen.

5 VISUAL ANALYTICS WORKSPACE: DESIGN RATIONALE

In the following, we describe the design rationale and the visual encod-
ing for the designed explanation visualizations. Our workspace supports
the exploration of a single model and the comparison of two models or
two model layers (T0). We apply diverse explanation methods (i.e., the
similarity in the high-dimensional space, embedding projection, and
explanation details) to detect and avoid potential artifacts generated by
a single approach (e.g., projection artifacts). The design of the com-
parison visualizations was motivated by the design guidelines by Gle-
icher [19] that consider the comparative elements, challenges that may
occur, strategies to overcome the challenges, and the design solutions.

Global Visual Encoding In all visualizations, we use the visual
mark called point [9] (i.e., rectangle) to represent words. Hidden word
labels are displayed by hovering over a word’s rectangle. We use

positional encoding [9] to partition the embedding space (T1), detect
concept intersections (T2), and locate ‘unexpected’ associations (T3).
The position is used to show the similarity between words according to
underlying features such as different types of word embedding vectors
or prediction labels. We group words belonging to the same concept
through an additional visual mark, i.e., area/contour. The contours are
implemented using the d3-contour library* based on a two-dimensional
kernel density estimation on the point clouds. The user can specify how
many contour lines to display in the visualization by moving a slider.
To support memorization and ease the readability, we use a global
color encoding [9] for concepts. In particular,  human-interpretable concept #A

we use two diverging color pairs. One color w \
pair represents the two word lists of a concept.

The selection of the color pairs was not trivial

since the colors had two objectives: the sepa-
rability between two concepts and the separa- | |
bility between two word lists of one concept.  human-interpretable concept #B
The final decision was made as follows: we selected two warm colors
(i.e., and ) representing one concept and two cold colors
(i.e., green and blue) representing the other, as shown in the side figure.
Further color alternatives are included in the supplementary material.

Visual Encoding for Single Model Visualizations By default,
we display as many details as possible in the single visualizations but
avoid label overplotting. An algorithm measures whether displaying a
label would lead to overlap. The algorithm iterates through words in
both word lists of a concept and measures the bounding box of each
text element that gets added to the visualization. If the new element
creates an overlap, it is hidden in the visualization.

Visual Encoding for Model Comparison Visualizations For
effective model comparison, we use both the juxtaposition design
(see [19]) and either the superposition for visualizations that have a
positional anchor or explicit encoding for visualizations that lack the
positional anchor (e.g., projection techniques). By default, we show
the summary [19] of the two models to avoid datapoint overplotting.
The summaries are created using the contour library; the source model
is represented through its contour in the 2D space, and the target model
is represented through its filled-out area. We use the scan sequen-
tially [19] strategy to show exact word positions. The filter icons are
explained in Sect. 5.1.

5.1

This explanation displays the cosine similarity between two concepts
enabling to partition the embedding space (T1), detect concept inter-
sections (T2), as well as locate ‘unexpected’ associations (T3). In this
representation, one concept is used as an anchor for explanation pur-
poses. The other concept can be the same as the anchor (e.g., human
qualities used twice in Fig. 3) or it may differ from the anchor (e.g.,
person names as a concept and pronouns as an anchor in Fig. 7). We
measure the average cosine similarity between a word in the concept
to words in each pole of the selected anchor. It helps to analyze differ-
ent biases in the data, for instance, whether, e.g., female pronouns are
more similar to specific stereotype words than male pronouns.

(1) Single Model Explanation — The two anchor word lists represent
the two axes in the scatterplot visualization (e.g., negative qualities
represent y-axis and positive qualities represent x-axis in Fig. 3). The
average similarity values between a word in the concept to the anchors
are used as coordinates in the 2D visualization. A word’s (e.g., cheerful
in Fig. 3) average similarity to the first anchor word list (e.g., negative
qualities) specifies the word’s y-position and the average similarity to
the second anchor word list (e.g., positive qualities) specifies the word’s
x-position. To support the readability, we add a diagonal line to the
visualization as a point of reference. If a word is more similar to the first
word list, then it will be located on the left-hand-side of the diagonal; if
a word is more similar to the second word list, then it will be located on
the right-hand-side of the diagonal. Words that are equally similar to
both word lists are located on the diagonal. By default, we display all

Concept Embedding Similarity
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Fig. 3: We provide two types of model comparison designs for analyzing concept embedding similarity, i.e., juxtapositon where two models are
displayed next to each other and superposition, where two models are displayed in one visualization. Here: the contextualized word embeddings
extracted from layer 11 for the rotten-tomatoes and sst-2 sentiment classifiers differentiate between positive- and negative human qualities. The
rotten-tomatoes model requires context to separate the two polarities since the separation is stronger than for context-0 embeddings (see Fig. 2).

words in the concept word lists as rectangles and show non-overlapping
labels. Since most of the word lists consist of ca. 100 words, the
visualization has overplotting issues that limit the analysis of concept
intersections. To overcome these issues, we add a contour line around
each pole. We use the d3-contours library and specify the bandwidth
parameter to 5, which leads to larger areas for more dense regions;
however, single outlier data points are enclosed in separate, smaller
areas, enabling the detection of ‘unexpected’ associations (T3). The
area is colored in the particular concept’s color with a decreased opacity.

(2) Model Comparison Explanation — As mentioned in Sect. 3,
the overall goal of NLP researchers is to compare models or layers
with respect to concept distributions (T0). The design of comparison
visualizations is not trivial, as described by Gleicher [19]. Thus, in
order to consider all relevant aspects, we follow his design guidelines.

The comparison visualization for Concept Embedding Similarity has
to display two models or layers simultaneously, each showing the dis-
tribution of concept words with respect to selected anchors. Two types
of challenges may arise when designing for this objective: (1) the con-
cepts, as well as models, may overlap, and (2) word similarity changes
may produce patterns that are difficult to outline all at once. Before we
describe the strategies to overcome these challenges, we name our de-
sign considerations. Gleicher [19] names three design alternatives for
comparison visualizations: juxtaposition, superposition, and explicit
encoding. In our workspace, each explanation can be explored in a
juxtaposition design (shown in Fig. 3 left) since single model visual-
izations are always displayed next to each other on the screen. This
representation has limitations, though. Since we use all the available
2D space for a single model to reduce word overlaps, the visualizations
of the compared models often have different scales. Thus, the detailed
model and concept overlap analysis is restricted. Therefore, instead of
using juxtaposition, we place two models in the same representation us-
ing the superposition design (shown in Fig. 3, right). The superposition
is a valid alternative since the Concept Embedding Similarity visual-
ization has anchors (which is not the case for projection techniques, as
described in the following).

In the comparison visualization, we display the cosine similarity val-
ues between concept words and anchors for two models simultaneously
(T0). We follow the comparative visualization guidelines and apply two
strategies that enable the analysis of overlapping concepts, models, and
word similarity patterns. First, we provide a summary of the two mod-
els. We, therefore, display only the contours of their word positions;
more details (e.g., word exact positions) are displayed on demand. Dur-
ing the design process, we created several alternative representations to
visually separate the two models. Each designed alternative was dis-
cussed with a group of visual analytics experts to critically assess the
representation’s advantages and limitations. In particular, we created
representations that showed two types of the density of the visualized

words, i.e., discrete as well as continuous. The discrete representation
displayed the density regions through triangles arranged on a grid lay-
out, whereby each model was represented with triangles of different
sizes and opacity (smaller rectangles with higher opacity for the target

model, see design A in the side 3

figure). The continuous repre- model #1 gt :

sentation summarized the mod- 7

els through their contours (see de- 4 )
sign B in the side figure). After A < model 2 design A
several discussions, the latter was model #1 —»

selected as the final design due to

its visual smoothness and limited

clutter. The final design is as fol- /" «—model #2 design B

/

lows: the first (i.e., source) model
is displayed only through contour borders. Since the words themselves
are not visible, we use multiple contour lines to highlight the density
of the word-occurrence regions. The second (i.e., target) model is
displayed through a filled-out area of the contour regions with trans-
parency. In addition to the model summarization, we apply the scan
sequentially strategy to enable the analysis of word similarity changes.
For this purpose, we implemented filter buttons that can be used to
highlight words that have common properties with respect to their posi-
tional changes (i.e., their position in the source model compared to their
position in the target model in the 2D space). In particular, we mea-
sure the angle between the word’s position in the source and the target

model. By hovering over one of the filter buttons ,
words with similar positional changes are highlighted in the visualiza-
tion. The buttons themselves are colored according to the anchor to
which words in the target model become more similar in comparison to
the source model. An example of the word filtering is shown in Fig. 2.

5.2 Concept Embedding Projection

The second explanation method displays the words in a 2D visualiza-
tion, whereby the 2D positions are obtained using a projection technique
such as PCA on the embedding vectors. This explanation visually parti-
tions the representation space (T1) and supports the analysis of concept
intersections (T2). Since in the Concept Embedding Similarity expla-
nation we compute the similarity on high-dimensional vectors, this rep-
resentation shows the similarity from a different modeling perspective.

(1) Single Model Explanation — The explanation displays words
within one or two concepts, depending on whether the user wants
to analyze one concept or the overlap of two (un)related concepts.
Like in every visualization, we display words as rectangles and, by
default, show labels for words that do not overlap. To support the
readability of dense regions, we designed and discussed several de-
sign alternatives. First, we displayed words using a scatterplot tech-
nique, which is common for displaying projection data (design A
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Fig. 4: We provide two different types of model comparison designs for analyzing concept embedding projections, i.e., juxtapositon where two
models are displayed next to each other and explicit encoding that summarizes embedding changes through word neighborhood overlaps.

in the side figure). Since the goal of the visualization is to clearly
show concept intersections (T2), however, words in the projection
often overlap, this representation was not feasible. Second, we ap-
plied a kernel density estimation algorithm on the projected words
to estimate and visualize the densest regions in the 2D space. We
: first represented the den-
forgeane sity through triangles dis-
played in a grid layout,
design A whereas the density value
e was mapped to the trian-
gles’ opacity (design B in
the side figure). Similar
to the simple scatterplot,
it was difficult to detect
concept intersections easily. Thus, in the final design, we use multiple
contours showing the estimated density of the different regions (Fig. 4).
It allows detecting not only the densest regions but also words with un-
expected associations (T3) (i.e., outliers).

(2) Model Comparison Explanation — Our goal is to display in-
tersections and positional changes of one or two concept word lists.
The challenge of this representation is grounded in the artifacts of the
applied projection techniques. In particular, since we rely on projec-
tion techniques to compute word coordinates, the visualization lacks an
interpretable point of reference; projection techniques typically come
with artifacts such as rotation or flipping of the representation space,
making the comparison of two spaces difficult. Like in all other visu-
alizations, the user can explore model differences in a juxtaposition
design since the single model explanations are always placed next to
each other on the screen (as shown in Fig. 4b, left). The juxtaposi-
tion has limitations, though. If the compared models produce differ-
ent embedding spaces (which is the case for most of the model and
layer comparisons), they produce 2D spaces that are difficult to align.

design B

The insufficiency of the superposition design is depicted in the side
figure. There, we represent a word’s positional changes through lines,
whereas a line connects the word’s position in
the source model with the position in the tar-
get model. Due to rotation artifacts, the com-
parison of word changes is restricted even if
the changes are minor. Thus, for projection
comparison purposes, we apply the third de-
sign alternative, i.e., the explicit encoding de-
sign (as shown in Fig. 4b, right).

For the explicit encoding, we first define relationships to encode in
the visualization [19], i.e., we explain the projection changes through
word nearest neighbors in the 2D space. In particular, after computing
the projection’s coordinates, we compute ten nearest neighbors for each
word and store them as attributes in the data structure. When the user
explores two models according to their embedding projections, we
visually explain the neighborhood overlaps. This, according to design
guidelines [19], is an example of the summarize strategy. Unlike the
Concept Embedding Similarity visualization, we display only a single
word’s instance in the visualization. Its 2D coordinates, by default,
are coordinates from the source model. The user can change it by
clicking on the model’s name in the visualization (shown in Fig. 4b,
right). The neighborhood changes are displayed as follows. For each
word, we measure the neighborhood overlap (the number of equal
neighbors in the source and target model) and map it to the size of
the word’s rectangle representation. The higher the overlap, the larger
the rectangle and the lower the opacity. Moreover, we add horizontal
lines to the rectangle, each showing the nearest neigh-
bors from the particular concept’s pole. As shown in =
the side figure, in the pre-trained BERT the person-name Maverick is
more similar to countries (blue and green lines on the left-hand-side)
than person names; in the conll2003 named entity recognizer, this word

rotation
artifact
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Fig. 5: Words with similar neighborhoods can be filtered by selecting
particular glyphs. In conll2003 named entity recognizer, country names
Jordan and Chad are more similar to person names than countries.

becomes more similar to person names ( and lines on the
right-hand-side of the rectangle). An example of two models with sim-
ilar word neighborhoods is shown in Fig. 4a and with different word
neighborhoods — in Fig. 4b. If the word neighborhoods change, then
rectangles are smaller with a higher opacity, as shown in Fig. 4b. In
addition to the summarize strategy, we support the scan sequentially
strategy to enable the analysis of word neighborhood changes. The
users can filter words based on their neighborhoods by clicking on the
glyph representations displayed on top of the visualization. The fil-
tered words are highlighted; the rest are faded out (shown in Fig. 5).
On mouse over a word, its nearest neighbors in the source model are
highlighted; on click, the nearest neighbors in the target model are high-
lighted, enabling a simple neighborhood comparison.

5.3 Concept Prediction Similarity

The third visualization can be used on adapters that have been trained
on two-class classification tasks. It explains the prediction similarity
of two models that are trained on the same task, e.g., whether two
sentiment classifiers produce similar prediction outcomes, and connects
the representation space and the model’s behavior (T4). For this task,
the user has to select one concept; the model then predicts class labels
for the words’ assigned sentences.

(1) Single Model Explanation — To provide an overview of predic-
tion similarity, we aggregate the label information for all sentences in
which the word is used in the corpus and use the average prediction to
determine the word’s x-coordinate in the visualization. In particular,
we divide the number of sentences having the first prediction label (e.g.,
NEGATIVE sentiment) by the total number of sentences for the partic-
ular word; the more predictions with the first class label — the closer the
point is to the beginning of the x-axis. If the predictions are equal for
both class labels, the word is placed in the middle of the x-axis. The y-
coordinate is determined by the word’s position in the particular word
list. The words themselves are displayed as rectangles.

(2) Model Comparison Explanation — In the comparison visualiza-
tion, our goal is to show the prediction differences between two models
(T0). Since in this visualization we have clear anchors (the prediction
labels), we can apply a similar design approach as for the Concept Em-
bedding Similarity plot. In particular, we use both juxtaposition as well
as superposition designs. In the superposition design, both models are
represented in the same visualization, as shown in Fig. 6. We stick to
the same design as for the Concept Embedding Similarity plot and first
summarize the model predictions through contours. The source model
is represented through the contour’s borders; the target model’s contours
are filled out with a decreased opacity. The user can click on the filter-
ing icons displayed on top of the visualization; the prediction changes
are highlighted accordingly, supporting the scan sequentially strategy.

5.4 Explanation Details

When explaining model changes, researchers usually try to find the
reasons for particular patterns in the data. Thus, we designed three
visualizations to explain patterns in the comparison visualizations.
Context Concordance View — The patterns in the Concept Em-
bedding Similarity visualization can be influenced by the word con-
texts (sentences) from which the contextualized word embeddings are
extracted. Thus, for this visualization, we added a Context Concor-
dance View that lists all sentences in which a word is used in the cor-
pus (shown in Fig. 1, right). The view is displayed when clicking on
the particular word in the Concept Embedding Similarity visualization.
There, the selected word is highlighted for a better comparison.

Projection Artifact View — We propose a dense pixel visualization
to explore the latent space and reveal semantically similar embeddings.
The pixel visualization is inspired by Shin et al. [63] stripe-based visu-
alization of word embeddings. The primary goal is to create a compact
visual summary of the embeddings with all dimensions without using
dimensionality reduction methods (e.g., PCA). The pixel visualization
displays each embedding as a vertical pixel bar, a grid-shaped column
where each colored pixel (rectangle) is an embedding feature value.
Herefore, we normalize the embeddings to the unit length and color the
pixels according to a diverging color scheme. Then we place the pixel
bars next to each other on the x-axis, producing a dense pixel visualiza-
tion. The y-axis displays the 768 embedding dimensions, and the rows
are ordered by the median of the visualized embedding dimensions
to highlight block and band patterns [2]. The x-axis can be reordered
by linking and brushing in the single model explanations to interac-
tively create clusters to highlight and display as a block of embeddings.
Alternatively, the embeddings can be clustered using HDBSCAN [8]
using cosine similarity to detect clusters of similar embeddings. We
can explore clusters in latent space through clustering without relying
on dimensionality reduction methods, which typically produce some
artifacts. Overall, comparing the colored pixel bars enables us to per-
ceive pairwise similarities between the embeddings and generate new
insights into the latent space, such as identifying groups of similar em-
beddings, meaningful embedding dimensions, or outliers.

Prediction View — To explore the exact prediction differences in the
Concept Prediction Similarity comparison visualization, we display the
predicted labels for all sentences assigned to a word in the Prediction
View (shown in Fig. 1, right). The view is displayed when selecting a
word in the Concept Prediction Similarity visualization.

6 EVALUATION

We conducted expert case studies [60] with the experts from the re-
quirement analysis (see Sect. 3) to assess initial feedback on the visual-
ization sufficiency for model comparison tasks. We further gathered
positive (informal) feedback from two computational linguistic profes-
sors on the designed workspace. We present insights created for three
out of six models introduced in Sect. 4.2: the pre-trained BERT, the
debiasing adapter for BERT by Lauscher et al. [34], and the conll2003
named entity recognizer. We plan to extend the study with more partic-
ipants to quantitatively evaluate the usability of the interface.

6.1 Expert Study Setup

The following insights were created collaboratively with two experts in
natural language processing tasks. The study was conducted online in
the form of a video conference. The experts had two main tasks: (1)
to investigate models related to bias and (2) to explore the limitations
of a named entity recognition model. The experts further analyzed
predictions for sentiment classifiers (T4) as described in Sect. 5.3;
however, they are not included in the case study description below due
to the paper’s space considerations. The study was concluded with a
semi-structured interview about the workspace’s usability.

2 e B2a

+ click n|
model #2 A B

(area)

model #1
(contour)

model #2 model #1
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~ NEGATIVE

Fig. 6: Concept Prediction Similarity shows two sentiment classifiers
(see A). Compared to the sst-2 model (contour borders), the rotten-
tomatoes model (filled areas) classifies sentences with occurrences of
positive and negative human qualities more often as NEGATIVE (B).
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from the contextualized ones, though. Although context-O embeddings suggest that the debiasing adapter by [34] inverts the gender bias of the
pre-trained BERT, the PCA projection on contextualized embeddings shows that the adapter successfully eliminates the gender information.

Data — The data for the study included the 10 human-interpretable
concepts introduced in Sect. 4.1. The contextualized word embedding
representations were extracted from the Yelp dataset [73], whereby
each word in the concept list was represented by up to 300 contexts.
Tasks — For the analysis related to bias detection, the interface provides
the debiasing model trained by Lausher et al. [35]. We use their eval-
uation results as ground truth to investigate whether the insights can
be replicated using our workspace. In particular, the authors show that
the model is effective in attenuating gender biases according to most of
the applied evaluation methods. However, the results of the Word Em-
bedding Association Test (WEAT) [7] are less successful. The WEAT
test measures the association between two target word sets (e.g., male
pronouns) and (e.g., female pronouns) based on their mean cosine simi-
larity to words from two attribute sets (e.g., science terms) and (e.g.,
art terms) that is measured on context-0 (i.e., static [35]) word embed-
dings. Lauscher et al. observe that according to the WEAT test, the pre-
trained BERT model is insignificantly biased; however, the debiasing
adapter does not reduce the bias but instead — inverts it. The partici-
pants thus received the task to evaluate the particular adapter regarding
two specific analysis tasks: (1) to inspect how the embedding space is
partitioned for gender-related concepts (T1) and (2) to explore gender-
related concept intersections (T2).

Their second task was to analyze the conll2003 named entity recog-
nizer concerning its learning capabilities of specific named entity cate-
gories such as person names and countries. Their particular analysis
tasks were to investigate whether the model partitions the embedding
space according to the different categories (T1), whether there are inter-
sections between the categories (T2), and whether the model produces
‘unexpected’ associations (T3) between specific named entities.

6.2 Expert Case Studies

In the following, we describe gained insights for the specified tasks.
(Task 1) Bias in Language Models — To gain insights into the
gender-related concept representation and their intersections, the par-
ticipants investigated the Concept Embedding Similarity visualization.
They selected the pre-trained BERT and debiasing models and analyzed
the word similarities between different concepts (e.g., person names as
shown in Fig. 7) to pronouns that were displayed as anchors in the visu-
alization. The visualization revealed that in the upper layers (e.g., layer

11) of the pre-trained BERT, context-0 embeddings for person names
are slightly more similar to male pronouns than female pronouns, but
the difference is insignificant. However, in debiasing adapter, most of
these person names (even male person names) are more similar to fe-
male pronouns. Similar patterns could be observed for other concepts
(e.g., gender-related stereotypes, countries), which matches the obser-
vations by Lauscher et al. [34]. It is important to notice that this ‘bias
inversion’ is visible only for context-0 embeddings. When exploring
the relationships between the same concepts computed on contextual-
ized word embeddings (in Fig. 7), both Concept Embedding Similarity
and Concept Embedding Projection visualizations show that the debi-
asing adapter was able to eliminate the gender information — the visu-
alizations show no separation between the person-name and pronoun
concepts. However, in the pre-trained BERT, female person names
are more similar to female pronouns and male person names are more
similar to male pro- vs.mal

nouns. The visualiza-
tions reveal that most
of the models obtain
the gender information
from the word’s context,
and it is not encoded
in the word (e.g., per-
son name) itself. The

more similar to
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ﬁgure). Different to 0.13 sim.to male-pronouns - 0.46

other adapters, the sst-2 model is trained on phrases extracted from Stan-
ford parse trees rather than full sentences. Thus, words in isolation that
are used to extract the context-0 embeddings present an unnatural input
to most of the models [6]; however, the input is less unnatural for the sst-
2 model since some of its training instances are one or two words long.

(Task 2) Named Entity Recognition — To analyze the learning ca-
pabilities of the conll2003 named entity recognizer, the participants ex-
plored the Concept Embedding Similarity visualization for the concept
low/high-GDP countries — two word lists, each grouping countries with



a similar GDP rank according to 2020 statistics. As shown in the side
fries figure, the conll2003 model
learns that most of the coun-
o tries are similar without en-
coding their welfare (see the
top-right corner). By explor-
ing the word positions, one
can see that the model does
not recognize the country
Eswatini since its similarity
to both low-GDP and high-
GDP countries is low (0.31)
in comparison to other coun-
tries that have a similarity of
circa 0.8.

031 - 0.81 Next, the participants an-
alyzed the model’s distinction between person names and country
names — a typical task for a named entity recognizer. The Concept Em-
bedding Projection visualization of the two concepts is shown in Fig. 4.
In the early layers, both models produce similar word neighborhoods
and the person names and country names have a poor separation. In up-
per layers (e.g., layer 11 in Fig. 4b), the projection of conll2003 embed-
dings displays four clusters. One cluster contains country names (Fig. 8
cluster A) and another — person names (Fig. 8 cluster B). The neighbor-
hoods of the two smaller clusters are similar to those in the pre-trained
BERT, suggesting that the con/[2003 model did not capture any new
properties for these particular words. By interactively exploring the
word neighborhoods, one can observe that one cluster consists of rare
person names (e.g., Nevaeh), whereas the other contains relatively long
country names (e.g., Trinidad and Tobago). Since the visualizations
show the context-0 embeddings, the person names are not separated by
gender. To investigate whether the four clusters are artifacts generated
by the PCA projection, the embeddings values were displayed in the
Projection Artifact View. Fig. 8 shows that the values for embedding
vectors within one cluster produce similar patterns, suggesting that the
four clusters are not the projection’s generated artifacts. The separa-
tion between long and short country names, as well as common and
rare person names, might be a reason of long and rare words not being
in the BERT’s vocabulary; thus, this might be an artifact of averaging
sub-token embedding vectors and must be further investigated.
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6.3 Preliminary Expert Feedback

The experts provided positive feedback concerning the workspace’s
applicability for model evaluation and comparison tasks. They de-
scribed the interface to be intuitive and easy to use. The experts found
it useful having the option to choose between different concepts, and
in particular—with respect to bias—different ways to quantify it. This
allows them to evaluate the models along ‘different axes’, and this is
in accordance with works that have shown that bias is manifested in
multiple ways. The experts also appreciated the ability to analyze both
the representations and the predictions that provide two complemen-
tary ways to explain a model: the prediction-based view focuses on the
more high level ‘interface’ (i.e., model’s predictions) while the repre-
sentation analysis focuses on its actual working mechanism (i.e., how
these predictions are derived). The workspace also demonstrates and
makes use of one of the advantages of adapters over other fine-tuning
methods — the fact they are easily integrated into one pre-trained model
without having to fine-tune a different model per task.

One important advantage of our workspace was described by the

male-person-nanes vs. female-person-nanes y
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Fig. 8: In Projection Artifact View, the user can explore embedding
vectors aligned as columns in a pixel visualization. We use a bipolar
color scale to show vector values (from min to max orange).

experts as follows. Adapters are usually tested in-domain (e.g., people
train for the sentiment task and evaluate on sentiment prediction). The
‘side-effects’ the training has on other aspects are often unaddressed.
Thus, it was appreciated that the workspace puts emphasis on evaluating
a given adapter according to metrics that are not necessarily related to
the main tasks it was trained on. The interface with its diverse concepts
brings another advantage, particularly for the bias evaluation tasks.
According to the experts, while certain notions of bias are well studied,
the more interesting cases are those which are more subtle and less
intuitive or straightforward. The workspace makes it easier to explore
the representation space of the models and potentially discover new
notions of bias, or more generally, undesired properties of the model in
question, as depicted in the Sect. 6.2. The limitations of the workspace
are formulated as research opportunities in the following section.

7 DiscuUsSION AND RESEARCH OPPORTUNITIES

In the previous section, we presented how we can use our workspace to
gain insights into model specificities. During the design and evaluation
process, we discovered several opportunities for future research.
Comparison of Numerous Models — Currently, our workspace sup-
ports the direct comparison of two models at a time. An interesting
research challenge would be to display more than two models in the
same comparison visualization. While designing our visualizations, we
faced challenges in how to select designs that allow visually separate
the two models. By displaying more than two models simultaneously,
one would need to come up with new visual design alternatives.
Supporting Model Fine-Tuning — Our work is a step toward effectively
comparing adapter models. It is still limited to explorative tasks and,
at this point, does not actively suggest which actions to undertake to
improve the adapter performances. We see, however, this as a very
important direction for future work. The system should provide insights
into the models’ strengths and limitations and, in an ideal case, also
provide hints or suggestions on which steps should be overtaken (e.g.,
adaptation of the training dataset) to improve the models’ performances.
Visual Explanations Combined with Probing Classifiers — During
our collaboration, the NLP researchers mentioned several potential
extensions concerning the functionality of the workspace. Since they
commonly train classifiers to investigate concept intersections, they
mentioned this as an extension to the visual explanation methods. The
two methods used in parallel could increase their trust in the generated
insights. In particular, if the projection and the classifier produce similar
results, it is more likely to be true and less likely to be an artifact of the
particular method in use.

Support for Adapter Training — Currently, our workspace supports
the analysis of adapters from the AdapterHub repository. The frame-
work, however, supports different adapter composition techniques, such
as adapter stacking [50] as well as their fusion [48]. We plan to extend
the workspace in a way that researchers could train new adapters in the
interface by applying the different adapter composition methods and
directly evaluate their created representation spaces, which, hopefully,
would lead to better-performing models for downstream tasks.

8 CONCLUSION

We presented a novel visual analytics workspace for the analysis and
comparison of LMs that are adapted for different masked language
modeling and downstream classification tasks. The design was moti-
vated by requirements gathered during a literature review and collab-
oration with NLP researchers. We introduced three new comparison
visualizations: Concept Embedding Similarity, Concept Embedding
Projection, and Concept Prediction Similarity that were designed by
applying the comparative visualization guidelines by Gleicher [19]. We
show the applicability of the workspace through expert case studies,
confirm findings from the related work, and generate new insights into
adapter learning properties. A demo is available as part of the LingVis
framework [13] under: https://adapters.demo.lingvis.io/.
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